Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks

Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 15; no. 2; pp. 212 - 216
Main Authors Zhan, Ying, Hu, Dan, Wang, Yuntao, Yu, Xianchuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.
AbstractList Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.
Author Zhan, Ying
Wang, Yuntao
Hu, Dan
Yu, Xianchuan
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-5768-6184
  surname: Zhan
  fullname: Zhan, Ying
  email: zhanying@live.com
  organization: College of Information Science and Technology, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Dan
  orcidid: 0000-0001-8525-3661
  surname: Hu
  fullname: Hu, Dan
  email: hd@bnu.edu.cn
  organization: College of Information Science and Technology, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Yuntao
  surname: Wang
  fullname: Wang, Yuntao
  organization: Beijing Institute of Geology, Beijing, China
– sequence: 4
  givenname: Xianchuan
  surname: Yu
  fullname: Yu, Xianchuan
  email: yuxianchuan@163.com
  organization: College of Information Science and Technology, Beijing Normal University, Beijing, China
BookMark eNo9kE1Lw0AQhhdRsK3-APES8Jy6sx_dzbEWbQtFwSqIl2WzmcjWNqm7aaX_3oQWT_MyPM8MvH1yXtUVEnIDdAhAs_vF9HU5ZBTUkClNdUbPSA-k1CmVCs67LGQqM_1xSfoxrihlQmvVI59L3Pi422LY-4hFMju0MW7RNcGuk_nGfmEyWdsYfemdbXxdJQ-2A9swxQpDu9tjMi72rWaDb6VnbH7r8B2vyEVp1xGvT3NA3p8e3yazdPEynU_Gi9QJljVpaW0JNOeQF4CY5wLQFYoWhXRK5shGVOqMaaoyXgpwmcgdWFaOcobccl3wAbk73t2G-meHsTGreheq9qVhoIQUfMR0S8GRcqGOMWBptsFvbDgYoKar0HQVmq5Cc6qwdW6PjkfEf14zAUpx_geWk3Dg
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TGRS_2022_3195924
crossref_primary_10_3390_s23208562
crossref_primary_10_1049_iet_ipr_2019_0869
crossref_primary_10_1016_j_saa_2021_120722
crossref_primary_10_1109_LGRS_2021_3059509
crossref_primary_10_1109_LGRS_2024_3401133
crossref_primary_10_1109_JSTARS_2021_3065706
crossref_primary_10_1109_LGRS_2019_2899121
crossref_primary_10_1016_j_patcog_2023_109701
crossref_primary_10_1109_TGRS_2019_2907932
crossref_primary_10_1111_coin_12611
crossref_primary_10_1109_TGRS_2020_3044094
crossref_primary_10_1109_TGRS_2021_3052048
crossref_primary_10_1016_j_rse_2021_112885
crossref_primary_10_1088_1538_3873_ab5ed7
crossref_primary_10_1016_j_engappai_2023_106017
crossref_primary_10_1049_joe_2019_0144
crossref_primary_10_1109_LGRS_2020_3041864
crossref_primary_10_1109_TGRS_2021_3116138
crossref_primary_10_1016_j_jobe_2024_110122
crossref_primary_10_1109_ACCESS_2020_3039211
crossref_primary_10_1109_LGRS_2020_3023137
crossref_primary_10_1109_TIM_2022_3205669
crossref_primary_10_1364_OE_453274
crossref_primary_10_1002_int_22446
crossref_primary_10_1007_s11432_019_2798_9
crossref_primary_10_1109_LGRS_2023_3241340
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_3390_s19143145
crossref_primary_10_1016_j_earscirev_2019_02_023
crossref_primary_10_1016_j_sigpro_2023_109202
crossref_primary_10_1088_1742_6596_1950_1_012087
crossref_primary_10_3390_rs12071149
crossref_primary_10_1007_s00521_024_09527_y
crossref_primary_10_1080_01431161_2023_2171744
crossref_primary_10_3390_rs16122185
crossref_primary_10_1016_j_isprsjprs_2020_01_015
crossref_primary_10_3390_s23052499
crossref_primary_10_1080_2150704X_2020_1731769
crossref_primary_10_1007_s11042_020_09308_4
crossref_primary_10_1109_TGRS_2023_3307609
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1109_TGRS_2022_3225663
crossref_primary_10_3390_rs11222690
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_3390_rs13245128
crossref_primary_10_3390_rs15071869
crossref_primary_10_3390_rs13081602
crossref_primary_10_1109_TGRS_2022_3191541
crossref_primary_10_1109_TGRS_2019_2931730
crossref_primary_10_1109_TGRS_2022_3196311
crossref_primary_10_1109_TMI_2018_2883301
crossref_primary_10_1109_LGRS_2019_2940505
crossref_primary_10_14358_PERS_22_00130R2
crossref_primary_10_12677_SEA_2022_115118
crossref_primary_10_1117_1_JRS_18_014510
crossref_primary_10_3390_rs15051302
crossref_primary_10_3390_rs13173396
crossref_primary_10_1016_j_rse_2019_111602
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1109_JSTARS_2023_3279506
crossref_primary_10_1109_TGRS_2022_3189633
crossref_primary_10_3390_rs13214472
crossref_primary_10_1109_LGRS_2019_2924059
crossref_primary_10_1109_JSTARS_2019_2957047
crossref_primary_10_1109_JSTARS_2019_2921033
crossref_primary_10_1109_LGRS_2018_2841023
crossref_primary_10_1109_LGRS_2020_3025099
crossref_primary_10_1109_JSTARS_2021_3115971
crossref_primary_10_1109_JSTARS_2023_3326963
crossref_primary_10_1007_s10489_021_02917_y
crossref_primary_10_1109_TGRS_2021_3100496
crossref_primary_10_1109_ACCESS_2022_3232152
crossref_primary_10_3390_rs15225331
crossref_primary_10_1109_JSTARS_2021_3063911
crossref_primary_10_1109_JSTARS_2021_3119413
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_1109_TGRS_2023_3304836
crossref_primary_10_1109_JSEN_2021_3105404
crossref_primary_10_3390_rs13020198
crossref_primary_10_3390_rs11192220
crossref_primary_10_1109_TGRS_2020_3003341
crossref_primary_10_1109_TGRS_2022_3202908
crossref_primary_10_1016_j_sigpro_2023_109116
crossref_primary_10_1109_JSTARS_2020_2974577
crossref_primary_10_1109_LGRS_2023_3297110
crossref_primary_10_1007_s12145_020_00485_2
crossref_primary_10_1109_TGRS_2023_3294424
crossref_primary_10_1016_j_ophoto_2024_100062
crossref_primary_10_3390_rs14194910
crossref_primary_10_1109_ACCESS_2018_2886814
crossref_primary_10_1117_1_JRS_14_048504
crossref_primary_10_3390_rs13163131
crossref_primary_10_1016_j_conbuildmat_2023_133257
crossref_primary_10_1080_2150704X_2018_1511932
crossref_primary_10_3390_rs12193137
crossref_primary_10_1109_JSTARS_2023_3342983
crossref_primary_10_3390_s22051960
crossref_primary_10_1109_TCYB_2019_2915094
crossref_primary_10_1088_1755_1315_502_1_012015
crossref_primary_10_1080_01431161_2022_2135412
crossref_primary_10_1088_1755_1315_502_1_012014
crossref_primary_10_1109_ACCESS_2022_3201537
crossref_primary_10_1364_JOSAA_478585
crossref_primary_10_3390_rs13040808
crossref_primary_10_1155_2021_5541134
crossref_primary_10_3390_rs14215530
crossref_primary_10_1109_TCSVT_2022_3215513
crossref_primary_10_1109_TGRS_2022_3188529
crossref_primary_10_1016_j_neucom_2020_02_092
crossref_primary_10_1109_LGRS_2020_3014108
crossref_primary_10_1016_j_icarus_2020_114107
crossref_primary_10_1007_s12524_022_01500_3
crossref_primary_10_1109_TGRS_2022_3232784
crossref_primary_10_1109_TGRS_2019_2899057
crossref_primary_10_1109_TGRS_2021_3131152
crossref_primary_10_3390_rs13091713
crossref_primary_10_1109_TGRS_2019_2951160
crossref_primary_10_1109_TNNLS_2022_3182715
crossref_primary_10_1109_TGRS_2019_2912468
crossref_primary_10_1109_TGRS_2022_3151875
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1088_1748_9326_ab1b7d
crossref_primary_10_1016_j_neucom_2021_07_015
crossref_primary_10_1109_TGRS_2024_3370919
crossref_primary_10_3390_rs13040771
crossref_primary_10_1177_00037028231170234
crossref_primary_10_1109_TGRS_2019_2961599
crossref_primary_10_1109_TGRS_2020_3015843
crossref_primary_10_1016_j_jag_2023_103345
crossref_primary_10_3233_JIFS_189823
crossref_primary_10_3390_rs13132564
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1109_TGRS_2021_3126428
crossref_primary_10_1109_JSTARS_2020_3019410
crossref_primary_10_1109_TGRS_2022_3144158
crossref_primary_10_1109_TGRS_2023_3309269
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_1109_TGRS_2022_3198931
crossref_primary_10_1016_j_asoc_2024_111544
crossref_primary_10_1109_TDEI_2023_3346853
crossref_primary_10_1109_JSTARS_2021_3115129
crossref_primary_10_3390_rs13010050
crossref_primary_10_1016_j_jag_2021_102603
crossref_primary_10_1109_TGRS_2024_3357455
crossref_primary_10_1016_j_fishres_2024_107065
crossref_primary_10_1109_TGRS_2024_3385478
crossref_primary_10_1109_TIM_2023_3293548
crossref_primary_10_1007_s10846_022_01602_7
crossref_primary_10_1080_01431161_2022_2105668
crossref_primary_10_3390_rs13122243
crossref_primary_10_1109_JSTARS_2020_3002787
crossref_primary_10_1109_TGRS_2020_3015357
crossref_primary_10_1109_ACCESS_2020_3037775
crossref_primary_10_1109_TGRS_2023_3349076
crossref_primary_10_1016_j_isprsjprs_2019_04_015
crossref_primary_10_1109_TBDATA_2020_3032839
crossref_primary_10_1109_TGRS_2024_3406690
crossref_primary_10_1007_s11633_020_1248_x
crossref_primary_10_3847_1538_4365_ace77a
crossref_primary_10_1109_TGRS_2022_3210280
crossref_primary_10_1016_j_procs_2023_01_183
crossref_primary_10_1109_TGRS_2020_3005431
crossref_primary_10_3390_rs12050843
crossref_primary_10_1109_TGRS_2023_3275871
crossref_primary_10_3390_app12083943
crossref_primary_10_3847_1538_4365_ac4de8
crossref_primary_10_1016_j_isprsjprs_2019_04_014
crossref_primary_10_1109_TGRS_2023_3272885
crossref_primary_10_1109_ACCESS_2022_3194650
crossref_primary_10_1109_TGRS_2024_3350700
crossref_primary_10_3390_rs16050870
crossref_primary_10_1109_TGRS_2024_3361555
crossref_primary_10_1109_LGRS_2020_3009017
crossref_primary_10_1109_TGRS_2020_3011943
crossref_primary_10_3390_rs11202363
crossref_primary_10_3390_rs15051292
crossref_primary_10_1109_JSTARS_2021_3063679
Cites_doi 10.1109/IGARSS.2006.996
10.1016/j.rse.2007.07.028
10.1109/LGRS.2012.2205216
10.1109/MGRS.2013.2244672
10.7551/mitpress/9780262033589.001.0001
10.3390/rs9040386
10.1109/IGARSS.2009.5417892
10.1007/s11042-016-3371-9
10.1109/LGRS.2015.2421347
10.1109/LGRS.2008.2009324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2017.2780890
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 216
ExternalDocumentID 10_1109_LGRS_2017_2780890
8241773
Genre orig-research
GrantInformation_xml – fundername: Ministry of Land and Resources for the Public Welfare Industry Research Special Funds
  grantid: 201511079-02
– fundername: National Natural Science Foundation of China
  grantid: 41272359; 41672323; 11471045
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: L172029
  funderid: 10.13039/501100004826
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
XFK
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Thu Oct 10 16:38:21 EDT 2024
Fri Aug 23 03:19:46 EDT 2024
Wed Jun 26 19:18:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3
ORCID 0000-0001-8525-3661
0000-0002-5768-6184
PQID 2174543628
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_8241773
proquest_journals_2174543628
crossref_primary_10_1109_LGRS_2017_2780890
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
radford (ref10) 2015
ref2
ref1
nair (ref14) 2010
ref16
ioffe (ref13) 0; 37
odena (ref12) 2016
ref8
ref7
ref4
ref3
li (ref6) 2013; 10
ref5
goodfellow (ref9) 2014
springenberg (ref11) 2015
References_xml – ident: ref4
  doi: 10.1109/IGARSS.2006.996
– ident: ref2
  doi: 10.1016/j.rse.2007.07.028
– volume: 10
  start-page: 318
  year: 2013
  ident: ref6
  article-title: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2205216
  contributor:
    fullname: li
– ident: ref1
  doi: 10.1109/MGRS.2013.2244672
– start-page: 807
  year: 2010
  ident: ref14
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc ICML
  contributor:
    fullname: nair
– ident: ref5
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref16
  doi: 10.3390/rs9040386
– ident: ref3
  doi: 10.1109/IGARSS.2009.5417892
– start-page: 2672
  year: 2014
  ident: ref9
  article-title: Generative adversarial nets
  publication-title: Proc Adv NIPS
  contributor:
    fullname: goodfellow
– ident: ref8
  doi: 10.1007/s11042-016-3371-9
– volume: 37
  start-page: 448
  year: 0
  ident: ref13
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc ICML
  contributor:
    fullname: ioffe
– ident: ref15
  doi: 10.1109/LGRS.2015.2421347
– year: 2015
  ident: ref10
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  contributor:
    fullname: radford
– year: 2015
  ident: ref11
  article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks
  contributor:
    fullname: springenberg
– ident: ref7
  doi: 10.1109/LGRS.2008.2009324
– year: 2016
  ident: ref12
  publication-title: Semi-supervised learning with generative adversarial networks
  contributor:
    fullname: odena
SSID ssj0024887
Score 2.6147451
Snippet Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 212
SubjectTerms Classification
Data
Data models
Deep learning
Feature extraction
Frameworks
Gallium nitride
generative adversarial network (GAN)
Generative adversarial networks
Generators
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Imaging techniques
Infrared imagery
Infrared imaging
Infrared spectrometers
remote sensing
Satellites
semisupervised learning (SSL)
Training
Title Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks
URI https://ieeexplore.ieee.org/document/8241773
https://www.proquest.com/docview/2174543628
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJQQLjxZEoaAMTIi0SRzH9giItiDoQKlUsUTxI0JCFETSAX49PicFBAxsHmzL8ne-h32-D-BI6UiJAC-qWET9OJH2SDET-YZYayc4jfLcVfscJcNJfDWl0yU4-fwLY4xxyWemi033lq-f1RyvynrcmhvGyDIsMyGqv1pfdfW4I8NDj8Cngk_rF8wwEL3rwe0Yk7hYN2I84Kh-v9kgR6rySxM789LfgJvFwqqsksfuvJRd9f6jZuN_V74J67Wf6Z1WgrEFS2bWhNWa8vzhrQkrA8fp-9aC-zFyvs1fUGsURntDG5pWPzBf7QyXT1bjeI47E7OKHJDeWYYdbaOqWo0q03PUzkWGAu2NquTyYhsm_Yu786FfUy74yhqm0s-zLA8DSUKpQ2OkjEOjNAu0popRaTD44QIL6AiSx6ESsVRhFuWJjAzJCNdkBxqz55nZBc8GNoIpqi0iLM4iInmiuUiUdcgIZSpvw_EChPSlqqyRuogkECkiliJiaY1YG1q4qZ8d6_1sQ2cBW1qfvSLFIIvG1jDzvb9H7cOanZtXudcdaJSvc3NgXYtSHjqZ-gCaPctT
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xEIKFV0GUZwYmREoSx7E9AqIUaDsAlSqWKH5ESIi2oukAvx6fkxYEDGweHMfyd76Hfb4P4FjpSIkAD6pYRP04kXZLMRP5hlhrJziN8txV--wmrV5826f9OTidvYUxxrjkM9PAprvL10M1waOyM27NDWNkHhatX82T8rXWV2U97ujw0CfwqeD96g4zDMRZ-_r-AdO4WCNiPOCogL9ZIUer8ksXOwPTXIPOdGplXslLY1LIhvr4UbXxv3Nfh9XK0_TOS9HYgDkz2ITlivT8-X0Tlq4dq-97DZ4ekPVtMkK9MTbaa9ngtHyD-WZHuHm1Osdz7JmYV-Sg9C4y7GgbZd1qVJqeI3ceZyjSXrdMLx9vQa959XjZ8ivSBV9Z01T4eZblYSBJKHVojJRxaJRmgdZUMSoNhj9cYAkdQfI4VCKWKsyiPJGRIRnhmmzDwmA4MDvg2dBGMEW1RYTFWUQkTzQXibIuGaFM5XU4mYKQjsraGqmLSQKRImIpIpZWiNWhhos661itZx32p7Cl1e4bpxhm0diaZr7791dHsNx67LTT9k33bg9W7H94mYm9DwvF28QcWEejkIdOvj4BZNXOng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semisupervised+Hyperspectral+Image+Classification+Based+on+Generative+Adversarial+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhan%2C+Ying&rft.au=Hu%2C+Dan&rft.au=Wang%2C+Yuntao&rft.au=Yu%2C+Xianchuan&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=15&rft.issue=2&rft.spage=212&rft.epage=216&rft_id=info:doi/10.1109%2FLGRS.2017.2780890&rft.externalDocID=8241773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon