Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals
In this paper, we introduce ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two inter...
Saved in:
Published in | Journal of inequalities and applications Vol. 2021; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we introduce
(
h
1
,
h
2
)
-preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results. |
---|---|
AbstractList | Abstract In this paper, we introduce ( h 1 , h 2 ) $(h_{1},h_{2})$ -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results. In this paper, we introduce (h1,h2)-preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results. In this paper, we introduce $(h_{1},h_{2})$ ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results. In this paper, we introduce ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results. |
ArticleNumber | 98 |
Author | Hamdi, Abdelouahed Mishra, Shashi Kant Sharma, Nidhi Singh, Sanjeev Kumar |
Author_xml | – sequence: 1 givenname: Nidhi surname: Sharma fullname: Sharma, Nidhi organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 2 givenname: Sanjeev Kumar surname: Singh fullname: Singh, Sanjeev Kumar organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 3 givenname: Shashi Kant surname: Mishra fullname: Mishra, Shashi Kant organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 4 givenname: Abdelouahed orcidid: 0000-0003-1950-8907 surname: Hamdi fullname: Hamdi, Abdelouahed email: abhamdi@qu.edu.qa organization: Department of Mathematics, Statistics and Physics College of Arts and Sciences, Qatar University |
BookMark | eNp9UU1r3DAQNSWFJmn_QE-Gnt3qw7bkYwltN7BQKCn0JsbSaNHilTaSvElu-Q_9h_0l1a5bGnrIYZhheO8xb95FdeaDx6p6S8l7SmX_IVHe96QhjJbqGW_uXlTnlLChYS37cfZkflVdpLQlBclle17drzDuXMZfjz9XYGAH0TT5YY-183g7w-Syw1TbEMsiYzzA1JSa0dT7iM4f8L62s9fZBZ_qg4P6m8MdeF_01i7MBzdNWNsIJwRMJ5VNhCm9rl7a0vDNn35Zff_86eZq1ay_frm--rhudMuG3Fhrx97IAVkHcgRjrGSdlp1pRUsHqVEzgcLwngkw0oAeiRFi6JighnYw8svqetE1AbZqH12x-KACOHVahLhRELPTEyowg-wt5USgba2E8g8YW0ItY5oyc9R6t2jtY7idMWW1DXMstpJiHe9ESwjnBSUXlI4hpYhWaZfh6D9HcJOiRB0zU0tmqiShTpmpu0Jl_1H_HvwsiS-kVMB-g_HfVc-wfgMpNrKj |
CitedBy_id | crossref_primary_10_3390_math11030656 crossref_primary_10_3390_math11244974 crossref_primary_10_1080_03610926_2022_2150055 crossref_primary_10_3390_sym15051012 crossref_primary_10_3390_axioms12010001 crossref_primary_10_1155_2024_8814585 crossref_primary_10_3390_math11061356 crossref_primary_10_3934_math_2022146 crossref_primary_10_3390_math10152763 crossref_primary_10_3390_fractalfract8090518 crossref_primary_10_3390_axioms11110622 crossref_primary_10_3390_math10020264 crossref_primary_10_1142_S0218348X22501602 crossref_primary_10_3390_axioms13100684 crossref_primary_10_3390_sym14040771 crossref_primary_10_3390_axioms11120732 crossref_primary_10_3390_fractalfract6090506 crossref_primary_10_1142_S0218348X2450083X crossref_primary_10_1216_rmj_2023_53_383 crossref_primary_10_3390_fractalfract7020171 crossref_primary_10_3934_math_2022824 crossref_primary_10_3390_math11132851 crossref_primary_10_3390_sym15040862 crossref_primary_10_1142_S0218348X21502297 crossref_primary_10_3390_math11194041 crossref_primary_10_1142_S0218348X22501316 crossref_primary_10_3390_math12162464 crossref_primary_10_3390_axioms11080368 crossref_primary_10_3390_fractalfract8100587 crossref_primary_10_3390_math12030382 crossref_primary_10_3390_sym14101964 crossref_primary_10_1155_jofs_3942793 |
Cites_doi | 10.1006/jmaa.1995.1057 10.1016/j.fss.2014.04.005 10.1016/S0304-0208(06)80001-0 10.1016/j.mcm.2011.06.057 10.1515/9783110523621 10.1137/1.9781611970906 10.3390/math7050436 10.1007/s00500-014-1483-6 10.1016/0022-247X(81)90123-2 10.1137/1.9780898717716 10.1007/978-3-319-11002-8 10.21833/ijaas.2020.03.012 10.1090/proc/14741 10.1142/S1793005719500327 10.1007/s12597-014-0175-4 10.1007/s00186-012-0399-0 10.1016/j.ins.2013.06.004 10.1186/1029-242X-2015-1 10.1016/0022-247X(88)90113-8 10.11650/twjm/1500405730 10.1007/s10479-014-1644-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.1186/s13660-021-02623-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1029-242X |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_ad986f1307ef4f8aadaab401f22c12db 10_1186_s13660_021_02623_w |
GrantInformation_xml | – fundername: Qatar University – fundername: Council of Scientific and Industrial Research, India grantid: 1362/(CSIR-UGC NET JUNE 2019); 1272/(CSIR-UGC NET DEC 2016) funderid: http://dx.doi.org/10.13039/501100001412 – fundername: Science and Engineering Research Board grantid: MTR/2018/000121 funderid: http://dx.doi.org/10.13039/501100001843 |
GroupedDBID | -A0 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 D-I DU5 EBLON EBS ESX GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT 7TB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c429t-fffb6d89e25a8baddf825c85d474198cec27e7d3627ad8dacb0d7795271d15ab3 |
IEDL.DBID | C24 |
ISSN | 1029-242X 1025-5834 |
IngestDate | Wed Aug 27 01:12:34 EDT 2025 Fri Jul 25 12:19:22 EDT 2025 Tue Jul 01 04:06:21 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Fri Feb 21 02:49:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 28B20 Preinvex functions Interval-valued functions 26A51 Hermite–Hadamard inequalities 26A33 Invex sets Fractional integrals 26E25 26D15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-fffb6d89e25a8baddf825c85d474198cec27e7d3627ad8dacb0d7795271d15ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1950-8907 |
OpenAccessLink | https://link.springer.com/10.1186/s13660-021-02623-w |
PQID | 2535740033 |
PQPubID | 237789 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad986f1307ef4f8aadaab401f22c12db proquest_journals_2535740033 crossref_citationtrail_10_1186_s13660_021_02623_w crossref_primary_10_1186_s13660_021_02623_w springer_journals_10_1186_s13660_021_02623_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of inequalities and applications |
PublicationTitleAbbrev | J Inequal Appl |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | WeirT.MondB.Preinvex functions in multiple objective optimizationJ. Math. Anal. Appl.1988136293897258110.1016/0022-247X(88)90113-8 WeiW.SrivastavaH.M.ZhangY.WangL.ShanP.ZhangT.A local fractional integral inequality on fractal space analogous to Anderson’s inequalityAbstr. Appl. Anal.20142014324056307023094 SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some weighted Opial type inequalities on time scalesTaiwan. J. Math.2010141107122260344510.11650/twjm/1500405730 LiL.LiuS.ZhangJ.On interval-valued invex mappings and optimality conditions for interval-valued optimization problemsJ. Inequal. Appl.201520151335315210.1186/1029-242X-2015-1 Chalco-CanoY.LodwickW.A.Condori-EquiceW.Ostrowski type inequalities and applications in numerical integration for interval-valued functionsSoft Comput.201519113293330010.1007/s00500-014-1483-6 AnY.YeG.ZhaoD.LiuW.Hermite-Hadamard type inequalities for interval (h1,h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h_{1},h_{2})$\end{document}-convex functionsMathematics20197510.3390/math7050436 JanaM.PandaG.Solution of nonlinear interval vector optimization problemOper. Res.20141417185 WangJ.FečkanM.Fractional Hermite-Hadamard Inequalities2018Berlinde Gruyter10.1515/9783110523621 BhurjeeA.K.PandaG.Multi-objective interval fractional programming problems: an approach for obtaining efficient solutionsOpsearch2015521156167332038010.1007/s12597-014-0175-4 LupulescuV.Hukuhara differentiability of interval-valued functions and interval differential equations on time scalesInf. Sci.20132485067309583510.1016/j.ins.2013.06.004 BudakH.TunçT.SarikayaM.Z.Fractional Hermite-Hadamard-type inequalities for interval-valued functionsProc. Am. Math. Soc.20191482705718405220810.1090/proc/14741 MooreR.E.Methods and Applications of Interval Analysis1979PhiladelphiaSIAM10.1137/1.9781611970906 KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations200610.1016/S0304-0208(06)80001-0 SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some generalization of Maroni’s inequality on time scalesMath. Inequal. Appl.201114246948028153331217.26069 AgarwalR.O’ReganD.SakerS.Dynamic Inequalities on Time Scales2014BerlinSpringer10.1007/978-3-319-11002-8 TunçT.SarikayaM.Z.SrivastavaH.M.Some generalized Steffensen’s inequalities via a new identity for local fractional integralsInt. J. Anal. Appl.2017131981071378.26023 HansonM.A.On sufficiency of the Kuhn-Tucker conditionsJ. Math. Anal. Appl.198180254555061484910.1016/0022-247X(81)90123-2 NoorM.A.Hermite-Hadamard integral inequalities for log-preinvex functionsJ. Math. Anal. Approx. Theory20072212613124748881204.26039 MooreR.E.KearfottR.B.CloudM.J.Introduction to Interval Analysis2009PhiladelphiaSIAM10.1137/1.9780898717716 LupulescuV.Fractional calculus for interval-valued functionsFuzzy Sets Syst.20152656385331032710.1016/j.fss.2014.04.005 RoyP.PandaG.Expansion of generalized Hukuhara differentiable interval-valued functionNew Math. Nat. Comput.201915355357010.1142/S1793005719500327 HilgerS.Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten1988WurzburgUniverstat Wurzburg0695.34001 MohanS.R.NeogyS.K.On invex sets and preinvex functionsJ. Math. Anal. Appl.19951893901908131255910.1006/jmaa.1995.1057 BhurjeeA.K.PandaG.Sufficient optimality conditions and duality theory for interval optimization problemAnn. Oper. Res.20162431335348352980610.1007/s10479-014-1644-0 Işcan, I.: Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities (2012) arXiv:1204.0272 MishraS.K.SharmaN.On strongly generalized convex functions of higher orderMath. Inequal. Appl.201922111112139059741416.26023 Pia̧tek, B.: On the Riemann integral of set-valued functions. Zeszyty Naukowe. Matematyka Stosowana/Politechnika Ślaska (2012) BhurjeeA.K.PandaG.Efficient solution of interval optimization problemMath. Methods Oper. Res.2012763273288300098710.1007/s00186-012-0399-0 SrivastavaH.M.ZhangZ.-H.WuY.-D.Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variablesMath. Comput. Model.20115427092717284181410.1016/j.mcm.2011.06.057 SharmaN.MishraS.K.HamdiA.A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functionsInt. J. Adv. Appl. Sci.20207311311810.21833/ijaas.2020.03.012 A.A. Kilbas (2623_CR12) 2006 A.K. Bhurjee (2623_CR3) 2012; 76 W. Wei (2623_CR29) 2014; 2014 N. Sharma (2623_CR23) 2020; 7 H. Budak (2623_CR6) 2019; 148 Y. Chalco-Cano (2623_CR7) 2015; 19 A.K. Bhurjee (2623_CR4) 2015; 52 H.M. Srivastava (2623_CR26) 2011; 54 Y. An (2623_CR2) 2019; 7 H.M. Srivastava (2623_CR24) 2010; 14 S. Hilger (2623_CR9) 1988 R. Agarwal (2623_CR1) 2014 R.E. Moore (2623_CR19) 2009 2623_CR21 M. Jana (2623_CR11) 2014; 14 T. Tunç (2623_CR27) 2017; 13 V. Lupulescu (2623_CR15) 2015; 265 M.A. Noor (2623_CR20) 2007; 2 H.M. Srivastava (2623_CR25) 2011; 14 L. Li (2623_CR13) 2015; 2015 R.E. Moore (2623_CR18) 1979 M.A. Hanson (2623_CR8) 1981; 80 P. Roy (2623_CR22) 2019; 15 A.K. Bhurjee (2623_CR5) 2016; 243 V. Lupulescu (2623_CR14) 2013; 248 T. Weir (2623_CR30) 1988; 136 2623_CR10 S.R. Mohan (2623_CR17) 1995; 189 J. Wang (2623_CR28) 2018 S.K. Mishra (2623_CR16) 2019; 22 |
References_xml | – reference: TunçT.SarikayaM.Z.SrivastavaH.M.Some generalized Steffensen’s inequalities via a new identity for local fractional integralsInt. J. Anal. Appl.2017131981071378.26023 – reference: BhurjeeA.K.PandaG.Efficient solution of interval optimization problemMath. Methods Oper. Res.2012763273288300098710.1007/s00186-012-0399-0 – reference: Işcan, I.: Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities (2012) arXiv:1204.0272 – reference: BhurjeeA.K.PandaG.Multi-objective interval fractional programming problems: an approach for obtaining efficient solutionsOpsearch2015521156167332038010.1007/s12597-014-0175-4 – reference: MooreR.E.KearfottR.B.CloudM.J.Introduction to Interval Analysis2009PhiladelphiaSIAM10.1137/1.9780898717716 – reference: SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some generalization of Maroni’s inequality on time scalesMath. Inequal. Appl.201114246948028153331217.26069 – reference: MohanS.R.NeogyS.K.On invex sets and preinvex functionsJ. Math. Anal. Appl.19951893901908131255910.1006/jmaa.1995.1057 – reference: MooreR.E.Methods and Applications of Interval Analysis1979PhiladelphiaSIAM10.1137/1.9781611970906 – reference: WeiW.SrivastavaH.M.ZhangY.WangL.ShanP.ZhangT.A local fractional integral inequality on fractal space analogous to Anderson’s inequalityAbstr. Appl. Anal.20142014324056307023094 – reference: LupulescuV.Fractional calculus for interval-valued functionsFuzzy Sets Syst.20152656385331032710.1016/j.fss.2014.04.005 – reference: LupulescuV.Hukuhara differentiability of interval-valued functions and interval differential equations on time scalesInf. Sci.20132485067309583510.1016/j.ins.2013.06.004 – reference: WeirT.MondB.Preinvex functions in multiple objective optimizationJ. Math. Anal. Appl.1988136293897258110.1016/0022-247X(88)90113-8 – reference: HansonM.A.On sufficiency of the Kuhn-Tucker conditionsJ. Math. Anal. Appl.198180254555061484910.1016/0022-247X(81)90123-2 – reference: BhurjeeA.K.PandaG.Sufficient optimality conditions and duality theory for interval optimization problemAnn. Oper. Res.20162431335348352980610.1007/s10479-014-1644-0 – reference: SrivastavaH.M.TsengK.-L.TsengS.-J.LoJ.-C.Some weighted Opial type inequalities on time scalesTaiwan. J. Math.2010141107122260344510.11650/twjm/1500405730 – reference: Chalco-CanoY.LodwickW.A.Condori-EquiceW.Ostrowski type inequalities and applications in numerical integration for interval-valued functionsSoft Comput.201519113293330010.1007/s00500-014-1483-6 – reference: WangJ.FečkanM.Fractional Hermite-Hadamard Inequalities2018Berlinde Gruyter10.1515/9783110523621 – reference: RoyP.PandaG.Expansion of generalized Hukuhara differentiable interval-valued functionNew Math. Nat. Comput.201915355357010.1142/S1793005719500327 – reference: SharmaN.MishraS.K.HamdiA.A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functionsInt. J. Adv. Appl. Sci.20207311311810.21833/ijaas.2020.03.012 – reference: HilgerS.Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten1988WurzburgUniverstat Wurzburg0695.34001 – reference: MishraS.K.SharmaN.On strongly generalized convex functions of higher orderMath. Inequal. Appl.201922111112139059741416.26023 – reference: BudakH.TunçT.SarikayaM.Z.Fractional Hermite-Hadamard-type inequalities for interval-valued functionsProc. Am. Math. Soc.20191482705718405220810.1090/proc/14741 – reference: JanaM.PandaG.Solution of nonlinear interval vector optimization problemOper. Res.20141417185 – reference: NoorM.A.Hermite-Hadamard integral inequalities for log-preinvex functionsJ. Math. Anal. Approx. Theory20072212613124748881204.26039 – reference: Pia̧tek, B.: On the Riemann integral of set-valued functions. Zeszyty Naukowe. Matematyka Stosowana/Politechnika Ślaska (2012) – reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations200610.1016/S0304-0208(06)80001-0 – reference: AnY.YeG.ZhaoD.LiuW.Hermite-Hadamard type inequalities for interval (h1,h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h_{1},h_{2})$\end{document}-convex functionsMathematics20197510.3390/math7050436 – reference: LiL.LiuS.ZhangJ.On interval-valued invex mappings and optimality conditions for interval-valued optimization problemsJ. Inequal. Appl.201520151335315210.1186/1029-242X-2015-1 – reference: SrivastavaH.M.ZhangZ.-H.WuY.-D.Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variablesMath. Comput. Model.20115427092717284181410.1016/j.mcm.2011.06.057 – reference: AgarwalR.O’ReganD.SakerS.Dynamic Inequalities on Time Scales2014BerlinSpringer10.1007/978-3-319-11002-8 – volume: 189 start-page: 901 issue: 3 year: 1995 ident: 2623_CR17 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1995.1057 – volume: 265 start-page: 63 year: 2015 ident: 2623_CR15 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2014.04.005 – ident: 2623_CR21 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 2623_CR12 doi: 10.1016/S0304-0208(06)80001-0 – volume: 2 start-page: 126 issue: 2 year: 2007 ident: 2623_CR20 publication-title: J. Math. Anal. Approx. Theory – volume: 54 start-page: 2709 year: 2011 ident: 2623_CR26 publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.06.057 – volume-title: Fractional Hermite-Hadamard Inequalities year: 2018 ident: 2623_CR28 doi: 10.1515/9783110523621 – volume: 2014 year: 2014 ident: 2623_CR29 publication-title: Abstr. Appl. Anal. – volume-title: Methods and Applications of Interval Analysis year: 1979 ident: 2623_CR18 doi: 10.1137/1.9781611970906 – volume: 7 issue: 5 year: 2019 ident: 2623_CR2 publication-title: Mathematics doi: 10.3390/math7050436 – volume: 19 start-page: 3293 issue: 11 year: 2015 ident: 2623_CR7 publication-title: Soft Comput. doi: 10.1007/s00500-014-1483-6 – volume: 80 start-page: 545 issue: 2 year: 1981 ident: 2623_CR8 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(81)90123-2 – ident: 2623_CR10 – volume-title: Introduction to Interval Analysis year: 2009 ident: 2623_CR19 doi: 10.1137/1.9780898717716 – volume-title: Dynamic Inequalities on Time Scales year: 2014 ident: 2623_CR1 doi: 10.1007/978-3-319-11002-8 – volume: 14 start-page: 469 issue: 2 year: 2011 ident: 2623_CR25 publication-title: Math. Inequal. Appl. – volume: 7 start-page: 113 issue: 3 year: 2020 ident: 2623_CR23 publication-title: Int. J. Adv. Appl. Sci. doi: 10.21833/ijaas.2020.03.012 – volume: 148 start-page: 705 issue: 2 year: 2019 ident: 2623_CR6 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/14741 – volume: 15 start-page: 553 issue: 3 year: 2019 ident: 2623_CR22 publication-title: New Math. Nat. Comput. doi: 10.1142/S1793005719500327 – volume: 52 start-page: 156 issue: 1 year: 2015 ident: 2623_CR4 publication-title: Opsearch doi: 10.1007/s12597-014-0175-4 – volume: 13 start-page: 98 issue: 1 year: 2017 ident: 2623_CR27 publication-title: Int. J. Anal. Appl. – volume: 76 start-page: 273 issue: 3 year: 2012 ident: 2623_CR3 publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-012-0399-0 – volume: 248 start-page: 50 year: 2013 ident: 2623_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.06.004 – volume-title: Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten year: 1988 ident: 2623_CR9 – volume: 14 start-page: 71 issue: 1 year: 2014 ident: 2623_CR11 publication-title: Oper. Res. – volume: 2015 issue: 1 year: 2015 ident: 2623_CR13 publication-title: J. Inequal. Appl. doi: 10.1186/1029-242X-2015-1 – volume: 22 start-page: 111 issue: 1 year: 2019 ident: 2623_CR16 publication-title: Math. Inequal. Appl. – volume: 136 start-page: 29 year: 1988 ident: 2623_CR30 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(88)90113-8 – volume: 14 start-page: 107 issue: 1 year: 2010 ident: 2623_CR24 publication-title: Taiwan. J. Math. doi: 10.11650/twjm/1500405730 – volume: 243 start-page: 335 issue: 1 year: 2016 ident: 2623_CR5 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-014-1644-0 |
SSID | ssj0021384 ssib044744598 ssib008501289 |
Score | 2.430444 |
Snippet | In this paper, we introduce
(
h
1
,
h
2
)
-preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued... In this paper, we introduce $(h_{1},h_{2})$ ( h 1 , h 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex... In this paper, we introduce (h1,h2)-preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex interval-valued functions by... Abstract In this paper, we introduce ( h 1 , h 2 ) $(h_{1},h_{2})$ -preinvex interval-valued function and establish the Hermite–Hadamard inequality for... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Applications of Mathematics Fractional calculus Fractional integrals Hermite–Hadamard inequalities Inequalities Integrals Interval-valued functions Invex sets Mathematics Mathematics and Statistics Preinvex functions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1x4I5YW5AM3sJo4jh9HQFQrBBwQlXqzxi8p0jatdrfbHvkP_EN-CWPHKRQJuHBMYicjz3jmG2cehLxAEwQtbzqWQkxMtI1niPI7Bo0GHaVxSucE54-f5PJYvD_pT35p9ZVjwqbywNPCHUIwWibUtComkTRAAHDoFCTOfcuDy9oXPzg7U9XVajst5hQZLQ83bSdlw3I4AvocvGOXN8xQqdZ_A2L-9le0GJuje-RORYn09UTdfXIrjg_I3YoYad2Pm4fkapljWbbx-9dvqELgNEfA5kNVithxSpdER5giLqVDiW2EFcvVvfEd5-s4jLt4RbNhK7JHdwPQz0M8hXHE930Yzi52OVGQpvWU_IAE1eISq80jcnz07svbJau9FJhHi7NlKSUngzaR96AdKrWErqHXfRAIKYz20XMVVUBzpiDoAN41QSnTc9WGtgfXPSZ749kYnxAaQCjZeOVwlnCmM4hhjAi9lk3AK7Mg7by01tdC47nfxcoWh0NLO7HDIjtsYYe9XJCX13POpzIbfx39JnPsemQukV1uoODYKjj2X4KzIAczv23dtxvL-65XIje4W5BXswz8fPxnkp7-D5L2yW1eZDQf8hyQve36Ij5DzLN1z4t4_wBWYQMj priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCBRwGxUJAP3MBq4tixfUIUtVohWqGKSr1Zjh9opW122Wy3PfY_9B_ySxg7Tqoi0WMS24o845lvxvNA6AOoIFPSoiLB-UBYWVgCKL8ippBG-lo1QsYE56PjenrKvp3xs-xw63JY5SATk6B2Cxt95HuUV1yw2Hrs8_I3iV2j4u1qbqHxEG2DCJZgfG3vHxz_OBk5SvIogEeFzZhgjKvxnoGWVepJXMamrlxWbEirkfVeV1Z1XZAYwgB2Cq3I5R3VlSr834Gl_9ykJgV1-Aw9ycgSf-lZ4Tl64Nsd9DSjTJzPcLeDHh-NlVq7F-hqGqNh1v7P9Q0IIXMeY2ijWxYD-uwTLsGUxoBs8SxFR5o5ifXBYcXlys_ajb_CUTUm7sWbmcEnM1i7bWG977PFxSamGuKw6tMn4PdyeYp59xKdHh78_DoluRsDsaCz1iSE0NROKk-5kQ2IxQDGpZXcwZ6WSlpvqfDCgUIUxklnbFM4IRSnonQlN031Cm21i9a_RtgZJurCigZmsUZVClCQYo7LunDwpCaoHDZa21yqPHbMmOtkssha98TRQBydiKMvJ-jjOGfZF-q4d_R-pN84MhbZTi8Wq186n1ltnJJ1ACUvfGBBGqCCacAeDZTakrpmgnYH6ut88jt9y6cT9GngiNvP__-lN_ev9hY9ookXowNoF22tVxf-HeChdfM-M_1f-3oIHA priority: 102 providerName: ProQuest |
Title | Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals |
URI | https://link.springer.com/article/10.1186/s13660-021-02623-w https://www.proquest.com/docview/2535740033 https://doaj.org/article/ad986f1307ef4f8aadaab401f22c12db |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfY9gIP_BkgCqPyA29gkTiO7Tx21UpVsQkNKu3NsmMbVerSqem6PfId-IZ8Es6OUzQESLxclMS2otyd73f23RmhN2CCdE6zgnjrPGF5VhNA-QXRmdTS8coIGRKcT8_4dM5mF-VFSgpr-2j3fksyztRRrSV_3-YF5xkJIQXgN9CC3OyhgxJ89yDX45DjkNysvJCsT4_5Y787JihW6r8DL3_bEY2GZvIYPUwIEY86lj5B91xziB4ltIiTLraH6MHpruJq-xTdTkNUy8b9-PYdJhN9GWJhw_IqBhTZJU6CS4wBoeJFjHLUSxLqfMOIV2u3aLbuFgcTF6UQbxcany9g7KaB8T4uVtfbkDKI_bpLg4DPS2Umlu0zNJ-cfBlPSTpVgdRgezbEe2-4lZWjpZYGpjcPTmItS8sAXFSydjUVTlgwbEJbaXVtMitEVVKR27zUpniO9ptV414gbDUTPKuFgV7MVEUFaKZitpQ8s3BXDVDe_2hVp5Lj4eSLpYquh-SqY44C5qjIHHUzQG93fa66ghv_bH0c-LdrGYplxwer9VeVdE9pW0nuwVgL55mXGrigDfiVntI6p9YM0FHPfZU0uFW0LErBwlF3A_Sul4hfr__-SS__r_krdJ9G2QwLO0dof7O-dq8B52zMEO2x7ANQOQF6MBrNPs_genxy9ul8GEU-UD4exnUEoHM6-gk3pwKB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALHgXEQAEvYAVWE9uJ7QVCvIYpnXaBWqk748Q2GmnIDJPpTNnxD_wHH8WXcO08qiLRXZdJnKso93WufR8IPQMXZFKaMOKt84SnSUkA5TNiEmmky1UhZChw3j_IR0f803F2vIF-d7UwIa2ys4nRUNtZGfbId2jGMsHD6LHX8-8kTI0Kp6vdCI1GLPbcjzWEbPWr3ffA3-eUDj8cvhuRdqoAKcH2Lon3vsitVI5mRhag3h6CpFJmloNzVbJ0JRVOWDDswlhpTVkkVgiVUZHaNDMFA7pX0FXOmAoaJYcfe_mVWTD3PTzgQJFnqj_VoCmLE5DTMEI2k4x3RTwy36lTlucJCQkTEBVRRtbnHGWcJ3AOBP9zbhvd4fA2utniWPymEbw7aMNVW-hWi2lxazHqLXRjv-8LW99Fp6OQe7N0f37-ApNnvoWM3bAJjAHrNuWdELhjwNF4EnMxzZSEbuRAcb5wk2rlTnFwxFFX8Gpi8OcJ0K4qoDeezE5WobAR-0VTrAGf1zbDmNb30NGlcOk-2qxmlXuAsDVc5EkpCniLF4opwFyK20zmiYUrNUBp96N12TZGD_M5pjoGSDLXDXM0MEdH5uj1AL3o35k3bUEuXP028K9fGVp6xxuzxVfdWghtrJK5B0ghnOdeGuCCKSD69ZSWKbXFAG133Netnan1mVYM0MtOIs4e__-THl5M7Sm6NjrcH-vx7sHeI3SdRrkMW0_baHO5OHGPAYktiydR_DH6ctn69hdX5UV4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLXKVEKw4FGoGCjgBazAmsSxY2eBUEs7mtJ2VFVU6s44sY0iDZlhMp0pO_6Bv-Fz-JJe51UVie66zOvKyn2da98HQm_ABemQBhFxxjrCwiAjgPIjogOppY2TVEhf4Hw0jken7PMZP1tDf9paGJ9W2drEylCbaeb3yAeUR1wwP3ps4Jq0iOPd4cfZD-InSPmT1nacRi0iB_bnCsK38sP-LvD6LaXDvS-fRqSZMEAysMML4pxLYyMTS7mWKai6g4Apk9wwcLSJzGxGhRUGjLzQRhqdpYERIuFUhCbkOo2A7h20DusSQQ-t7-yNj086aZbcG_8OLDCgyXjSnXHQMKrmIYd-oCyXEWtLemQ8KMMojgPi0ycgRqIRWV1zm9V0gWuQ-J9T3Mo5Dh-hBw2qxdu1GD5Ga7bYQA8bhIsb-1FuoPtHXZfY8gm6GPlMnIX9--s3GED93efv-i1hDMi3LvaEMB4DqsZ5lZmpJ8T3JgeKs7nNi6W9wN4tV5qDl7nGJznQLgqgd5hPz5e-zBG7eV26ActrWmNMyqfo9Fb4tIl6xbSwzxA2mok4yEQKX7E0iRJAYAkzXMaBgaukj8L2R6usaZPup3VMVBUuyVjVzFHAHFUxR6366F33zaxuEnLj2zuef92bvsF3dWM6_6Yae6G0SWTsAGAI65iTGrigU4iFHaVZSE3aR1st91VjdUp1pSN99L6ViKvH_1_S85upvUZ3QdfU4f744AW6Ryux9PtQW6i3mJ_blwDLFumrRv4x-nrbKncJ6FpLCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite%E2%80%93Hadamard-type+inequalities+for+interval-valued+preinvex+functions+via+Riemann%E2%80%93Liouville+fractional+integrals&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Sharma%2C+Nidhi&rft.au=Singh%2C+Sanjeev+Kumar&rft.au=Mishra%2C+Shashi+Kant&rft.au=Hamdi%2C+Abdelouahed&rft.date=2021-06-01&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-021-02623-w&rft.externalDocID=10_1186_s13660_021_02623_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |