Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals

In this paper, we introduce ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two inter...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2021; no. 1; pp. 1 - 15
Main Authors Sharma, Nidhi, Singh, Sanjeev Kumar, Mishra, Shashi Kant, Hamdi, Abdelouahed
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we introduce ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results.
AbstractList Abstract In this paper, we introduce ( h 1 , h 2 ) $(h_{1},h_{2})$ -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results.
In this paper, we introduce (h1,h2)-preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results.
In this paper, we introduce $(h_{1},h_{2})$ ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results.
In this paper, we introduce ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results.
ArticleNumber 98
Author Hamdi, Abdelouahed
Mishra, Shashi Kant
Sharma, Nidhi
Singh, Sanjeev Kumar
Author_xml – sequence: 1
  givenname: Nidhi
  surname: Sharma
  fullname: Sharma, Nidhi
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 2
  givenname: Sanjeev Kumar
  surname: Singh
  fullname: Singh, Sanjeev Kumar
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 3
  givenname: Shashi Kant
  surname: Mishra
  fullname: Mishra, Shashi Kant
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 4
  givenname: Abdelouahed
  orcidid: 0000-0003-1950-8907
  surname: Hamdi
  fullname: Hamdi, Abdelouahed
  email: abhamdi@qu.edu.qa
  organization: Department of Mathematics, Statistics and Physics College of Arts and Sciences, Qatar University
BookMark eNp9UU1r3DAQNSWFJmn_QE-Gnt3qw7bkYwltN7BQKCn0JsbSaNHilTaSvElu-Q_9h_0l1a5bGnrIYZhheO8xb95FdeaDx6p6S8l7SmX_IVHe96QhjJbqGW_uXlTnlLChYS37cfZkflVdpLQlBclle17drzDuXMZfjz9XYGAH0TT5YY-183g7w-Syw1TbEMsiYzzA1JSa0dT7iM4f8L62s9fZBZ_qg4P6m8MdeF_01i7MBzdNWNsIJwRMJ5VNhCm9rl7a0vDNn35Zff_86eZq1ay_frm--rhudMuG3Fhrx97IAVkHcgRjrGSdlp1pRUsHqVEzgcLwngkw0oAeiRFi6JighnYw8svqetE1AbZqH12x-KACOHVahLhRELPTEyowg-wt5USgba2E8g8YW0ItY5oyc9R6t2jtY7idMWW1DXMstpJiHe9ESwjnBSUXlI4hpYhWaZfh6D9HcJOiRB0zU0tmqiShTpmpu0Jl_1H_HvwsiS-kVMB-g_HfVc-wfgMpNrKj
CitedBy_id crossref_primary_10_3390_math11030656
crossref_primary_10_3390_math11244974
crossref_primary_10_1080_03610926_2022_2150055
crossref_primary_10_3390_sym15051012
crossref_primary_10_3390_axioms12010001
crossref_primary_10_1155_2024_8814585
crossref_primary_10_3390_math11061356
crossref_primary_10_3934_math_2022146
crossref_primary_10_3390_math10152763
crossref_primary_10_3390_fractalfract8090518
crossref_primary_10_3390_axioms11110622
crossref_primary_10_3390_math10020264
crossref_primary_10_1142_S0218348X22501602
crossref_primary_10_3390_axioms13100684
crossref_primary_10_3390_sym14040771
crossref_primary_10_3390_axioms11120732
crossref_primary_10_3390_fractalfract6090506
crossref_primary_10_1142_S0218348X2450083X
crossref_primary_10_1216_rmj_2023_53_383
crossref_primary_10_3390_fractalfract7020171
crossref_primary_10_3934_math_2022824
crossref_primary_10_3390_math11132851
crossref_primary_10_3390_sym15040862
crossref_primary_10_1142_S0218348X21502297
crossref_primary_10_3390_math11194041
crossref_primary_10_1142_S0218348X22501316
crossref_primary_10_3390_math12162464
crossref_primary_10_3390_axioms11080368
crossref_primary_10_3390_fractalfract8100587
crossref_primary_10_3390_math12030382
crossref_primary_10_3390_sym14101964
crossref_primary_10_1155_jofs_3942793
Cites_doi 10.1006/jmaa.1995.1057
10.1016/j.fss.2014.04.005
10.1016/S0304-0208(06)80001-0
10.1016/j.mcm.2011.06.057
10.1515/9783110523621
10.1137/1.9781611970906
10.3390/math7050436
10.1007/s00500-014-1483-6
10.1016/0022-247X(81)90123-2
10.1137/1.9780898717716
10.1007/978-3-319-11002-8
10.21833/ijaas.2020.03.012
10.1090/proc/14741
10.1142/S1793005719500327
10.1007/s12597-014-0175-4
10.1007/s00186-012-0399-0
10.1016/j.ins.2013.06.004
10.1186/1029-242X-2015-1
10.1016/0022-247X(88)90113-8
10.11650/twjm/1500405730
10.1007/s10479-014-1644-0
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1186/s13660-021-02623-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 15
ExternalDocumentID oai_doaj_org_article_ad986f1307ef4f8aadaab401f22c12db
10_1186_s13660_021_02623_w
GrantInformation_xml – fundername: Qatar University
– fundername: Council of Scientific and Industrial Research, India
  grantid: 1362/(CSIR-UGC NET JUNE 2019); 1272/(CSIR-UGC NET DEC 2016)
  funderid: http://dx.doi.org/10.13039/501100001412
– fundername: Science and Engineering Research Board
  grantid: MTR/2018/000121
  funderid: http://dx.doi.org/10.13039/501100001843
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c429t-fffb6d89e25a8baddf825c85d474198cec27e7d3627ad8dacb0d7795271d15ab3
IEDL.DBID C24
ISSN 1029-242X
1025-5834
IngestDate Wed Aug 27 01:12:34 EDT 2025
Fri Jul 25 12:19:22 EDT 2025
Tue Jul 01 04:06:21 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Fri Feb 21 02:49:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 28B20
Preinvex functions
Interval-valued functions
26A51
Hermite–Hadamard inequalities
26A33
Invex sets
Fractional integrals
26E25
26D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-fffb6d89e25a8baddf825c85d474198cec27e7d3627ad8dacb0d7795271d15ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1950-8907
OpenAccessLink https://link.springer.com/10.1186/s13660-021-02623-w
PQID 2535740033
PQPubID 237789
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_ad986f1307ef4f8aadaab401f22c12db
proquest_journals_2535740033
crossref_citationtrail_10_1186_s13660_021_02623_w
crossref_primary_10_1186_s13660_021_02623_w
springer_journals_10_1186_s13660_021_02623_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References WeirT.MondB.Preinvex functions in multiple objective optimizationJ. Math. Anal. Appl.1988136293897258110.1016/0022-247X(88)90113-8
WeiW.SrivastavaH.M.ZhangY.WangL.ShanP.ZhangT.A local fractional integral inequality on fractal space analogous to Anderson’s inequalityAbstr. Appl. Anal.20142014324056307023094
SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some weighted Opial type inequalities on time scalesTaiwan. J. Math.2010141107122260344510.11650/twjm/1500405730
LiL.LiuS.ZhangJ.On interval-valued invex mappings and optimality conditions for interval-valued optimization problemsJ. Inequal. Appl.201520151335315210.1186/1029-242X-2015-1
Chalco-CanoY.LodwickW.A.Condori-EquiceW.Ostrowski type inequalities and applications in numerical integration for interval-valued functionsSoft Comput.201519113293330010.1007/s00500-014-1483-6
AnY.YeG.ZhaoD.LiuW.Hermite-Hadamard type inequalities for interval (h1,h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h_{1},h_{2})$\end{document}-convex functionsMathematics20197510.3390/math7050436
JanaM.PandaG.Solution of nonlinear interval vector optimization problemOper. Res.20141417185
WangJ.FečkanM.Fractional Hermite-Hadamard Inequalities2018Berlinde Gruyter10.1515/9783110523621
BhurjeeA.K.PandaG.Multi-objective interval fractional programming problems: an approach for obtaining efficient solutionsOpsearch2015521156167332038010.1007/s12597-014-0175-4
LupulescuV.Hukuhara differentiability of interval-valued functions and interval differential equations on time scalesInf. Sci.20132485067309583510.1016/j.ins.2013.06.004
BudakH.TunçT.SarikayaM.Z.Fractional Hermite-Hadamard-type inequalities for interval-valued functionsProc. Am. Math. Soc.20191482705718405220810.1090/proc/14741
MooreR.E.Methods and Applications of Interval Analysis1979PhiladelphiaSIAM10.1137/1.9781611970906
KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations200610.1016/S0304-0208(06)80001-0
SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some generalization of Maroni’s inequality on time scalesMath. Inequal. Appl.201114246948028153331217.26069
AgarwalR.O’ReganD.SakerS.Dynamic Inequalities on Time Scales2014BerlinSpringer10.1007/978-3-319-11002-8
TunçT.SarikayaM.Z.SrivastavaH.M.Some generalized Steffensen’s inequalities via a new identity for local fractional integralsInt. J. Anal. Appl.2017131981071378.26023
HansonM.A.On sufficiency of the Kuhn-Tucker conditionsJ. Math. Anal. Appl.198180254555061484910.1016/0022-247X(81)90123-2
NoorM.A.Hermite-Hadamard integral inequalities for log-preinvex functionsJ. Math. Anal. Approx. Theory20072212613124748881204.26039
MooreR.E.KearfottR.B.CloudM.J.Introduction to Interval Analysis2009PhiladelphiaSIAM10.1137/1.9780898717716
LupulescuV.Fractional calculus for interval-valued functionsFuzzy Sets Syst.20152656385331032710.1016/j.fss.2014.04.005
RoyP.PandaG.Expansion of generalized Hukuhara differentiable interval-valued functionNew Math. Nat. Comput.201915355357010.1142/S1793005719500327
HilgerS.Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten1988WurzburgUniverstat Wurzburg0695.34001
MohanS.R.NeogyS.K.On invex sets and preinvex functionsJ. Math. Anal. Appl.19951893901908131255910.1006/jmaa.1995.1057
BhurjeeA.K.PandaG.Sufficient optimality conditions and duality theory for interval optimization problemAnn. Oper. Res.20162431335348352980610.1007/s10479-014-1644-0
Işcan, I.: Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities (2012) arXiv:1204.0272
MishraS.K.SharmaN.On strongly generalized convex functions of higher orderMath. Inequal. Appl.201922111112139059741416.26023
Pia̧tek, B.: On the Riemann integral of set-valued functions. Zeszyty Naukowe. Matematyka Stosowana/Politechnika Ślaska (2012)
BhurjeeA.K.PandaG.Efficient solution of interval optimization problemMath. Methods Oper. Res.2012763273288300098710.1007/s00186-012-0399-0
SrivastavaH.M.ZhangZ.-H.WuY.-D.Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variablesMath. Comput. Model.20115427092717284181410.1016/j.mcm.2011.06.057
SharmaN.MishraS.K.HamdiA.A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functionsInt. J. Adv. Appl. Sci.20207311311810.21833/ijaas.2020.03.012
A.A. Kilbas (2623_CR12) 2006
A.K. Bhurjee (2623_CR3) 2012; 76
W. Wei (2623_CR29) 2014; 2014
N. Sharma (2623_CR23) 2020; 7
H. Budak (2623_CR6) 2019; 148
Y. Chalco-Cano (2623_CR7) 2015; 19
A.K. Bhurjee (2623_CR4) 2015; 52
H.M. Srivastava (2623_CR26) 2011; 54
Y. An (2623_CR2) 2019; 7
H.M. Srivastava (2623_CR24) 2010; 14
S. Hilger (2623_CR9) 1988
R. Agarwal (2623_CR1) 2014
R.E. Moore (2623_CR19) 2009
2623_CR21
M. Jana (2623_CR11) 2014; 14
T. Tunç (2623_CR27) 2017; 13
V. Lupulescu (2623_CR15) 2015; 265
M.A. Noor (2623_CR20) 2007; 2
H.M. Srivastava (2623_CR25) 2011; 14
L. Li (2623_CR13) 2015; 2015
R.E. Moore (2623_CR18) 1979
M.A. Hanson (2623_CR8) 1981; 80
P. Roy (2623_CR22) 2019; 15
A.K. Bhurjee (2623_CR5) 2016; 243
V. Lupulescu (2623_CR14) 2013; 248
T. Weir (2623_CR30) 1988; 136
2623_CR10
S.R. Mohan (2623_CR17) 1995; 189
J. Wang (2623_CR28) 2018
S.K. Mishra (2623_CR16) 2019; 22
References_xml – reference: TunçT.SarikayaM.Z.SrivastavaH.M.Some generalized Steffensen’s inequalities via a new identity for local fractional integralsInt. J. Anal. Appl.2017131981071378.26023
– reference: BhurjeeA.K.PandaG.Efficient solution of interval optimization problemMath. Methods Oper. Res.2012763273288300098710.1007/s00186-012-0399-0
– reference: Işcan, I.: Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities (2012) arXiv:1204.0272
– reference: BhurjeeA.K.PandaG.Multi-objective interval fractional programming problems: an approach for obtaining efficient solutionsOpsearch2015521156167332038010.1007/s12597-014-0175-4
– reference: MooreR.E.KearfottR.B.CloudM.J.Introduction to Interval Analysis2009PhiladelphiaSIAM10.1137/1.9780898717716
– reference: SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some generalization of Maroni’s inequality on time scalesMath. Inequal. Appl.201114246948028153331217.26069
– reference: MohanS.R.NeogyS.K.On invex sets and preinvex functionsJ. Math. Anal. Appl.19951893901908131255910.1006/jmaa.1995.1057
– reference: MooreR.E.Methods and Applications of Interval Analysis1979PhiladelphiaSIAM10.1137/1.9781611970906
– reference: WeiW.SrivastavaH.M.ZhangY.WangL.ShanP.ZhangT.A local fractional integral inequality on fractal space analogous to Anderson’s inequalityAbstr. Appl. Anal.20142014324056307023094
– reference: LupulescuV.Fractional calculus for interval-valued functionsFuzzy Sets Syst.20152656385331032710.1016/j.fss.2014.04.005
– reference: LupulescuV.Hukuhara differentiability of interval-valued functions and interval differential equations on time scalesInf. Sci.20132485067309583510.1016/j.ins.2013.06.004
– reference: WeirT.MondB.Preinvex functions in multiple objective optimizationJ. Math. Anal. Appl.1988136293897258110.1016/0022-247X(88)90113-8
– reference: HansonM.A.On sufficiency of the Kuhn-Tucker conditionsJ. Math. Anal. Appl.198180254555061484910.1016/0022-247X(81)90123-2
– reference: BhurjeeA.K.PandaG.Sufficient optimality conditions and duality theory for interval optimization problemAnn. Oper. Res.20162431335348352980610.1007/s10479-014-1644-0
– reference: SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some weighted Opial type inequalities on time scalesTaiwan. J. Math.2010141107122260344510.11650/twjm/1500405730
– reference: Chalco-CanoY.LodwickW.A.Condori-EquiceW.Ostrowski type inequalities and applications in numerical integration for interval-valued functionsSoft Comput.201519113293330010.1007/s00500-014-1483-6
– reference: WangJ.FečkanM.Fractional Hermite-Hadamard Inequalities2018Berlinde Gruyter10.1515/9783110523621
– reference: RoyP.PandaG.Expansion of generalized Hukuhara differentiable interval-valued functionNew Math. Nat. Comput.201915355357010.1142/S1793005719500327
– reference: SharmaN.MishraS.K.HamdiA.A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functionsInt. J. Adv. Appl. Sci.20207311311810.21833/ijaas.2020.03.012
– reference: HilgerS.Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten1988WurzburgUniverstat Wurzburg0695.34001
– reference: MishraS.K.SharmaN.On strongly generalized convex functions of higher orderMath. Inequal. Appl.201922111112139059741416.26023
– reference: BudakH.TunçT.SarikayaM.Z.Fractional Hermite-Hadamard-type inequalities for interval-valued functionsProc. Am. Math. Soc.20191482705718405220810.1090/proc/14741
– reference: JanaM.PandaG.Solution of nonlinear interval vector optimization problemOper. Res.20141417185
– reference: NoorM.A.Hermite-Hadamard integral inequalities for log-preinvex functionsJ. Math. Anal. Approx. Theory20072212613124748881204.26039
– reference: Pia̧tek, B.: On the Riemann integral of set-valued functions. Zeszyty Naukowe. Matematyka Stosowana/Politechnika Ślaska (2012)
– reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations200610.1016/S0304-0208(06)80001-0
– reference: AnY.YeG.ZhaoD.LiuW.Hermite-Hadamard type inequalities for interval (h1,h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h_{1},h_{2})$\end{document}-convex functionsMathematics20197510.3390/math7050436
– reference: LiL.LiuS.ZhangJ.On interval-valued invex mappings and optimality conditions for interval-valued optimization problemsJ. Inequal. Appl.201520151335315210.1186/1029-242X-2015-1
– reference: SrivastavaH.M.ZhangZ.-H.WuY.-D.Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variablesMath. Comput. Model.20115427092717284181410.1016/j.mcm.2011.06.057
– reference: AgarwalR.O’ReganD.SakerS.Dynamic Inequalities on Time Scales2014BerlinSpringer10.1007/978-3-319-11002-8
– volume: 189
  start-page: 901
  issue: 3
  year: 1995
  ident: 2623_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1995.1057
– volume: 265
  start-page: 63
  year: 2015
  ident: 2623_CR15
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2014.04.005
– ident: 2623_CR21
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 2623_CR12
  doi: 10.1016/S0304-0208(06)80001-0
– volume: 2
  start-page: 126
  issue: 2
  year: 2007
  ident: 2623_CR20
  publication-title: J. Math. Anal. Approx. Theory
– volume: 54
  start-page: 2709
  year: 2011
  ident: 2623_CR26
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.06.057
– volume-title: Fractional Hermite-Hadamard Inequalities
  year: 2018
  ident: 2623_CR28
  doi: 10.1515/9783110523621
– volume: 2014
  year: 2014
  ident: 2623_CR29
  publication-title: Abstr. Appl. Anal.
– volume-title: Methods and Applications of Interval Analysis
  year: 1979
  ident: 2623_CR18
  doi: 10.1137/1.9781611970906
– volume: 7
  issue: 5
  year: 2019
  ident: 2623_CR2
  publication-title: Mathematics
  doi: 10.3390/math7050436
– volume: 19
  start-page: 3293
  issue: 11
  year: 2015
  ident: 2623_CR7
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1483-6
– volume: 80
  start-page: 545
  issue: 2
  year: 1981
  ident: 2623_CR8
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(81)90123-2
– ident: 2623_CR10
– volume-title: Introduction to Interval Analysis
  year: 2009
  ident: 2623_CR19
  doi: 10.1137/1.9780898717716
– volume-title: Dynamic Inequalities on Time Scales
  year: 2014
  ident: 2623_CR1
  doi: 10.1007/978-3-319-11002-8
– volume: 14
  start-page: 469
  issue: 2
  year: 2011
  ident: 2623_CR25
  publication-title: Math. Inequal. Appl.
– volume: 7
  start-page: 113
  issue: 3
  year: 2020
  ident: 2623_CR23
  publication-title: Int. J. Adv. Appl. Sci.
  doi: 10.21833/ijaas.2020.03.012
– volume: 148
  start-page: 705
  issue: 2
  year: 2019
  ident: 2623_CR6
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14741
– volume: 15
  start-page: 553
  issue: 3
  year: 2019
  ident: 2623_CR22
  publication-title: New Math. Nat. Comput.
  doi: 10.1142/S1793005719500327
– volume: 52
  start-page: 156
  issue: 1
  year: 2015
  ident: 2623_CR4
  publication-title: Opsearch
  doi: 10.1007/s12597-014-0175-4
– volume: 13
  start-page: 98
  issue: 1
  year: 2017
  ident: 2623_CR27
  publication-title: Int. J. Anal. Appl.
– volume: 76
  start-page: 273
  issue: 3
  year: 2012
  ident: 2623_CR3
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-012-0399-0
– volume: 248
  start-page: 50
  year: 2013
  ident: 2623_CR14
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.06.004
– volume-title: Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten
  year: 1988
  ident: 2623_CR9
– volume: 14
  start-page: 71
  issue: 1
  year: 2014
  ident: 2623_CR11
  publication-title: Oper. Res.
– volume: 2015
  issue: 1
  year: 2015
  ident: 2623_CR13
  publication-title: J. Inequal. Appl.
  doi: 10.1186/1029-242X-2015-1
– volume: 22
  start-page: 111
  issue: 1
  year: 2019
  ident: 2623_CR16
  publication-title: Math. Inequal. Appl.
– volume: 136
  start-page: 29
  year: 1988
  ident: 2623_CR30
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(88)90113-8
– volume: 14
  start-page: 107
  issue: 1
  year: 2010
  ident: 2623_CR24
  publication-title: Taiwan. J. Math.
  doi: 10.11650/twjm/1500405730
– volume: 243
  start-page: 335
  issue: 1
  year: 2016
  ident: 2623_CR5
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-014-1644-0
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.430444
Snippet In this paper, we introduce ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued...
In this paper, we introduce $(h_{1},h_{2})$ ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex...
In this paper, we introduce (h1,h2)-preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by...
Abstract In this paper, we introduce ( h 1 , h 2 ) $(h_{1},h_{2})$ -preinvex interval-valued function and establish the Hermite–Hadamard inequality for...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications of Mathematics
Fractional calculus
Fractional integrals
Hermite–Hadamard inequalities
Inequalities
Integrals
Interval-valued functions
Invex sets
Mathematics
Mathematics and Statistics
Preinvex functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1x4I5YW5AM3sJo4jh9HQFQrBBwQlXqzxi8p0jatdrfbHvkP_EN-CWPHKRQJuHBMYicjz3jmG2cehLxAEwQtbzqWQkxMtI1niPI7Bo0GHaVxSucE54-f5PJYvD_pT35p9ZVjwqbywNPCHUIwWibUtComkTRAAHDoFCTOfcuDy9oXPzg7U9XVajst5hQZLQ83bSdlw3I4AvocvGOXN8xQqdZ_A2L-9le0GJuje-RORYn09UTdfXIrjg_I3YoYad2Pm4fkapljWbbx-9dvqELgNEfA5kNVithxSpdER5giLqVDiW2EFcvVvfEd5-s4jLt4RbNhK7JHdwPQz0M8hXHE930Yzi52OVGQpvWU_IAE1eISq80jcnz07svbJau9FJhHi7NlKSUngzaR96AdKrWErqHXfRAIKYz20XMVVUBzpiDoAN41QSnTc9WGtgfXPSZ749kYnxAaQCjZeOVwlnCmM4hhjAi9lk3AK7Mg7by01tdC47nfxcoWh0NLO7HDIjtsYYe9XJCX13POpzIbfx39JnPsemQukV1uoODYKjj2X4KzIAczv23dtxvL-65XIje4W5BXswz8fPxnkp7-D5L2yW1eZDQf8hyQve36Ij5DzLN1z4t4_wBWYQMj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCBRwGxUJAP3MBq4tixfUIUtVohWqGKSr1Zjh9opW122Wy3PfY_9B_ySxg7Tqoi0WMS24o845lvxvNA6AOoIFPSoiLB-UBYWVgCKL8ippBG-lo1QsYE56PjenrKvp3xs-xw63JY5SATk6B2Cxt95HuUV1yw2Hrs8_I3iV2j4u1qbqHxEG2DCJZgfG3vHxz_OBk5SvIogEeFzZhgjKvxnoGWVepJXMamrlxWbEirkfVeV1Z1XZAYwgB2Cq3I5R3VlSr834Gl_9ykJgV1-Aw9ycgSf-lZ4Tl64Nsd9DSjTJzPcLeDHh-NlVq7F-hqGqNh1v7P9Q0IIXMeY2ijWxYD-uwTLsGUxoBs8SxFR5o5ifXBYcXlys_ajb_CUTUm7sWbmcEnM1i7bWG977PFxSamGuKw6tMn4PdyeYp59xKdHh78_DoluRsDsaCz1iSE0NROKk-5kQ2IxQDGpZXcwZ6WSlpvqfDCgUIUxklnbFM4IRSnonQlN031Cm21i9a_RtgZJurCigZmsUZVClCQYo7LunDwpCaoHDZa21yqPHbMmOtkssha98TRQBydiKMvJ-jjOGfZF-q4d_R-pN84MhbZTi8Wq186n1ltnJJ1ACUvfGBBGqCCacAeDZTakrpmgnYH6ut88jt9y6cT9GngiNvP__-lN_ev9hY9ookXowNoF22tVxf-HeChdfM-M_1f-3oIHA
  priority: 102
  providerName: ProQuest
Title Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals
URI https://link.springer.com/article/10.1186/s13660-021-02623-w
https://www.proquest.com/docview/2535740033
https://doaj.org/article/ad986f1307ef4f8aadaab401f22c12db
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfY9gIP_BkgCqPyA29gkTiO7Tx21UpVsQkNKu3NsmMbVerSqem6PfId-IZ8Es6OUzQESLxclMS2otyd73f23RmhN2CCdE6zgnjrPGF5VhNA-QXRmdTS8coIGRKcT8_4dM5mF-VFSgpr-2j3fksyztRRrSV_3-YF5xkJIQXgN9CC3OyhgxJ89yDX45DjkNysvJCsT4_5Y787JihW6r8DL3_bEY2GZvIYPUwIEY86lj5B91xziB4ltIiTLraH6MHpruJq-xTdTkNUy8b9-PYdJhN9GWJhw_IqBhTZJU6CS4wBoeJFjHLUSxLqfMOIV2u3aLbuFgcTF6UQbxcany9g7KaB8T4uVtfbkDKI_bpLg4DPS2Umlu0zNJ-cfBlPSTpVgdRgezbEe2-4lZWjpZYGpjcPTmItS8sAXFSydjUVTlgwbEJbaXVtMitEVVKR27zUpniO9ptV414gbDUTPKuFgV7MVEUFaKZitpQ8s3BXDVDe_2hVp5Lj4eSLpYquh-SqY44C5qjIHHUzQG93fa66ghv_bH0c-LdrGYplxwer9VeVdE9pW0nuwVgL55mXGrigDfiVntI6p9YM0FHPfZU0uFW0LErBwlF3A_Sul4hfr__-SS__r_krdJ9G2QwLO0dof7O-dq8B52zMEO2x7ANQOQF6MBrNPs_genxy9ul8GEU-UD4exnUEoHM6-gk3pwKB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALHgXEQAEvYAVWE9uJ7QVCvIYpnXaBWqk748Q2GmnIDJPpTNnxD_wHH8WXcO08qiLRXZdJnKso93WufR8IPQMXZFKaMOKt84SnSUkA5TNiEmmky1UhZChw3j_IR0f803F2vIF-d7UwIa2ys4nRUNtZGfbId2jGMsHD6LHX8-8kTI0Kp6vdCI1GLPbcjzWEbPWr3ffA3-eUDj8cvhuRdqoAKcH2Lon3vsitVI5mRhag3h6CpFJmloNzVbJ0JRVOWDDswlhpTVkkVgiVUZHaNDMFA7pX0FXOmAoaJYcfe_mVWTD3PTzgQJFnqj_VoCmLE5DTMEI2k4x3RTwy36lTlucJCQkTEBVRRtbnHGWcJ3AOBP9zbhvd4fA2utniWPymEbw7aMNVW-hWi2lxazHqLXRjv-8LW99Fp6OQe7N0f37-ApNnvoWM3bAJjAHrNuWdELhjwNF4EnMxzZSEbuRAcb5wk2rlTnFwxFFX8Gpi8OcJ0K4qoDeezE5WobAR-0VTrAGf1zbDmNb30NGlcOk-2qxmlXuAsDVc5EkpCniLF4opwFyK20zmiYUrNUBp96N12TZGD_M5pjoGSDLXDXM0MEdH5uj1AL3o35k3bUEuXP028K9fGVp6xxuzxVfdWghtrJK5B0ghnOdeGuCCKSD69ZSWKbXFAG133Netnan1mVYM0MtOIs4e__-THl5M7Sm6NjrcH-vx7sHeI3SdRrkMW0_baHO5OHGPAYktiydR_DH6ctn69hdX5UV4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLXKVEKw4FGoGCjgBazAmsSxY2eBUEs7mtJ2VFVU6s44sY0iDZlhMp0pO_6Bv-Fz-JJe51UVie66zOvKyn2da98HQm_ABemQBhFxxjrCwiAjgPIjogOppY2TVEhf4Hw0jken7PMZP1tDf9paGJ9W2drEylCbaeb3yAeUR1wwP3ps4Jq0iOPd4cfZD-InSPmT1nacRi0iB_bnCsK38sP-LvD6LaXDvS-fRqSZMEAysMML4pxLYyMTS7mWKai6g4Apk9wwcLSJzGxGhRUGjLzQRhqdpYERIuFUhCbkOo2A7h20DusSQQ-t7-yNj086aZbcG_8OLDCgyXjSnXHQMKrmIYd-oCyXEWtLemQ8KMMojgPi0ycgRqIRWV1zm9V0gWuQ-J9T3Mo5Dh-hBw2qxdu1GD5Ga7bYQA8bhIsb-1FuoPtHXZfY8gm6GPlMnIX9--s3GED93efv-i1hDMi3LvaEMB4DqsZ5lZmpJ8T3JgeKs7nNi6W9wN4tV5qDl7nGJznQLgqgd5hPz5e-zBG7eV26ActrWmNMyqfo9Fb4tIl6xbSwzxA2mok4yEQKX7E0iRJAYAkzXMaBgaukj8L2R6usaZPup3VMVBUuyVjVzFHAHFUxR6366F33zaxuEnLj2zuef92bvsF3dWM6_6Yae6G0SWTsAGAI65iTGrigU4iFHaVZSE3aR1st91VjdUp1pSN99L6ViKvH_1_S85upvUZ3QdfU4f744AW6Ryux9PtQW6i3mJ_blwDLFumrRv4x-nrbKncJ6FpLCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite%E2%80%93Hadamard-type+inequalities+for+interval-valued+preinvex+functions+via+Riemann%E2%80%93Liouville+fractional+integrals&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Sharma%2C+Nidhi&rft.au=Singh%2C+Sanjeev+Kumar&rft.au=Mishra%2C+Shashi+Kant&rft.au=Hamdi%2C+Abdelouahed&rft.date=2021-06-01&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-021-02623-w&rft.externalDocID=10_1186_s13660_021_02623_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon