Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review

Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the enhancement of lubricant oil properties will play a vital role in the context of protecting machinery from highly probable damages and minimizing...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 143; no. 2; pp. 1773 - 1809
Main Authors Pownraj, C., Valan Arasu, A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the enhancement of lubricant oil properties will play a vital role in the context of protecting machinery from highly probable damages and minimizing energy losses. The development of modern lubricants and their proper use are of great importance for managing economy and the environment. In general, nano-sized particles dispersed in the lubricants, known as nanolubricants, are used in mechanical systems in order to reduce heat and friction effectively. Properties (tribological and thermo-physical) of nanolubricants are found to be the recent subject of research in the field of lubricants. This review article comprehensively analyzes and summarizes the numerous research works on preparation, tribological property, thermo-physical property, and stability characteristics of both mono- and hybrid nanoparticle-based nanolubricants. More importantly, this paper examines the various influencing factors like base lubricants, nanoparticle size, shape, preparation methods, concentrations, nature of nanoparticles, surfactants, and temperature on nanolubricant characteristics. Finally, stability of nanolubricant, various surfactants used and different stability measuring techniques are analyzed.
AbstractList Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the enhancement of lubricant oil properties will play a vital role in the context of protecting machinery from highly probable damages and minimizing energy losses. The development of modern lubricants and their proper use are of great importance for managing economy and the environment. In general, nano-sized particles dispersed in the lubricants, known as nanolubricants, are used in mechanical systems in order to reduce heat and friction effectively. Properties (tribological and thermo-physical) of nanolubricants are found to be the recent subject of research in the field of lubricants. This review article comprehensively analyzes and summarizes the numerous research works on preparation, tribological property, thermo-physical property, and stability characteristics of both mono- and hybrid nanoparticle-based nanolubricants. More importantly, this paper examines the various influencing factors like base lubricants, nanoparticle size, shape, preparation methods, concentrations, nature of nanoparticles, surfactants, and temperature on nanolubricant characteristics. Finally, stability of nanolubricant, various surfactants used and different stability measuring techniques are analyzed.
Audience Academic
Author Valan Arasu, A.
Pownraj, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Pownraj
  fullname: Pownraj, C.
  organization: Department of Mechanical Engineering, Thiagarajar College of Engineering
– sequence: 2
  givenname: A.
  orcidid: 0000-0002-4169-1915
  surname: Valan Arasu
  fullname: Valan Arasu, A.
  email: avamech@tce.edu
  organization: Department of Mechanical Engineering, Thiagarajar College of Engineering
BookMark eNp9kd9qFTEQxhdpwf7xBbwKeCW4dZI9u5t4V0rVQqFQ9Tpkk8melD3JmuRU9x18aHNcQepFCSTD8P3mY_KdVkc-eKyq1xQuKED_PlEQfVMDgxoEb_p6eVGd0JbzmgnWHZW6KXVHW3hZnab0AABCAD2pfl1bizqTYIlxacaYnB_J4ZqQKG_IdhmiM8QrH2YVs9MTJhI8ydENYQqj02p6R_IW4y7U83ZJa-OApqwGN7m8EL1VUemM0aUyIR3cpn2Zq5XP6QNRJOKjwx_n1bFVU8JXf9-z6tvH669Xn-vbu083V5e3td4wkWs7NMzSDYKgGmlrKBdKbJCxVhhAYwRnrAPFtBFKN6YTtgEBpu0G1gu0vDmr3qxz5xi-7zFl-RD20RdLyTa94NB1HIrqYlWNakLpvA25LFGOwZ3T5f-tK_3LrgVeDKkowNsnQNFk_JlHtU9J3ny5f6plq1bHkFJEK-fodioukoI8RCrXSGWJVP6JVC4F4v9B2mWVXfGJyk3Po82KpuLjR4z_Vn6G-g3ZILqC
CitedBy_id crossref_primary_10_1007_s00396_024_05227_0
crossref_primary_10_1007_s10570_023_05120_z
crossref_primary_10_1016_j_colsurfa_2022_129115
crossref_primary_10_1177_09544089231189668
crossref_primary_10_1007_s10973_020_10199_8
crossref_primary_10_1016_j_powtec_2023_118389
crossref_primary_10_1016_j_heliyon_2024_e37691
crossref_primary_10_1016_j_molliq_2024_126501
crossref_primary_10_4028_p_8QeO1g
crossref_primary_10_3390_polym16172458
crossref_primary_10_1016_j_molliq_2023_121695
crossref_primary_10_1016_j_colsurfa_2021_126509
crossref_primary_10_1007_s10973_020_10286_w
crossref_primary_10_18273_revfue_v19n1_2021007
crossref_primary_10_3389_fpls_2024_1509047
crossref_primary_10_4271_2022_28_0585
crossref_primary_10_1007_s10973_022_11230_w
crossref_primary_10_1007_s10973_024_13371_6
crossref_primary_10_1007_s10973_023_12606_2
crossref_primary_10_1039_D2RA07295E
crossref_primary_10_1016_j_earscirev_2024_104793
crossref_primary_10_1016_j_fuel_2024_133811
crossref_primary_10_1007_s13369_025_10049_5
crossref_primary_10_1016_j_synthmet_2024_117799
crossref_primary_10_1007_s13369_024_09872_z
crossref_primary_10_1108_ILT_07_2023_0220
crossref_primary_10_1038_s41598_023_37623_x
crossref_primary_10_3390_fluids7120364
crossref_primary_10_1016_j_rineng_2024_102858
crossref_primary_10_1016_j_jallcom_2023_173412
crossref_primary_10_1007_s00170_024_14973_y
crossref_primary_10_3390_lubricants9090094
crossref_primary_10_1016_j_inoche_2022_109601
crossref_primary_10_1680_jgrma_21_00061
crossref_primary_10_1007_s10570_024_06181_4
crossref_primary_10_1016_j_jmapro_2021_10_002
crossref_primary_10_3762_bjnano_14_86
crossref_primary_10_1007_s13399_021_02157_7
crossref_primary_10_1080_01932691_2022_2122491
crossref_primary_10_1016_j_triboint_2024_109506
Cites_doi 10.1016/j.jiec.2013.09.029
10.1016/j.triboint.2016.05.020
10.1016/j.triboint.2019.05.036
10.1108/ILT-10-2012-0098
10.1080/10402004.2014.933933
10.1039/C6RA10543B
10.1016/j.tsep.2019.04.010
10.1007/s11249-019-1222-3
10.1016/j.ijhydene.2015.12.040
10.1016/j.triboint.2012.10.024
10.1007/s11249-008-9316-3
10.1016/S0043-1648(00)00415-4
10.1007/s11249-016-0778-4
10.1016/j.triboint.2019.105951
10.1016/j.triboint.2013.03.027
10.1016/S1003-6326(11)61185-0
10.1007/s11249-013-0148-4
10.1016/j.triboint.2014.03.013
10.1002/ls.3010120207
10.1016/j.ijheatmasstransfer.2018.11.128
10.1016/j.icheatmasstransfer.2014.03.002
10.4271/2014-01-2781
10.1007/s40145-016-0183-3
10.1186/2228-5547-4-28
10.1016/j.rser.2017.05.257
10.1016/j.wear.2012.11.084
10.1039/C5RA19522E
10.1016/j.apsusc.2011.01.084
10.1016/j.wear.2012.12.010
10.1016/j.icheatmasstransfer.2013.05.003
10.1115/IJTC2008-71058
10.1115/1.1286152
10.1080/10407782.2019.1701883
10.5772/intechopen.68602
10.1007/s12206-015-0141-y
10.1016/j.icheatmasstransfer.2013.08.004
10.1016/j.ceramint.2014.03.181
10.1016/j.icheatmasstransfer.2017.05.017
10.1016/j.wear.2013.06.003
10.1016/j.wear.2013.01.037
10.1016/j.wear.2009.08.018
10.1557/jmr.2016.24
10.1016/j.wear.2012.01.011
10.1088/0022-3727/49/4/045304
10.1016/j.colsurfa.2012.08.008
10.2298/TSCI181128015B
10.1115/1.4028554
10.1080/10402004.2016.1142034
10.1016/j.triboint.2016.08.011
10.1007/978-0-387-92897-5_27
10.1016/j.triboint.2010.08.006
10.1016/j.tca.2006.11.036
10.1063/1.1756684
10.1080/10402004.2014.960540
10.1016/j.wear.2012.03.003
10.1016/j.triboint.2011.12.014
10.1016/j.triboint.2019.105990
10.1007/s10973-019-08043-9
10.1016/j.matpr.2016.02.038
10.1016/j.wear.2005.09.010
10.1016/j.triboint.2017.08.012
10.1007/s11249-015-0557-7
10.1103/PhysRevLett.94.025901
10.1016/j.cap.2008.12.050
10.1016/j.jallcom.2018.12.215
10.1016/j.apsusc.2010.10.019
10.1016/j.ceramint.2013.12.050
10.1016/j.proeng.2015.01.226
10.1016/j.wear.2014.12.044
10.1016/j.ijheatmasstransfer.2011.04.014
10.1115/1.4027994
10.1016/j.triboint.2016.01.050
10.1016/j.molliq.2019.02.102
10.1016/j.triboint.2018.03.030
10.1080/10402004.2016.1202366
10.1016/B978-0-443-06898-0.00003-7
10.1016/j.cap.2008.12.054
10.1016/j.expthermflusci.2011.06.010
10.1016/j.ijheatmasstransfer.2018.05.021
10.1016/j.wear.2007.11.013
10.1016/j.triboint.2017.06.045
10.1108/00368791011025656
10.1016/j.wear.2012.02.009
10.1016/j.wear.2005.10.001
10.1021/nl060992s
10.1016/j.materresbull.2012.09.013
10.1016/j.cej.2013.07.006
10.1016/j.cap.2006.01.014
10.1007/s12541-010-0070-8
10.3390/app8040587
10.1016/S0043-1648(01)00862-6
10.1016/j.triboint.2011.02.006
10.1007/s11249-017-0885-x
10.1016/j.triboint.2018.11.012
10.1016/j.wear.2015.02.038
10.1080/01932691.2015.1111144
10.1002/ls.1366
10.1016/j.wear.2006.08.021
10.1016/j.triboint.2016.08.007
10.1021/am200851z
10.1016/j.partic.2013.09.004
10.1080/17458080.2013.778424
10.1039/c3ra42478b
10.1108/00368791111169025
10.1016/j.triboint.2016.12.004
10.1016/j.ijrefrig.2012.07.002
10.1016/j.apsusc.2013.12.089
10.1016/j.jtice.2016.05.033
10.1016/j.colsurfa.2015.02.049
10.1016/B978-0-12-382163-8.00005-0
10.1016/j.wear.2017.01.044
10.1016/j.ijrefrig.2017.04.024
10.1533/9781845699246.2.178
10.1007/s11249-007-9265-2
10.1166/jctn.2015.3816
10.1016/j.triboint.2009.12.026
10.1016/j.triboint.2009.02.012
10.1166/jnn.2015.9839
10.1016/j.molliq.2018.10.107
10.1016/j.applthermaleng.2013.03.022
10.1179/1751584X13Y.0000000051
10.1016/j.triboint.2008.12.015
10.1016/j.apsusc.2012.09.130
10.1016/j.rser.2018.12.057
10.1016/j.triboint.2015.08.009
10.1039/C6RA28243A
10.1016/S1875-5372(10)60129-4
10.1115/1.2913539
10.1016/S0043-1648(99)00084-8
10.1039/C8NR08240E
10.1016/j.pnsc.2017.08.010
10.1016/j.proeng.2013.12.161
10.1002/ls.1307
10.1016/j.ijthermalsci.2006.06.010
10.1016/j.ijthermalsci.2018.10.007
10.1080/10402004.2015.1092623
10.1007/s12541-012-0015-5
10.1016/j.molliq.2019.111049
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2020
COPYRIGHT 2021 Springer
Akadémiai Kiadó, Budapest, Hungary 2020.
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2020
– notice: COPYRIGHT 2021 Springer
– notice: Akadémiai Kiadó, Budapest, Hungary 2020.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10973-020-09837-y
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 1809
ExternalDocumentID A650882219
10_1007_s10973_020_09837_y
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c429t-fb32f14e091ce15d189a94e2259d0edd982260a2cd9ac3d69f3090d56b279ef83
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Fri Jul 25 11:14:04 EDT 2025
Tue Jun 10 20:36:12 EDT 2025
Fri Jun 27 04:03:47 EDT 2025
Tue Jul 01 02:44:34 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
Fri Feb 21 02:49:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nanolubricants
Stability
Tribological properties
Preparation
Thermo-physical properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-fb32f14e091ce15d189a94e2259d0edd982260a2cd9ac3d69f3090d56b279ef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4169-1915
PQID 2479806680
PQPubID 2043843
PageCount 37
ParticipantIDs proquest_journals_2479806680
gale_infotracacademiconefile_A650882219
gale_incontextgauss_ISR_A650882219
crossref_primary_10_1007_s10973_020_09837_y
crossref_citationtrail_10_1007_s10973_020_09837_y
springer_journals_10_1007_s10973_020_09837_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References YuFChenYLiangXXuJLeeCLiangQTaoPDengTDispersion stability of thermal nanofluidsProgr Nat Sci Mater Int2017275315421:CAS:528:DC%2BC2sXhsFOksr3F
CaoZXiaYStudy on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pairTribol Lett201765104
ShenderovaOVargasATurnerSIvanovDMIvanovMGNanodiamond-based nanolubricants: investigation of friction surfacesTribol Trans201457105110571:CAS:528:DC%2BC2cXhsVWjurjJ
WanQJinYSunPDingYTribological Behaviour of a Lubricant Oil Containing Boron Nitride NanoparticlesProcedia Engineering.2015102103810451:CAS:528:DC%2BC2MXmvFWqtb8%3D
GaoDLuoJSynthesis of hyper-dispersant based on the application of nano-lubricantsJ Dispers Sci Technol201637141514221:CAS:528:DC%2BC28XmvFCnurs%3D
EttefaghiERashidiAAhmadiHMohtasebiSSPourkhalilMThermal and rheological properties of oil-based nanofluids from different carbon nanostructuresInt Commun Heat Mass Transf2013481781821:CAS:528:DC%2BC3sXhsVOktbvF
CharooMSWaniMFTribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring: tribological properties of h-BN nanoparticles as lubricant additiveLubr Sci2017292412541:CAS:528:DC%2BC2sXntFKntL4%3D
WangBWangXLouWHaoJThermal conductivity and rheological properties of graphite/oil nanofluidsColloids Surf, A20124141251311:CAS:528:DC%2BC38Xhs1Wgur3E
SivakumarBRanjanNRamaprabhuSKamarajMTribological properties of graphite oxide derivative as nano-additive: synthesized from the waster carbon sourceTribol Int20201421059901:CAS:528:DC%2BC1MXhvFajur7F
HeikkilaPBio-based carbon materials road-map2016EspooVTT Technical Research Centre of Finland
LiuRWeiXTaoDZhaoYStudy of preparation and tribological properties of rare earth nanoparticles in lubricating oilTribol Int201043108210861:CAS:528:DC%2BC3cXivFKisr0%3D
KhanAIValanAAA review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluidsTherm Sci Eng Progr201911334364
XieHJiangBHeJXiaXPanFLubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy–steel contactsTribol Int20169363701:CAS:528:DC%2BC2MXhtlGku7%2FF
HuZSLaiRLouFWangLGChenZLChenGXChenJDongXPreparation and tribological properties of nanometer magnesium borate as lubricating oil additiveWear20022523703741:CAS:528:DC%2BD38XitFeqt7Y%3D
Yan Y. Tribology and tribo-corrosion testing and analysis of metallic biomaterials. Metals for Biomedical Devices [Internet]. Elsevier; 2010 [cited 2019 Dec 17]. p. 178–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845694340500073.
SrinivasVThakurRNJainAKAntiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticlesTribol Trans20176012191:CAS:528:DC%2BC28Xht1yqsbjO
ThottackkadMVRajendrakumarPKPrabhakaranNKTribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticlesTribol Mater Surf Interfaces201481251301:CAS:528:DC%2BC2cXht1Khu7vE
Hernandez Battez A, Viesca Rodriguez JL, Gonzalez Rodriguez R, Fernandez Rico JE. Viscosity and Tribology of Copper Oxide Nanofluids. STLE/ASME 2008 International Joint Tribology Conference [Internet]. Miami, Florida, USA: ASME; 2008 [cited 2019 Dec 17]. p. 205–7. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1630393.
GhaedniaHJacksonRLKhodadadiJMExperimental analysis of stable CuO nanoparticle enhanced lubricantsJ Exp Nanosci2015101181:CAS:528:DC%2BC3sXnsFGkt78%3D
ZhangBXuYGaoFShiPXuBWuYSliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additiveAppl Surf Sci2011257254025491:CAS:528:DC%2BC3MXjtVWitQ%3D%3D
Taha-TijerinaJPena-ParasLNarayananTNGarzaLLaprayCGonzalezJPalaciosEMolinaDGarcıaAMaldonadoDAjayanPMMultifunctional nanofluids with 2D nanosheets for thermal and tribological managementWear2013302124112481:CAS:528:DC%2BC3sXhsFKmtrk%3D
SongXZhengSZhangJLiWChenQCaoBSynthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additivesMater Res Bull201247430543101:CAS:528:DC%2BC38Xhtl2ku73M
Ali HM, Sajid MU, Arshad A. Heat Transfer Applications of TiO2 Nanofluids. In: Janus M, editor. Application of Titanium Dioxide [Internet]. InTech; 2017 [cited 2020 Apr 20]. Available from http://www.intechopen.com/books/application-of-titanium-dioxide/heat-transfer-applications-of-TiO2-nanofluids.
WangX-QMujumdarASHeat transfer characteristics of nanofluids: a reviewInt J Therm Sci200746119
KuB-CHanY-CLeeJ-ELeeJ-KParkS-HHwangY-JTribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosityInt J Precis Eng Manuf201011607611
GhadimiASaidurRMetselaarHSCA review of nanofluid stability properties and characterization in stationary conditionsInt J Heat Mass Transf201154405140681:CAS:528:DC%2BC3MXntVSgu70%3D
MarkoMKyleJBransonBTerrellETribological improvements of dispersed nanodiamond additives in lubricating mineral oilJ Tribol2015137011802
GobinathNAjmalMMajilyaSBharathKInvestigation of tribological characteristics of polyol ester–copper oxide nanolubricantInt J ChemTech Res2017109397
AliMKAXianjunHMaiLQingpingCTurksonRFBichengCImproving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additivesTribol Int20161035405541:CAS:528:DC%2BC28XhsVWlu7bM
KotiaAGhoshGKSrivastavaIDevalPGhoshSKMechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricantsJ Alloys Compd20197825925991:CAS:528:DC%2BC1cXisF2kurjF
ReyesLLoganathanABoeslBAgarwalAEffect of 2D boron nitride nanoplate additive on tribological properties of natural oilsTribol Lett20166441
WangWLiPShengSTianHZhangHZhangXInfluence of hydrocarbon base oil molecular structure on lubricating properties in nano-scale thin filmTribol Lett201967111
EttefaghiEAhmadiHRashidiAMohtasebiSAlaeiMExperimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditiveInt J Ind Chem2013428
YuWXieHA review on nanofluids: preparation, stability mechanisms, and applicationsJ Nanomater20122012117
MoghaddamMBGoharshadiEKEntezariMHNancarrowPPreparation, characterization, and rheological properties of graphene–glycerol nanofluidsChem Eng J20132313653721:CAS:528:DC%2BC3sXhsV2kur%2FO
RasheedAKKhalidMJaveedARashmiWGuptaTCSMChanAHeat transfer and tribological performance of graphene nanolubricant in an internal combustion engineTribol Int20161035045151:CAS:528:DC%2BC28Xhtlyqs7bN
ZhaoFBaiZFuYZhaoDYanCTribological properties of serpentine, La(OH)3 and their composite particles as lubricant additivesWear201228872771:CAS:528:DC%2BC38XmvV2qsrw%3D
QiuSZhouZDongJChenGPreparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oilsJ Tribol20011234414431:CAS:528:DC%2BD3MXltlegtLc%3D
AliHBabarHShahTSajidMQasimMJavedSPreparation techniques of TiO2 nanofluids and challenges: a reviewAppl Sci20188587
SaurínNSanesJBermúdezM-DNew graphene/ionic liquid nanolubricantsMater Today Proc20163S227S232
SunqingQJunxiuDGuoxuCWear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oilsLubr Sci200012205212
ZhangYXuYYangYZhangSZhangPZhangZSynthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additivesInd Lubr Tribol201567227232
PatilHHChavanDSPiseATTribological properties of SiO2 nanoparticles added in SN-500 base oilInt J Eng Res201326
Zin V, Barison S, Agresti F, Colla L, Pagura C, Fabrizio M. Improved tribological and thermal properties of lubricants by graphene based nano-additive. 12.
ChouRBattezAHCabelloJJViescaJLOsorioASagastumeATribological behavior of polyalphaolefin with the addition of nickel nanoparticlesTribol Int201043232723321:CAS:528:DC%2BC3cXhtlShtrnN
YadgarovLPetroneVRosentsveigRFeldmanYTenneRSenatoreATribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditionsWear2013297110311101:CAS:528:DC%2BC3sXhsVOrt7Y%3D
BogunovicLZuenkelerSToensingKAnselmettiDAn oil-based lubrication system based on nanoparticular TiO2 with superior friction and wear propertiesTribol Lett20155929
Feher J. Chemical foundations of physiology I. 2012. p. 32–42.
AlvesSMBarrosBSTrajanoMFRibeiroKSBMouraETribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditionsTribol Int20136528361:CAS:528:DC%2BC3sXmvVeks7Y%3D
PengDXKangYHwangRMShyrSSChangYPTribological properties of diamond and SiO2 nanoparticles added in paraffinTribol Int2009429119171:CAS:528:DC%2BD1MXksV2gsLk%3D
HuEHuXLiuTSongRDearnKDXuHEffect of TiF3 catalyst on the tribological properties of carbon black-contaminated engine oilsWear20133051661761:CAS:528:DC%2BC3sXhsVCitr7J
EswaraiahVSankaranarayananVRamaprabhuSGraphene-based engine oil nanofluids for tribological applicationsACS Appl Mater Interfaces20113422142271:CAS:528:DC%2BC3MXhtlCmtb7N21981026
LiXZhaoYWuWChenJChuGZouHSynthesis and characterizations of graphene–copper nanocomposites and their antifriction applicationJ Ind Eng Chem201420204320491:CAS:528:DC%2BC3sXhs1eqtrjE
Joly-PottuzLVacherBOhmaeNMartinJMEpicierTAnti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additivesTribol Lett20083069801:CAS:528:DC%2BD1cXjs1WitrY%3D
HwangYLeeJKLeeCHJungYMCheongSILeeCGKuBCJangSPStability and thermal conductivity characteristics of nanofluidsThermochim Acta200745570741:CAS:528:DC%2BD2sXitlOrurc%3D
ChangHChenC-HTuH-SThe fabrication and effect of Bi and Bi/Cu nanoparticles on the tribological properties of SAE-30 lubricating oilJ Comput Theor Nanosci.2015128528571:CAS:528:DC%2BC2MXpvFKjt74%3D
ChenYZhangYZhangSYuLZhangPZhangZPreparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological propertiesTribol Lett20135173831:CAS:528:DC%2BC3sXosFKiurY%3D
Dhinesh KumarDValanAAA comprehensive review of prepar
G Paul (9837_CR62) 2019; 11
SP Jang (9837_CR139) 2004; 84
K Lee (9837_CR37) 2009; 9
W Dai (9837_CR100) 2016; 102
L Joly-Pottuz (9837_CR115) 2008; 30
T Luo (9837_CR11) 2014; 40
Y Zhang (9837_CR48) 2013; 3
D Peng (9837_CR83) 2010; 62
L Reyes (9837_CR89) 2016; 64
R Chou (9837_CR78) 2010; 43
W Zhang (9837_CR4) 2012; 288
HH Patil (9837_CR121) 2013; 2
MB Moghaddam (9837_CR149) 2013; 231
J Padgurskas (9837_CR107) 2013; 60
A Hernández Battez (9837_CR22) 2010; 268
X-Q Wang (9837_CR138) 2007; 46
V Zin (9837_CR41) 2015; 15
L Kong (9837_CR76) 2017; 7
9837_CR74
X Li (9837_CR21) 2014; 20
B-C Ku (9837_CR38) 2010; 11
MU Sajid (9837_CR68) 2019; 103
A Hernandez Battez (9837_CR27) 2006; 261
NNM Zawawi (9837_CR14) 2017; 80
D Jiao (9837_CR12) 2011; 257
M Kole (9837_CR141) 2013; 56
D Dhinesh Kumar (9837_CR144) 2018; 81
Q Pan (9837_CR120) 2010; 39
SJ Asadauskas (9837_CR114) 2016; 28
S Ingole (9837_CR29) 2013; 301
JL Viesca (9837_CR26) 2011; 44
VS Jatti (9837_CR79) 2015; 29
M Kole (9837_CR140) 2011; 35
L Yadgarov (9837_CR49) 2013; 297
ZS Hu (9837_CR118) 2002; 252
SVP Vattikuti (9837_CR53) 2015; 2015
NW Awang (9837_CR94) 2019; 131
W Li-jun (9837_CR33) 2008; 130
SM Alves (9837_CR10) 2013; 65
Z Li (9837_CR117) 2014; 292
S Qiu (9837_CR128) 2001; 123
M Hemmat Esfe (9837_CR35) 2017; 86
9837_CR17
R Liu (9837_CR58) 2010; 43
DX Peng (9837_CR31) 2009; 42
9837_CR19
MS Kumar (9837_CR5) 2016; 66
B Wang (9837_CR45) 2012; 414
W Yu (9837_CR70) 2012; 2012
H Chang (9837_CR7) 2015; 12
A Ghadimi (9837_CR150) 2011; 54
T Kaviyarasu (9837_CR43) 2015; 7
G Paul (9837_CR95) 2019; 131
Q Sunqing (9837_CR61) 2000; 12
R Prasher (9837_CR137) 2005; 94
AI Khan (9837_CR145) 2019; 11
S Shahnazar (9837_CR3) 2016; 41
J Lee (9837_CR116) 2007; 28
YY Wu (9837_CR101) 2007; 262
E Ettefaghi (9837_CR36) 2013; 48
B Wu (9837_CR112) 2020; 141
L Bogunovic (9837_CR129) 2015; 59
A Kotia (9837_CR96) 2019; 782
KG Binu (9837_CR147) 2014; 75
X Song (9837_CR109) 2012; 47
FL Guzman Borda (9837_CR81) 2018; 117
M Yi (9837_CR55) 2017; 116
MU Sajid (9837_CR151) 2018; 126
SM Alves (9837_CR93) 2016; 100
Q Sunqing (9837_CR56) 1999; 230
9837_CR127
Z Zhang (9837_CR47) 2016; 49
9837_CR125
R Prasher (9837_CR142) 2006; 6
9837_CR25
9837_CR39
E Ettefaghi (9837_CR42) 2013; 46
H Ali (9837_CR69) 2018; 8
M Marko (9837_CR85) 2015; 137
NWM Zulkifli (9837_CR132) 2013; 68
MV Thottackkad (9837_CR18) 2012; 13
H Ghaednia (9837_CR24) 2015; 10
Y Choi (9837_CR106) 2009; 9
J Taha-Tijerina (9837_CR110) 2013; 302
G Yang (9837_CR99) 2012; 22
MS Charoo (9837_CR119) 2016; 5
NAC Sidik (9837_CR71) 2014; 54
H Ghaednia (9837_CR124) 2016; 59
R Krishna Sabareesh (9837_CR126) 2012; 35
9837_CR134
A Hernandez Battez (9837_CR28) 2008; 265
ZS Hu (9837_CR123) 2000; 243
L Xiang (9837_CR32) 2014; 17
9837_CR130
L Pena-Paras (9837_CR13) 2015; 332–333
L Pena-Paras (9837_CR92) 2017; 376–377
N Rajendhran (9837_CR111) 2018; 124
Z Jiang (9837_CR6) 2019; 138
9837_CR2
T Luo (9837_CR15) 2014; 40
Y Hwang (9837_CR23) 2007; 455
9837_CR34
9837_CR136
MU Sajid (9837_CR64) 2019; 137
L Yu (9837_CR59) 2012; 263
A Wahab (9837_CR67) 2019; 289
O Shenderova (9837_CR105) 2014; 57
D Gao (9837_CR131) 2016; 37
P Heikkila (9837_CR1) 2016
CP Koshy (9837_CR54) 2015; 330–331
M Farbod (9837_CR16) 2015; 474
MS Charoo (9837_CR51) 2017; 29
M Sgroi (9837_CR50) 2015; 58
JM Lineira del Rio (9837_CR91) 2019; 274
AK Rasheed (9837_CR40) 2016; 103
9837_CR148
Q Wan (9837_CR30) 2015; 102
F Zhao (9837_CR108) 2012; 288
Y-R Jeng (9837_CR113) 2014; 136
MB Dobrica (9837_CR133) 2013
N Saurín (9837_CR102) 2016; 3
H Xie (9837_CR80) 2016; 93
M Zhang (9837_CR122) 2009; 42
B Zhang (9837_CR20) 2011; 257
N Gobinath (9837_CR87) 2017; 10
Z Cao (9837_CR90) 2017; 65
Y Chen (9837_CR82) 2013; 51
M Gulzar (9837_CR84) 2017; 60
E Ettefaghi (9837_CR77) 2013; 4
HD Huang (9837_CR46) 2006; 261
Y Zhang (9837_CR104) 2015; 67
SSN Azman (9837_CR73) 2016; 31
M Kalin (9837_CR86) 2012; 280–281
V Srinivas (9837_CR52) 2017; 60
F Yu (9837_CR152) 2017; 27
GK Poongavanam (9837_CR97) 2019; 136
MK Ahmed Ali (9837_CR8) 2016; 6
Y Peng (9837_CR44) 2017; 107
Y-Y Wu (9837_CR75) 2011; 63
MKA Ali (9837_CR9) 2016; 103
MV Thottackkad (9837_CR57) 2014; 8
Y Hwang (9837_CR153) 2006; 6
E Hu (9837_CR60) 2013; 305
W Wang (9837_CR143) 2019; 67
H Babar (9837_CR66) 2019; 23
B Sivakumar (9837_CR98) 2020; 142
MEM Soudagar (9837_CR65) 2020; 77
V Eswaraiah (9837_CR72) 2011; 3
EM Aldred (9837_CR135) 2009
M Guo (9837_CR88) 2015; 5
9837_CR63
X Qi (9837_CR103) 2012; 49
H Babar (9837_CR146) 2019; 281
References_xml – reference: LiuRWeiXTaoDZhaoYStudy of preparation and tribological properties of rare earth nanoparticles in lubricating oilTribol Int201043108210861:CAS:528:DC%2BC3cXivFKisr0%3D
– reference: JattiVSSinghTPCopper oxide nano-particles as friction–reduction and anti-wear additives in lubricating oilJ Mech Sci Technol201529793798
– reference: DaiWKheireddinBGaoHLiangHRoles of nanoparticles in oil lubricationTribol Int201610288981:CAS:528:DC%2BC28XptFeku7Y%3D
– reference: PaulGHiraniHKuilaTMurmuNCNanolubricants dispersed with graphene and its derivatives: an assessment and review of the tribological performanceNanoscale201911345834831:CAS:528:DC%2BC1MXitFGnu7Y%3D30747929
– reference: KotiaAGhoshGKSrivastavaIDevalPGhoshSKMechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricantsJ Alloys Compd20197825925991:CAS:528:DC%2BC1cXisF2kurjF
– reference: MoghaddamMBGoharshadiEKEntezariMHNancarrowPPreparation, characterization, and rheological properties of graphene–glycerol nanofluidsChem Eng J20132313653721:CAS:528:DC%2BC3sXhsV2kur%2FO
– reference: SaurínNSanesJBermúdezM-DNew graphene/ionic liquid nanolubricantsMater Today Proc20163S227S232
– reference: GaoDLuoJSynthesis of hyper-dispersant based on the application of nano-lubricantsJ Dispers Sci Technol201637141514221:CAS:528:DC%2BC28XmvFCnurs%3D
– reference: Zin V, Barison S, Agresti F, Colla L, Pagura C, Fabrizio M. Improved tribological and thermal properties of lubricants by graphene based nano-additive. 12.
– reference: AwangNWRamasamyDKadirgamaKNajafiGChe SidikNAStudy on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oilInt J Heat Mass Transf2019131119612041:CAS:528:DC%2BC1cXisVCitrvO
– reference: DobricaMBFillonMWangQJChungY-WMixed lubricationEncyclopedia of tribology2013BostonSpringer2284229110.1007/978-0-387-92897-5_27
– reference: BinuKGShenoyBSRaoDSPaiRStatic characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger–Dougherty viscosity model and couple stress modelTribol Int20147569791:CAS:528:DC%2BC2cXnsVers7c%3D
– reference: BabarHSajidMAliHViscosity of hybrid nanofluids: a critical reviewTherm Sci20192317131754
– reference: HuZSDongJXChenGXHeJZPreparation and tribological properties of nanoparticle lanthanum borateWear200024343471:CAS:528:DC%2BD3cXlvVCrtbg%3D
– reference: ZulkifliNWMKalamMAMasjukiHHYunusRExperimental analysis of tribological properties of biolubricant with nanoparticle additiveProcedia Eng2013681521571:CAS:528:DC%2BC2cXmsFGjsr4%3D
– reference: LeeKHwangYCheongSKwonLKimSLeeJPerformance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oilCurr Appl Phys20099e128e131
– reference: VattikutiSVPByonCSynthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: nanotribologyJ Nanomater20152015111
– reference: LeeJChoSHwangYLeeCKimSHEnhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additivesTribol Lett2007282032081:CAS:528:DC%2BD2sXhtFShsL%2FL
– reference: SgroiMGiliFMangheriniDLahouijIDassenoyFGarciaIOdriozolaIKraftGFriction reduction benefits in valve-train system using IF-MoS2 added engine oilTribol Trans2015582072141:CAS:528:DC%2BC2cXitFKmu7bI
– reference: Rashmi W, Khalid M, Lim, Xiao Y, Gupta, TCSM, Arwin, GZ. Tribological studies on graphene/TMP based nanolubricant [Internet]. 2017. Available from: http://www.scopus.com/inward/record.url?scp=85011960957&partnerID=8YFLogxK.
– reference: Xu J, Tang H, Zhang K, Zhang H, Li C. Synthesis and tribological properties of flower-like MoS2 nanostructures. 8.
– reference: BogunovicLZuenkelerSToensingKAnselmettiDAn oil-based lubrication system based on nanoparticular TiO2 with superior friction and wear propertiesTribol Lett20155929
– reference: ZhangYTangHJiXLiCChenLZhangDYangXZhangHSynthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological propertiesRSC Adv20133260861:CAS:528:DC%2BC3sXhslyhu7rP
– reference: ChenYZhangYZhangSYuLZhangPZhangZPreparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological propertiesTribol Lett20135173831:CAS:528:DC%2BC3sXosFKiurY%3D
– reference: WuYYTsuiWCLiuTCExperimental analysis of tribological properties of lubricating oils with nanoparticle additivesWear20072628198251:CAS:528:DC%2BD2sXitFyktbY%3D
– reference: GhaedniaHJacksonRLKhodadadiJMExperimental analysis of stable CuO nanoparticle enhanced lubricantsJ Exp Nanosci2015101181:CAS:528:DC%2BC3sXnsFGkt78%3D
– reference: ZhaoFBaiZFuYZhaoDYanCTribological properties of serpentine, La(OH)3 and their composite particles as lubricant additivesWear201228872771:CAS:528:DC%2BC38XmvV2qsrw%3D
– reference: ThottackkadMVPerikinalilRKKumarapillaiPNExperimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticlesInt J Precis Eng Manuf201213111116
– reference: LuoTWeiXZhaoHCaiGZhengXTribology properties of Al2O3/TiO2 nanocomposites as lubricant additivesCeram Int20144010103101091:CAS:528:DC%2BC2cXmt1ags7c%3D
– reference: SajidMUAliHMRecent advances in application of nanofluids in heat transfer devices: a critical reviewRenew Sustain Energy Rev20191035565921:CAS:528:DC%2BC1MXhsFyqsbk%3D
– reference: Pisal AS, Chavan DS. Experimental investigation of tribological properties of engine oil with CuO nanoparticles. 2014;5.
– reference: HwangYLeeJKLeeCHJungYMCheongSILeeCGKuBCJangSPStability and thermal conductivity characteristics of nanofluidsThermochim Acta200745570741:CAS:528:DC%2BD2sXitlOrurc%3D
– reference: JiangZZhangYYangGGaoCYuLZhangSZhangPSynthesis of oil-soluble WS2 nanosheets under mild condition and study of their effect on tribological properties of poly-alpha olefin under evaluated temperaturesTribol Int201913868781:CAS:528:DC%2BC1MXhtVyjurvF
– reference: PengDXKangYHwangRMShyrSSChangYPTribological properties of diamond and SiO2 nanoparticles added in paraffinTribol Int2009429119171:CAS:528:DC%2BD1MXksV2gsLk%3D
– reference: Mohan N, Sharma M, Singh R, Kumar N. Tribological Properties of Automotive Lubricant SAE 20W-40 Containing Nano-Al2O3 particles. 2014 [cited 2019 Dec 17]. p. 2014-01–2781. Available from https://www.sae.org/content/2014-01-2781/.
– reference: Abate F, Senatore A, D’Agostino V, Leone C, Sarno M, Ciambelli P. Tribological properties of carbon nanotubes as lubricant additive. 2009; 3:4.
– reference: PengDChenCKangYChangYChangSSize effects of SiO2 nanoparticles as oil additives on tribology of lubricantInd Lubr Tribol201062111120
– reference: SajidMUAliHMThermal conductivity of hybrid nanofluids: a critical reviewInt J Heat Mass Transf20181262112341:CAS:528:DC%2BC1cXpsVyrtbg%3D
– reference: AliHBabarHShahTSajidMQasimMJavedSPreparation techniques of TiO2 nanofluids and challenges: a reviewAppl Sci20188587
– reference: RajendhranNPalanisamySShymaAPVenkatachalamREnhancing the thermophysical and tribological performance of gear oil using Ni-promoted ultrathin MoS2 nanocompositesTribol Int20181241561681:CAS:528:DC%2BC1cXnvVSgsbY%3D
– reference: Hernandez BattezAGonzalezRViescaJLFernandezJEDiaz FernandezJMMachadoAChouRRibaJCuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricantsWear20082654224281:CAS:528:DC%2BD1cXlvVSms7k%3D
– reference: Guzman BordaFLRibeiro de OliveiraSJSeabra Monteiro LazaroLMKalabLeirozAJExperimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticlesTribol Int20181175258
– reference: YuFChenYLiangXXuJLeeCLiangQTaoPDengTDispersion stability of thermal nanofluidsProgr Nat Sci Mater Int2017275315421:CAS:528:DC%2BC2sXhsFOksr3F
– reference: KoshyCPRajendrakumarPKThottackkadMVEvaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperaturesWear2015330–331288308
– reference: HuangHDTuJPGanLPLiCZAn investigation on tribological properties of graphite nanosheets as oil additiveWear20062611401441:CAS:528:DC%2BD28Xms1ens7o%3D
– reference: Pena-ParasLTaha-TijerinaJGarzaLMaldonado-CortésDMichalczewskiRLaprayCEffect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oilsWear2015332–33312561261
– reference: ViescaJLHernandez BattezAGonzalezRChouRCabelloJJAntiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefinTribol Int2011448298331:CAS:528:DC%2BC3MXltlensbg%3D
– reference: PrasherRBhattacharyaPPhelanPEThermal conductivity of nanoscale colloidal solutions (nanofluids)Phys Rev Lett20059402590115698196
– reference: Hernández BattezAViescaJLGonzálezRBlancoDAsedegbegaEOsorioAFriction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coatingWear2010268325328
– reference: KuB-CHanY-CLeeJ-ELeeJ-KParkS-HHwangY-JTribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosityInt J Precis Eng Manuf201011607611
– reference: JangSPChoiSUSRole of Brownian motion in the enhanced thermal conductivity of nanofluidsAppl Phys Lett200484431643181:CAS:528:DC%2BD2cXktVeiu78%3D
– reference: EttefaghiERashidiAAhmadiHMohtasebiSSPourkhalilMThermal and rheological properties of oil-based nanofluids from different carbon nanostructuresInt Commun Heat Mass Transf2013481781821:CAS:528:DC%2BC3sXhsVOktbvF
– reference: XieHJiangBHeJXiaXPanFLubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy–steel contactsTribol Int20169363701:CAS:528:DC%2BC2MXhtlGku7%2FF
– reference: GhaedniaHHossainMSJacksonRLTribological performance of silver nanoparticle-enhanced polyethylene glycol lubricantsTribol Trans2016595855921:CAS:528:DC%2BC28Xot1GqsLs%3D
– reference: Nesappan S, Palanisamy N, Chandran M. Tribological Investigation of Copper (Cu) and Copper Oxide (CuO) Nanoparticles Based Nanolubricants for Machine Tool Slideways. Volume 2B: Advanced Manufacturing [Internet]. Montreal, Quebec, Canada: American Society of Mechanical Engineers; 2014 [cited 2019 Dec 17]. p. V02BT02A020. Available from: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2014/46445/Montreal,%20Quebec,%20Canada/254376.
– reference: Pena-ParasLMaldonado-CortesDGarciaPIrigoyenMTaha-TijerinaJGuerraJTribological performance of halloysite clay nanotubes as green lubricant additivesWear2017376–377885892
– reference: QiXLuLJiaZYangYLiuHComparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperatureTribol Int20124953571:CAS:528:DC%2BC38XisFejtro%3D
– reference: GuoMCaiZZhangZZhuMCharacterization and lubrication performance of diesel soot nanoparticles as oil lubricant additivesRSC Adv201551019651019741:CAS:528:DC%2BC2MXhvVygsrnP
– reference: SivakumarBRanjanNRamaprabhuSKamarajMTribological properties of graphite oxide derivative as nano-additive: synthesized from the waster carbon sourceTribol Int20201421059901:CAS:528:DC%2BC1MXhvFajur7F
– reference: ZhangBXuYGaoFShiPXuBWuYSliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additiveAppl Surf Sci2011257254025491:CAS:528:DC%2BC3MXjtVWitQ%3D%3D
– reference: PengYXuYGengJDearnKDHuXTribological assessment of coated piston ring-cylinder liner contacts under bio-oil lubricated conditionsTribol Int20171072832931:CAS:528:DC%2BC28XitFGnsbbE
– reference: ZinVAgrestiFBarisonSCollaLFabrizioMInfluence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oilJ Nanosci Nanotechnol201515359035981:CAS:528:DC%2BC2MXls1Clsrs%3D26504981
– reference: EttefaghiEAhmadiHRashidiAMohtasebiSAlaeiMExperimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditiveInt J Ind Chem2013428
– reference: ShahnazarSBagheriSAbd HamidSBEnhancing lubricant properties by nanoparticle additivesInt J Hydrogen Energy201641315331701:CAS:528:DC%2BC28XitVyhtg%3D%3D
– reference: ThottackkadMVRajendrakumarPKPrabhakaranNKTribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticlesTribol Mater Surf Interfaces201481251301:CAS:528:DC%2BC2cXht1Khu7vE
– reference: IngoleSCharanpahariAKakadeAUmareSSBhattDVMenghaniJTribological behavior of nano TiO2 as an additive in base oilWear20133017767851:CAS:528:DC%2BC3sXis1Onu7g%3D
– reference: KaviyarasuTVasanthanBImprovement of tribological and thermal properties of engine lubricant by using nano-materialsJ Chem Pharm Sci (JCHPS)20157208211
– reference: CaoZXiaYStudy on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pairTribol Lett201765104
– reference: ZhangYXuYYangYZhangSZhangPZhangZSynthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additivesInd Lubr Tribol201567227232
– reference: Hemmat EsfeMBahiraeiMHajmohammadMHAfrandMRheological characteristics of MgO/oil nanolubricants: experimental study and neural network modelingInt Commun Heat Mass Transf2017862452521:CAS:528:DC%2BC2sXhtF2qsb7L
– reference: LiZHouXYuLZhangZZhangPPreparation of lanthanum trifluoride nanoparticles surface-capped by tributyl phosphate and evaluation of their tribological properties as lubricant additive in liquid paraffinAppl Surf Sci20142929719771:CAS:528:DC%2BC2cXksVOjtA%3D%3D
– reference: ZhangMWangXFuXXiaYPerformance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefinTribol Int200942102910391:CAS:528:DC%2BD1MXlvVGrtro%3D
– reference: KalinMKogovšekJRemškarMMechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additivesWear2012280–2813645
– reference: KhanAIValanAAA review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluidsTherm Sci Eng Progr201911334364
– reference: Ahmed AliMKXianjunHTurksonRFPengZChenXEnhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additivesRSC Adv2016677913779241:CAS:528:DC%2BC28XhtFKlsrnJ
– reference: EttefaghiEAhmadiHRashidiANouralishahiAMohtasebiSSPreparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricantInt Commun Heat Mass Transf2013461421471:CAS:528:DC%2BC3sXpsVGqs7Y%3D
– reference: HuZSLaiRLouFWangLGChenZLChenGXChenJDongXPreparation and tribological properties of nanometer magnesium borate as lubricating oil additiveWear20022523703741:CAS:528:DC%2BD38XitFeqt7Y%3D
– reference: BabarHAliHMTowards hybrid nanofluids: preparation, thermophysical properties, applications, and challengesJ Mol Liq20192815986331:CAS:528:DC%2BC1MXktlKltbw%3D
– reference: SunqingQJunxiuDGuoxuCTribological properties of CeF3 nanoparticles as additives in lubricating oilsWear19992303538
– reference: ShenderovaOVargasATurnerSIvanovDMIvanovMGNanodiamond-based nanolubricants: investigation of friction surfacesTribol Trans201457105110571:CAS:528:DC%2BC2cXhsVWjurjJ
– reference: Lineira del RioJMLopezERFernandezJGarciaFTribological properties of dispersions based on reduced graphene oxide sheets and trimethylolpropane trioleate or PAO 40 oilsJ Mol Liq20192745685761:CAS:528:DC%2BC1cXitFyqtrrO
– reference: AzmanSSNZulkifliNWMMasjukiHGulzarMZahidRStudy of tribological properties of lubricating oil blend added with graphene nanoplateletsJ Mater Res201631193219381:CAS:528:DC%2BC28XhtFOjt7rN
– reference: PoongavanamGKRamalingamVCharacteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycolInt J Therm Sci201913615321:CAS:528:DC%2BC1cXhvFejtrzJ
– reference: WangX-QMujumdarASHeat transfer characteristics of nanofluids: a reviewInt J Therm Sci200746119
– reference: AliMKAXianjunHMaiLQingpingCTurksonRFBichengCImproving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additivesTribol Int20161035405541:CAS:528:DC%2BC28XhsVWlu7bM
– reference: CharooMSWaniMFTribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring: tribological properties of h-BN nanoparticles as lubricant additiveLubr Sci2017292412541:CAS:528:DC%2BC2sXntFKntL4%3D
– reference: QiuSZhouZDongJChenGPreparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oilsJ Tribol20011234414431:CAS:528:DC%2BD3MXltlegtLc%3D
– reference: PrasherRPhelanPEBhattacharyaPEffect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)Nano Lett20066152915341:CAS:528:DC%2BD28Xls1WlsrY%3D16834444
– reference: RasheedAKKhalidMJaveedARashmiWGuptaTCSMChanAHeat transfer and tribological performance of graphene nanolubricant in an internal combustion engineTribol Int20161035045151:CAS:528:DC%2BC28Xhtlyqs7bN
– reference: Ali HM, Sajid MU, Arshad A. Heat Transfer Applications of TiO2 Nanofluids. In: Janus M, editor. Application of Titanium Dioxide [Internet]. InTech; 2017 [cited 2020 Apr 20]. Available from http://www.intechopen.com/books/application-of-titanium-dioxide/heat-transfer-applications-of-TiO2-nanofluids.
– reference: ChoiYLeeCHwangYParkMLeeJChoiCJungMTribological behavior of copper nanoparticles as additives in oilCurr Appl Phys20099e124e127
– reference: AlvesSMBarrosBSTrajanoMFRibeiroKSBMouraETribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditionsTribol Int20136528361:CAS:528:DC%2BC3sXmvVeks7Y%3D
– reference: SrinivasVThakurRNJainAKAntiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticlesTribol Trans20176012191:CAS:528:DC%2BC28Xht1yqsbjO
– reference: HeikkilaPBio-based carbon materials road-map2016EspooVTT Technical Research Centre of Finland
– reference: LuoTWeiXHuangXHuangLYangFTribological properties of Al2O3 nanoparticles as lubricating oil additivesCeram Int201440714371491:CAS:528:DC%2BC2cXptl2jug%3D%3D
– reference: Taha-TijerinaJPena-ParasLNarayananTNGarzaLLaprayCGonzalezJPalaciosEMolinaDGarcıaAMaldonadoDAjayanPMMultifunctional nanofluids with 2D nanosheets for thermal and tribological managementWear2013302124112481:CAS:528:DC%2BC3sXhsFKmtrk%3D
– reference: ChangHChenC-HTuH-SThe fabrication and effect of Bi and Bi/Cu nanoparticles on the tribological properties of SAE-30 lubricating oilJ Comput Theor Nanosci.2015128528571:CAS:528:DC%2BC2MXpvFKjt74%3D
– reference: AsadauskasSJKreivaitisRBikulčiusGGrigucevičienėAPadgurskasJTribological effects of Cu, Fe and Zn nano-particles, suspended in mineral and bio-based oils: tribological effects of suspended Cu, Fe and Zn nanoparticlesLubr Sci2016281571761:CAS:528:DC%2BC28XjsVGhsrs%3D
– reference: PadgurskasJRukuizaRProsycevasIKreivaitisRTribological properties of lubricant additives of Fe, Cu and Co nanoparticlesTribol Int2013602242321:CAS:528:DC%2BC3sXhsVCrtrw%3D
– reference: WangWLiPShengSTianHZhangHZhangXInfluence of hydrocarbon base oil molecular structure on lubricating properties in nano-scale thin filmTribol Lett201967111
– reference: ZhangWDemydovDJahanMPMistryKErdemirAMalsheAPFundamental understanding of the tribological and thermal behavior of Ag–MoS2 nanoparticle-based multi-component lubricating systemWear20122889161:CAS:528:DC%2BC38XmvV2qsrc%3D
– reference: EswaraiahVSankaranarayananVRamaprabhuSGraphene-based engine oil nanofluids for tribological applicationsACS Appl Mater Interfaces20113422142271:CAS:528:DC%2BC3MXhtlCmtb7N21981026
– reference: AldredEMBuckCVallKAldredEMBuckCVallKChapter 3: Bonds found in biological chemistryPharmacology2009EdinburghChurchill Livingstone1119
– reference: JiaoDZhengSWangYGuanRCaoBThe tribology properties of alumina/silica composite nanoparticles as lubricant additivesAppl Surf Sci2011257572057251:CAS:528:DC%2BC3MXjtVKqu7c%3D
– reference: WuY-YKaoM-JUsing TiO2 nanofluid additive for engine lubrication oilInd Lubr Tribol201163440445
– reference: Krishna SabareeshRGobinathNSajithVDasSSobhanCBApplication of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigationInt J Refrig201235198919961:CAS:528:DC%2BC38XhtFOqtrbL
– reference: Hernandez Battez A, Viesca Rodriguez JL, Gonzalez Rodriguez R, Fernandez Rico JE. Viscosity and Tribology of Copper Oxide Nanofluids. STLE/ASME 2008 International Joint Tribology Conference [Internet]. Miami, Florida, USA: ASME; 2008 [cited 2019 Dec 17]. p. 205–7. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1630393.
– reference: KumarMSVasuVGopalAVThermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluidsJ Taiwan Inst Chem Eng2016663213271:CAS:528:DC%2BC28XpsF2qtLo%3D
– reference: XiangLGaoCWangYPanZHuDTribological and tribochemical properties of magnetite nanoflakes as additives in oil lubricantsParticuology.2014171361441:CAS:528:DC%2BC3sXhvF2rsbbP
– reference: PanQZhangXSynthesis and tribological behavior of oil-soluble cu nanoparticles as additive in SF15W/40 lubricating oilRare Met Mater Eng201039171117141:CAS:528:DC%2BC3MXmvVaktg%3D%3D
– reference: WahabAHassanAQasimMAAliHMBabarHSajidMUSolar energy systems—potential of nanofluidsJ Mol Liq20192891110491:CAS:528:DC%2BC1MXht1ymsrbN
– reference: YuLZhangLYeFSunMChengXDiaoGPreparation and tribological properties of surface-modified nano-Y2O3 as additive in liquid paraffinAppl Surf Sci20122636556591:CAS:528:DC%2BC38XhsFCnsr3E
– reference: GhadimiASaidurRMetselaarHSCA review of nanofluid stability properties and characterization in stationary conditionsInt J Heat Mass Transf201154405140681:CAS:528:DC%2BC3MXntVSgu70%3D
– reference: KongLSunJBaoYPreparation, characterization and tribological mechanism of nanofluidsRSC Adv2017712599126091:CAS:528:DC%2BC2sXjtFeks7o%3D
– reference: ChouRBattezAHCabelloJJViescaJLOsorioASagastumeATribological behavior of polyalphaolefin with the addition of nickel nanoparticlesTribol Int201043232723321:CAS:528:DC%2BC3cXhtlShtrnN
– reference: Dinagaran R, Santhosh Kumar A, Selvakumar N, Jeyasubramanian K. Tribological behavior of nano ferrofluid in AISI 1005 steel. 2016; 2:10.
– reference: WangBWangXLouWHaoJThermal conductivity and rheological properties of graphite/oil nanofluidsColloids Surf, A20124141251311:CAS:528:DC%2BC38Xhs1Wgur3E
– reference: Feher J. Chemical foundations of physiology I. 2012. p. 32–42.
– reference: Joly-PottuzLVacherBOhmaeNMartinJMEpicierTAnti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additivesTribol Lett20083069801:CAS:528:DC%2BD1cXjs1WitrY%3D
– reference: KoleMDeyTKRole of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluidsExp Thermal Fluid Sci201135149014951:CAS:528:DC%2BC3MXhtVWgsLfL
– reference: FarbodMKouhpeymaniaslRNoghrehabadiARMorphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructuresColloids and Surf A Physicochem Eng Asp201547471751:CAS:528:DC%2BC2MXltFemu7k%3D
– reference: Stachowiak G, Batchelor AW. Engineering Tribology [Internet]. Elsevier Science; 2013. Available from: https://books.google.co.in/books?id=u69ptQAACAAJ.
– reference: SongXZhengSZhangJLiWChenQCaoBSynthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additivesMater Res Bull201247430543101:CAS:528:DC%2BC38Xhtl2ku73M
– reference: KoleMDeyTKEnhanced thermophysical properties of copper nanoparticles dispersed in gear oilAppl Therm Eng20135645531:CAS:528:DC%2BC3sXnvFWht7Y%3D
– reference: JengY-RHuangY-HTsaiP-CHwangG-LTribological properties of carbon nanocapsule particles as lubricant additiveJ Tribol2014136041801
– reference: SajidMUAliHMSufyanARashidDZahidSURehmanWUExperimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinksJ Therm Anal Calorim2019137127912941:CAS:528:DC%2BC1MXmtlWlsro%3D
– reference: Hernandez BattezAFernandez RicoJENavas AriasAViesca RodriguezJLChou RodriguezRDiaz FernandezJMThe tribological behaviour of ZnO nanoparticles as an additive to PAO6Wear20062612562631:CAS:528:DC%2BD28XntlSrtLw%3D
– reference: SoudagarMEMKalamMASajidMUAfzalABanapurmathNRAkramNManeSDSaleelCAThermal analyses of minichannels and use of mathematical and numerical modelsNumer Heat Transf Part A Appl2020774975371:CAS:528:DC%2BB3cXkvFWktg%3D%3D
– reference: SunqingQJunxiuDGuoxuCWear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oilsLubr Sci200012205212
– reference: YuWXieHA review on nanofluids: preparation, stability mechanisms, and applicationsJ Nanomater20122012117
– reference: ReyesLLoganathanABoeslBAgarwalAEffect of 2D boron nitride nanoplate additive on tribological properties of natural oilsTribol Lett20166441
– reference: YangGChaiSXiongXZhangSYuLZhangPPreparation and tribological properties of surface modified Cu nanoparticlesTrans Nonferrous Met Soc China2012223663721:CAS:528:DC%2BC3sXovFKjsLs%3D
– reference: ZhangZCaiZPengJZhuMComparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additivesJ Phys D Appl Phys201649045304
– reference: ZawawiNNMAzmiWHRedhwanAAMSharifMZSharmaKVThermo-physical properties of Al2O3–SiO2/PAG composite nanolubricant for refrigeration systemInt J Refrig2017801101:CAS:528:DC%2BC2sXotVemtrg%3D
– reference: AlvesSMMelloVSFariaEACamargoAPPNanolubricants developed from tiny CuO nanoparticlesTribol Int20161002632711:CAS:528:DC%2BC28XivVSlurw%3D
– reference: Dhinesh KumarDValanAAA comprehensive review of preparation, characterization, properties and stability of hybrid nanofluidsRenew Sustain Energy Rev20188116691689
– reference: Shaharuddin NA, Walvekar RG, Shahbaz K. Stability studies of graphene nanolubricants using ionic liquid analogues. :2.
– reference: SidikNACMohammedHAAlawiOASamionSA review on preparation methods and challenges of nanofluidsInt Commun Heat Mass Transf2014541151251:CAS:528:DC%2BC2cXntlKrtrs%3D
– reference: GobinathNAjmalMMajilyaSBharathKInvestigation of tribological characteristics of polyol ester–copper oxide nanolubricantInt J ChemTech Res2017109397
– reference: YiMZhangCThe synthesis of MoS2 particles with different morphologies for tribological applicationsTribol Int20171162852941:CAS:528:DC%2BC2sXht1OisbnO
– reference: MarkoMKyleJBransonBTerrellETribological improvements of dispersed nanodiamond additives in lubricating mineral oilJ Tribol2015137011802
– reference: GulzarMMasjukiHHKalamMAVarmanMZulkifliNWMMuftiRAZahidRYunusRDispersion stability and tribological characteristics of TiO2/SiO2 nanocomposite-enriched bio-based lubricantTribol Trans2017606706801:CAS:528:DC%2BC28Xhs1aksLjM
– reference: PaulGShitSHiraniHKuilaTMurmuNCTribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricantsTribol Int20191316056191:CAS:528:DC%2BC1cXisVaksbnE
– reference: CharooMSWaniMFFriction and wear properties of nano-Si3N4/nano-SiC composite under nanolubricated conditionsJ Adv Ceram201651451521:CAS:528:DC%2BC28XovFWgt7c%3D
– reference: LiXZhaoYWuWChenJChuGZouHSynthesis and characterizations of graphene–copper nanocomposites and their antifriction applicationJ Ind Eng Chem201420204320491:CAS:528:DC%2BC3sXhs1eqtrjE
– reference: Li-junWChu-wenGYamaneRExperimental research on tribological properties of Mn0.78Zn0.22Fe2O4 magnetic fluidsJ Tribol2008130031801
– reference: HwangYParkHSLeeJKJungWHThermal conductivity and lubrication characteristics of nanofluidsCurr Appl Phys20066e67e71
– reference: YadgarovLPetroneVRosentsveigRFeldmanYTenneRSenatoreATribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditionsWear2013297110311101:CAS:528:DC%2BC3sXhsVOrt7Y%3D
– reference: WuBSongHLiCSongRZhangTHuXEnhanced tribological properties of diesel engine oil with Nano-Lanthanum hydroxide/reduced graphene oxide compositesTribol Int20201411059511:CAS:528:DC%2BC1MXhslCksLzP
– reference: Yan Y. Tribology and tribo-corrosion testing and analysis of metallic biomaterials. Metals for Biomedical Devices [Internet]. Elsevier; 2010 [cited 2019 Dec 17]. p. 178–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845694340500073.
– reference: WanQJinYSunPDingYTribological Behaviour of a Lubricant Oil Containing Boron Nitride NanoparticlesProcedia Engineering.2015102103810451:CAS:528:DC%2BC2MXmvFWqtb8%3D
– reference: HuEHuXLiuTSongRDearnKDXuHEffect of TiF3 catalyst on the tribological properties of carbon black-contaminated engine oilsWear20133051661761:CAS:528:DC%2BC3sXhsVCitr7J
– reference: PatilHHChavanDSPiseATTribological properties of SiO2 nanoparticles added in SN-500 base oilInt J Eng Res201326
– volume: 20
  start-page: 2043
  year: 2014
  ident: 9837_CR21
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2013.09.029
– volume: 102
  start-page: 88
  year: 2016
  ident: 9837_CR100
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.05.020
– volume: 138
  start-page: 68
  year: 2019
  ident: 9837_CR6
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.05.036
– volume: 67
  start-page: 227
  year: 2015
  ident: 9837_CR104
  publication-title: Ind Lubr Tribol
  doi: 10.1108/ILT-10-2012-0098
– volume: 57
  start-page: 1051
  year: 2014
  ident: 9837_CR105
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.933933
– volume: 6
  start-page: 77913
  year: 2016
  ident: 9837_CR8
  publication-title: RSC Adv
  doi: 10.1039/C6RA10543B
– volume: 11
  start-page: 334
  year: 2019
  ident: 9837_CR145
  publication-title: Therm Sci Eng Progr
  doi: 10.1016/j.tsep.2019.04.010
– volume: 67
  start-page: 111
  year: 2019
  ident: 9837_CR143
  publication-title: Tribol Lett
  doi: 10.1007/s11249-019-1222-3
– volume: 41
  start-page: 3153
  year: 2016
  ident: 9837_CR3
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.12.040
– volume: 60
  start-page: 224
  year: 2013
  ident: 9837_CR107
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2012.10.024
– volume: 30
  start-page: 69
  year: 2008
  ident: 9837_CR115
  publication-title: Tribol Lett
  doi: 10.1007/s11249-008-9316-3
– volume: 243
  start-page: 43
  year: 2000
  ident: 9837_CR123
  publication-title: Wear
  doi: 10.1016/S0043-1648(00)00415-4
– volume: 64
  start-page: 41
  year: 2016
  ident: 9837_CR89
  publication-title: Tribol Lett
  doi: 10.1007/s11249-016-0778-4
– volume: 141
  start-page: 105951
  year: 2020
  ident: 9837_CR112
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.105951
– volume: 65
  start-page: 28
  year: 2013
  ident: 9837_CR10
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2013.03.027
– volume: 22
  start-page: 366
  year: 2012
  ident: 9837_CR99
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(11)61185-0
– volume: 51
  start-page: 73
  year: 2013
  ident: 9837_CR82
  publication-title: Tribol Lett
  doi: 10.1007/s11249-013-0148-4
– volume: 75
  start-page: 69
  year: 2014
  ident: 9837_CR147
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2014.03.013
– volume: 12
  start-page: 205
  year: 2000
  ident: 9837_CR61
  publication-title: Lubr Sci
  doi: 10.1002/ls.3010120207
– volume: 131
  start-page: 1196
  year: 2019
  ident: 9837_CR94
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.11.128
– volume: 54
  start-page: 115
  year: 2014
  ident: 9837_CR71
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2014.03.002
– ident: 9837_CR127
  doi: 10.4271/2014-01-2781
– volume: 5
  start-page: 145
  year: 2016
  ident: 9837_CR119
  publication-title: J Adv Ceram
  doi: 10.1007/s40145-016-0183-3
– volume: 4
  start-page: 28
  year: 2013
  ident: 9837_CR77
  publication-title: Int J Ind Chem
  doi: 10.1186/2228-5547-4-28
– volume: 81
  start-page: 1669
  year: 2018
  ident: 9837_CR144
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.257
– volume: 297
  start-page: 1103
  year: 2013
  ident: 9837_CR49
  publication-title: Wear
  doi: 10.1016/j.wear.2012.11.084
– volume: 5
  start-page: 101965
  year: 2015
  ident: 9837_CR88
  publication-title: RSC Adv
  doi: 10.1039/C5RA19522E
– volume: 257
  start-page: 5720
  year: 2011
  ident: 9837_CR12
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2011.01.084
– volume: 302
  start-page: 1241
  year: 2013
  ident: 9837_CR110
  publication-title: Wear
  doi: 10.1016/j.wear.2012.12.010
– volume: 10
  start-page: 93
  year: 2017
  ident: 9837_CR87
  publication-title: Int J ChemTech Res
– volume: 46
  start-page: 142
  year: 2013
  ident: 9837_CR42
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2013.05.003
– ident: 9837_CR25
  doi: 10.1115/IJTC2008-71058
– volume: 123
  start-page: 441
  year: 2001
  ident: 9837_CR128
  publication-title: J Tribol
  doi: 10.1115/1.1286152
– volume: 77
  start-page: 497
  year: 2020
  ident: 9837_CR65
  publication-title: Numer Heat Transf Part A Appl
  doi: 10.1080/10407782.2019.1701883
– ident: 9837_CR63
  doi: 10.5772/intechopen.68602
– volume: 29
  start-page: 793
  year: 2015
  ident: 9837_CR79
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-015-0141-y
– ident: 9837_CR19
– volume: 48
  start-page: 178
  year: 2013
  ident: 9837_CR36
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2013.08.004
– volume: 40
  start-page: 10103
  year: 2014
  ident: 9837_CR15
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2014.03.181
– volume: 86
  start-page: 245
  year: 2017
  ident: 9837_CR35
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2017.05.017
– volume: 305
  start-page: 166
  year: 2013
  ident: 9837_CR60
  publication-title: Wear
  doi: 10.1016/j.wear.2013.06.003
– volume: 301
  start-page: 776
  year: 2013
  ident: 9837_CR29
  publication-title: Wear
  doi: 10.1016/j.wear.2013.01.037
– volume: 268
  start-page: 325
  year: 2010
  ident: 9837_CR22
  publication-title: Wear
  doi: 10.1016/j.wear.2009.08.018
– volume: 31
  start-page: 1932
  year: 2016
  ident: 9837_CR73
  publication-title: J Mater Res
  doi: 10.1557/jmr.2016.24
– volume: 280–281
  start-page: 36
  year: 2012
  ident: 9837_CR86
  publication-title: Wear
  doi: 10.1016/j.wear.2012.01.011
– volume: 49
  start-page: 045304
  year: 2016
  ident: 9837_CR47
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/49/4/045304
– volume: 414
  start-page: 125
  year: 2012
  ident: 9837_CR45
  publication-title: Colloids Surf, A
  doi: 10.1016/j.colsurfa.2012.08.008
– volume: 23
  start-page: 1713
  year: 2019
  ident: 9837_CR66
  publication-title: Therm Sci
  doi: 10.2298/TSCI181128015B
– volume: 137
  start-page: 011802
  year: 2015
  ident: 9837_CR85
  publication-title: J Tribol
  doi: 10.1115/1.4028554
– volume: 60
  start-page: 12
  year: 2017
  ident: 9837_CR52
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2016.1142034
– volume: 103
  start-page: 540
  year: 2016
  ident: 9837_CR9
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.08.011
– start-page: 2284
  volume-title: Encyclopedia of tribology
  year: 2013
  ident: 9837_CR133
  doi: 10.1007/978-0-387-92897-5_27
– volume: 43
  start-page: 2327
  year: 2010
  ident: 9837_CR78
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2010.08.006
– volume: 455
  start-page: 70
  year: 2007
  ident: 9837_CR23
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2006.11.036
– ident: 9837_CR130
– volume: 84
  start-page: 4316
  year: 2004
  ident: 9837_CR139
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1756684
– volume: 58
  start-page: 207
  year: 2015
  ident: 9837_CR50
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.960540
– volume: 288
  start-page: 9
  year: 2012
  ident: 9837_CR4
  publication-title: Wear
  doi: 10.1016/j.wear.2012.03.003
– volume: 49
  start-page: 53
  year: 2012
  ident: 9837_CR103
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2011.12.014
– volume: 142
  start-page: 105990
  year: 2020
  ident: 9837_CR98
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.105990
– volume: 137
  start-page: 1279
  year: 2019
  ident: 9837_CR64
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08043-9
– volume: 3
  start-page: S227
  year: 2016
  ident: 9837_CR102
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2016.02.038
– volume: 261
  start-page: 140
  year: 2006
  ident: 9837_CR46
  publication-title: Wear
  doi: 10.1016/j.wear.2005.09.010
– volume: 2012
  start-page: 1
  year: 2012
  ident: 9837_CR70
  publication-title: J Nanomater
– volume: 117
  start-page: 52
  year: 2018
  ident: 9837_CR81
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2017.08.012
– volume: 59
  start-page: 29
  year: 2015
  ident: 9837_CR129
  publication-title: Tribol Lett
  doi: 10.1007/s11249-015-0557-7
– volume: 94
  start-page: 025901
  year: 2005
  ident: 9837_CR137
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.025901
– volume: 9
  start-page: e124
  year: 2009
  ident: 9837_CR106
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.12.050
– volume: 782
  start-page: 592
  year: 2019
  ident: 9837_CR96
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.12.215
– volume: 257
  start-page: 2540
  year: 2011
  ident: 9837_CR20
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2010.10.019
– volume: 2015
  start-page: 1
  year: 2015
  ident: 9837_CR53
  publication-title: J Nanomater
– volume: 40
  start-page: 7143
  year: 2014
  ident: 9837_CR11
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.12.050
– volume: 102
  start-page: 1038
  year: 2015
  ident: 9837_CR30
  publication-title: Procedia Engineering.
  doi: 10.1016/j.proeng.2015.01.226
– ident: 9837_CR2
– volume: 330–331
  start-page: 288
  year: 2015
  ident: 9837_CR54
  publication-title: Wear
  doi: 10.1016/j.wear.2014.12.044
– volume: 54
  start-page: 4051
  year: 2011
  ident: 9837_CR150
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2011.04.014
– volume: 136
  start-page: 041801
  year: 2014
  ident: 9837_CR113
  publication-title: J Tribol
  doi: 10.1115/1.4027994
– volume: 100
  start-page: 263
  year: 2016
  ident: 9837_CR93
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.01.050
– volume: 281
  start-page: 598
  year: 2019
  ident: 9837_CR146
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2019.02.102
– volume: 124
  start-page: 156
  year: 2018
  ident: 9837_CR111
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2018.03.030
– volume: 60
  start-page: 670
  year: 2017
  ident: 9837_CR84
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2016.1202366
– start-page: 11
  volume-title: Pharmacology
  year: 2009
  ident: 9837_CR135
  doi: 10.1016/B978-0-443-06898-0.00003-7
– volume: 9
  start-page: e128
  year: 2009
  ident: 9837_CR37
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.12.054
– volume: 7
  start-page: 208
  year: 2015
  ident: 9837_CR43
  publication-title: J Chem Pharm Sci (JCHPS)
– volume: 35
  start-page: 1490
  year: 2011
  ident: 9837_CR140
  publication-title: Exp Thermal Fluid Sci
  doi: 10.1016/j.expthermflusci.2011.06.010
– volume: 126
  start-page: 211
  year: 2018
  ident: 9837_CR151
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.05.021
– ident: 9837_CR74
– ident: 9837_CR125
– volume: 265
  start-page: 422
  year: 2008
  ident: 9837_CR28
  publication-title: Wear
  doi: 10.1016/j.wear.2007.11.013
– volume: 116
  start-page: 285
  year: 2017
  ident: 9837_CR55
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2017.06.045
– volume: 62
  start-page: 111
  year: 2010
  ident: 9837_CR83
  publication-title: Ind Lubr Tribol
  doi: 10.1108/00368791011025656
– volume: 288
  start-page: 72
  year: 2012
  ident: 9837_CR108
  publication-title: Wear
  doi: 10.1016/j.wear.2012.02.009
– volume: 261
  start-page: 256
  year: 2006
  ident: 9837_CR27
  publication-title: Wear
  doi: 10.1016/j.wear.2005.10.001
– volume: 6
  start-page: 1529
  year: 2006
  ident: 9837_CR142
  publication-title: Nano Lett
  doi: 10.1021/nl060992s
– volume: 47
  start-page: 4305
  year: 2012
  ident: 9837_CR109
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2012.09.013
– volume: 231
  start-page: 365
  year: 2013
  ident: 9837_CR149
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.07.006
– volume: 6
  start-page: e67
  year: 2006
  ident: 9837_CR153
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2006.01.014
– volume: 11
  start-page: 607
  year: 2010
  ident: 9837_CR38
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-010-0070-8
– volume: 8
  start-page: 587
  year: 2018
  ident: 9837_CR69
  publication-title: Appl Sci
  doi: 10.3390/app8040587
– volume: 252
  start-page: 370
  year: 2002
  ident: 9837_CR118
  publication-title: Wear
  doi: 10.1016/S0043-1648(01)00862-6
– volume: 44
  start-page: 829
  year: 2011
  ident: 9837_CR26
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2011.02.006
– volume: 65
  start-page: 104
  year: 2017
  ident: 9837_CR90
  publication-title: Tribol Lett
  doi: 10.1007/s11249-017-0885-x
– volume: 131
  start-page: 605
  year: 2019
  ident: 9837_CR95
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2018.11.012
– volume: 332–333
  start-page: 1256
  year: 2015
  ident: 9837_CR13
  publication-title: Wear
  doi: 10.1016/j.wear.2015.02.038
– volume: 37
  start-page: 1415
  year: 2016
  ident: 9837_CR131
  publication-title: J Dispers Sci Technol
  doi: 10.1080/01932691.2015.1111144
– volume: 29
  start-page: 241
  year: 2017
  ident: 9837_CR51
  publication-title: Lubr Sci
  doi: 10.1002/ls.1366
– volume: 262
  start-page: 819
  year: 2007
  ident: 9837_CR101
  publication-title: Wear
  doi: 10.1016/j.wear.2006.08.021
– volume: 103
  start-page: 504
  year: 2016
  ident: 9837_CR40
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.08.007
– volume: 3
  start-page: 4221
  year: 2011
  ident: 9837_CR72
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am200851z
– volume: 17
  start-page: 136
  year: 2014
  ident: 9837_CR32
  publication-title: Particuology.
  doi: 10.1016/j.partic.2013.09.004
– volume: 10
  start-page: 1
  year: 2015
  ident: 9837_CR24
  publication-title: J Exp Nanosci
  doi: 10.1080/17458080.2013.778424
– volume: 3
  start-page: 26086
  year: 2013
  ident: 9837_CR48
  publication-title: RSC Adv
  doi: 10.1039/c3ra42478b
– volume: 2
  start-page: 6
  year: 2013
  ident: 9837_CR121
  publication-title: Int J Eng Res
– volume: 63
  start-page: 440
  year: 2011
  ident: 9837_CR75
  publication-title: Ind Lubr Tribol
  doi: 10.1108/00368791111169025
– volume: 107
  start-page: 283
  year: 2017
  ident: 9837_CR44
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.12.004
– volume: 35
  start-page: 1989
  year: 2012
  ident: 9837_CR126
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2012.07.002
– volume: 292
  start-page: 971
  year: 2014
  ident: 9837_CR117
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2013.12.089
– volume: 66
  start-page: 321
  year: 2016
  ident: 9837_CR5
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2016.05.033
– volume: 474
  start-page: 71
  year: 2015
  ident: 9837_CR16
  publication-title: Colloids and Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2015.02.049
– ident: 9837_CR136
  doi: 10.1016/B978-0-12-382163-8.00005-0
– ident: 9837_CR39
– volume: 376–377
  start-page: 885
  year: 2017
  ident: 9837_CR92
  publication-title: Wear
  doi: 10.1016/j.wear.2017.01.044
– volume: 80
  start-page: 1
  year: 2017
  ident: 9837_CR14
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2017.04.024
– ident: 9837_CR134
  doi: 10.1533/9781845699246.2.178
– volume: 28
  start-page: 203
  year: 2007
  ident: 9837_CR116
  publication-title: Tribol Lett
  doi: 10.1007/s11249-007-9265-2
– volume: 12
  start-page: 852
  year: 2015
  ident: 9837_CR7
  publication-title: J Comput Theor Nanosci.
  doi: 10.1166/jctn.2015.3816
– volume: 43
  start-page: 1082
  year: 2010
  ident: 9837_CR58
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2009.12.026
– volume: 42
  start-page: 1029
  year: 2009
  ident: 9837_CR122
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2009.02.012
– volume: 15
  start-page: 3590
  year: 2015
  ident: 9837_CR41
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2015.9839
– volume: 274
  start-page: 568
  year: 2019
  ident: 9837_CR91
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2018.10.107
– ident: 9837_CR148
– volume: 56
  start-page: 45
  year: 2013
  ident: 9837_CR141
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.03.022
– volume-title: Bio-based carbon materials road-map
  year: 2016
  ident: 9837_CR1
– volume: 8
  start-page: 125
  year: 2014
  ident: 9837_CR57
  publication-title: Tribol Mater Surf Interfaces
  doi: 10.1179/1751584X13Y.0000000051
– volume: 42
  start-page: 911
  year: 2009
  ident: 9837_CR31
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2008.12.015
– volume: 263
  start-page: 655
  year: 2012
  ident: 9837_CR59
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2012.09.130
– volume: 103
  start-page: 556
  year: 2019
  ident: 9837_CR68
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.12.057
– volume: 93
  start-page: 63
  year: 2016
  ident: 9837_CR80
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2015.08.009
– volume: 7
  start-page: 12599
  year: 2017
  ident: 9837_CR76
  publication-title: RSC Adv
  doi: 10.1039/C6RA28243A
– volume: 39
  start-page: 1711
  year: 2010
  ident: 9837_CR120
  publication-title: Rare Met Mater Eng
  doi: 10.1016/S1875-5372(10)60129-4
– volume: 130
  start-page: 031801
  year: 2008
  ident: 9837_CR33
  publication-title: J Tribol
  doi: 10.1115/1.2913539
– volume: 230
  start-page: 35
  year: 1999
  ident: 9837_CR56
  publication-title: Wear
  doi: 10.1016/S0043-1648(99)00084-8
– volume: 11
  start-page: 3458
  year: 2019
  ident: 9837_CR62
  publication-title: Nanoscale
  doi: 10.1039/C8NR08240E
– volume: 27
  start-page: 531
  year: 2017
  ident: 9837_CR152
  publication-title: Progr Nat Sci Mater Int
  doi: 10.1016/j.pnsc.2017.08.010
– volume: 68
  start-page: 152
  year: 2013
  ident: 9837_CR132
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2013.12.161
– volume: 28
  start-page: 157
  year: 2016
  ident: 9837_CR114
  publication-title: Lubr Sci
  doi: 10.1002/ls.1307
– volume: 46
  start-page: 1
  year: 2007
  ident: 9837_CR138
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2006.06.010
– volume: 136
  start-page: 15
  year: 2019
  ident: 9837_CR97
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2018.10.007
– ident: 9837_CR17
– ident: 9837_CR34
– volume: 59
  start-page: 585
  year: 2016
  ident: 9837_CR124
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2015.1092623
– volume: 13
  start-page: 111
  year: 2012
  ident: 9837_CR18
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-012-0015-5
– volume: 289
  start-page: 111049
  year: 2019
  ident: 9837_CR67
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2019.111049
SSID ssj0009901
Score 2.4888382
Snippet Lubricants are widely used in various mechanical systems for reducing heat and friction between the working components having relative motions. Thus, the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1773
SubjectTerms Analytical Chemistry
Chemistry
Chemistry and Materials Science
Friction reduction
Inorganic Chemistry
Lubricants
Lubricants & lubrication
Lubricants industry
Lubrication and lubricants
Measurement Science and Instrumentation
Mechanical systems
Nanoparticles
Physical Chemistry
Polymer Sciences
Stability analysis
Surface active agents
Surfactants
System effectiveness
Tribology
Title Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review
URI https://link.springer.com/article/10.1007/s10973-020-09837-y
https://www.proquest.com/docview/2479806680
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe4ALggJiaakshMSBteQ4zsPctlWX0ooeWlYqJ8tPQFqSqtk97H_gR-NxHJYFitRLcogdJ5nx-Jt45huEXltvtA0wlZReUcKZZ0TrMK9yXjLL68L7mJX28bw8mfHTq-IqJYV1Q7T7sCUZLfVvyW6igj1HSqgIbhVZ3UM7BfjuQYtnbLKm2hW0d7OCDgDdeUqV-fc9NpajP43yX7ujcdGZPkIPE1rEk168j9GWa3bR_aOhSNsT9KNnH8atx_YbkH6D64_hMHdYNRZ_XUFKFm5UE7zjFASH2wZDoavB7o0xoMDvLblOQhvHrgE3xsjZFTabrM4w2nypowVddO-wwn0CzFM0mx5_OjohqcACMWEZWhCvc-Yz7gJmMC4rbFYLJbgLU1xY6qwFbr-SKmasUCa3pfA5FdQWpWaVcL7On6Htpm3cc4QrnxkmNOU-09zUItguo0tRV-BPZTkfoWz4ztIk9nEogjGXa95kkI0MspFRNnI1Qm9_9bnuuTf-2_oViE8CqUUDUTNf1LLr5IfLCzmJMJQF4zxCb1Ij34bhjUpJCOElgAdro-X-oAYyTetOMl6JOoC0mo7QeFCN9eXbH-7F3ZrvoQcMYmfir559tL24WbqXAfws9AHamUwPD8_h_P7z2fFB1P2fCe7_uA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKeygXRAuIpQUshMSBteQ43iTmtqqots8DdKXeLD-h0japmt3D_gd-NB7HYbsFKvWSS8Z5zXj8TTzzDUIfrTfaBphKCq8o4cwzonWYVzkvmOXVyPtYlXZ2Xkym_PhydJmKwto-273fkoye-k6xmyhhz5ESKkJYRZZP0FYAAxUkck3ZeEW1K2gXZgUbALrzVCrz72usLUf3nfJfu6Nx0Tl8jp4ltIjHnXp30Iard9H2Qd-k7QX61bEP48ZjewWk3xD6YzjMHFa1xT-XUJKFa1WH6DglweGmxtDoqvd7Qwwo8LohN0lpwzg04MaYObvEZp3VGe42W-joQeftF6xwVwDzEk0Pv14cTEhqsEBMWIbmxOuc-Yy7gBmMy0Y2q4QS3IUpLix11gK3X0EVM1Yok9tC-JwKakeFZqVwvspfoc26qd1rhEufGSY05T7T3FQi-C6jC1GVEE9lOR-grP_O0iT2cWiCMZMr3mTQjQy6kVE3cjlAn_-Muem4Nx6U_gDqk0BqUUPWzA-1aFt59P2bHEcYyoJzHqBPScg34fZGpSKE8BLAg7Umud-bgUzTupWMl6IKIK2iAzTsTWN1-v8P9-Zx4u_R9uTi7FSeHp2f7KGnDPJo4m-ffbQ5v124twEIzfW7aPe_ATo3_5s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkWAviKcoLGAhJA7UWsdxk5hbtVDt8lghoNLeLD8BqetUND30P_Cj8TgO3fKSuOQSO04y4_GMPd83CD213mgb3VRSeUUJZ54RreO8KnnFLG8m3idU2rvT6njOX59Nzi6g-FO2-3Ak2WMagKUpdIdL6w8vAN9EDeePlFARQyyyuYyuRHNcgF7P2XRLuytoH3JFfQDq8wyb-fMzdpamXw30byelaQGa3UDXs-eIp72ob6JLLtxC146Ggm230feeiRi3HtuvQAAO2wAYLguHVbD4ywbgWTioECPlnBCH24Ch6NVgA8cYPMLzliyzAMepa_QhUxbtBptdhmcYbbHWyZp2qxdY4R4McwfNZ68-HR2TXGyBmLgkdcTrkvmCu-g_GFdMbNEIJbiL011Y6qwFnr-KKmasUKa0lfAlFdROKs1q4XxT3kV7oQ3uHsK1LwwTmnJfaG4aEe2Y0ZVoaoitipKPUDH8Z2kyEzkUxFjILYcyyEZG2cgkG7kZoec_-yx7Ho5_tn4C4pNAcBEgg-azWq9W8uTjBzlNLimLhnqEnuVGvo3DG5UBCfEjgBNrp-XBoAYyT_GVZLwWTXTYGjpC40E1trf__nL3_6_5Y3T1_cuZfHty-uYB2meQUpN2gA7QXvdt7R5Gn6jTj5La_wC9dAPm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+dispersing+single+and+hybrid+nanoparticles+on+tribological%2C+thermo-physical%2C+and+stability+characteristics+of+lubricants%3A+a+review&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Pownraj%2C+C&rft.au=Valan+Arasu%2C+A&rft.date=2021-01-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=143&rft.issue=2&rft.spage=1773&rft_id=info:doi/10.1007%2Fs10973-020-09837-y&rft.externalDocID=A650882219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon