Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks
Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 15; no. 2; pp. 212 - 216 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples. |
---|---|
AbstractList | Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples. |
Author | Zhan, Ying Wang, Yuntao Hu, Dan Yu, Xianchuan |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0002-5768-6184 surname: Zhan fullname: Zhan, Ying email: zhanying@live.com organization: College of Information Science and Technology, Beijing Normal University, Beijing, China – sequence: 2 givenname: Dan orcidid: 0000-0001-8525-3661 surname: Hu fullname: Hu, Dan email: hd@bnu.edu.cn organization: College of Information Science and Technology, Beijing Normal University, Beijing, China – sequence: 3 givenname: Yuntao surname: Wang fullname: Wang, Yuntao organization: Beijing Institute of Geology, Beijing, China – sequence: 4 givenname: Xianchuan surname: Yu fullname: Yu, Xianchuan email: yuxianchuan@163.com organization: College of Information Science and Technology, Beijing Normal University, Beijing, China |
BookMark | eNo9kE1Lw0AQhhdRsK3-APES8Jy6sx_dzbEWbQtFwSqIl2WzmcjWNqm7aaX_3oQWT_MyPM8MvH1yXtUVEnIDdAhAs_vF9HU5ZBTUkClNdUbPSA-k1CmVCs67LGQqM_1xSfoxrihlQmvVI59L3Pi422LY-4hFMju0MW7RNcGuk_nGfmEyWdsYfemdbXxdJQ-2A9swxQpDu9tjMi72rWaDb6VnbH7r8B2vyEVp1xGvT3NA3p8e3yazdPEynU_Gi9QJljVpaW0JNOeQF4CY5wLQFYoWhXRK5shGVOqMaaoyXgpwmcgdWFaOcobccl3wAbk73t2G-meHsTGreheq9qVhoIQUfMR0S8GRcqGOMWBptsFvbDgYoKar0HQVmq5Cc6qwdW6PjkfEf14zAUpx_geWk3Dg |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_TGRS_2022_3195924 crossref_primary_10_3390_s23208562 crossref_primary_10_1049_iet_ipr_2019_0869 crossref_primary_10_1016_j_saa_2021_120722 crossref_primary_10_1109_LGRS_2021_3059509 crossref_primary_10_1109_LGRS_2024_3401133 crossref_primary_10_1109_JSTARS_2021_3065706 crossref_primary_10_1109_LGRS_2019_2899121 crossref_primary_10_1016_j_patcog_2023_109701 crossref_primary_10_1109_TGRS_2019_2907932 crossref_primary_10_1111_coin_12611 crossref_primary_10_1109_TGRS_2020_3044094 crossref_primary_10_1109_TGRS_2021_3052048 crossref_primary_10_1016_j_rse_2021_112885 crossref_primary_10_1088_1538_3873_ab5ed7 crossref_primary_10_1016_j_engappai_2023_106017 crossref_primary_10_1049_joe_2019_0144 crossref_primary_10_1109_LGRS_2020_3041864 crossref_primary_10_1109_TGRS_2021_3116138 crossref_primary_10_1016_j_jobe_2024_110122 crossref_primary_10_1109_ACCESS_2020_3039211 crossref_primary_10_1109_LGRS_2020_3023137 crossref_primary_10_1109_TIM_2022_3205669 crossref_primary_10_1364_OE_453274 crossref_primary_10_1002_int_22446 crossref_primary_10_1007_s11432_019_2798_9 crossref_primary_10_1109_LGRS_2023_3241340 crossref_primary_10_1007_s10462_021_10018_y crossref_primary_10_3390_s19143145 crossref_primary_10_1016_j_earscirev_2019_02_023 crossref_primary_10_1016_j_sigpro_2023_109202 crossref_primary_10_1088_1742_6596_1950_1_012087 crossref_primary_10_3390_rs12071149 crossref_primary_10_1007_s00521_024_09527_y crossref_primary_10_1080_01431161_2023_2171744 crossref_primary_10_3390_rs16122185 crossref_primary_10_1016_j_isprsjprs_2020_01_015 crossref_primary_10_3390_s23052499 crossref_primary_10_1080_2150704X_2020_1731769 crossref_primary_10_1007_s11042_020_09308_4 crossref_primary_10_1109_TGRS_2023_3307609 crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1109_TGRS_2022_3225663 crossref_primary_10_3390_rs11222690 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_3390_rs13245128 crossref_primary_10_3390_rs15071869 crossref_primary_10_3390_rs13081602 crossref_primary_10_1109_TGRS_2022_3191541 crossref_primary_10_1109_TGRS_2019_2931730 crossref_primary_10_1109_TGRS_2022_3196311 crossref_primary_10_1109_TMI_2018_2883301 crossref_primary_10_1109_LGRS_2019_2940505 crossref_primary_10_14358_PERS_22_00130R2 crossref_primary_10_12677_SEA_2022_115118 crossref_primary_10_1117_1_JRS_18_014510 crossref_primary_10_3390_rs15051302 crossref_primary_10_3390_rs13173396 crossref_primary_10_1016_j_rse_2019_111602 crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1109_JSTARS_2023_3279506 crossref_primary_10_1109_TGRS_2022_3189633 crossref_primary_10_3390_rs13214472 crossref_primary_10_1109_LGRS_2019_2924059 crossref_primary_10_1109_JSTARS_2019_2957047 crossref_primary_10_1109_JSTARS_2019_2921033 crossref_primary_10_1109_LGRS_2018_2841023 crossref_primary_10_1109_LGRS_2020_3025099 crossref_primary_10_1109_JSTARS_2021_3115971 crossref_primary_10_1109_JSTARS_2023_3326963 crossref_primary_10_1007_s10489_021_02917_y crossref_primary_10_1109_TGRS_2021_3100496 crossref_primary_10_1109_ACCESS_2022_3232152 crossref_primary_10_3390_rs15225331 crossref_primary_10_1109_JSTARS_2021_3063911 crossref_primary_10_1109_JSTARS_2021_3119413 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_1109_TGRS_2023_3304836 crossref_primary_10_1109_JSEN_2021_3105404 crossref_primary_10_3390_rs13020198 crossref_primary_10_3390_rs11192220 crossref_primary_10_1109_TGRS_2020_3003341 crossref_primary_10_1109_TGRS_2022_3202908 crossref_primary_10_1016_j_sigpro_2023_109116 crossref_primary_10_1109_JSTARS_2020_2974577 crossref_primary_10_1109_LGRS_2023_3297110 crossref_primary_10_1007_s12145_020_00485_2 crossref_primary_10_1109_TGRS_2023_3294424 crossref_primary_10_1016_j_ophoto_2024_100062 crossref_primary_10_3390_rs14194910 crossref_primary_10_1109_ACCESS_2018_2886814 crossref_primary_10_1117_1_JRS_14_048504 crossref_primary_10_3390_rs13163131 crossref_primary_10_1016_j_conbuildmat_2023_133257 crossref_primary_10_1080_2150704X_2018_1511932 crossref_primary_10_3390_rs12193137 crossref_primary_10_1109_JSTARS_2023_3342983 crossref_primary_10_3390_s22051960 crossref_primary_10_1109_TCYB_2019_2915094 crossref_primary_10_1088_1755_1315_502_1_012015 crossref_primary_10_1080_01431161_2022_2135412 crossref_primary_10_1088_1755_1315_502_1_012014 crossref_primary_10_1109_ACCESS_2022_3201537 crossref_primary_10_1364_JOSAA_478585 crossref_primary_10_3390_rs13040808 crossref_primary_10_1155_2021_5541134 crossref_primary_10_3390_rs14215530 crossref_primary_10_1109_TCSVT_2022_3215513 crossref_primary_10_1109_TGRS_2022_3188529 crossref_primary_10_1016_j_neucom_2020_02_092 crossref_primary_10_1109_LGRS_2020_3014108 crossref_primary_10_1016_j_icarus_2020_114107 crossref_primary_10_1007_s12524_022_01500_3 crossref_primary_10_1109_TGRS_2022_3232784 crossref_primary_10_1109_TGRS_2019_2899057 crossref_primary_10_1109_TGRS_2021_3131152 crossref_primary_10_3390_rs13091713 crossref_primary_10_1109_TGRS_2019_2951160 crossref_primary_10_1109_TNNLS_2022_3182715 crossref_primary_10_1109_TGRS_2019_2912468 crossref_primary_10_1109_TGRS_2022_3151875 crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_1088_1748_9326_ab1b7d crossref_primary_10_1016_j_neucom_2021_07_015 crossref_primary_10_1109_TGRS_2024_3370919 crossref_primary_10_3390_rs13040771 crossref_primary_10_1177_00037028231170234 crossref_primary_10_1109_TGRS_2019_2961599 crossref_primary_10_1109_TGRS_2020_3015843 crossref_primary_10_1016_j_jag_2023_103345 crossref_primary_10_3233_JIFS_189823 crossref_primary_10_3390_rs13132564 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1109_TGRS_2021_3126428 crossref_primary_10_1109_JSTARS_2020_3019410 crossref_primary_10_1109_TGRS_2022_3144158 crossref_primary_10_1109_TGRS_2023_3309269 crossref_primary_10_1016_j_jag_2022_102734 crossref_primary_10_1109_TGRS_2022_3198931 crossref_primary_10_1016_j_asoc_2024_111544 crossref_primary_10_1109_TDEI_2023_3346853 crossref_primary_10_1109_JSTARS_2021_3115129 crossref_primary_10_3390_rs13010050 crossref_primary_10_1016_j_jag_2021_102603 crossref_primary_10_1109_TGRS_2024_3357455 crossref_primary_10_1016_j_fishres_2024_107065 crossref_primary_10_1109_TGRS_2024_3385478 crossref_primary_10_1109_TIM_2023_3293548 crossref_primary_10_1007_s10846_022_01602_7 crossref_primary_10_1080_01431161_2022_2105668 crossref_primary_10_3390_rs13122243 crossref_primary_10_1109_JSTARS_2020_3002787 crossref_primary_10_1109_TGRS_2020_3015357 crossref_primary_10_1109_ACCESS_2020_3037775 crossref_primary_10_1109_TGRS_2023_3349076 crossref_primary_10_1016_j_isprsjprs_2019_04_015 crossref_primary_10_1109_TBDATA_2020_3032839 crossref_primary_10_1109_TGRS_2024_3406690 crossref_primary_10_1007_s11633_020_1248_x crossref_primary_10_3847_1538_4365_ace77a crossref_primary_10_1109_TGRS_2022_3210280 crossref_primary_10_1016_j_procs_2023_01_183 crossref_primary_10_1109_TGRS_2020_3005431 crossref_primary_10_3390_rs12050843 crossref_primary_10_1109_TGRS_2023_3275871 crossref_primary_10_3390_app12083943 crossref_primary_10_3847_1538_4365_ac4de8 crossref_primary_10_1016_j_isprsjprs_2019_04_014 crossref_primary_10_1109_TGRS_2023_3272885 crossref_primary_10_1109_ACCESS_2022_3194650 crossref_primary_10_1109_TGRS_2024_3350700 crossref_primary_10_3390_rs16050870 crossref_primary_10_1109_TGRS_2024_3361555 crossref_primary_10_1109_LGRS_2020_3009017 crossref_primary_10_1109_TGRS_2020_3011943 crossref_primary_10_3390_rs11202363 crossref_primary_10_3390_rs15051292 crossref_primary_10_1109_JSTARS_2021_3063679 |
Cites_doi | 10.1109/IGARSS.2006.996 10.1016/j.rse.2007.07.028 10.1109/LGRS.2012.2205216 10.1109/MGRS.2013.2244672 10.7551/mitpress/9780262033589.001.0001 10.3390/rs9040386 10.1109/IGARSS.2009.5417892 10.1007/s11042-016-3371-9 10.1109/LGRS.2015.2421347 10.1109/LGRS.2008.2009324 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2017.2780890 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 216 |
ExternalDocumentID | 10_1109_LGRS_2017_2780890 8241773 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Land and Resources for the Public Welfare Industry Research Special Funds grantid: 201511079-02 – fundername: National Natural Science Foundation of China grantid: 41272359; 41672323; 11471045 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: L172029 funderid: 10.13039/501100004826 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS XFK ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Thu Oct 10 16:38:21 EDT 2024 Fri Aug 23 03:19:46 EDT 2024 Wed Jun 26 19:18:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3 |
ORCID | 0000-0001-8525-3661 0000-0002-5768-6184 |
PQID | 2174543628 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8241773 proquest_journals_2174543628 crossref_primary_10_1109_LGRS_2017_2780890 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 radford (ref10) 2015 ref2 ref1 nair (ref14) 2010 ref16 ioffe (ref13) 0; 37 odena (ref12) 2016 ref8 ref7 ref4 ref3 li (ref6) 2013; 10 ref5 goodfellow (ref9) 2014 springenberg (ref11) 2015 |
References_xml | – ident: ref4 doi: 10.1109/IGARSS.2006.996 – ident: ref2 doi: 10.1016/j.rse.2007.07.028 – volume: 10 start-page: 318 year: 2013 ident: ref6 article-title: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2205216 contributor: fullname: li – ident: ref1 doi: 10.1109/MGRS.2013.2244672 – start-page: 807 year: 2010 ident: ref14 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML contributor: fullname: nair – ident: ref5 doi: 10.7551/mitpress/9780262033589.001.0001 – ident: ref16 doi: 10.3390/rs9040386 – ident: ref3 doi: 10.1109/IGARSS.2009.5417892 – start-page: 2672 year: 2014 ident: ref9 article-title: Generative adversarial nets publication-title: Proc Adv NIPS contributor: fullname: goodfellow – ident: ref8 doi: 10.1007/s11042-016-3371-9 – volume: 37 start-page: 448 year: 0 ident: ref13 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc ICML contributor: fullname: ioffe – ident: ref15 doi: 10.1109/LGRS.2015.2421347 – year: 2015 ident: ref10 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks contributor: fullname: radford – year: 2015 ident: ref11 article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks contributor: fullname: springenberg – ident: ref7 doi: 10.1109/LGRS.2008.2009324 – year: 2016 ident: ref12 publication-title: Semi-supervised learning with generative adversarial networks contributor: fullname: odena |
SSID | ssj0024887 |
Score | 2.6147451 |
Snippet | Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 212 |
SubjectTerms | Classification Data Data models Deep learning Feature extraction Frameworks Gallium nitride generative adversarial network (GAN) Generative adversarial networks Generators hyperspectral image (HSI) classification Hyperspectral imaging Image classification Imaging techniques Infrared imagery Infrared imaging Infrared spectrometers remote sensing Satellites semisupervised learning (SSL) Training |
Title | Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks |
URI | https://ieeexplore.ieee.org/document/8241773 https://www.proquest.com/docview/2174543628 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJQQLjxZEoaAMTIi0SRzH9giItiDoQKlUsUTxI0JCFETSAX49PicFBAxsHmzL8ne-h32-D-BI6UiJAC-qWET9OJH2SDET-YZYayc4jfLcVfscJcNJfDWl0yU4-fwLY4xxyWemi033lq-f1RyvynrcmhvGyDIsMyGqv1pfdfW4I8NDj8Cngk_rF8wwEL3rwe0Yk7hYN2I84Kh-v9kgR6rySxM789LfgJvFwqqsksfuvJRd9f6jZuN_V74J67Wf6Z1WgrEFS2bWhNWa8vzhrQkrA8fp-9aC-zFyvs1fUGsURntDG5pWPzBf7QyXT1bjeI47E7OKHJDeWYYdbaOqWo0q03PUzkWGAu2NquTyYhsm_Yu786FfUy74yhqm0s-zLA8DSUKpQ2OkjEOjNAu0popRaTD44QIL6AiSx6ESsVRhFuWJjAzJCNdkBxqz55nZBc8GNoIpqi0iLM4iInmiuUiUdcgIZSpvw_EChPSlqqyRuogkECkiliJiaY1YG1q4qZ8d6_1sQ2cBW1qfvSLFIIvG1jDzvb9H7cOanZtXudcdaJSvc3NgXYtSHjqZ-gCaPctT |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xEIKFV0GUZwYmREoSx7E9AqIUaDsAlSqWKH5ESIi2oukAvx6fkxYEDGweHMfyd76Hfb4P4FjpSIkAD6pYRP04kXZLMRP5hlhrJziN8txV--wmrV5826f9OTidvYUxxrjkM9PAprvL10M1waOyM27NDWNkHhatX82T8rXWV2U97ujw0CfwqeD96g4zDMRZ-_r-AdO4WCNiPOCogL9ZIUer8ksXOwPTXIPOdGplXslLY1LIhvr4UbXxv3Nfh9XK0_TOS9HYgDkz2ITlivT8-X0Tlq4dq-97DZ4ekPVtMkK9MTbaa9ngtHyD-WZHuHm1Osdz7JmYV-Sg9C4y7GgbZd1qVJqeI3ceZyjSXrdMLx9vQa959XjZ8ivSBV9Z01T4eZblYSBJKHVojJRxaJRmgdZUMSoNhj9cYAkdQfI4VCKWKsyiPJGRIRnhmmzDwmA4MDvg2dBGMEW1RYTFWUQkTzQXibIuGaFM5XU4mYKQjsraGqmLSQKRImIpIpZWiNWhhos661itZx32p7Cl1e4bpxhm0diaZr7791dHsNx67LTT9k33bg9W7H94mYm9DwvF28QcWEejkIdOvj4BZNXOng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semisupervised+Hyperspectral+Image+Classification+Based+on+Generative+Adversarial+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhan%2C+Ying&rft.au=Hu%2C+Dan&rft.au=Wang%2C+Yuntao&rft.au=Yu%2C+Xianchuan&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=15&rft.issue=2&rft.spage=212&rft.epage=216&rft_id=info:doi/10.1109%2FLGRS.2017.2780890&rft.externalDocID=8241773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |