Stability of Iron-Molybdate Catalysts for Selective Oxidation of Methanol to Formaldehyde: Influence of Preparation Method

Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methan...

Full description

Saved in:
Bibliographic Details
Published inCatalysis letters Vol. 150; no. 5; pp. 1434 - 1444
Main Authors Raun, Kristian Viegaard, Lundegaard, Lars Fahl, Beato, Pablo, Appel, Charlotte Clausen, Nielsen, Kenneth, Thorhauge, Max, Schumann, Max, Jensen, Anker Degn, Grunwaldt, Jan-Dierk, Høj, Martin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1011-372X
1572-879X
DOI10.1007/s10562-019-03034-9

Cover

Loading…
Abstract Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O 2 in N 2 , temp. = 380–407 °C). Excess MoO 3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO 3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO 3 phase was synthesized, which yielded relatively large crystals (2–10 µm), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO 3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO 3 , reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region. Graphical Abstract Fe 2 (MoO 4 ) 3 /MoO 3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO 3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO 3 under reaction conditions was observed for the large h-MoO 3 compared to smaller crystals of thermodynamically stable α-MoO 3 .
AbstractList Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O2 in N2, temp. = 380–407 °C). Excess MoO3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO3 phase was synthesized, which yielded relatively large crystals (2–10 µm), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO3, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region.Fe2(MoO4)3/MoO3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO3 under reaction conditions was observed for the large h-MoO3 compared to smaller crystals of thermodynamically stable α-MoO3.
Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM-EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O.sub.2 in N.sub.2, temp. = 380-407 °C). Excess MoO.sub.3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO.sub.3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO.sub.3 phase was synthesized, which yielded relatively large crystals (2-10 [micro]m), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO.sub.3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO.sub.3, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region. Graphical Fe.sub.2(MoO.sub.4).sub.3/MoO.sub.3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO.sub.3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO.sub.3 under reaction conditions was observed for the large h-MoO.sub.3 compared to smaller crystals of thermodynamically stable [alpha]-MoO.sub.3.
Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM-EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O.sub.2 in N.sub.2, temp. = 380-407 °C). Excess MoO.sub.3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO.sub.3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO.sub.3 phase was synthesized, which yielded relatively large crystals (2-10 [micro]m), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO.sub.3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO.sub.3, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region.
Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O 2 in N 2 , temp. = 380–407 °C). Excess MoO 3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO 3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO 3 phase was synthesized, which yielded relatively large crystals (2–10 µm), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO 3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO 3 , reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region. Graphical Abstract Fe 2 (MoO 4 ) 3 /MoO 3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO 3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO 3 under reaction conditions was observed for the large h-MoO 3 compared to smaller crystals of thermodynamically stable α-MoO 3 .
Audience Academic
Author Høj, Martin
Nielsen, Kenneth
Schumann, Max
Beato, Pablo
Grunwaldt, Jan-Dierk
Lundegaard, Lars Fahl
Jensen, Anker Degn
Raun, Kristian Viegaard
Appel, Charlotte Clausen
Thorhauge, Max
Author_xml – sequence: 1
  givenname: Kristian Viegaard
  surname: Raun
  fullname: Raun, Kristian Viegaard
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)
– sequence: 2
  givenname: Lars Fahl
  surname: Lundegaard
  fullname: Lundegaard, Lars Fahl
  organization: Haldor Topsøe A/S
– sequence: 3
  givenname: Pablo
  surname: Beato
  fullname: Beato, Pablo
  organization: Haldor Topsøe A/S
– sequence: 4
  givenname: Charlotte Clausen
  surname: Appel
  fullname: Appel, Charlotte Clausen
  organization: Haldor Topsøe A/S
– sequence: 5
  givenname: Kenneth
  surname: Nielsen
  fullname: Nielsen, Kenneth
  organization: Department of Physics, Technical University of Denmark (DTU)
– sequence: 6
  givenname: Max
  surname: Thorhauge
  fullname: Thorhauge, Max
  organization: Haldor Topsøe A/S
– sequence: 7
  givenname: Max
  surname: Schumann
  fullname: Schumann, Max
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)
– sequence: 8
  givenname: Anker Degn
  surname: Jensen
  fullname: Jensen, Anker Degn
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)
– sequence: 9
  givenname: Jan-Dierk
  surname: Grunwaldt
  fullname: Grunwaldt, Jan-Dierk
  organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT)
– sequence: 10
  givenname: Martin
  surname: Høj
  fullname: Høj, Martin
  email: mh@kt.dtu.dk
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)
BookMark eNp9kU1r3DAQhk1JoPnoH-jJ0FMPTkeWbUm9haVpFxISsinkJmR7tFHQSltJW-L--mrjQkkOQQcJ6Xlm0LzHxYHzDoviI4EzAsC-RAJtV1dARAUUaFOJd8URaVldcSbuD_IZCKkoq-_fF8cxPgKAYEQcFX9WSfXGmjSVXpfL4F115e3UjyphuVBJ2SmmWGofyhVaHJL5jeX1k8nvxru9c4XpQTlvy-TLCx82yo74MI34tVw6bXfoBtxjNwG3KszWXvHjaXGolY344d9-Uvy8-Ha3-FFdXn9fLs4vq6GpRaq0auseoBsJbWjXN4JrJANTDEauhRo7PnBS9x0BWivFgXKaESZ4qxTAiPSk-DTX3Qb_a4cxyUe_Cy63lDXlbctb0rBMnc3UWlmUxmmfghryGnFjhjxtbfL9eUcEbVhulYXPL4TMJHxKa7WLUS5Xty9ZPrND8DEG1HIw6XkWuYmxkoDcxyjnGGWOUT7HKEVW61fqNpiNCtPbEp2lmGG3xvD_y29YfwGY5rGE
CitedBy_id crossref_primary_10_3390_catal11111329
crossref_primary_10_3390_molecules25102410
crossref_primary_10_1002_slct_202402744
crossref_primary_10_1016_j_mcat_2023_112944
crossref_primary_10_1039_D0CY00619J
crossref_primary_10_1134_S0965544123110038
crossref_primary_10_1016_j_jechem_2025_02_061
crossref_primary_10_1021_acsami_1c16296
crossref_primary_10_1007_s10562_024_04865_x
crossref_primary_10_1039_D1RA05531C
crossref_primary_10_3390_ma15051906
crossref_primary_10_1007_s12613_024_2888_6
crossref_primary_10_1021_acs_jpcc_3c01484
crossref_primary_10_1016_j_jhazmat_2022_130257
crossref_primary_10_1002_cctc_202301464
crossref_primary_10_1002_jctb_6877
crossref_primary_10_3390_catal11080893
Cites_doi 10.1002/14356007.a16
10.1021/i160019a011
10.1039/C39860000336
10.1016/j.apcata.2009.05.008
10.1081/CR-200049088
10.1107/S1600576718000183
10.1016/J.CES.2018.09.033
10.1016/j.apcata.2013.11.027
10.1016/j.apcata.2014.05.038
10.1039/c3cp50399b
10.1021/jp5081753
10.1080/17458080.2015.1012654
10.1016/j.cattod.2010.03.051
10.1007/s10562-007-9255-x
10.1007/s11244-008-9112-1
10.1016/j.cattod.2005.11.052
10.1021/cs400683e
10.1021/ic101103g
10.1002/cctc.201901025
10.1139/v77-418
10.1016/j.susc.2015.11.010
10.1007/s11244-008-9058-3
10.1016/j.apcata.2016.09.002
10.1039/C8CY01109E
10.1515/revce-2014-0022
10.1016/0920-5861(91)87009-C
10.1179/2055075815Y.0000000002
10.1016/0378-3812(94)80018-9
10.1002/cssc.201500315
10.1021/jp800359p
10.1016/j.matchemphys.2008.10.076
10.1016/0021-9517(70)90228-9
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10562-019-03034-9
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Materials Science Collection



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-879X
EndPage 1444
ExternalDocumentID A619347032
10_1007_s10562_019_03034_9
GrantInformation_xml – fundername: Det Frie Forskningsråd
  grantid: DFF-4184-00336
  funderid: http://dx.doi.org/10.13039/501100004836
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZMTXR
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-fa52b006d13436b498fe1c7a70d8f9ad68c812b61032aa8038398f7985aa00de3
IEDL.DBID 8FG
ISSN 1011-372X
IngestDate Fri Jul 25 11:10:38 EDT 2025
Tue Jun 10 20:42:53 EDT 2025
Fri Jun 27 03:45:36 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Tue Jul 01 02:51:26 EDT 2025
Fri Feb 21 02:41:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Hexagonal MoO
Formox
Catalyst deactivation
Formaldehyde
Iron molybdate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-fa52b006d13436b498fe1c7a70d8f9ad68c812b61032aa8038398f7985aa00de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2385585147
PQPubID 2043868
PageCount 11
ParticipantIDs proquest_journals_2385585147
gale_infotracacademiconefile_A619347032
gale_incontextgauss_ISR_A619347032
crossref_citationtrail_10_1007_s10562_019_03034_9
crossref_primary_10_1007_s10562_019_03034_9
springer_journals_10_1007_s10562_019_03034_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Catalysis letters
PublicationTitleAbbrev Catal Lett
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References PerniconeNDeactivation of Fe–Mo oxide catalyst in industrial plant and simulation tests on laboratory scaleCatal Today19911185911:CAS:528:DyaK38XmtVShtw%3D%3D10.1016/0920-5861(91)87009-C
SöderhjelmEHouseMPCruiseNOn the synergy effect in MoO3–Fe2(MoO4)3 catalysts for methanol oxidation to formaldehydeTop Catal2008501451551:CAS:528:DC%2BD1cXht1yqsLjF10.1007/s11244-008-9112-1
FagherazziGPerniconeNStructural study of a methanol oxidation catalystJ Catal1970163213251:CAS:528:DyaE3cXptlKktg%3D%3D10.1016/0021-9517(70)90228-9
PopovBIBibinVNBoreskovGKStudy of an iron-molybfate oxide catalyst for oxidation of methanol to formaldehydeKinet Catal197617322327
BowkerMHouseMAlshehriASelectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdateCatal Struct React201519510010.1179/2055075815Y.0000000002
McCarronEMIβ-MoO3: a metastable analogue of WO3J Chem Soc, Chem Commun198610133633810.1039/C39860000336
YeoBRPudgeGJFBuglerKGThe surface of iron molybdate catalysts used for the selective oxidation of methanolSurf Sci20166481631691:CAS:528:DC%2BC2MXhvFWqtrrN10.1016/j.susc.2015.11.010
AnderssonAHernelindMAugustssonOA study of the ageing and deactivation phenomena occurring during operation of an iron molybdate catalyst in formaldehyde productionCatal Today200611240441:CAS:528:DC%2BD28XhvVSntLw%3D10.1016/j.cattod.2005.11.052
DrăganSKulicIA macrokinetic study of the oxidation of methanol to formaldehyde on Fe2O3–MoO3 oxide catalyst2016ChemStud Univ Babes-Bolyai61
PeláezRMarínPOrdóñezSSynthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalystAppl Catal A Gen20165271371451:CAS:528:DC%2BC28XhsFWitLvP10.1016/j.apcata.2016.09.002
IHS Chemical (2013) IHS analysis report Forecast: global formaldehyde market demand after five years
GaurASchumannMRaunKVOperando XAS/XRD and raman spectroscopic study of structural changes of the iron molybdate catalyst during selective oxidation of methanolChemCatChem201910.1002/cctc.201901025
BowkerMBrookesCCarleyAFEvolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxidePhys Chem Chem Phys20131511988120031:CAS:528:DC%2BC3sXhtFSrt7bK10.1039/c3cp50399b
LohbeckKHaferkornHFuhrmannWFedtkeNManganese and manganese alloysUllmann’s Encycl Ind Chem200510.1002/14356007.a16
BrazCGMendesARochaJModel of an industrial multitubular reactor for methanol to formaldehyde oxidation in the presence of catalyst deactivationChem Eng Sci20191953473551:CAS:528:DC%2BC1cXhvVyhtb3L10.1016/J.CES.2018.09.033
Merchant Research & Consulting ltd (2016) World Formaldehyde Production to Exceed 52 Mln Tonnes in 2017
SoaresAPVPortelaMFKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev2005471251741:CAS:528:DC%2BD2MXhs1Kmt7o%3D10.1081/CR-200049088
BrookesCWellsPPDimitratosNThe nature of the molybdenum surface in iron molybdate. the active phase in selective methanol oxidationJ Phys Chem C201411826155261611:CAS:528:DC%2BC2cXhslKktr7M10.1021/jp5081753
BowkerMCarleyAFHouseMContrasting the behaviour of MoO3 and MoO2 for the oxidation of methanolCatal Lett200812034391:CAS:528:DC%2BD1cXit1Krs78%3D10.1007/s10562-007-9255-x
HuHDengCXuJMetastable h -MoO 3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activityJ Exp Nanosci201510133613461:CAS:528:DC%2BC2MXivFKisro%3D10.1080/17458080.2015.1012654
Magnusson A, Thevenin P (2018) In: Informally speaking (newsletter from Formox), winter 2017/2018
Rellán-PiñeiroMLópezNThe active molybdenum oxide phase in the methanol oxidation to formaldehyde (Formox process): a DFT studyChemsuschem20158223122391:CAS:528:DC%2BC2MXhtVegsbnN10.1002/cssc.20150031526083992
IvanovKIDimitrovDYDeactivation of an industrial iron-molybdate catalyst for methanol oxidationCatal Today20101542502551:CAS:528:DC%2BC3cXpvFOgt7g%3D10.1016/j.cattod.2010.03.051
XuQJiaGZhangJSurface phase composition of iron molybdate catalysts studied by UV Raman spectroscopyJ Phys Chem C2008112938793931:CAS:528:DC%2BD1cXms1ags70%3D10.1021/jp800359p
DhageSRHassanMSYangOBLow temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformationMater Chem Phys20091145115141:CAS:528:DC%2BD1MXht1Gkt7c%3D10.1016/j.matchemphys.2008.10.076
SchuhKKleistWHøjMSelective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdatesAppl Catal A Gen20144821451561:CAS:528:DC%2BC2cXhtF2ktL%2FE10.1016/j.apcata.2014.05.038
LunkHJHartlHHartlMA“Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveriesInorg Chem201049940094081:CAS:528:DC%2BC3cXhtFGhsLvK10.1021/ic101103g20839845
MouritsFMRummensFHAA critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methodsCan J Chem197755300730201:CAS:528:DyaE1cXht1amsQ%3D%3D10.1139/v77-418
TeeLSGotohSStewartWEMolecular parameters for normal fluids. Lennard–Jones 12–6 potentialInd Eng Chem Fundam1966535636310.1021/i160019a011
BealeAMJacquesSDMSacaliuc-ParvalescuEAn iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterizationAppl Catal A Gen20093631431521:CAS:528:DC%2BD1MXnvVWqtbk%3D10.1016/j.apcata.2009.05.008
BrookesCWellsPPCibinGMolybdenum oxide on Fe2O3 core–shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysisACS Catal201442432501:CAS:528:DC%2BC3sXhvFWlt73F10.1021/cs400683e
VanLeeuwen MEDerivation of Stockmayer potential parametersFluid Phase Equilib19949911810.1016/0378-3812(94)80018-9
CoelhoAATOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++J Appl Cryst2018512102181:CAS:528:DC%2BC1cXitlWnu7o%3D10.1107/S1600576718000183
RaunKVLundegaardLFChevallierJDeactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehydeCatal Sci Technol20188462646371:CAS:528:DC%2BC1cXhtlCmtbzN10.1039/C8CY01109E
BahmanpourAMHoadleyATanksaleACritical review and exergy analysis of formaldehyde production processesRev Chem Eng201410.1515/revce-2014-0022
Vieira SoaresAPFarinha PortelaMKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev Sci Eng20054712517410.1081/CR-200049088
BowkerMHolroydRHouseMThe selective oxidation of methanol on iron molybdate catalystsTop Catal2008481581651:CAS:528:DC%2BD1cXmsVagtLk%3D10.1007/s11244-008-9058-3
HøjMKesslerTBeatoPStructure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHDAppl Catal A Gen201447229381:CAS:528:DC%2BC2cXjsVWqtrc%3D10.1016/j.apcata.2013.11.027
Günther R, Disteldorf W, Gamer AO, Hilt A (2012) Ullmann’s encyclopedia of industrial chemistry. Weinheim Chapter 4: Chapter 4
N Pernicone (3034_CR17) 1991; 11
M Bowker (3034_CR12) 2013; 15
M Bowker (3034_CR36) 2008; 48
M Rellán-Piñeiro (3034_CR14) 2015; 8
K Lohbeck (3034_CR20) 2005
M Høj (3034_CR27) 2014; 472
APV Soares (3034_CR7) 2005; 47
SR Dhage (3034_CR22) 2009; 114
C Brookes (3034_CR11) 2014; 118
M Bowker (3034_CR13) 2015; 1
HJ Lunk (3034_CR34) 2010; 49
BI Popov (3034_CR15) 1976; 17
H Hu (3034_CR23) 2015; 10
AM Beale (3034_CR26) 2009; 363
AA Coelho (3034_CR31) 2018; 51
A Andersson (3034_CR16) 2006; 112
Leeuwen ME Van (3034_CR28) 1994; 99
S Drăgan (3034_CR33) 2016
G Fagherazzi (3034_CR39) 1970; 16
AM Bahmanpour (3034_CR3) 2014
R Peláez (3034_CR37) 2016; 527
M Bowker (3034_CR9) 2008; 120
C Brookes (3034_CR38) 2014; 4
KI Ivanov (3034_CR6) 2010; 154
AP Vieira Soares (3034_CR19) 2005; 47
A Gaur (3034_CR25) 2019
K Schuh (3034_CR35) 2014; 482
LS Tee (3034_CR29) 1966; 5
3034_CR5
3034_CR4
BR Yeo (3034_CR10) 2016; 648
FM Mourits (3034_CR30) 1977; 55
3034_CR2
3034_CR1
Q Xu (3034_CR18) 2008; 112
EMI McCarron (3034_CR21) 1986; 101
KV Raun (3034_CR24) 2018; 8
CG Braz (3034_CR32) 2019; 195
E Söderhjelm (3034_CR8) 2008; 50
References_xml – reference: GaurASchumannMRaunKVOperando XAS/XRD and raman spectroscopic study of structural changes of the iron molybdate catalyst during selective oxidation of methanolChemCatChem201910.1002/cctc.201901025
– reference: SoaresAPVPortelaMFKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev2005471251741:CAS:528:DC%2BD2MXhs1Kmt7o%3D10.1081/CR-200049088
– reference: DrăganSKulicIA macrokinetic study of the oxidation of methanol to formaldehyde on Fe2O3–MoO3 oxide catalyst2016ChemStud Univ Babes-Bolyai61
– reference: IHS Chemical (2013) IHS analysis report Forecast: global formaldehyde market demand after five years
– reference: HuHDengCXuJMetastable h -MoO 3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activityJ Exp Nanosci201510133613461:CAS:528:DC%2BC2MXivFKisro%3D10.1080/17458080.2015.1012654
– reference: YeoBRPudgeGJFBuglerKGThe surface of iron molybdate catalysts used for the selective oxidation of methanolSurf Sci20166481631691:CAS:528:DC%2BC2MXhvFWqtrrN10.1016/j.susc.2015.11.010
– reference: BowkerMHolroydRHouseMThe selective oxidation of methanol on iron molybdate catalystsTop Catal2008481581651:CAS:528:DC%2BD1cXmsVagtLk%3D10.1007/s11244-008-9058-3
– reference: SöderhjelmEHouseMPCruiseNOn the synergy effect in MoO3–Fe2(MoO4)3 catalysts for methanol oxidation to formaldehydeTop Catal2008501451551:CAS:528:DC%2BD1cXht1yqsLjF10.1007/s11244-008-9112-1
– reference: Merchant Research & Consulting ltd (2016) World Formaldehyde Production to Exceed 52 Mln Tonnes in 2017
– reference: MouritsFMRummensFHAA critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methodsCan J Chem197755300730201:CAS:528:DyaE1cXht1amsQ%3D%3D10.1139/v77-418
– reference: Günther R, Disteldorf W, Gamer AO, Hilt A (2012) Ullmann’s encyclopedia of industrial chemistry. Weinheim Chapter 4: Chapter 4
– reference: XuQJiaGZhangJSurface phase composition of iron molybdate catalysts studied by UV Raman spectroscopyJ Phys Chem C2008112938793931:CAS:528:DC%2BD1cXms1ags70%3D10.1021/jp800359p
– reference: RaunKVLundegaardLFChevallierJDeactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehydeCatal Sci Technol20188462646371:CAS:528:DC%2BC1cXhtlCmtbzN10.1039/C8CY01109E
– reference: BrookesCWellsPPDimitratosNThe nature of the molybdenum surface in iron molybdate. the active phase in selective methanol oxidationJ Phys Chem C201411826155261611:CAS:528:DC%2BC2cXhslKktr7M10.1021/jp5081753
– reference: BealeAMJacquesSDMSacaliuc-ParvalescuEAn iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterizationAppl Catal A Gen20093631431521:CAS:528:DC%2BD1MXnvVWqtbk%3D10.1016/j.apcata.2009.05.008
– reference: TeeLSGotohSStewartWEMolecular parameters for normal fluids. Lennard–Jones 12–6 potentialInd Eng Chem Fundam1966535636310.1021/i160019a011
– reference: IvanovKIDimitrovDYDeactivation of an industrial iron-molybdate catalyst for methanol oxidationCatal Today20101542502551:CAS:528:DC%2BC3cXpvFOgt7g%3D10.1016/j.cattod.2010.03.051
– reference: PeláezRMarínPOrdóñezSSynthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalystAppl Catal A Gen20165271371451:CAS:528:DC%2BC28XhsFWitLvP10.1016/j.apcata.2016.09.002
– reference: PopovBIBibinVNBoreskovGKStudy of an iron-molybfate oxide catalyst for oxidation of methanol to formaldehydeKinet Catal197617322327
– reference: AnderssonAHernelindMAugustssonOA study of the ageing and deactivation phenomena occurring during operation of an iron molybdate catalyst in formaldehyde productionCatal Today200611240441:CAS:528:DC%2BD28XhvVSntLw%3D10.1016/j.cattod.2005.11.052
– reference: DhageSRHassanMSYangOBLow temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformationMater Chem Phys20091145115141:CAS:528:DC%2BD1MXht1Gkt7c%3D10.1016/j.matchemphys.2008.10.076
– reference: VanLeeuwen MEDerivation of Stockmayer potential parametersFluid Phase Equilib19949911810.1016/0378-3812(94)80018-9
– reference: BowkerMBrookesCCarleyAFEvolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxidePhys Chem Chem Phys20131511988120031:CAS:528:DC%2BC3sXhtFSrt7bK10.1039/c3cp50399b
– reference: CoelhoAATOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++J Appl Cryst2018512102181:CAS:528:DC%2BC1cXitlWnu7o%3D10.1107/S1600576718000183
– reference: LunkHJHartlHHartlMA“Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveriesInorg Chem201049940094081:CAS:528:DC%2BC3cXhtFGhsLvK10.1021/ic101103g20839845
– reference: LohbeckKHaferkornHFuhrmannWFedtkeNManganese and manganese alloysUllmann’s Encycl Ind Chem200510.1002/14356007.a16
– reference: HøjMKesslerTBeatoPStructure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHDAppl Catal A Gen201447229381:CAS:528:DC%2BC2cXjsVWqtrc%3D10.1016/j.apcata.2013.11.027
– reference: BowkerMCarleyAFHouseMContrasting the behaviour of MoO3 and MoO2 for the oxidation of methanolCatal Lett200812034391:CAS:528:DC%2BD1cXit1Krs78%3D10.1007/s10562-007-9255-x
– reference: FagherazziGPerniconeNStructural study of a methanol oxidation catalystJ Catal1970163213251:CAS:528:DyaE3cXptlKktg%3D%3D10.1016/0021-9517(70)90228-9
– reference: SchuhKKleistWHøjMSelective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdatesAppl Catal A Gen20144821451561:CAS:528:DC%2BC2cXhtF2ktL%2FE10.1016/j.apcata.2014.05.038
– reference: Rellán-PiñeiroMLópezNThe active molybdenum oxide phase in the methanol oxidation to formaldehyde (Formox process): a DFT studyChemsuschem20158223122391:CAS:528:DC%2BC2MXhtVegsbnN10.1002/cssc.20150031526083992
– reference: PerniconeNDeactivation of Fe–Mo oxide catalyst in industrial plant and simulation tests on laboratory scaleCatal Today19911185911:CAS:528:DyaK38XmtVShtw%3D%3D10.1016/0920-5861(91)87009-C
– reference: BrookesCWellsPPCibinGMolybdenum oxide on Fe2O3 core–shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysisACS Catal201442432501:CAS:528:DC%2BC3sXhvFWlt73F10.1021/cs400683e
– reference: McCarronEMIβ-MoO3: a metastable analogue of WO3J Chem Soc, Chem Commun198610133633810.1039/C39860000336
– reference: Magnusson A, Thevenin P (2018) In: Informally speaking (newsletter from Formox), winter 2017/2018
– reference: Vieira SoaresAPFarinha PortelaMKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev Sci Eng20054712517410.1081/CR-200049088
– reference: BahmanpourAMHoadleyATanksaleACritical review and exergy analysis of formaldehyde production processesRev Chem Eng201410.1515/revce-2014-0022
– reference: BrazCGMendesARochaJModel of an industrial multitubular reactor for methanol to formaldehyde oxidation in the presence of catalyst deactivationChem Eng Sci20191953473551:CAS:528:DC%2BC1cXhvVyhtb3L10.1016/J.CES.2018.09.033
– reference: BowkerMHouseMAlshehriASelectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdateCatal Struct React201519510010.1179/2055075815Y.0000000002
– year: 2005
  ident: 3034_CR20
  publication-title: Ullmann’s Encycl Ind Chem
  doi: 10.1002/14356007.a16
– volume: 5
  start-page: 356
  year: 1966
  ident: 3034_CR29
  publication-title: Ind Eng Chem Fundam
  doi: 10.1021/i160019a011
– volume: 101
  start-page: 336
  year: 1986
  ident: 3034_CR21
  publication-title: J Chem Soc, Chem Commun
  doi: 10.1039/C39860000336
– volume: 363
  start-page: 143
  year: 2009
  ident: 3034_CR26
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2009.05.008
– volume: 47
  start-page: 125
  year: 2005
  ident: 3034_CR19
  publication-title: Catal Rev Sci Eng
  doi: 10.1081/CR-200049088
– volume: 51
  start-page: 210
  year: 2018
  ident: 3034_CR31
  publication-title: J Appl Cryst
  doi: 10.1107/S1600576718000183
– volume: 195
  start-page: 347
  year: 2019
  ident: 3034_CR32
  publication-title: Chem Eng Sci
  doi: 10.1016/J.CES.2018.09.033
– volume: 47
  start-page: 125
  year: 2005
  ident: 3034_CR7
  publication-title: Catal Rev
  doi: 10.1081/CR-200049088
– volume: 472
  start-page: 29
  year: 2014
  ident: 3034_CR27
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2013.11.027
– volume: 482
  start-page: 145
  year: 2014
  ident: 3034_CR35
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2014.05.038
– volume: 15
  start-page: 11988
  year: 2013
  ident: 3034_CR12
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp50399b
– volume: 118
  start-page: 26155
  year: 2014
  ident: 3034_CR11
  publication-title: J Phys Chem C
  doi: 10.1021/jp5081753
– volume: 10
  start-page: 1336
  year: 2015
  ident: 3034_CR23
  publication-title: J Exp Nanosci
  doi: 10.1080/17458080.2015.1012654
– volume: 154
  start-page: 250
  year: 2010
  ident: 3034_CR6
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2010.03.051
– volume: 120
  start-page: 34
  year: 2008
  ident: 3034_CR9
  publication-title: Catal Lett
  doi: 10.1007/s10562-007-9255-x
– ident: 3034_CR2
– volume: 50
  start-page: 145
  year: 2008
  ident: 3034_CR8
  publication-title: Top Catal
  doi: 10.1007/s11244-008-9112-1
– ident: 3034_CR4
– volume: 112
  start-page: 40
  year: 2006
  ident: 3034_CR16
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2005.11.052
– volume: 4
  start-page: 243
  year: 2014
  ident: 3034_CR38
  publication-title: ACS Catal
  doi: 10.1021/cs400683e
– volume: 49
  start-page: 9400
  year: 2010
  ident: 3034_CR34
  publication-title: Inorg Chem
  doi: 10.1021/ic101103g
– volume: 17
  start-page: 322
  year: 1976
  ident: 3034_CR15
  publication-title: Kinet Catal
– year: 2019
  ident: 3034_CR25
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901025
– volume: 55
  start-page: 3007
  year: 1977
  ident: 3034_CR30
  publication-title: Can J Chem
  doi: 10.1139/v77-418
– volume: 648
  start-page: 163
  year: 2016
  ident: 3034_CR10
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2015.11.010
– start-page: 61
  volume-title: A macrokinetic study of the oxidation of methanol to formaldehyde on Fe2O3–MoO3 oxide catalyst
  year: 2016
  ident: 3034_CR33
– volume: 48
  start-page: 158
  year: 2008
  ident: 3034_CR36
  publication-title: Top Catal
  doi: 10.1007/s11244-008-9058-3
– volume: 527
  start-page: 137
  year: 2016
  ident: 3034_CR37
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2016.09.002
– volume: 8
  start-page: 4626
  year: 2018
  ident: 3034_CR24
  publication-title: Catal Sci Technol
  doi: 10.1039/C8CY01109E
– year: 2014
  ident: 3034_CR3
  publication-title: Rev Chem Eng
  doi: 10.1515/revce-2014-0022
– ident: 3034_CR1
– volume: 11
  start-page: 85
  year: 1991
  ident: 3034_CR17
  publication-title: Catal Today
  doi: 10.1016/0920-5861(91)87009-C
– volume: 1
  start-page: 95
  year: 2015
  ident: 3034_CR13
  publication-title: Catal Struct React
  doi: 10.1179/2055075815Y.0000000002
– volume: 99
  start-page: 1
  year: 1994
  ident: 3034_CR28
  publication-title: Fluid Phase Equilib
  doi: 10.1016/0378-3812(94)80018-9
– ident: 3034_CR5
– volume: 8
  start-page: 2231
  year: 2015
  ident: 3034_CR14
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201500315
– volume: 112
  start-page: 9387
  year: 2008
  ident: 3034_CR18
  publication-title: J Phys Chem C
  doi: 10.1021/jp800359p
– volume: 114
  start-page: 511
  year: 2009
  ident: 3034_CR22
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.10.076
– volume: 16
  start-page: 321
  year: 1970
  ident: 3034_CR39
  publication-title: J Catal
  doi: 10.1016/0021-9517(70)90228-9
SSID ssj0009719
Score 2.4115567
Snippet Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally...
Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1434
SubjectTerms Analysis
Catalysis
Catalysts
Catalytic activity
Chemical synthesis
Chemistry
Chemistry and Materials Science
Crystals
Deactivation
Depletion
Formaldehyde
Heat treatment
Hydrothermal crystal growth
Industrial Chemistry/Chemical Engineering
Iron
Low temperature
Methanol
Methods
Molybdenum oxides
Molybdenum trioxide
Organometallic Chemistry
Oxidation
Oxidation-reduction reaction
Physical Chemistry
Raman spectroscopy
X ray photoelectron spectroscopy
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgPAAP0xiglY3JQkg8gKU0dhJ7b1VFtSIVEKNS3yx_BSZVCWoyie6v352brNsYSDznnK87-35n3_2OkLfgkVwpec48D4rBTHRM-oIzmStlAR-lIcRsi8_56Vx8WmSLriis6bPd-yPJuFLfKHYDXw2hr2JgmFww9ZA8yiB2R7uep6Mt1W4R23kMcfOPF-miK5W5_x633NHdRfmP09HodCZ7ZLdDi3S0Ue8z8iBU--TxuG_Stk-e3uATfE4uATrGZNc1rUs6XdUVm9XLtcWono5xo2bdtA0FnErPYv8bWOrol9_nm75KOGYWcCu9XtK2phOEs0sffq59OKHTvpsJin1dhQ1nOIyaxR7UL8h88vH7-JR1zRWYAxfUstJkKU45P-SC51YoWYahK0yReFkq43PpwPfbHAn3jJEJRLIgUiiZGZMkPvCXZKeqq3BAqBSpkNZ5p3wuLE-syAwgQS8BnVllywEZ9v9Yu455HBtgLPWWMxn1okEvOupFqwF5fz3m14Z345_Sb1B1GgktKsyY-WEumkZPz77pEUSIXMC6lg7Iu06orOHxznQFCPARyIF1S_KoNwHdTelGA7bJ8AxVFAPyoTeL7eW_v9yr_xM_JE9SjOljUuUR2WlXF-E1AJ_WHkc7vwKU3veV
  priority: 102
  providerName: Springer Nature
Title Stability of Iron-Molybdate Catalysts for Selective Oxidation of Methanol to Formaldehyde: Influence of Preparation Method
URI https://link.springer.com/article/10.1007/s10562-019-03034-9
https://www.proquest.com/docview/2385585147
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagPQAHBAXUQKkshMQBLHbX-7C5oBAlbUApVUukcLL8WkCKdkt2KxF-PTMbL6EgeoqUjPOa8cw34_F8hDyHiGRLwXPmuJcMdqJlwhWciVxKA_go8b7rtjjJj-fp-0W2CAW3JrRV9j6xc9Sutlgjfw2hJcMjrLR4e_GdIWsUnq4GCo2bZDeGSIMWLiZH26G7RUfsEWMZkBfJIlyaCVfnIPJDIi0ZmDlPmbwSmP52z_-ck3bhZ3KP3A24kQ43ir5Pbvhqj9wa9XRte-TOH5MFH5CfACK7ttc1rUs6XdUVm9XLtcH8no6wZLNu2oYCYqXnHRMOOD368ce3DcMSrpl5LKrXS9rWdILAdun817Xzb-i05zVBsdOV30wPh1Wzjo36IZlPxp9GxyzQLDALwahlpc4S3Hwu5inPTSpF6WNb6CJyopTa5cICCjA5jt7TWkSQ04JIIUWmdRQ5zx-Rnaqu_D6hIk1SYayz0uWp4ZFJMw2Y0AnAaUaackDi_j9WNswgRyqMpdpOT0a9KNCL6vSi5IC8_L3mYjOB41rpZ6g6haMtKuyd-aIvm0ZNz8_UEHJFnoKHSwbkRRAqa_h4q8NVBPgROA3riuRBbwIqbO5GbU1xQF71ZrF9-f9f7vH17_aE3E4wm-_aKQ_ITru69E8B8rTmsLPrQ7I7PPr8YQyP78Ynp2fw7DwZ_gJ70P7R
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKORQOCAqIhQIWAnEAi2zsJDYSQtXCsku7BdFW2ptxYqdFWiVlkwrCj-I3MuMkLAXRW88Z52vGM-Px-D1CHkNEynLJY2a5UwxmYsakTTiTsVIp5Eehc77bYi-eHIr382i-Rn72Z2GwrbL3id5R2zLDGvkLCC0RbmGJ5PXJV4asUbi72lNotGax45pvsGSrXk3fgH6fhOH47cFowjpWAZaB761ZbqIQbc0OueBxKpTM3TBLTBJYmStjY5lB0EtjRJozRgawhAORRMnImCCwjsN9L5HLgnOFLYRy_G4F8pt4IpEhlh15Es67QzrdUT3INGDhrhhMKy6YOhMI_w4H_-zL-nA3vk6udXkq3W4N6wZZc8Um2Rj19HCb5OofSIY3yQ9IWn2bbUPLnE6XZcFm5aJJsZ5AR1giaqq6opAh033PvANOln74_qVldMIxM4dF_HJB65KOMZFeWHfcWPeSTnseFRT7uHQtWjmMmnn261vk8EIUcJusF2Xh7hAqRShkmtlM2VikPEhFZCAHtRLywlSl-YAM-3-ssw7zHKk3FnqF1ox60aAX7fWi1YA8-z3mpEX8OFf6EapOI5RGgb06R-a0qvR0_5PehrUpF-BRwwF52gnlJTw-M93RB_gIRN86I7nVm4DunEmlV6Y_IM97s1hd_v_L3T3_bg_JxuRgtqt3p3s798iVECsJvpVzi6zXy1N3H9KtOn3gbZySzxc9qX4Bm9w2sw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkXgcECwgCgtYCIkDWJvETmJzqwrVFuiyYqnUm2XHDiBVyarJSpRfz4yT0C4viXPGec3Y84098w0hz8AjFaXkGXPcKwYzsWDS5ZzJTCkL-CjxPmRbHGdHC_F2mS53qvhDtvtwJNnVNCBLU9UenrnycKfwDfw2hMGKgZFywdRlcgWW4xiTuhbJeEu7m4fWHjFuBPI8WfZlM3--xwXX9OsC_dtJaXBA01vkZo8c6bhT9W1yyVf75NpkaNi2T27scAveId8BRobE1w2tSzpb1xWb16uNxQifTnDTZtO0DQXMSk9DLxxY9uiHb1-7Hks4Zu5xW71e0bamU4S2K-e_bJx_RWdDZxMUO1n7jj8cRs1DP-q7ZDF982lyxPpGC6wAd9Sy0qQJTj8Xc8EzK5QsfVzkJo-cLJVxmSwAB9gMyfeMkRFEtSCSK5kaE0XO83tkr6orf59QKRIhbeEK5TJheWRFagAVOglIzSpbjkg8_GNd9Czk2Axjpbf8yagXDXrRQS9ajciLn2POOg6Of0o_RdVpJLeoMHvmszlvGj07_ajHEC1yAWtcMiLPe6GyhscXpi9GgI9APqwLkgeDCeh-ejcacE6K56kiH5GXg1lsL__95R78n_gTcvXk9VS_nx2_e0iuJxjqh1zLA7LXrs_9I8BDrX0cTP4H3Yr-xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Iron-Molybdate+Catalysts+for+Selective+Oxidation+of+Methanol+to+Formaldehyde%3A+Influence+of+Preparation+Method&rft.jtitle=Catalysis+letters&rft.au=Raun%2C+Kristian+Viegaard&rft.au=Lundegaard%2C+Lars+Fahl&rft.au=Beato%2C+Pablo&rft.au=Appel%2C+Charlotte+Clausen&rft.date=2020-05-01&rft.pub=Springer&rft.issn=1011-372X&rft.volume=150&rft.issue=5&rft.spage=1434&rft_id=info:doi/10.1007%2Fs10562-019-03034-9&rft.externalDocID=A619347032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon