Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review
Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the enhancement of lubricant oil properties will play a vital role in the context of protecting machinery from highly probable damages and minimizing...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 143; no. 2; pp. 1773 - 1809 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the enhancement of lubricant oil properties will play a vital role in the context of protecting machinery from highly probable damages and minimizing energy losses. The development of modern lubricants and their proper use are of great importance for managing economy and the environment. In general, nano-sized particles dispersed in the lubricants, known as nanolubricants, are used in mechanical systems in order to reduce heat and friction effectively. Properties (tribological and thermo-physical) of nanolubricants are found to be the recent subject of research in the field of lubricants. This review article comprehensively analyzes and summarizes the numerous research works on preparation, tribological property, thermo-physical property, and stability characteristics of both mono- and hybrid nanoparticle-based nanolubricants. More importantly, this paper examines the various influencing factors like base lubricants, nanoparticle size, shape, preparation methods, concentrations, nature of nanoparticles, surfactants, and temperature on nanolubricant characteristics. Finally, stability of nanolubricant, various surfactants used and different stability measuring techniques are analyzed. |
---|---|
AbstractList | Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the enhancement of lubricant oil properties will play a vital role in the context of protecting machinery from highly probable damages and minimizing energy losses. The development of modern lubricants and their proper use are of great importance for managing economy and the environment. In general, nano-sized particles dispersed in the lubricants, known as nanolubricants, are used in mechanical systems in order to reduce heat and friction effectively. Properties (tribological and thermo-physical) of nanolubricants are found to be the recent subject of research in the field of lubricants. This review article comprehensively analyzes and summarizes the numerous research works on preparation, tribological property, thermo-physical property, and stability characteristics of both mono- and hybrid nanoparticle-based nanolubricants. More importantly, this paper examines the various influencing factors like base lubricants, nanoparticle size, shape, preparation methods, concentrations, nature of nanoparticles, surfactants, and temperature on nanolubricant characteristics. Finally, stability of nanolubricant, various surfactants used and different stability measuring techniques are analyzed. |
Audience | Academic |
Author | Valan Arasu, A. Pownraj, C. |
Author_xml | – sequence: 1 givenname: C. surname: Pownraj fullname: Pownraj, C. organization: Department of Mechanical Engineering, Thiagarajar College of Engineering – sequence: 2 givenname: A. orcidid: 0000-0002-4169-1915 surname: Valan Arasu fullname: Valan Arasu, A. email: avamech@tce.edu organization: Department of Mechanical Engineering, Thiagarajar College of Engineering |
BookMark | eNp9kd9qFTEQxhdpwf7xBbwKeCW4dZI9u5t4V0rVQqFQ9Tpkk8melD3JmuRU9x18aHNcQepFCSTD8P3mY_KdVkc-eKyq1xQuKED_PlEQfVMDgxoEb_p6eVGd0JbzmgnWHZW6KXVHW3hZnab0AABCAD2pfl1bizqTYIlxacaYnB_J4ZqQKG_IdhmiM8QrH2YVs9MTJhI8ydENYQqj02p6R_IW4y7U83ZJa-OApqwGN7m8EL1VUemM0aUyIR3cpn2Zq5XP6QNRJOKjwx_n1bFVU8JXf9-z6tvH669Xn-vbu083V5e3td4wkWs7NMzSDYKgGmlrKBdKbJCxVhhAYwRnrAPFtBFKN6YTtgEBpu0G1gu0vDmr3qxz5xi-7zFl-RD20RdLyTa94NB1HIrqYlWNakLpvA25LFGOwZ3T5f-tK_3LrgVeDKkowNsnQNFk_JlHtU9J3ny5f6plq1bHkFJEK-fodioukoI8RCrXSGWJVP6JVC4F4v9B2mWVXfGJyk3Po82KpuLjR4z_Vn6G-g3ZILqC |
CitedBy_id | crossref_primary_10_1007_s00396_024_05227_0 crossref_primary_10_1007_s10570_023_05120_z crossref_primary_10_1016_j_colsurfa_2022_129115 crossref_primary_10_1177_09544089231189668 crossref_primary_10_1007_s10973_020_10199_8 crossref_primary_10_1016_j_powtec_2023_118389 crossref_primary_10_1016_j_heliyon_2024_e37691 crossref_primary_10_1016_j_molliq_2024_126501 crossref_primary_10_4028_p_8QeO1g crossref_primary_10_3390_polym16172458 crossref_primary_10_1016_j_molliq_2023_121695 crossref_primary_10_1016_j_colsurfa_2021_126509 crossref_primary_10_1007_s10973_020_10286_w crossref_primary_10_18273_revfue_v19n1_2021007 crossref_primary_10_3389_fpls_2024_1509047 crossref_primary_10_4271_2022_28_0585 crossref_primary_10_1007_s10973_022_11230_w crossref_primary_10_1007_s10973_024_13371_6 crossref_primary_10_1007_s10973_023_12606_2 crossref_primary_10_1039_D2RA07295E crossref_primary_10_1016_j_earscirev_2024_104793 crossref_primary_10_1016_j_fuel_2024_133811 crossref_primary_10_1007_s13369_025_10049_5 crossref_primary_10_1016_j_synthmet_2024_117799 crossref_primary_10_1007_s13369_024_09872_z crossref_primary_10_1108_ILT_07_2023_0220 crossref_primary_10_1038_s41598_023_37623_x crossref_primary_10_3390_fluids7120364 crossref_primary_10_1016_j_rineng_2024_102858 crossref_primary_10_1016_j_jallcom_2023_173412 crossref_primary_10_1007_s00170_024_14973_y crossref_primary_10_3390_lubricants9090094 crossref_primary_10_1016_j_inoche_2022_109601 crossref_primary_10_1680_jgrma_21_00061 crossref_primary_10_1007_s10570_024_06181_4 crossref_primary_10_1016_j_jmapro_2021_10_002 crossref_primary_10_3762_bjnano_14_86 crossref_primary_10_1007_s13399_021_02157_7 crossref_primary_10_1080_01932691_2022_2122491 crossref_primary_10_1016_j_triboint_2024_109506 |
Cites_doi | 10.1016/j.jiec.2013.09.029 10.1016/j.triboint.2016.05.020 10.1016/j.triboint.2019.05.036 10.1108/ILT-10-2012-0098 10.1080/10402004.2014.933933 10.1039/C6RA10543B 10.1016/j.tsep.2019.04.010 10.1007/s11249-019-1222-3 10.1016/j.ijhydene.2015.12.040 10.1016/j.triboint.2012.10.024 10.1007/s11249-008-9316-3 10.1016/S0043-1648(00)00415-4 10.1007/s11249-016-0778-4 10.1016/j.triboint.2019.105951 10.1016/j.triboint.2013.03.027 10.1016/S1003-6326(11)61185-0 10.1007/s11249-013-0148-4 10.1016/j.triboint.2014.03.013 10.1002/ls.3010120207 10.1016/j.ijheatmasstransfer.2018.11.128 10.1016/j.icheatmasstransfer.2014.03.002 10.4271/2014-01-2781 10.1007/s40145-016-0183-3 10.1186/2228-5547-4-28 10.1016/j.rser.2017.05.257 10.1016/j.wear.2012.11.084 10.1039/C5RA19522E 10.1016/j.apsusc.2011.01.084 10.1016/j.wear.2012.12.010 10.1016/j.icheatmasstransfer.2013.05.003 10.1115/IJTC2008-71058 10.1115/1.1286152 10.1080/10407782.2019.1701883 10.5772/intechopen.68602 10.1007/s12206-015-0141-y 10.1016/j.icheatmasstransfer.2013.08.004 10.1016/j.ceramint.2014.03.181 10.1016/j.icheatmasstransfer.2017.05.017 10.1016/j.wear.2013.06.003 10.1016/j.wear.2013.01.037 10.1016/j.wear.2009.08.018 10.1557/jmr.2016.24 10.1016/j.wear.2012.01.011 10.1088/0022-3727/49/4/045304 10.1016/j.colsurfa.2012.08.008 10.2298/TSCI181128015B 10.1115/1.4028554 10.1080/10402004.2016.1142034 10.1016/j.triboint.2016.08.011 10.1007/978-0-387-92897-5_27 10.1016/j.triboint.2010.08.006 10.1016/j.tca.2006.11.036 10.1063/1.1756684 10.1080/10402004.2014.960540 10.1016/j.wear.2012.03.003 10.1016/j.triboint.2011.12.014 10.1016/j.triboint.2019.105990 10.1007/s10973-019-08043-9 10.1016/j.matpr.2016.02.038 10.1016/j.wear.2005.09.010 10.1016/j.triboint.2017.08.012 10.1007/s11249-015-0557-7 10.1103/PhysRevLett.94.025901 10.1016/j.cap.2008.12.050 10.1016/j.jallcom.2018.12.215 10.1016/j.apsusc.2010.10.019 10.1016/j.ceramint.2013.12.050 10.1016/j.proeng.2015.01.226 10.1016/j.wear.2014.12.044 10.1016/j.ijheatmasstransfer.2011.04.014 10.1115/1.4027994 10.1016/j.triboint.2016.01.050 10.1016/j.molliq.2019.02.102 10.1016/j.triboint.2018.03.030 10.1080/10402004.2016.1202366 10.1016/B978-0-443-06898-0.00003-7 10.1016/j.cap.2008.12.054 10.1016/j.expthermflusci.2011.06.010 10.1016/j.ijheatmasstransfer.2018.05.021 10.1016/j.wear.2007.11.013 10.1016/j.triboint.2017.06.045 10.1108/00368791011025656 10.1016/j.wear.2012.02.009 10.1016/j.wear.2005.10.001 10.1021/nl060992s 10.1016/j.materresbull.2012.09.013 10.1016/j.cej.2013.07.006 10.1016/j.cap.2006.01.014 10.1007/s12541-010-0070-8 10.3390/app8040587 10.1016/S0043-1648(01)00862-6 10.1016/j.triboint.2011.02.006 10.1007/s11249-017-0885-x 10.1016/j.triboint.2018.11.012 10.1016/j.wear.2015.02.038 10.1080/01932691.2015.1111144 10.1002/ls.1366 10.1016/j.wear.2006.08.021 10.1016/j.triboint.2016.08.007 10.1021/am200851z 10.1016/j.partic.2013.09.004 10.1080/17458080.2013.778424 10.1039/c3ra42478b 10.1108/00368791111169025 10.1016/j.triboint.2016.12.004 10.1016/j.ijrefrig.2012.07.002 10.1016/j.apsusc.2013.12.089 10.1016/j.jtice.2016.05.033 10.1016/j.colsurfa.2015.02.049 10.1016/B978-0-12-382163-8.00005-0 10.1016/j.wear.2017.01.044 10.1016/j.ijrefrig.2017.04.024 10.1533/9781845699246.2.178 10.1007/s11249-007-9265-2 10.1166/jctn.2015.3816 10.1016/j.triboint.2009.12.026 10.1016/j.triboint.2009.02.012 10.1166/jnn.2015.9839 10.1016/j.molliq.2018.10.107 10.1016/j.applthermaleng.2013.03.022 10.1179/1751584X13Y.0000000051 10.1016/j.triboint.2008.12.015 10.1016/j.apsusc.2012.09.130 10.1016/j.rser.2018.12.057 10.1016/j.triboint.2015.08.009 10.1039/C6RA28243A 10.1016/S1875-5372(10)60129-4 10.1115/1.2913539 10.1016/S0043-1648(99)00084-8 10.1039/C8NR08240E 10.1016/j.pnsc.2017.08.010 10.1016/j.proeng.2013.12.161 10.1002/ls.1307 10.1016/j.ijthermalsci.2006.06.010 10.1016/j.ijthermalsci.2018.10.007 10.1080/10402004.2015.1092623 10.1007/s12541-012-0015-5 10.1016/j.molliq.2019.111049 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2020 COPYRIGHT 2021 Springer Akadémiai Kiadó, Budapest, Hungary 2020. |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2020 – notice: COPYRIGHT 2021 Springer – notice: Akadémiai Kiadó, Budapest, Hungary 2020. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10973-020-09837-y |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 1809 |
ExternalDocumentID | A650882219 10_1007_s10973_020_09837_y |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c429t-fb32f14e091ce15d189a94e2259d0edd982260a2cd9ac3d69f3090d56b279ef83 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 11:14:04 EDT 2025 Tue Jun 10 20:36:12 EDT 2025 Fri Jun 27 04:03:47 EDT 2025 Tue Jul 01 02:44:34 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Fri Feb 21 02:49:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nanolubricants Stability Tribological properties Preparation Thermo-physical properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-fb32f14e091ce15d189a94e2259d0edd982260a2cd9ac3d69f3090d56b279ef83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4169-1915 |
PQID | 2479806680 |
PQPubID | 2043843 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2479806680 gale_infotracacademiconefile_A650882219 gale_incontextgauss_ISR_A650882219 crossref_primary_10_1007_s10973_020_09837_y crossref_citationtrail_10_1007_s10973_020_09837_y springer_journals_10_1007_s10973_020_09837_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | YuFChenYLiangXXuJLeeCLiangQTaoPDengTDispersion stability of thermal nanofluidsProgr Nat Sci Mater Int2017275315421:CAS:528:DC%2BC2sXhsFOksr3F CaoZXiaYStudy on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pairTribol Lett201765104 ShenderovaOVargasATurnerSIvanovDMIvanovMGNanodiamond-based nanolubricants: investigation of friction surfacesTribol Trans201457105110571:CAS:528:DC%2BC2cXhsVWjurjJ WanQJinYSunPDingYTribological Behaviour of a Lubricant Oil Containing Boron Nitride NanoparticlesProcedia Engineering.2015102103810451:CAS:528:DC%2BC2MXmvFWqtb8%3D GaoDLuoJSynthesis of hyper-dispersant based on the application of nano-lubricantsJ Dispers Sci Technol201637141514221:CAS:528:DC%2BC28XmvFCnurs%3D EttefaghiERashidiAAhmadiHMohtasebiSSPourkhalilMThermal and rheological properties of oil-based nanofluids from different carbon nanostructuresInt Commun Heat Mass Transf2013481781821:CAS:528:DC%2BC3sXhsVOktbvF CharooMSWaniMFTribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring: tribological properties of h-BN nanoparticles as lubricant additiveLubr Sci2017292412541:CAS:528:DC%2BC2sXntFKntL4%3D WangBWangXLouWHaoJThermal conductivity and rheological properties of graphite/oil nanofluidsColloids Surf, A20124141251311:CAS:528:DC%2BC38Xhs1Wgur3E SivakumarBRanjanNRamaprabhuSKamarajMTribological properties of graphite oxide derivative as nano-additive: synthesized from the waster carbon sourceTribol Int20201421059901:CAS:528:DC%2BC1MXhvFajur7F HeikkilaPBio-based carbon materials road-map2016EspooVTT Technical Research Centre of Finland LiuRWeiXTaoDZhaoYStudy of preparation and tribological properties of rare earth nanoparticles in lubricating oilTribol Int201043108210861:CAS:528:DC%2BC3cXivFKisr0%3D KhanAIValanAAA review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluidsTherm Sci Eng Progr201911334364 XieHJiangBHeJXiaXPanFLubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy–steel contactsTribol Int20169363701:CAS:528:DC%2BC2MXhtlGku7%2FF HuZSLaiRLouFWangLGChenZLChenGXChenJDongXPreparation and tribological properties of nanometer magnesium borate as lubricating oil additiveWear20022523703741:CAS:528:DC%2BD38XitFeqt7Y%3D Yan Y. Tribology and tribo-corrosion testing and analysis of metallic biomaterials. Metals for Biomedical Devices [Internet]. Elsevier; 2010 [cited 2019 Dec 17]. p. 178–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845694340500073. SrinivasVThakurRNJainAKAntiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticlesTribol Trans20176012191:CAS:528:DC%2BC28Xht1yqsbjO ThottackkadMVRajendrakumarPKPrabhakaranNKTribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticlesTribol Mater Surf Interfaces201481251301:CAS:528:DC%2BC2cXht1Khu7vE Hernandez Battez A, Viesca Rodriguez JL, Gonzalez Rodriguez R, Fernandez Rico JE. Viscosity and Tribology of Copper Oxide Nanofluids. STLE/ASME 2008 International Joint Tribology Conference [Internet]. Miami, Florida, USA: ASME; 2008 [cited 2019 Dec 17]. p. 205–7. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1630393. GhaedniaHJacksonRLKhodadadiJMExperimental analysis of stable CuO nanoparticle enhanced lubricantsJ Exp Nanosci2015101181:CAS:528:DC%2BC3sXnsFGkt78%3D ZhangBXuYGaoFShiPXuBWuYSliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additiveAppl Surf Sci2011257254025491:CAS:528:DC%2BC3MXjtVWitQ%3D%3D Taha-TijerinaJPena-ParasLNarayananTNGarzaLLaprayCGonzalezJPalaciosEMolinaDGarcıaAMaldonadoDAjayanPMMultifunctional nanofluids with 2D nanosheets for thermal and tribological managementWear2013302124112481:CAS:528:DC%2BC3sXhsFKmtrk%3D SongXZhengSZhangJLiWChenQCaoBSynthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additivesMater Res Bull201247430543101:CAS:528:DC%2BC38Xhtl2ku73M Ali HM, Sajid MU, Arshad A. Heat Transfer Applications of TiO2 Nanofluids. In: Janus M, editor. Application of Titanium Dioxide [Internet]. InTech; 2017 [cited 2020 Apr 20]. Available from http://www.intechopen.com/books/application-of-titanium-dioxide/heat-transfer-applications-of-TiO2-nanofluids. WangX-QMujumdarASHeat transfer characteristics of nanofluids: a reviewInt J Therm Sci200746119 KuB-CHanY-CLeeJ-ELeeJ-KParkS-HHwangY-JTribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosityInt J Precis Eng Manuf201011607611 GhadimiASaidurRMetselaarHSCA review of nanofluid stability properties and characterization in stationary conditionsInt J Heat Mass Transf201154405140681:CAS:528:DC%2BC3MXntVSgu70%3D MarkoMKyleJBransonBTerrellETribological improvements of dispersed nanodiamond additives in lubricating mineral oilJ Tribol2015137011802 GobinathNAjmalMMajilyaSBharathKInvestigation of tribological characteristics of polyol ester–copper oxide nanolubricantInt J ChemTech Res2017109397 AliMKAXianjunHMaiLQingpingCTurksonRFBichengCImproving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additivesTribol Int20161035405541:CAS:528:DC%2BC28XhsVWlu7bM KotiaAGhoshGKSrivastavaIDevalPGhoshSKMechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricantsJ Alloys Compd20197825925991:CAS:528:DC%2BC1cXisF2kurjF ReyesLLoganathanABoeslBAgarwalAEffect of 2D boron nitride nanoplate additive on tribological properties of natural oilsTribol Lett20166441 WangWLiPShengSTianHZhangHZhangXInfluence of hydrocarbon base oil molecular structure on lubricating properties in nano-scale thin filmTribol Lett201967111 EttefaghiEAhmadiHRashidiAMohtasebiSAlaeiMExperimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditiveInt J Ind Chem2013428 YuWXieHA review on nanofluids: preparation, stability mechanisms, and applicationsJ Nanomater20122012117 MoghaddamMBGoharshadiEKEntezariMHNancarrowPPreparation, characterization, and rheological properties of graphene–glycerol nanofluidsChem Eng J20132313653721:CAS:528:DC%2BC3sXhsV2kur%2FO RasheedAKKhalidMJaveedARashmiWGuptaTCSMChanAHeat transfer and tribological performance of graphene nanolubricant in an internal combustion engineTribol Int20161035045151:CAS:528:DC%2BC28Xhtlyqs7bN ZhaoFBaiZFuYZhaoDYanCTribological properties of serpentine, La(OH)3 and their composite particles as lubricant additivesWear201228872771:CAS:528:DC%2BC38XmvV2qsrw%3D QiuSZhouZDongJChenGPreparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oilsJ Tribol20011234414431:CAS:528:DC%2BD3MXltlegtLc%3D AliHBabarHShahTSajidMQasimMJavedSPreparation techniques of TiO2 nanofluids and challenges: a reviewAppl Sci20188587 SaurínNSanesJBermúdezM-DNew graphene/ionic liquid nanolubricantsMater Today Proc20163S227S232 SunqingQJunxiuDGuoxuCWear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oilsLubr Sci200012205212 ZhangYXuYYangYZhangSZhangPZhangZSynthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additivesInd Lubr Tribol201567227232 PatilHHChavanDSPiseATTribological properties of SiO2 nanoparticles added in SN-500 base oilInt J Eng Res201326 Zin V, Barison S, Agresti F, Colla L, Pagura C, Fabrizio M. Improved tribological and thermal properties of lubricants by graphene based nano-additive. 12. ChouRBattezAHCabelloJJViescaJLOsorioASagastumeATribological behavior of polyalphaolefin with the addition of nickel nanoparticlesTribol Int201043232723321:CAS:528:DC%2BC3cXhtlShtrnN YadgarovLPetroneVRosentsveigRFeldmanYTenneRSenatoreATribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditionsWear2013297110311101:CAS:528:DC%2BC3sXhsVOrt7Y%3D BogunovicLZuenkelerSToensingKAnselmettiDAn oil-based lubrication system based on nanoparticular TiO2 with superior friction and wear propertiesTribol Lett20155929 Feher J. Chemical foundations of physiology I. 2012. p. 32–42. AlvesSMBarrosBSTrajanoMFRibeiroKSBMouraETribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditionsTribol Int20136528361:CAS:528:DC%2BC3sXmvVeks7Y%3D PengDXKangYHwangRMShyrSSChangYPTribological properties of diamond and SiO2 nanoparticles added in paraffinTribol Int2009429119171:CAS:528:DC%2BD1MXksV2gsLk%3D HuEHuXLiuTSongRDearnKDXuHEffect of TiF3 catalyst on the tribological properties of carbon black-contaminated engine oilsWear20133051661761:CAS:528:DC%2BC3sXhsVCitr7J EswaraiahVSankaranarayananVRamaprabhuSGraphene-based engine oil nanofluids for tribological applicationsACS Appl Mater Interfaces20113422142271:CAS:528:DC%2BC3MXhtlCmtb7N21981026 LiXZhaoYWuWChenJChuGZouHSynthesis and characterizations of graphene–copper nanocomposites and their antifriction applicationJ Ind Eng Chem201420204320491:CAS:528:DC%2BC3sXhs1eqtrjE Joly-PottuzLVacherBOhmaeNMartinJMEpicierTAnti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additivesTribol Lett20083069801:CAS:528:DC%2BD1cXjs1WitrY%3D HwangYLeeJKLeeCHJungYMCheongSILeeCGKuBCJangSPStability and thermal conductivity characteristics of nanofluidsThermochim Acta200745570741:CAS:528:DC%2BD2sXitlOrurc%3D ChangHChenC-HTuH-SThe fabrication and effect of Bi and Bi/Cu nanoparticles on the tribological properties of SAE-30 lubricating oilJ Comput Theor Nanosci.2015128528571:CAS:528:DC%2BC2MXpvFKjt74%3D ChenYZhangYZhangSYuLZhangPZhangZPreparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological propertiesTribol Lett20135173831:CAS:528:DC%2BC3sXosFKiurY%3D Dhinesh KumarDValanAAA comprehensive review of prepar G Paul (9837_CR62) 2019; 11 SP Jang (9837_CR139) 2004; 84 K Lee (9837_CR37) 2009; 9 W Dai (9837_CR100) 2016; 102 L Joly-Pottuz (9837_CR115) 2008; 30 T Luo (9837_CR11) 2014; 40 Y Zhang (9837_CR48) 2013; 3 D Peng (9837_CR83) 2010; 62 L Reyes (9837_CR89) 2016; 64 R Chou (9837_CR78) 2010; 43 W Zhang (9837_CR4) 2012; 288 HH Patil (9837_CR121) 2013; 2 MB Moghaddam (9837_CR149) 2013; 231 J Padgurskas (9837_CR107) 2013; 60 A Hernández Battez (9837_CR22) 2010; 268 X-Q Wang (9837_CR138) 2007; 46 V Zin (9837_CR41) 2015; 15 L Kong (9837_CR76) 2017; 7 9837_CR74 X Li (9837_CR21) 2014; 20 B-C Ku (9837_CR38) 2010; 11 MU Sajid (9837_CR68) 2019; 103 A Hernandez Battez (9837_CR27) 2006; 261 NNM Zawawi (9837_CR14) 2017; 80 D Jiao (9837_CR12) 2011; 257 M Kole (9837_CR141) 2013; 56 D Dhinesh Kumar (9837_CR144) 2018; 81 Q Pan (9837_CR120) 2010; 39 SJ Asadauskas (9837_CR114) 2016; 28 S Ingole (9837_CR29) 2013; 301 JL Viesca (9837_CR26) 2011; 44 VS Jatti (9837_CR79) 2015; 29 M Kole (9837_CR140) 2011; 35 L Yadgarov (9837_CR49) 2013; 297 ZS Hu (9837_CR118) 2002; 252 SVP Vattikuti (9837_CR53) 2015; 2015 NW Awang (9837_CR94) 2019; 131 W Li-jun (9837_CR33) 2008; 130 SM Alves (9837_CR10) 2013; 65 Z Li (9837_CR117) 2014; 292 S Qiu (9837_CR128) 2001; 123 M Hemmat Esfe (9837_CR35) 2017; 86 9837_CR17 R Liu (9837_CR58) 2010; 43 DX Peng (9837_CR31) 2009; 42 9837_CR19 MS Kumar (9837_CR5) 2016; 66 B Wang (9837_CR45) 2012; 414 W Yu (9837_CR70) 2012; 2012 H Chang (9837_CR7) 2015; 12 A Ghadimi (9837_CR150) 2011; 54 T Kaviyarasu (9837_CR43) 2015; 7 G Paul (9837_CR95) 2019; 131 Q Sunqing (9837_CR61) 2000; 12 R Prasher (9837_CR137) 2005; 94 AI Khan (9837_CR145) 2019; 11 S Shahnazar (9837_CR3) 2016; 41 J Lee (9837_CR116) 2007; 28 YY Wu (9837_CR101) 2007; 262 E Ettefaghi (9837_CR36) 2013; 48 B Wu (9837_CR112) 2020; 141 L Bogunovic (9837_CR129) 2015; 59 A Kotia (9837_CR96) 2019; 782 KG Binu (9837_CR147) 2014; 75 X Song (9837_CR109) 2012; 47 FL Guzman Borda (9837_CR81) 2018; 117 M Yi (9837_CR55) 2017; 116 MU Sajid (9837_CR151) 2018; 126 SM Alves (9837_CR93) 2016; 100 Q Sunqing (9837_CR56) 1999; 230 9837_CR127 Z Zhang (9837_CR47) 2016; 49 9837_CR125 R Prasher (9837_CR142) 2006; 6 9837_CR25 9837_CR39 E Ettefaghi (9837_CR42) 2013; 46 H Ali (9837_CR69) 2018; 8 M Marko (9837_CR85) 2015; 137 NWM Zulkifli (9837_CR132) 2013; 68 MV Thottackkad (9837_CR18) 2012; 13 H Ghaednia (9837_CR24) 2015; 10 Y Choi (9837_CR106) 2009; 9 J Taha-Tijerina (9837_CR110) 2013; 302 G Yang (9837_CR99) 2012; 22 MS Charoo (9837_CR119) 2016; 5 NAC Sidik (9837_CR71) 2014; 54 H Ghaednia (9837_CR124) 2016; 59 R Krishna Sabareesh (9837_CR126) 2012; 35 9837_CR134 A Hernandez Battez (9837_CR28) 2008; 265 ZS Hu (9837_CR123) 2000; 243 L Xiang (9837_CR32) 2014; 17 9837_CR130 L Pena-Paras (9837_CR13) 2015; 332–333 L Pena-Paras (9837_CR92) 2017; 376–377 N Rajendhran (9837_CR111) 2018; 124 Z Jiang (9837_CR6) 2019; 138 9837_CR2 T Luo (9837_CR15) 2014; 40 Y Hwang (9837_CR23) 2007; 455 9837_CR34 9837_CR136 MU Sajid (9837_CR64) 2019; 137 L Yu (9837_CR59) 2012; 263 A Wahab (9837_CR67) 2019; 289 O Shenderova (9837_CR105) 2014; 57 D Gao (9837_CR131) 2016; 37 P Heikkila (9837_CR1) 2016 CP Koshy (9837_CR54) 2015; 330–331 M Farbod (9837_CR16) 2015; 474 MS Charoo (9837_CR51) 2017; 29 M Sgroi (9837_CR50) 2015; 58 JM Lineira del Rio (9837_CR91) 2019; 274 AK Rasheed (9837_CR40) 2016; 103 9837_CR148 Q Wan (9837_CR30) 2015; 102 F Zhao (9837_CR108) 2012; 288 Y-R Jeng (9837_CR113) 2014; 136 MB Dobrica (9837_CR133) 2013 N Saurín (9837_CR102) 2016; 3 H Xie (9837_CR80) 2016; 93 M Zhang (9837_CR122) 2009; 42 B Zhang (9837_CR20) 2011; 257 N Gobinath (9837_CR87) 2017; 10 Z Cao (9837_CR90) 2017; 65 Y Chen (9837_CR82) 2013; 51 M Gulzar (9837_CR84) 2017; 60 E Ettefaghi (9837_CR77) 2013; 4 HD Huang (9837_CR46) 2006; 261 Y Zhang (9837_CR104) 2015; 67 SSN Azman (9837_CR73) 2016; 31 M Kalin (9837_CR86) 2012; 280–281 V Srinivas (9837_CR52) 2017; 60 F Yu (9837_CR152) 2017; 27 GK Poongavanam (9837_CR97) 2019; 136 MK Ahmed Ali (9837_CR8) 2016; 6 Y Peng (9837_CR44) 2017; 107 Y-Y Wu (9837_CR75) 2011; 63 MKA Ali (9837_CR9) 2016; 103 MV Thottackkad (9837_CR57) 2014; 8 Y Hwang (9837_CR153) 2006; 6 E Hu (9837_CR60) 2013; 305 W Wang (9837_CR143) 2019; 67 H Babar (9837_CR66) 2019; 23 B Sivakumar (9837_CR98) 2020; 142 MEM Soudagar (9837_CR65) 2020; 77 V Eswaraiah (9837_CR72) 2011; 3 EM Aldred (9837_CR135) 2009 M Guo (9837_CR88) 2015; 5 9837_CR63 X Qi (9837_CR103) 2012; 49 H Babar (9837_CR146) 2019; 281 |
References_xml | – reference: LiuRWeiXTaoDZhaoYStudy of preparation and tribological properties of rare earth nanoparticles in lubricating oilTribol Int201043108210861:CAS:528:DC%2BC3cXivFKisr0%3D – reference: JattiVSSinghTPCopper oxide nano-particles as friction–reduction and anti-wear additives in lubricating oilJ Mech Sci Technol201529793798 – reference: DaiWKheireddinBGaoHLiangHRoles of nanoparticles in oil lubricationTribol Int201610288981:CAS:528:DC%2BC28XptFeku7Y%3D – reference: PaulGHiraniHKuilaTMurmuNCNanolubricants dispersed with graphene and its derivatives: an assessment and review of the tribological performanceNanoscale201911345834831:CAS:528:DC%2BC1MXitFGnu7Y%3D30747929 – reference: KotiaAGhoshGKSrivastavaIDevalPGhoshSKMechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricantsJ Alloys Compd20197825925991:CAS:528:DC%2BC1cXisF2kurjF – reference: MoghaddamMBGoharshadiEKEntezariMHNancarrowPPreparation, characterization, and rheological properties of graphene–glycerol nanofluidsChem Eng J20132313653721:CAS:528:DC%2BC3sXhsV2kur%2FO – reference: SaurínNSanesJBermúdezM-DNew graphene/ionic liquid nanolubricantsMater Today Proc20163S227S232 – reference: GaoDLuoJSynthesis of hyper-dispersant based on the application of nano-lubricantsJ Dispers Sci Technol201637141514221:CAS:528:DC%2BC28XmvFCnurs%3D – reference: Zin V, Barison S, Agresti F, Colla L, Pagura C, Fabrizio M. Improved tribological and thermal properties of lubricants by graphene based nano-additive. 12. – reference: AwangNWRamasamyDKadirgamaKNajafiGChe SidikNAStudy on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oilInt J Heat Mass Transf2019131119612041:CAS:528:DC%2BC1cXisVCitrvO – reference: DobricaMBFillonMWangQJChungY-WMixed lubricationEncyclopedia of tribology2013BostonSpringer2284229110.1007/978-0-387-92897-5_27 – reference: BinuKGShenoyBSRaoDSPaiRStatic characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger–Dougherty viscosity model and couple stress modelTribol Int20147569791:CAS:528:DC%2BC2cXnsVers7c%3D – reference: BabarHSajidMAliHViscosity of hybrid nanofluids: a critical reviewTherm Sci20192317131754 – reference: HuZSDongJXChenGXHeJZPreparation and tribological properties of nanoparticle lanthanum borateWear200024343471:CAS:528:DC%2BD3cXlvVCrtbg%3D – reference: ZulkifliNWMKalamMAMasjukiHHYunusRExperimental analysis of tribological properties of biolubricant with nanoparticle additiveProcedia Eng2013681521571:CAS:528:DC%2BC2cXmsFGjsr4%3D – reference: LeeKHwangYCheongSKwonLKimSLeeJPerformance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oilCurr Appl Phys20099e128e131 – reference: VattikutiSVPByonCSynthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: nanotribologyJ Nanomater20152015111 – reference: LeeJChoSHwangYLeeCKimSHEnhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additivesTribol Lett2007282032081:CAS:528:DC%2BD2sXhtFShsL%2FL – reference: SgroiMGiliFMangheriniDLahouijIDassenoyFGarciaIOdriozolaIKraftGFriction reduction benefits in valve-train system using IF-MoS2 added engine oilTribol Trans2015582072141:CAS:528:DC%2BC2cXitFKmu7bI – reference: Rashmi W, Khalid M, Lim, Xiao Y, Gupta, TCSM, Arwin, GZ. Tribological studies on graphene/TMP based nanolubricant [Internet]. 2017. Available from: http://www.scopus.com/inward/record.url?scp=85011960957&partnerID=8YFLogxK. – reference: Xu J, Tang H, Zhang K, Zhang H, Li C. Synthesis and tribological properties of flower-like MoS2 nanostructures. 8. – reference: BogunovicLZuenkelerSToensingKAnselmettiDAn oil-based lubrication system based on nanoparticular TiO2 with superior friction and wear propertiesTribol Lett20155929 – reference: ZhangYTangHJiXLiCChenLZhangDYangXZhangHSynthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological propertiesRSC Adv20133260861:CAS:528:DC%2BC3sXhslyhu7rP – reference: ChenYZhangYZhangSYuLZhangPZhangZPreparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological propertiesTribol Lett20135173831:CAS:528:DC%2BC3sXosFKiurY%3D – reference: WuYYTsuiWCLiuTCExperimental analysis of tribological properties of lubricating oils with nanoparticle additivesWear20072628198251:CAS:528:DC%2BD2sXitFyktbY%3D – reference: GhaedniaHJacksonRLKhodadadiJMExperimental analysis of stable CuO nanoparticle enhanced lubricantsJ Exp Nanosci2015101181:CAS:528:DC%2BC3sXnsFGkt78%3D – reference: ZhaoFBaiZFuYZhaoDYanCTribological properties of serpentine, La(OH)3 and their composite particles as lubricant additivesWear201228872771:CAS:528:DC%2BC38XmvV2qsrw%3D – reference: ThottackkadMVPerikinalilRKKumarapillaiPNExperimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticlesInt J Precis Eng Manuf201213111116 – reference: LuoTWeiXZhaoHCaiGZhengXTribology properties of Al2O3/TiO2 nanocomposites as lubricant additivesCeram Int20144010103101091:CAS:528:DC%2BC2cXmt1ags7c%3D – reference: SajidMUAliHMRecent advances in application of nanofluids in heat transfer devices: a critical reviewRenew Sustain Energy Rev20191035565921:CAS:528:DC%2BC1MXhsFyqsbk%3D – reference: Pisal AS, Chavan DS. Experimental investigation of tribological properties of engine oil with CuO nanoparticles. 2014;5. – reference: HwangYLeeJKLeeCHJungYMCheongSILeeCGKuBCJangSPStability and thermal conductivity characteristics of nanofluidsThermochim Acta200745570741:CAS:528:DC%2BD2sXitlOrurc%3D – reference: JiangZZhangYYangGGaoCYuLZhangSZhangPSynthesis of oil-soluble WS2 nanosheets under mild condition and study of their effect on tribological properties of poly-alpha olefin under evaluated temperaturesTribol Int201913868781:CAS:528:DC%2BC1MXhtVyjurvF – reference: PengDXKangYHwangRMShyrSSChangYPTribological properties of diamond and SiO2 nanoparticles added in paraffinTribol Int2009429119171:CAS:528:DC%2BD1MXksV2gsLk%3D – reference: Mohan N, Sharma M, Singh R, Kumar N. Tribological Properties of Automotive Lubricant SAE 20W-40 Containing Nano-Al2O3 particles. 2014 [cited 2019 Dec 17]. p. 2014-01–2781. Available from https://www.sae.org/content/2014-01-2781/. – reference: Abate F, Senatore A, D’Agostino V, Leone C, Sarno M, Ciambelli P. Tribological properties of carbon nanotubes as lubricant additive. 2009; 3:4. – reference: PengDChenCKangYChangYChangSSize effects of SiO2 nanoparticles as oil additives on tribology of lubricantInd Lubr Tribol201062111120 – reference: SajidMUAliHMThermal conductivity of hybrid nanofluids: a critical reviewInt J Heat Mass Transf20181262112341:CAS:528:DC%2BC1cXpsVyrtbg%3D – reference: AliHBabarHShahTSajidMQasimMJavedSPreparation techniques of TiO2 nanofluids and challenges: a reviewAppl Sci20188587 – reference: RajendhranNPalanisamySShymaAPVenkatachalamREnhancing the thermophysical and tribological performance of gear oil using Ni-promoted ultrathin MoS2 nanocompositesTribol Int20181241561681:CAS:528:DC%2BC1cXnvVSgsbY%3D – reference: Hernandez BattezAGonzalezRViescaJLFernandezJEDiaz FernandezJMMachadoAChouRRibaJCuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricantsWear20082654224281:CAS:528:DC%2BD1cXlvVSms7k%3D – reference: Guzman BordaFLRibeiro de OliveiraSJSeabra Monteiro LazaroLMKalabLeirozAJExperimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticlesTribol Int20181175258 – reference: YuFChenYLiangXXuJLeeCLiangQTaoPDengTDispersion stability of thermal nanofluidsProgr Nat Sci Mater Int2017275315421:CAS:528:DC%2BC2sXhsFOksr3F – reference: KoshyCPRajendrakumarPKThottackkadMVEvaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperaturesWear2015330–331288308 – reference: HuangHDTuJPGanLPLiCZAn investigation on tribological properties of graphite nanosheets as oil additiveWear20062611401441:CAS:528:DC%2BD28Xms1ens7o%3D – reference: Pena-ParasLTaha-TijerinaJGarzaLMaldonado-CortésDMichalczewskiRLaprayCEffect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oilsWear2015332–33312561261 – reference: ViescaJLHernandez BattezAGonzalezRChouRCabelloJJAntiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefinTribol Int2011448298331:CAS:528:DC%2BC3MXltlensbg%3D – reference: PrasherRBhattacharyaPPhelanPEThermal conductivity of nanoscale colloidal solutions (nanofluids)Phys Rev Lett20059402590115698196 – reference: Hernández BattezAViescaJLGonzálezRBlancoDAsedegbegaEOsorioAFriction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coatingWear2010268325328 – reference: KuB-CHanY-CLeeJ-ELeeJ-KParkS-HHwangY-JTribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosityInt J Precis Eng Manuf201011607611 – reference: JangSPChoiSUSRole of Brownian motion in the enhanced thermal conductivity of nanofluidsAppl Phys Lett200484431643181:CAS:528:DC%2BD2cXktVeiu78%3D – reference: EttefaghiERashidiAAhmadiHMohtasebiSSPourkhalilMThermal and rheological properties of oil-based nanofluids from different carbon nanostructuresInt Commun Heat Mass Transf2013481781821:CAS:528:DC%2BC3sXhsVOktbvF – reference: XieHJiangBHeJXiaXPanFLubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy–steel contactsTribol Int20169363701:CAS:528:DC%2BC2MXhtlGku7%2FF – reference: GhaedniaHHossainMSJacksonRLTribological performance of silver nanoparticle-enhanced polyethylene glycol lubricantsTribol Trans2016595855921:CAS:528:DC%2BC28Xot1GqsLs%3D – reference: Nesappan S, Palanisamy N, Chandran M. Tribological Investigation of Copper (Cu) and Copper Oxide (CuO) Nanoparticles Based Nanolubricants for Machine Tool Slideways. Volume 2B: Advanced Manufacturing [Internet]. Montreal, Quebec, Canada: American Society of Mechanical Engineers; 2014 [cited 2019 Dec 17]. p. V02BT02A020. Available from: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2014/46445/Montreal,%20Quebec,%20Canada/254376. – reference: Pena-ParasLMaldonado-CortesDGarciaPIrigoyenMTaha-TijerinaJGuerraJTribological performance of halloysite clay nanotubes as green lubricant additivesWear2017376–377885892 – reference: QiXLuLJiaZYangYLiuHComparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperatureTribol Int20124953571:CAS:528:DC%2BC38XisFejtro%3D – reference: GuoMCaiZZhangZZhuMCharacterization and lubrication performance of diesel soot nanoparticles as oil lubricant additivesRSC Adv201551019651019741:CAS:528:DC%2BC2MXhvVygsrnP – reference: SivakumarBRanjanNRamaprabhuSKamarajMTribological properties of graphite oxide derivative as nano-additive: synthesized from the waster carbon sourceTribol Int20201421059901:CAS:528:DC%2BC1MXhvFajur7F – reference: ZhangBXuYGaoFShiPXuBWuYSliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additiveAppl Surf Sci2011257254025491:CAS:528:DC%2BC3MXjtVWitQ%3D%3D – reference: PengYXuYGengJDearnKDHuXTribological assessment of coated piston ring-cylinder liner contacts under bio-oil lubricated conditionsTribol Int20171072832931:CAS:528:DC%2BC28XitFGnsbbE – reference: ZinVAgrestiFBarisonSCollaLFabrizioMInfluence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oilJ Nanosci Nanotechnol201515359035981:CAS:528:DC%2BC2MXls1Clsrs%3D26504981 – reference: EttefaghiEAhmadiHRashidiAMohtasebiSAlaeiMExperimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditiveInt J Ind Chem2013428 – reference: ShahnazarSBagheriSAbd HamidSBEnhancing lubricant properties by nanoparticle additivesInt J Hydrogen Energy201641315331701:CAS:528:DC%2BC28XitVyhtg%3D%3D – reference: ThottackkadMVRajendrakumarPKPrabhakaranNKTribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticlesTribol Mater Surf Interfaces201481251301:CAS:528:DC%2BC2cXht1Khu7vE – reference: IngoleSCharanpahariAKakadeAUmareSSBhattDVMenghaniJTribological behavior of nano TiO2 as an additive in base oilWear20133017767851:CAS:528:DC%2BC3sXis1Onu7g%3D – reference: KaviyarasuTVasanthanBImprovement of tribological and thermal properties of engine lubricant by using nano-materialsJ Chem Pharm Sci (JCHPS)20157208211 – reference: CaoZXiaYStudy on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pairTribol Lett201765104 – reference: ZhangYXuYYangYZhangSZhangPZhangZSynthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additivesInd Lubr Tribol201567227232 – reference: Hemmat EsfeMBahiraeiMHajmohammadMHAfrandMRheological characteristics of MgO/oil nanolubricants: experimental study and neural network modelingInt Commun Heat Mass Transf2017862452521:CAS:528:DC%2BC2sXhtF2qsb7L – reference: LiZHouXYuLZhangZZhangPPreparation of lanthanum trifluoride nanoparticles surface-capped by tributyl phosphate and evaluation of their tribological properties as lubricant additive in liquid paraffinAppl Surf Sci20142929719771:CAS:528:DC%2BC2cXksVOjtA%3D%3D – reference: ZhangMWangXFuXXiaYPerformance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefinTribol Int200942102910391:CAS:528:DC%2BD1MXlvVGrtro%3D – reference: KalinMKogovšekJRemškarMMechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additivesWear2012280–2813645 – reference: KhanAIValanAAA review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluidsTherm Sci Eng Progr201911334364 – reference: Ahmed AliMKXianjunHTurksonRFPengZChenXEnhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additivesRSC Adv2016677913779241:CAS:528:DC%2BC28XhtFKlsrnJ – reference: EttefaghiEAhmadiHRashidiANouralishahiAMohtasebiSSPreparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricantInt Commun Heat Mass Transf2013461421471:CAS:528:DC%2BC3sXpsVGqs7Y%3D – reference: HuZSLaiRLouFWangLGChenZLChenGXChenJDongXPreparation and tribological properties of nanometer magnesium borate as lubricating oil additiveWear20022523703741:CAS:528:DC%2BD38XitFeqt7Y%3D – reference: BabarHAliHMTowards hybrid nanofluids: preparation, thermophysical properties, applications, and challengesJ Mol Liq20192815986331:CAS:528:DC%2BC1MXktlKltbw%3D – reference: SunqingQJunxiuDGuoxuCTribological properties of CeF3 nanoparticles as additives in lubricating oilsWear19992303538 – reference: ShenderovaOVargasATurnerSIvanovDMIvanovMGNanodiamond-based nanolubricants: investigation of friction surfacesTribol Trans201457105110571:CAS:528:DC%2BC2cXhsVWjurjJ – reference: Lineira del RioJMLopezERFernandezJGarciaFTribological properties of dispersions based on reduced graphene oxide sheets and trimethylolpropane trioleate or PAO 40 oilsJ Mol Liq20192745685761:CAS:528:DC%2BC1cXitFyqtrrO – reference: AzmanSSNZulkifliNWMMasjukiHGulzarMZahidRStudy of tribological properties of lubricating oil blend added with graphene nanoplateletsJ Mater Res201631193219381:CAS:528:DC%2BC28XhtFOjt7rN – reference: PoongavanamGKRamalingamVCharacteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycolInt J Therm Sci201913615321:CAS:528:DC%2BC1cXhvFejtrzJ – reference: WangX-QMujumdarASHeat transfer characteristics of nanofluids: a reviewInt J Therm Sci200746119 – reference: AliMKAXianjunHMaiLQingpingCTurksonRFBichengCImproving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additivesTribol Int20161035405541:CAS:528:DC%2BC28XhsVWlu7bM – reference: CharooMSWaniMFTribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring: tribological properties of h-BN nanoparticles as lubricant additiveLubr Sci2017292412541:CAS:528:DC%2BC2sXntFKntL4%3D – reference: QiuSZhouZDongJChenGPreparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oilsJ Tribol20011234414431:CAS:528:DC%2BD3MXltlegtLc%3D – reference: PrasherRPhelanPEBhattacharyaPEffect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)Nano Lett20066152915341:CAS:528:DC%2BD28Xls1WlsrY%3D16834444 – reference: RasheedAKKhalidMJaveedARashmiWGuptaTCSMChanAHeat transfer and tribological performance of graphene nanolubricant in an internal combustion engineTribol Int20161035045151:CAS:528:DC%2BC28Xhtlyqs7bN – reference: Ali HM, Sajid MU, Arshad A. Heat Transfer Applications of TiO2 Nanofluids. In: Janus M, editor. Application of Titanium Dioxide [Internet]. InTech; 2017 [cited 2020 Apr 20]. Available from http://www.intechopen.com/books/application-of-titanium-dioxide/heat-transfer-applications-of-TiO2-nanofluids. – reference: ChoiYLeeCHwangYParkMLeeJChoiCJungMTribological behavior of copper nanoparticles as additives in oilCurr Appl Phys20099e124e127 – reference: AlvesSMBarrosBSTrajanoMFRibeiroKSBMouraETribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditionsTribol Int20136528361:CAS:528:DC%2BC3sXmvVeks7Y%3D – reference: SrinivasVThakurRNJainAKAntiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticlesTribol Trans20176012191:CAS:528:DC%2BC28Xht1yqsbjO – reference: HeikkilaPBio-based carbon materials road-map2016EspooVTT Technical Research Centre of Finland – reference: LuoTWeiXHuangXHuangLYangFTribological properties of Al2O3 nanoparticles as lubricating oil additivesCeram Int201440714371491:CAS:528:DC%2BC2cXptl2jug%3D%3D – reference: Taha-TijerinaJPena-ParasLNarayananTNGarzaLLaprayCGonzalezJPalaciosEMolinaDGarcıaAMaldonadoDAjayanPMMultifunctional nanofluids with 2D nanosheets for thermal and tribological managementWear2013302124112481:CAS:528:DC%2BC3sXhsFKmtrk%3D – reference: ChangHChenC-HTuH-SThe fabrication and effect of Bi and Bi/Cu nanoparticles on the tribological properties of SAE-30 lubricating oilJ Comput Theor Nanosci.2015128528571:CAS:528:DC%2BC2MXpvFKjt74%3D – reference: AsadauskasSJKreivaitisRBikulčiusGGrigucevičienėAPadgurskasJTribological effects of Cu, Fe and Zn nano-particles, suspended in mineral and bio-based oils: tribological effects of suspended Cu, Fe and Zn nanoparticlesLubr Sci2016281571761:CAS:528:DC%2BC28XjsVGhsrs%3D – reference: PadgurskasJRukuizaRProsycevasIKreivaitisRTribological properties of lubricant additives of Fe, Cu and Co nanoparticlesTribol Int2013602242321:CAS:528:DC%2BC3sXhsVCrtrw%3D – reference: WangWLiPShengSTianHZhangHZhangXInfluence of hydrocarbon base oil molecular structure on lubricating properties in nano-scale thin filmTribol Lett201967111 – reference: ZhangWDemydovDJahanMPMistryKErdemirAMalsheAPFundamental understanding of the tribological and thermal behavior of Ag–MoS2 nanoparticle-based multi-component lubricating systemWear20122889161:CAS:528:DC%2BC38XmvV2qsrc%3D – reference: EswaraiahVSankaranarayananVRamaprabhuSGraphene-based engine oil nanofluids for tribological applicationsACS Appl Mater Interfaces20113422142271:CAS:528:DC%2BC3MXhtlCmtb7N21981026 – reference: AldredEMBuckCVallKAldredEMBuckCVallKChapter 3: Bonds found in biological chemistryPharmacology2009EdinburghChurchill Livingstone1119 – reference: JiaoDZhengSWangYGuanRCaoBThe tribology properties of alumina/silica composite nanoparticles as lubricant additivesAppl Surf Sci2011257572057251:CAS:528:DC%2BC3MXjtVKqu7c%3D – reference: WuY-YKaoM-JUsing TiO2 nanofluid additive for engine lubrication oilInd Lubr Tribol201163440445 – reference: Krishna SabareeshRGobinathNSajithVDasSSobhanCBApplication of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigationInt J Refrig201235198919961:CAS:528:DC%2BC38XhtFOqtrbL – reference: Hernandez Battez A, Viesca Rodriguez JL, Gonzalez Rodriguez R, Fernandez Rico JE. Viscosity and Tribology of Copper Oxide Nanofluids. STLE/ASME 2008 International Joint Tribology Conference [Internet]. Miami, Florida, USA: ASME; 2008 [cited 2019 Dec 17]. p. 205–7. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1630393. – reference: KumarMSVasuVGopalAVThermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluidsJ Taiwan Inst Chem Eng2016663213271:CAS:528:DC%2BC28XpsF2qtLo%3D – reference: XiangLGaoCWangYPanZHuDTribological and tribochemical properties of magnetite nanoflakes as additives in oil lubricantsParticuology.2014171361441:CAS:528:DC%2BC3sXhvF2rsbbP – reference: PanQZhangXSynthesis and tribological behavior of oil-soluble cu nanoparticles as additive in SF15W/40 lubricating oilRare Met Mater Eng201039171117141:CAS:528:DC%2BC3MXmvVaktg%3D%3D – reference: WahabAHassanAQasimMAAliHMBabarHSajidMUSolar energy systems—potential of nanofluidsJ Mol Liq20192891110491:CAS:528:DC%2BC1MXht1ymsrbN – reference: YuLZhangLYeFSunMChengXDiaoGPreparation and tribological properties of surface-modified nano-Y2O3 as additive in liquid paraffinAppl Surf Sci20122636556591:CAS:528:DC%2BC38XhsFCnsr3E – reference: GhadimiASaidurRMetselaarHSCA review of nanofluid stability properties and characterization in stationary conditionsInt J Heat Mass Transf201154405140681:CAS:528:DC%2BC3MXntVSgu70%3D – reference: KongLSunJBaoYPreparation, characterization and tribological mechanism of nanofluidsRSC Adv2017712599126091:CAS:528:DC%2BC2sXjtFeks7o%3D – reference: ChouRBattezAHCabelloJJViescaJLOsorioASagastumeATribological behavior of polyalphaolefin with the addition of nickel nanoparticlesTribol Int201043232723321:CAS:528:DC%2BC3cXhtlShtrnN – reference: Dinagaran R, Santhosh Kumar A, Selvakumar N, Jeyasubramanian K. Tribological behavior of nano ferrofluid in AISI 1005 steel. 2016; 2:10. – reference: WangBWangXLouWHaoJThermal conductivity and rheological properties of graphite/oil nanofluidsColloids Surf, A20124141251311:CAS:528:DC%2BC38Xhs1Wgur3E – reference: Feher J. Chemical foundations of physiology I. 2012. p. 32–42. – reference: Joly-PottuzLVacherBOhmaeNMartinJMEpicierTAnti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additivesTribol Lett20083069801:CAS:528:DC%2BD1cXjs1WitrY%3D – reference: KoleMDeyTKRole of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluidsExp Thermal Fluid Sci201135149014951:CAS:528:DC%2BC3MXhtVWgsLfL – reference: FarbodMKouhpeymaniaslRNoghrehabadiARMorphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructuresColloids and Surf A Physicochem Eng Asp201547471751:CAS:528:DC%2BC2MXltFemu7k%3D – reference: Stachowiak G, Batchelor AW. Engineering Tribology [Internet]. Elsevier Science; 2013. Available from: https://books.google.co.in/books?id=u69ptQAACAAJ. – reference: SongXZhengSZhangJLiWChenQCaoBSynthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additivesMater Res Bull201247430543101:CAS:528:DC%2BC38Xhtl2ku73M – reference: KoleMDeyTKEnhanced thermophysical properties of copper nanoparticles dispersed in gear oilAppl Therm Eng20135645531:CAS:528:DC%2BC3sXnvFWht7Y%3D – reference: JengY-RHuangY-HTsaiP-CHwangG-LTribological properties of carbon nanocapsule particles as lubricant additiveJ Tribol2014136041801 – reference: SajidMUAliHMSufyanARashidDZahidSURehmanWUExperimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinksJ Therm Anal Calorim2019137127912941:CAS:528:DC%2BC1MXmtlWlsro%3D – reference: Hernandez BattezAFernandez RicoJENavas AriasAViesca RodriguezJLChou RodriguezRDiaz FernandezJMThe tribological behaviour of ZnO nanoparticles as an additive to PAO6Wear20062612562631:CAS:528:DC%2BD28XntlSrtLw%3D – reference: SoudagarMEMKalamMASajidMUAfzalABanapurmathNRAkramNManeSDSaleelCAThermal analyses of minichannels and use of mathematical and numerical modelsNumer Heat Transf Part A Appl2020774975371:CAS:528:DC%2BB3cXkvFWktg%3D%3D – reference: SunqingQJunxiuDGuoxuCWear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oilsLubr Sci200012205212 – reference: YuWXieHA review on nanofluids: preparation, stability mechanisms, and applicationsJ Nanomater20122012117 – reference: ReyesLLoganathanABoeslBAgarwalAEffect of 2D boron nitride nanoplate additive on tribological properties of natural oilsTribol Lett20166441 – reference: YangGChaiSXiongXZhangSYuLZhangPPreparation and tribological properties of surface modified Cu nanoparticlesTrans Nonferrous Met Soc China2012223663721:CAS:528:DC%2BC3sXovFKjsLs%3D – reference: ZhangZCaiZPengJZhuMComparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additivesJ Phys D Appl Phys201649045304 – reference: ZawawiNNMAzmiWHRedhwanAAMSharifMZSharmaKVThermo-physical properties of Al2O3–SiO2/PAG composite nanolubricant for refrigeration systemInt J Refrig2017801101:CAS:528:DC%2BC2sXotVemtrg%3D – reference: AlvesSMMelloVSFariaEACamargoAPPNanolubricants developed from tiny CuO nanoparticlesTribol Int20161002632711:CAS:528:DC%2BC28XivVSlurw%3D – reference: Dhinesh KumarDValanAAA comprehensive review of preparation, characterization, properties and stability of hybrid nanofluidsRenew Sustain Energy Rev20188116691689 – reference: Shaharuddin NA, Walvekar RG, Shahbaz K. Stability studies of graphene nanolubricants using ionic liquid analogues. :2. – reference: SidikNACMohammedHAAlawiOASamionSA review on preparation methods and challenges of nanofluidsInt Commun Heat Mass Transf2014541151251:CAS:528:DC%2BC2cXntlKrtrs%3D – reference: GobinathNAjmalMMajilyaSBharathKInvestigation of tribological characteristics of polyol ester–copper oxide nanolubricantInt J ChemTech Res2017109397 – reference: YiMZhangCThe synthesis of MoS2 particles with different morphologies for tribological applicationsTribol Int20171162852941:CAS:528:DC%2BC2sXht1OisbnO – reference: MarkoMKyleJBransonBTerrellETribological improvements of dispersed nanodiamond additives in lubricating mineral oilJ Tribol2015137011802 – reference: GulzarMMasjukiHHKalamMAVarmanMZulkifliNWMMuftiRAZahidRYunusRDispersion stability and tribological characteristics of TiO2/SiO2 nanocomposite-enriched bio-based lubricantTribol Trans2017606706801:CAS:528:DC%2BC28Xhs1aksLjM – reference: PaulGShitSHiraniHKuilaTMurmuNCTribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricantsTribol Int20191316056191:CAS:528:DC%2BC1cXisVaksbnE – reference: CharooMSWaniMFFriction and wear properties of nano-Si3N4/nano-SiC composite under nanolubricated conditionsJ Adv Ceram201651451521:CAS:528:DC%2BC28XovFWgt7c%3D – reference: LiXZhaoYWuWChenJChuGZouHSynthesis and characterizations of graphene–copper nanocomposites and their antifriction applicationJ Ind Eng Chem201420204320491:CAS:528:DC%2BC3sXhs1eqtrjE – reference: Li-junWChu-wenGYamaneRExperimental research on tribological properties of Mn0.78Zn0.22Fe2O4 magnetic fluidsJ Tribol2008130031801 – reference: HwangYParkHSLeeJKJungWHThermal conductivity and lubrication characteristics of nanofluidsCurr Appl Phys20066e67e71 – reference: YadgarovLPetroneVRosentsveigRFeldmanYTenneRSenatoreATribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditionsWear2013297110311101:CAS:528:DC%2BC3sXhsVOrt7Y%3D – reference: WuBSongHLiCSongRZhangTHuXEnhanced tribological properties of diesel engine oil with Nano-Lanthanum hydroxide/reduced graphene oxide compositesTribol Int20201411059511:CAS:528:DC%2BC1MXhslCksLzP – reference: Yan Y. Tribology and tribo-corrosion testing and analysis of metallic biomaterials. Metals for Biomedical Devices [Internet]. Elsevier; 2010 [cited 2019 Dec 17]. p. 178–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845694340500073. – reference: WanQJinYSunPDingYTribological Behaviour of a Lubricant Oil Containing Boron Nitride NanoparticlesProcedia Engineering.2015102103810451:CAS:528:DC%2BC2MXmvFWqtb8%3D – reference: HuEHuXLiuTSongRDearnKDXuHEffect of TiF3 catalyst on the tribological properties of carbon black-contaminated engine oilsWear20133051661761:CAS:528:DC%2BC3sXhsVCitr7J – reference: PatilHHChavanDSPiseATTribological properties of SiO2 nanoparticles added in SN-500 base oilInt J Eng Res201326 – volume: 20 start-page: 2043 year: 2014 ident: 9837_CR21 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2013.09.029 – volume: 102 start-page: 88 year: 2016 ident: 9837_CR100 publication-title: Tribol Int doi: 10.1016/j.triboint.2016.05.020 – volume: 138 start-page: 68 year: 2019 ident: 9837_CR6 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.05.036 – volume: 67 start-page: 227 year: 2015 ident: 9837_CR104 publication-title: Ind Lubr Tribol doi: 10.1108/ILT-10-2012-0098 – volume: 57 start-page: 1051 year: 2014 ident: 9837_CR105 publication-title: Tribol Trans doi: 10.1080/10402004.2014.933933 – volume: 6 start-page: 77913 year: 2016 ident: 9837_CR8 publication-title: RSC Adv doi: 10.1039/C6RA10543B – volume: 11 start-page: 334 year: 2019 ident: 9837_CR145 publication-title: Therm Sci Eng Progr doi: 10.1016/j.tsep.2019.04.010 – volume: 67 start-page: 111 year: 2019 ident: 9837_CR143 publication-title: Tribol Lett doi: 10.1007/s11249-019-1222-3 – volume: 41 start-page: 3153 year: 2016 ident: 9837_CR3 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.12.040 – volume: 60 start-page: 224 year: 2013 ident: 9837_CR107 publication-title: Tribol Int doi: 10.1016/j.triboint.2012.10.024 – volume: 30 start-page: 69 year: 2008 ident: 9837_CR115 publication-title: Tribol Lett doi: 10.1007/s11249-008-9316-3 – volume: 243 start-page: 43 year: 2000 ident: 9837_CR123 publication-title: Wear doi: 10.1016/S0043-1648(00)00415-4 – volume: 64 start-page: 41 year: 2016 ident: 9837_CR89 publication-title: Tribol Lett doi: 10.1007/s11249-016-0778-4 – volume: 141 start-page: 105951 year: 2020 ident: 9837_CR112 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.105951 – volume: 65 start-page: 28 year: 2013 ident: 9837_CR10 publication-title: Tribol Int doi: 10.1016/j.triboint.2013.03.027 – volume: 22 start-page: 366 year: 2012 ident: 9837_CR99 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(11)61185-0 – volume: 51 start-page: 73 year: 2013 ident: 9837_CR82 publication-title: Tribol Lett doi: 10.1007/s11249-013-0148-4 – volume: 75 start-page: 69 year: 2014 ident: 9837_CR147 publication-title: Tribol Int doi: 10.1016/j.triboint.2014.03.013 – volume: 12 start-page: 205 year: 2000 ident: 9837_CR61 publication-title: Lubr Sci doi: 10.1002/ls.3010120207 – volume: 131 start-page: 1196 year: 2019 ident: 9837_CR94 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.11.128 – volume: 54 start-page: 115 year: 2014 ident: 9837_CR71 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2014.03.002 – ident: 9837_CR127 doi: 10.4271/2014-01-2781 – volume: 5 start-page: 145 year: 2016 ident: 9837_CR119 publication-title: J Adv Ceram doi: 10.1007/s40145-016-0183-3 – volume: 4 start-page: 28 year: 2013 ident: 9837_CR77 publication-title: Int J Ind Chem doi: 10.1186/2228-5547-4-28 – volume: 81 start-page: 1669 year: 2018 ident: 9837_CR144 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.257 – volume: 297 start-page: 1103 year: 2013 ident: 9837_CR49 publication-title: Wear doi: 10.1016/j.wear.2012.11.084 – volume: 5 start-page: 101965 year: 2015 ident: 9837_CR88 publication-title: RSC Adv doi: 10.1039/C5RA19522E – volume: 257 start-page: 5720 year: 2011 ident: 9837_CR12 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2011.01.084 – volume: 302 start-page: 1241 year: 2013 ident: 9837_CR110 publication-title: Wear doi: 10.1016/j.wear.2012.12.010 – volume: 10 start-page: 93 year: 2017 ident: 9837_CR87 publication-title: Int J ChemTech Res – volume: 46 start-page: 142 year: 2013 ident: 9837_CR42 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2013.05.003 – ident: 9837_CR25 doi: 10.1115/IJTC2008-71058 – volume: 123 start-page: 441 year: 2001 ident: 9837_CR128 publication-title: J Tribol doi: 10.1115/1.1286152 – volume: 77 start-page: 497 year: 2020 ident: 9837_CR65 publication-title: Numer Heat Transf Part A Appl doi: 10.1080/10407782.2019.1701883 – ident: 9837_CR63 doi: 10.5772/intechopen.68602 – volume: 29 start-page: 793 year: 2015 ident: 9837_CR79 publication-title: J Mech Sci Technol doi: 10.1007/s12206-015-0141-y – ident: 9837_CR19 – volume: 48 start-page: 178 year: 2013 ident: 9837_CR36 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2013.08.004 – volume: 40 start-page: 10103 year: 2014 ident: 9837_CR15 publication-title: Ceram Int doi: 10.1016/j.ceramint.2014.03.181 – volume: 86 start-page: 245 year: 2017 ident: 9837_CR35 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.05.017 – volume: 305 start-page: 166 year: 2013 ident: 9837_CR60 publication-title: Wear doi: 10.1016/j.wear.2013.06.003 – volume: 301 start-page: 776 year: 2013 ident: 9837_CR29 publication-title: Wear doi: 10.1016/j.wear.2013.01.037 – volume: 268 start-page: 325 year: 2010 ident: 9837_CR22 publication-title: Wear doi: 10.1016/j.wear.2009.08.018 – volume: 31 start-page: 1932 year: 2016 ident: 9837_CR73 publication-title: J Mater Res doi: 10.1557/jmr.2016.24 – volume: 280–281 start-page: 36 year: 2012 ident: 9837_CR86 publication-title: Wear doi: 10.1016/j.wear.2012.01.011 – volume: 49 start-page: 045304 year: 2016 ident: 9837_CR47 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/49/4/045304 – volume: 414 start-page: 125 year: 2012 ident: 9837_CR45 publication-title: Colloids Surf, A doi: 10.1016/j.colsurfa.2012.08.008 – volume: 23 start-page: 1713 year: 2019 ident: 9837_CR66 publication-title: Therm Sci doi: 10.2298/TSCI181128015B – volume: 137 start-page: 011802 year: 2015 ident: 9837_CR85 publication-title: J Tribol doi: 10.1115/1.4028554 – volume: 60 start-page: 12 year: 2017 ident: 9837_CR52 publication-title: Tribol Trans doi: 10.1080/10402004.2016.1142034 – volume: 103 start-page: 540 year: 2016 ident: 9837_CR9 publication-title: Tribol Int doi: 10.1016/j.triboint.2016.08.011 – start-page: 2284 volume-title: Encyclopedia of tribology year: 2013 ident: 9837_CR133 doi: 10.1007/978-0-387-92897-5_27 – volume: 43 start-page: 2327 year: 2010 ident: 9837_CR78 publication-title: Tribol Int doi: 10.1016/j.triboint.2010.08.006 – volume: 455 start-page: 70 year: 2007 ident: 9837_CR23 publication-title: Thermochim Acta doi: 10.1016/j.tca.2006.11.036 – ident: 9837_CR130 – volume: 84 start-page: 4316 year: 2004 ident: 9837_CR139 publication-title: Appl Phys Lett doi: 10.1063/1.1756684 – volume: 58 start-page: 207 year: 2015 ident: 9837_CR50 publication-title: Tribol Trans doi: 10.1080/10402004.2014.960540 – volume: 288 start-page: 9 year: 2012 ident: 9837_CR4 publication-title: Wear doi: 10.1016/j.wear.2012.03.003 – volume: 49 start-page: 53 year: 2012 ident: 9837_CR103 publication-title: Tribol Int doi: 10.1016/j.triboint.2011.12.014 – volume: 142 start-page: 105990 year: 2020 ident: 9837_CR98 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.105990 – volume: 137 start-page: 1279 year: 2019 ident: 9837_CR64 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08043-9 – volume: 3 start-page: S227 year: 2016 ident: 9837_CR102 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2016.02.038 – volume: 261 start-page: 140 year: 2006 ident: 9837_CR46 publication-title: Wear doi: 10.1016/j.wear.2005.09.010 – volume: 2012 start-page: 1 year: 2012 ident: 9837_CR70 publication-title: J Nanomater – volume: 117 start-page: 52 year: 2018 ident: 9837_CR81 publication-title: Tribol Int doi: 10.1016/j.triboint.2017.08.012 – volume: 59 start-page: 29 year: 2015 ident: 9837_CR129 publication-title: Tribol Lett doi: 10.1007/s11249-015-0557-7 – volume: 94 start-page: 025901 year: 2005 ident: 9837_CR137 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.025901 – volume: 9 start-page: e124 year: 2009 ident: 9837_CR106 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.12.050 – volume: 782 start-page: 592 year: 2019 ident: 9837_CR96 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.12.215 – volume: 257 start-page: 2540 year: 2011 ident: 9837_CR20 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2010.10.019 – volume: 2015 start-page: 1 year: 2015 ident: 9837_CR53 publication-title: J Nanomater – volume: 40 start-page: 7143 year: 2014 ident: 9837_CR11 publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.12.050 – volume: 102 start-page: 1038 year: 2015 ident: 9837_CR30 publication-title: Procedia Engineering. doi: 10.1016/j.proeng.2015.01.226 – ident: 9837_CR2 – volume: 330–331 start-page: 288 year: 2015 ident: 9837_CR54 publication-title: Wear doi: 10.1016/j.wear.2014.12.044 – volume: 54 start-page: 4051 year: 2011 ident: 9837_CR150 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2011.04.014 – volume: 136 start-page: 041801 year: 2014 ident: 9837_CR113 publication-title: J Tribol doi: 10.1115/1.4027994 – volume: 100 start-page: 263 year: 2016 ident: 9837_CR93 publication-title: Tribol Int doi: 10.1016/j.triboint.2016.01.050 – volume: 281 start-page: 598 year: 2019 ident: 9837_CR146 publication-title: J Mol Liq doi: 10.1016/j.molliq.2019.02.102 – volume: 124 start-page: 156 year: 2018 ident: 9837_CR111 publication-title: Tribol Int doi: 10.1016/j.triboint.2018.03.030 – volume: 60 start-page: 670 year: 2017 ident: 9837_CR84 publication-title: Tribol Trans doi: 10.1080/10402004.2016.1202366 – start-page: 11 volume-title: Pharmacology year: 2009 ident: 9837_CR135 doi: 10.1016/B978-0-443-06898-0.00003-7 – volume: 9 start-page: e128 year: 2009 ident: 9837_CR37 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.12.054 – volume: 7 start-page: 208 year: 2015 ident: 9837_CR43 publication-title: J Chem Pharm Sci (JCHPS) – volume: 35 start-page: 1490 year: 2011 ident: 9837_CR140 publication-title: Exp Thermal Fluid Sci doi: 10.1016/j.expthermflusci.2011.06.010 – volume: 126 start-page: 211 year: 2018 ident: 9837_CR151 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.05.021 – ident: 9837_CR74 – ident: 9837_CR125 – volume: 265 start-page: 422 year: 2008 ident: 9837_CR28 publication-title: Wear doi: 10.1016/j.wear.2007.11.013 – volume: 116 start-page: 285 year: 2017 ident: 9837_CR55 publication-title: Tribol Int doi: 10.1016/j.triboint.2017.06.045 – volume: 62 start-page: 111 year: 2010 ident: 9837_CR83 publication-title: Ind Lubr Tribol doi: 10.1108/00368791011025656 – volume: 288 start-page: 72 year: 2012 ident: 9837_CR108 publication-title: Wear doi: 10.1016/j.wear.2012.02.009 – volume: 261 start-page: 256 year: 2006 ident: 9837_CR27 publication-title: Wear doi: 10.1016/j.wear.2005.10.001 – volume: 6 start-page: 1529 year: 2006 ident: 9837_CR142 publication-title: Nano Lett doi: 10.1021/nl060992s – volume: 47 start-page: 4305 year: 2012 ident: 9837_CR109 publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2012.09.013 – volume: 231 start-page: 365 year: 2013 ident: 9837_CR149 publication-title: Chem Eng J doi: 10.1016/j.cej.2013.07.006 – volume: 6 start-page: e67 year: 2006 ident: 9837_CR153 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2006.01.014 – volume: 11 start-page: 607 year: 2010 ident: 9837_CR38 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-010-0070-8 – volume: 8 start-page: 587 year: 2018 ident: 9837_CR69 publication-title: Appl Sci doi: 10.3390/app8040587 – volume: 252 start-page: 370 year: 2002 ident: 9837_CR118 publication-title: Wear doi: 10.1016/S0043-1648(01)00862-6 – volume: 44 start-page: 829 year: 2011 ident: 9837_CR26 publication-title: Tribol Int doi: 10.1016/j.triboint.2011.02.006 – volume: 65 start-page: 104 year: 2017 ident: 9837_CR90 publication-title: Tribol Lett doi: 10.1007/s11249-017-0885-x – volume: 131 start-page: 605 year: 2019 ident: 9837_CR95 publication-title: Tribol Int doi: 10.1016/j.triboint.2018.11.012 – volume: 332–333 start-page: 1256 year: 2015 ident: 9837_CR13 publication-title: Wear doi: 10.1016/j.wear.2015.02.038 – volume: 37 start-page: 1415 year: 2016 ident: 9837_CR131 publication-title: J Dispers Sci Technol doi: 10.1080/01932691.2015.1111144 – volume: 29 start-page: 241 year: 2017 ident: 9837_CR51 publication-title: Lubr Sci doi: 10.1002/ls.1366 – volume: 262 start-page: 819 year: 2007 ident: 9837_CR101 publication-title: Wear doi: 10.1016/j.wear.2006.08.021 – volume: 103 start-page: 504 year: 2016 ident: 9837_CR40 publication-title: Tribol Int doi: 10.1016/j.triboint.2016.08.007 – volume: 3 start-page: 4221 year: 2011 ident: 9837_CR72 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am200851z – volume: 17 start-page: 136 year: 2014 ident: 9837_CR32 publication-title: Particuology. doi: 10.1016/j.partic.2013.09.004 – volume: 10 start-page: 1 year: 2015 ident: 9837_CR24 publication-title: J Exp Nanosci doi: 10.1080/17458080.2013.778424 – volume: 3 start-page: 26086 year: 2013 ident: 9837_CR48 publication-title: RSC Adv doi: 10.1039/c3ra42478b – volume: 2 start-page: 6 year: 2013 ident: 9837_CR121 publication-title: Int J Eng Res – volume: 63 start-page: 440 year: 2011 ident: 9837_CR75 publication-title: Ind Lubr Tribol doi: 10.1108/00368791111169025 – volume: 107 start-page: 283 year: 2017 ident: 9837_CR44 publication-title: Tribol Int doi: 10.1016/j.triboint.2016.12.004 – volume: 35 start-page: 1989 year: 2012 ident: 9837_CR126 publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2012.07.002 – volume: 292 start-page: 971 year: 2014 ident: 9837_CR117 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2013.12.089 – volume: 66 start-page: 321 year: 2016 ident: 9837_CR5 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2016.05.033 – volume: 474 start-page: 71 year: 2015 ident: 9837_CR16 publication-title: Colloids and Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2015.02.049 – ident: 9837_CR136 doi: 10.1016/B978-0-12-382163-8.00005-0 – ident: 9837_CR39 – volume: 376–377 start-page: 885 year: 2017 ident: 9837_CR92 publication-title: Wear doi: 10.1016/j.wear.2017.01.044 – volume: 80 start-page: 1 year: 2017 ident: 9837_CR14 publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2017.04.024 – ident: 9837_CR134 doi: 10.1533/9781845699246.2.178 – volume: 28 start-page: 203 year: 2007 ident: 9837_CR116 publication-title: Tribol Lett doi: 10.1007/s11249-007-9265-2 – volume: 12 start-page: 852 year: 2015 ident: 9837_CR7 publication-title: J Comput Theor Nanosci. doi: 10.1166/jctn.2015.3816 – volume: 43 start-page: 1082 year: 2010 ident: 9837_CR58 publication-title: Tribol Int doi: 10.1016/j.triboint.2009.12.026 – volume: 42 start-page: 1029 year: 2009 ident: 9837_CR122 publication-title: Tribol Int doi: 10.1016/j.triboint.2009.02.012 – volume: 15 start-page: 3590 year: 2015 ident: 9837_CR41 publication-title: J Nanosci Nanotechnol doi: 10.1166/jnn.2015.9839 – volume: 274 start-page: 568 year: 2019 ident: 9837_CR91 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.10.107 – ident: 9837_CR148 – volume: 56 start-page: 45 year: 2013 ident: 9837_CR141 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.03.022 – volume-title: Bio-based carbon materials road-map year: 2016 ident: 9837_CR1 – volume: 8 start-page: 125 year: 2014 ident: 9837_CR57 publication-title: Tribol Mater Surf Interfaces doi: 10.1179/1751584X13Y.0000000051 – volume: 42 start-page: 911 year: 2009 ident: 9837_CR31 publication-title: Tribol Int doi: 10.1016/j.triboint.2008.12.015 – volume: 263 start-page: 655 year: 2012 ident: 9837_CR59 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2012.09.130 – volume: 103 start-page: 556 year: 2019 ident: 9837_CR68 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.12.057 – volume: 93 start-page: 63 year: 2016 ident: 9837_CR80 publication-title: Tribol Int doi: 10.1016/j.triboint.2015.08.009 – volume: 7 start-page: 12599 year: 2017 ident: 9837_CR76 publication-title: RSC Adv doi: 10.1039/C6RA28243A – volume: 39 start-page: 1711 year: 2010 ident: 9837_CR120 publication-title: Rare Met Mater Eng doi: 10.1016/S1875-5372(10)60129-4 – volume: 130 start-page: 031801 year: 2008 ident: 9837_CR33 publication-title: J Tribol doi: 10.1115/1.2913539 – volume: 230 start-page: 35 year: 1999 ident: 9837_CR56 publication-title: Wear doi: 10.1016/S0043-1648(99)00084-8 – volume: 11 start-page: 3458 year: 2019 ident: 9837_CR62 publication-title: Nanoscale doi: 10.1039/C8NR08240E – volume: 27 start-page: 531 year: 2017 ident: 9837_CR152 publication-title: Progr Nat Sci Mater Int doi: 10.1016/j.pnsc.2017.08.010 – volume: 68 start-page: 152 year: 2013 ident: 9837_CR132 publication-title: Procedia Eng doi: 10.1016/j.proeng.2013.12.161 – volume: 28 start-page: 157 year: 2016 ident: 9837_CR114 publication-title: Lubr Sci doi: 10.1002/ls.1307 – volume: 46 start-page: 1 year: 2007 ident: 9837_CR138 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2006.06.010 – volume: 136 start-page: 15 year: 2019 ident: 9837_CR97 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2018.10.007 – ident: 9837_CR17 – ident: 9837_CR34 – volume: 59 start-page: 585 year: 2016 ident: 9837_CR124 publication-title: Tribol Trans doi: 10.1080/10402004.2015.1092623 – volume: 13 start-page: 111 year: 2012 ident: 9837_CR18 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-012-0015-5 – volume: 289 start-page: 111049 year: 2019 ident: 9837_CR67 publication-title: J Mol Liq doi: 10.1016/j.molliq.2019.111049 |
SSID | ssj0009901 |
Score | 2.4888382 |
Snippet | Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1773 |
SubjectTerms | Analytical Chemistry Chemistry Chemistry and Materials Science Friction reduction Inorganic Chemistry Lubricants Lubricants & lubrication Lubricants industry Lubrication and lubricants Measurement Science and Instrumentation Mechanical systems Nanoparticles Physical Chemistry Polymer Sciences Stability analysis Surface active agents Surfactants System effectiveness Tribology |
Title | Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review |
URI | https://link.springer.com/article/10.1007/s10973-020-09837-y https://www.proquest.com/docview/2479806680 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe4ALggJiaakshMSBteQ4zsPctlWX0ooeWlYqJ8tPQFqSqtk97H_gR-NxHJYFitRLcogdJ5nx-Jt45huEXltvtA0wlZReUcKZZ0TrMK9yXjLL68L7mJX28bw8mfHTq-IqJYV1Q7T7sCUZLfVvyW6igj1HSqgIbhVZ3UM7BfjuQYtnbLKm2hW0d7OCDgDdeUqV-fc9NpajP43yX7ujcdGZPkIPE1rEk168j9GWa3bR_aOhSNsT9KNnH8atx_YbkH6D64_hMHdYNRZ_XUFKFm5UE7zjFASH2wZDoavB7o0xoMDvLblOQhvHrgE3xsjZFTabrM4w2nypowVddO-wwn0CzFM0mx5_OjohqcACMWEZWhCvc-Yz7gJmMC4rbFYLJbgLU1xY6qwFbr-SKmasUCa3pfA5FdQWpWaVcL7On6Htpm3cc4QrnxkmNOU-09zUItguo0tRV-BPZTkfoWz4ztIk9nEogjGXa95kkI0MspFRNnI1Qm9_9bnuuTf-2_oViE8CqUUDUTNf1LLr5IfLCzmJMJQF4zxCb1Ij34bhjUpJCOElgAdro-X-oAYyTetOMl6JOoC0mo7QeFCN9eXbH-7F3ZrvoQcMYmfir559tL24WbqXAfws9AHamUwPD8_h_P7z2fFB1P2fCe7_uA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKeygXRAuIpQUshMSBteQ43iTmtqqots8DdKXeLD-h0japmt3D_gd-NB7HYbsFKvWSS8Z5zXj8TTzzDUIfrTfaBphKCq8o4cwzonWYVzkvmOXVyPtYlXZ2Xkym_PhydJmKwto-273fkoye-k6xmyhhz5ESKkJYRZZP0FYAAxUkck3ZeEW1K2gXZgUbALrzVCrz72usLUf3nfJfu6Nx0Tl8jp4ltIjHnXp30Iard9H2Qd-k7QX61bEP48ZjewWk3xD6YzjMHFa1xT-XUJKFa1WH6DglweGmxtDoqvd7Qwwo8LohN0lpwzg04MaYObvEZp3VGe42W-joQeftF6xwVwDzEk0Pv14cTEhqsEBMWIbmxOuc-Yy7gBmMy0Y2q4QS3IUpLix11gK3X0EVM1Yok9tC-JwKakeFZqVwvspfoc26qd1rhEufGSY05T7T3FQi-C6jC1GVEE9lOR-grP_O0iT2cWiCMZMr3mTQjQy6kVE3cjlAn_-Muem4Nx6U_gDqk0BqUUPWzA-1aFt59P2bHEcYyoJzHqBPScg34fZGpSKE8BLAg7Umud-bgUzTupWMl6IKIK2iAzTsTWN1-v8P9-Zx4u_R9uTi7FSeHp2f7KGnDPJo4m-ffbQ5v124twEIzfW7aPe_ATo3_5s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkWAviKcoLGAhJA7UWsdxk5hbtVDt8lghoNLeLD8BqetUND30P_Cj8TgO3fKSuOQSO04y4_GMPd83CD213mgb3VRSeUUJZ54RreO8KnnFLG8m3idU2rvT6njOX59Nzi6g-FO2-3Ak2WMagKUpdIdL6w8vAN9EDeePlFARQyyyuYyuRHNcgF7P2XRLuytoH3JFfQDq8wyb-fMzdpamXw30byelaQGa3UDXs-eIp72ob6JLLtxC146Ggm230feeiRi3HtuvQAAO2wAYLguHVbD4ywbgWTioECPlnBCH24Ch6NVgA8cYPMLzliyzAMepa_QhUxbtBptdhmcYbbHWyZp2qxdY4R4McwfNZ68-HR2TXGyBmLgkdcTrkvmCu-g_GFdMbNEIJbiL011Y6qwFnr-KKmasUKa0lfAlFdROKs1q4XxT3kV7oQ3uHsK1LwwTmnJfaG4aEe2Y0ZVoaoitipKPUDH8Z2kyEzkUxFjILYcyyEZG2cgkG7kZoec_-yx7Ho5_tn4C4pNAcBEgg-azWq9W8uTjBzlNLimLhnqEnuVGvo3DG5UBCfEjgBNrp-XBoAYyT_GVZLwWTXTYGjpC40E1trf__nL3_6_5Y3T1_cuZfHty-uYB2meQUpN2gA7QXvdt7R5Gn6jTj5La_wC9dAPm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+dispersing+single+and+hybrid+nanoparticles+on+tribological%2C+thermo-physical%2C+and+stability+characteristics+of+lubricants%3A+a+review&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Pownraj%2C+C&rft.au=Valan+Arasu%2C+A&rft.date=2021-01-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=143&rft.issue=2&rft.spage=1773&rft_id=info:doi/10.1007%2Fs10973-020-09837-y&rft.externalDocID=A650882219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |