Stability of Iron-Molybdate Catalysts for Selective Oxidation of Methanol to Formaldehyde: Influence of Preparation Method
Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methan...
Saved in:
Published in | Catalysis letters Vol. 150; no. 5; pp. 1434 - 1444 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1011-372X 1572-879X |
DOI | 10.1007/s10562-019-03034-9 |
Cover
Loading…
Abstract | Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O
2
in N
2
, temp. = 380–407 °C). Excess MoO
3
present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO
3
significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO
3
phase was synthesized, which yielded relatively large crystals (2–10 µm), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO
3
from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO
3
, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region.
Graphical Abstract
Fe
2
(MoO
4
)
3
/MoO
3
catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO
3
crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO
3
under reaction conditions was observed for the large h-MoO
3
compared to smaller crystals of thermodynamically stable α-MoO
3
. |
---|---|
AbstractList | Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O2 in N2, temp. = 380–407 °C). Excess MoO3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO3 phase was synthesized, which yielded relatively large crystals (2–10 µm), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO3, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region.Fe2(MoO4)3/MoO3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO3 under reaction conditions was observed for the large h-MoO3 compared to smaller crystals of thermodynamically stable α-MoO3. Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM-EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O.sub.2 in N.sub.2, temp. = 380-407 °C). Excess MoO.sub.3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO.sub.3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO.sub.3 phase was synthesized, which yielded relatively large crystals (2-10 [micro]m), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO.sub.3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO.sub.3, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region. Graphical Fe.sub.2(MoO.sub.4).sub.3/MoO.sub.3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO.sub.3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO.sub.3 under reaction conditions was observed for the large h-MoO.sub.3 compared to smaller crystals of thermodynamically stable [alpha]-MoO.sub.3. Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM-EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O.sub.2 in N.sub.2, temp. = 380-407 °C). Excess MoO.sub.3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO.sub.3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO.sub.3 phase was synthesized, which yielded relatively large crystals (2-10 [micro]m), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO.sub.3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO.sub.3, reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region. Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally characterized by XRD, XPS, Raman spectroscopy, SEM–EDX, BET and ICP-OES. The stability of the prepared catalysts in selective oxidation of methanol to formaldehyde was investigated by catalytic activity measurements for up to 100 h on stream in a laboratory fixed-bed reactor (5% MeOH, 10% O 2 in N 2 , temp. = 380–407 °C). Excess MoO 3 present in the catalyst volatilized under reaction conditions, which lead to an initial loss of activity. Interestingly, the structure of the excess MoO 3 significantly affected the stability of the catalyst. By using low temperature hydrothermal synthesis, catalysts with the thermodynamically metastable hexagonal h-MoO 3 phase was synthesized, which yielded relatively large crystals (2–10 µm), with correspondingly low surface area to volume ratio. The rate of volatilization of MoO 3 from these crystals was comparatively low, which stabilized the catalysts. It was furthermore shown that heat-treatment of a spent catalyst, subject to significant depletion of MoO 3 , reactivated the catalyst, likely due to migration of Mo from the bulk of the iron molybdate crystals to the surface region. Graphical Abstract Fe 2 (MoO 4 ) 3 /MoO 3 catalysts for selective oxidation of methanol were synthesized by hydrothermal synthesis forming large hexagonal-MoO 3 crystals. Significantly lower rate of catalyst deactivation due to volatilization of MoO 3 under reaction conditions was observed for the large h-MoO 3 compared to smaller crystals of thermodynamically stable α-MoO 3 . |
Audience | Academic |
Author | Høj, Martin Nielsen, Kenneth Schumann, Max Beato, Pablo Grunwaldt, Jan-Dierk Lundegaard, Lars Fahl Jensen, Anker Degn Raun, Kristian Viegaard Appel, Charlotte Clausen Thorhauge, Max |
Author_xml | – sequence: 1 givenname: Kristian Viegaard surname: Raun fullname: Raun, Kristian Viegaard organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU) – sequence: 2 givenname: Lars Fahl surname: Lundegaard fullname: Lundegaard, Lars Fahl organization: Haldor Topsøe A/S – sequence: 3 givenname: Pablo surname: Beato fullname: Beato, Pablo organization: Haldor Topsøe A/S – sequence: 4 givenname: Charlotte Clausen surname: Appel fullname: Appel, Charlotte Clausen organization: Haldor Topsøe A/S – sequence: 5 givenname: Kenneth surname: Nielsen fullname: Nielsen, Kenneth organization: Department of Physics, Technical University of Denmark (DTU) – sequence: 6 givenname: Max surname: Thorhauge fullname: Thorhauge, Max organization: Haldor Topsøe A/S – sequence: 7 givenname: Max surname: Schumann fullname: Schumann, Max organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU) – sequence: 8 givenname: Anker Degn surname: Jensen fullname: Jensen, Anker Degn organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU) – sequence: 9 givenname: Jan-Dierk surname: Grunwaldt fullname: Grunwaldt, Jan-Dierk organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) – sequence: 10 givenname: Martin surname: Høj fullname: Høj, Martin email: mh@kt.dtu.dk organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU) |
BookMark | eNp9kU1r3DAQhk1JoPnoH-jJ0FMPTkeWbUm9haVpFxISsinkJmR7tFHQSltJW-L--mrjQkkOQQcJ6Xlm0LzHxYHzDoviI4EzAsC-RAJtV1dARAUUaFOJd8URaVldcSbuD_IZCKkoq-_fF8cxPgKAYEQcFX9WSfXGmjSVXpfL4F115e3UjyphuVBJ2SmmWGofyhVaHJL5jeX1k8nvxru9c4XpQTlvy-TLCx82yo74MI34tVw6bXfoBtxjNwG3KszWXvHjaXGolY344d9-Uvy8-Ha3-FFdXn9fLs4vq6GpRaq0auseoBsJbWjXN4JrJANTDEauhRo7PnBS9x0BWivFgXKaESZ4qxTAiPSk-DTX3Qb_a4cxyUe_Cy63lDXlbctb0rBMnc3UWlmUxmmfghryGnFjhjxtbfL9eUcEbVhulYXPL4TMJHxKa7WLUS5Xty9ZPrND8DEG1HIw6XkWuYmxkoDcxyjnGGWOUT7HKEVW61fqNpiNCtPbEp2lmGG3xvD_y29YfwGY5rGE |
CitedBy_id | crossref_primary_10_3390_catal11111329 crossref_primary_10_3390_molecules25102410 crossref_primary_10_1002_slct_202402744 crossref_primary_10_1016_j_mcat_2023_112944 crossref_primary_10_1039_D0CY00619J crossref_primary_10_1134_S0965544123110038 crossref_primary_10_1016_j_jechem_2025_02_061 crossref_primary_10_1021_acsami_1c16296 crossref_primary_10_1007_s10562_024_04865_x crossref_primary_10_1039_D1RA05531C crossref_primary_10_3390_ma15051906 crossref_primary_10_1007_s12613_024_2888_6 crossref_primary_10_1021_acs_jpcc_3c01484 crossref_primary_10_1016_j_jhazmat_2022_130257 crossref_primary_10_1002_cctc_202301464 crossref_primary_10_1002_jctb_6877 crossref_primary_10_3390_catal11080893 |
Cites_doi | 10.1002/14356007.a16 10.1021/i160019a011 10.1039/C39860000336 10.1016/j.apcata.2009.05.008 10.1081/CR-200049088 10.1107/S1600576718000183 10.1016/J.CES.2018.09.033 10.1016/j.apcata.2013.11.027 10.1016/j.apcata.2014.05.038 10.1039/c3cp50399b 10.1021/jp5081753 10.1080/17458080.2015.1012654 10.1016/j.cattod.2010.03.051 10.1007/s10562-007-9255-x 10.1007/s11244-008-9112-1 10.1016/j.cattod.2005.11.052 10.1021/cs400683e 10.1021/ic101103g 10.1002/cctc.201901025 10.1139/v77-418 10.1016/j.susc.2015.11.010 10.1007/s11244-008-9058-3 10.1016/j.apcata.2016.09.002 10.1039/C8CY01109E 10.1515/revce-2014-0022 10.1016/0920-5861(91)87009-C 10.1179/2055075815Y.0000000002 10.1016/0378-3812(94)80018-9 10.1002/cssc.201500315 10.1021/jp800359p 10.1016/j.matchemphys.2008.10.076 10.1016/0021-9517(70)90228-9 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s10562-019-03034-9 |
DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-879X |
EndPage | 1444 |
ExternalDocumentID | A619347032 10_1007_s10562_019_03034_9 |
GrantInformation_xml | – fundername: Det Frie Forskningsråd grantid: DFF-4184-00336 funderid: http://dx.doi.org/10.13039/501100004836 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZMTXR ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c429t-fa52b006d13436b498fe1c7a70d8f9ad68c812b61032aa8038398f7985aa00de3 |
IEDL.DBID | 8FG |
ISSN | 1011-372X |
IngestDate | Fri Jul 25 11:10:38 EDT 2025 Tue Jun 10 20:42:53 EDT 2025 Fri Jun 27 03:45:36 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 02:51:26 EDT 2025 Fri Feb 21 02:41:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Hexagonal MoO Formox Catalyst deactivation Formaldehyde Iron molybdate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-fa52b006d13436b498fe1c7a70d8f9ad68c812b61032aa8038398f7985aa00de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2385585147 |
PQPubID | 2043868 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2385585147 gale_infotracacademiconefile_A619347032 gale_incontextgauss_ISR_A619347032 crossref_citationtrail_10_1007_s10562_019_03034_9 crossref_primary_10_1007_s10562_019_03034_9 springer_journals_10_1007_s10562_019_03034_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Catalysis letters |
PublicationTitleAbbrev | Catal Lett |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | PerniconeNDeactivation of Fe–Mo oxide catalyst in industrial plant and simulation tests on laboratory scaleCatal Today19911185911:CAS:528:DyaK38XmtVShtw%3D%3D10.1016/0920-5861(91)87009-C SöderhjelmEHouseMPCruiseNOn the synergy effect in MoO3–Fe2(MoO4)3 catalysts for methanol oxidation to formaldehydeTop Catal2008501451551:CAS:528:DC%2BD1cXht1yqsLjF10.1007/s11244-008-9112-1 FagherazziGPerniconeNStructural study of a methanol oxidation catalystJ Catal1970163213251:CAS:528:DyaE3cXptlKktg%3D%3D10.1016/0021-9517(70)90228-9 PopovBIBibinVNBoreskovGKStudy of an iron-molybfate oxide catalyst for oxidation of methanol to formaldehydeKinet Catal197617322327 BowkerMHouseMAlshehriASelectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdateCatal Struct React201519510010.1179/2055075815Y.0000000002 McCarronEMIβ-MoO3: a metastable analogue of WO3J Chem Soc, Chem Commun198610133633810.1039/C39860000336 YeoBRPudgeGJFBuglerKGThe surface of iron molybdate catalysts used for the selective oxidation of methanolSurf Sci20166481631691:CAS:528:DC%2BC2MXhvFWqtrrN10.1016/j.susc.2015.11.010 AnderssonAHernelindMAugustssonOA study of the ageing and deactivation phenomena occurring during operation of an iron molybdate catalyst in formaldehyde productionCatal Today200611240441:CAS:528:DC%2BD28XhvVSntLw%3D10.1016/j.cattod.2005.11.052 DrăganSKulicIA macrokinetic study of the oxidation of methanol to formaldehyde on Fe2O3–MoO3 oxide catalyst2016ChemStud Univ Babes-Bolyai61 PeláezRMarínPOrdóñezSSynthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalystAppl Catal A Gen20165271371451:CAS:528:DC%2BC28XhsFWitLvP10.1016/j.apcata.2016.09.002 IHS Chemical (2013) IHS analysis report Forecast: global formaldehyde market demand after five years GaurASchumannMRaunKVOperando XAS/XRD and raman spectroscopic study of structural changes of the iron molybdate catalyst during selective oxidation of methanolChemCatChem201910.1002/cctc.201901025 BowkerMBrookesCCarleyAFEvolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxidePhys Chem Chem Phys20131511988120031:CAS:528:DC%2BC3sXhtFSrt7bK10.1039/c3cp50399b LohbeckKHaferkornHFuhrmannWFedtkeNManganese and manganese alloysUllmann’s Encycl Ind Chem200510.1002/14356007.a16 BrazCGMendesARochaJModel of an industrial multitubular reactor for methanol to formaldehyde oxidation in the presence of catalyst deactivationChem Eng Sci20191953473551:CAS:528:DC%2BC1cXhvVyhtb3L10.1016/J.CES.2018.09.033 Merchant Research & Consulting ltd (2016) World Formaldehyde Production to Exceed 52 Mln Tonnes in 2017 SoaresAPVPortelaMFKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev2005471251741:CAS:528:DC%2BD2MXhs1Kmt7o%3D10.1081/CR-200049088 BrookesCWellsPPDimitratosNThe nature of the molybdenum surface in iron molybdate. the active phase in selective methanol oxidationJ Phys Chem C201411826155261611:CAS:528:DC%2BC2cXhslKktr7M10.1021/jp5081753 BowkerMCarleyAFHouseMContrasting the behaviour of MoO3 and MoO2 for the oxidation of methanolCatal Lett200812034391:CAS:528:DC%2BD1cXit1Krs78%3D10.1007/s10562-007-9255-x HuHDengCXuJMetastable h -MoO 3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activityJ Exp Nanosci201510133613461:CAS:528:DC%2BC2MXivFKisro%3D10.1080/17458080.2015.1012654 Magnusson A, Thevenin P (2018) In: Informally speaking (newsletter from Formox), winter 2017/2018 Rellán-PiñeiroMLópezNThe active molybdenum oxide phase in the methanol oxidation to formaldehyde (Formox process): a DFT studyChemsuschem20158223122391:CAS:528:DC%2BC2MXhtVegsbnN10.1002/cssc.20150031526083992 IvanovKIDimitrovDYDeactivation of an industrial iron-molybdate catalyst for methanol oxidationCatal Today20101542502551:CAS:528:DC%2BC3cXpvFOgt7g%3D10.1016/j.cattod.2010.03.051 XuQJiaGZhangJSurface phase composition of iron molybdate catalysts studied by UV Raman spectroscopyJ Phys Chem C2008112938793931:CAS:528:DC%2BD1cXms1ags70%3D10.1021/jp800359p DhageSRHassanMSYangOBLow temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformationMater Chem Phys20091145115141:CAS:528:DC%2BD1MXht1Gkt7c%3D10.1016/j.matchemphys.2008.10.076 SchuhKKleistWHøjMSelective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdatesAppl Catal A Gen20144821451561:CAS:528:DC%2BC2cXhtF2ktL%2FE10.1016/j.apcata.2014.05.038 LunkHJHartlHHartlMA“Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveriesInorg Chem201049940094081:CAS:528:DC%2BC3cXhtFGhsLvK10.1021/ic101103g20839845 MouritsFMRummensFHAA critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methodsCan J Chem197755300730201:CAS:528:DyaE1cXht1amsQ%3D%3D10.1139/v77-418 TeeLSGotohSStewartWEMolecular parameters for normal fluids. Lennard–Jones 12–6 potentialInd Eng Chem Fundam1966535636310.1021/i160019a011 BealeAMJacquesSDMSacaliuc-ParvalescuEAn iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterizationAppl Catal A Gen20093631431521:CAS:528:DC%2BD1MXnvVWqtbk%3D10.1016/j.apcata.2009.05.008 BrookesCWellsPPCibinGMolybdenum oxide on Fe2O3 core–shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysisACS Catal201442432501:CAS:528:DC%2BC3sXhvFWlt73F10.1021/cs400683e VanLeeuwen MEDerivation of Stockmayer potential parametersFluid Phase Equilib19949911810.1016/0378-3812(94)80018-9 CoelhoAATOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++J Appl Cryst2018512102181:CAS:528:DC%2BC1cXitlWnu7o%3D10.1107/S1600576718000183 RaunKVLundegaardLFChevallierJDeactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehydeCatal Sci Technol20188462646371:CAS:528:DC%2BC1cXhtlCmtbzN10.1039/C8CY01109E BahmanpourAMHoadleyATanksaleACritical review and exergy analysis of formaldehyde production processesRev Chem Eng201410.1515/revce-2014-0022 Vieira SoaresAPFarinha PortelaMKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev Sci Eng20054712517410.1081/CR-200049088 BowkerMHolroydRHouseMThe selective oxidation of methanol on iron molybdate catalystsTop Catal2008481581651:CAS:528:DC%2BD1cXmsVagtLk%3D10.1007/s11244-008-9058-3 HøjMKesslerTBeatoPStructure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHDAppl Catal A Gen201447229381:CAS:528:DC%2BC2cXjsVWqtrc%3D10.1016/j.apcata.2013.11.027 Günther R, Disteldorf W, Gamer AO, Hilt A (2012) Ullmann’s encyclopedia of industrial chemistry. Weinheim Chapter 4: Chapter 4 N Pernicone (3034_CR17) 1991; 11 M Bowker (3034_CR12) 2013; 15 M Bowker (3034_CR36) 2008; 48 M Rellán-Piñeiro (3034_CR14) 2015; 8 K Lohbeck (3034_CR20) 2005 M Høj (3034_CR27) 2014; 472 APV Soares (3034_CR7) 2005; 47 SR Dhage (3034_CR22) 2009; 114 C Brookes (3034_CR11) 2014; 118 M Bowker (3034_CR13) 2015; 1 HJ Lunk (3034_CR34) 2010; 49 BI Popov (3034_CR15) 1976; 17 H Hu (3034_CR23) 2015; 10 AM Beale (3034_CR26) 2009; 363 AA Coelho (3034_CR31) 2018; 51 A Andersson (3034_CR16) 2006; 112 Leeuwen ME Van (3034_CR28) 1994; 99 S Drăgan (3034_CR33) 2016 G Fagherazzi (3034_CR39) 1970; 16 AM Bahmanpour (3034_CR3) 2014 R Peláez (3034_CR37) 2016; 527 M Bowker (3034_CR9) 2008; 120 C Brookes (3034_CR38) 2014; 4 KI Ivanov (3034_CR6) 2010; 154 AP Vieira Soares (3034_CR19) 2005; 47 A Gaur (3034_CR25) 2019 K Schuh (3034_CR35) 2014; 482 LS Tee (3034_CR29) 1966; 5 3034_CR5 3034_CR4 BR Yeo (3034_CR10) 2016; 648 FM Mourits (3034_CR30) 1977; 55 3034_CR2 3034_CR1 Q Xu (3034_CR18) 2008; 112 EMI McCarron (3034_CR21) 1986; 101 KV Raun (3034_CR24) 2018; 8 CG Braz (3034_CR32) 2019; 195 E Söderhjelm (3034_CR8) 2008; 50 |
References_xml | – reference: GaurASchumannMRaunKVOperando XAS/XRD and raman spectroscopic study of structural changes of the iron molybdate catalyst during selective oxidation of methanolChemCatChem201910.1002/cctc.201901025 – reference: SoaresAPVPortelaMFKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev2005471251741:CAS:528:DC%2BD2MXhs1Kmt7o%3D10.1081/CR-200049088 – reference: DrăganSKulicIA macrokinetic study of the oxidation of methanol to formaldehyde on Fe2O3–MoO3 oxide catalyst2016ChemStud Univ Babes-Bolyai61 – reference: IHS Chemical (2013) IHS analysis report Forecast: global formaldehyde market demand after five years – reference: HuHDengCXuJMetastable h -MoO 3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activityJ Exp Nanosci201510133613461:CAS:528:DC%2BC2MXivFKisro%3D10.1080/17458080.2015.1012654 – reference: YeoBRPudgeGJFBuglerKGThe surface of iron molybdate catalysts used for the selective oxidation of methanolSurf Sci20166481631691:CAS:528:DC%2BC2MXhvFWqtrrN10.1016/j.susc.2015.11.010 – reference: BowkerMHolroydRHouseMThe selective oxidation of methanol on iron molybdate catalystsTop Catal2008481581651:CAS:528:DC%2BD1cXmsVagtLk%3D10.1007/s11244-008-9058-3 – reference: SöderhjelmEHouseMPCruiseNOn the synergy effect in MoO3–Fe2(MoO4)3 catalysts for methanol oxidation to formaldehydeTop Catal2008501451551:CAS:528:DC%2BD1cXht1yqsLjF10.1007/s11244-008-9112-1 – reference: Merchant Research & Consulting ltd (2016) World Formaldehyde Production to Exceed 52 Mln Tonnes in 2017 – reference: MouritsFMRummensFHAA critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methodsCan J Chem197755300730201:CAS:528:DyaE1cXht1amsQ%3D%3D10.1139/v77-418 – reference: Günther R, Disteldorf W, Gamer AO, Hilt A (2012) Ullmann’s encyclopedia of industrial chemistry. Weinheim Chapter 4: Chapter 4 – reference: XuQJiaGZhangJSurface phase composition of iron molybdate catalysts studied by UV Raman spectroscopyJ Phys Chem C2008112938793931:CAS:528:DC%2BD1cXms1ags70%3D10.1021/jp800359p – reference: RaunKVLundegaardLFChevallierJDeactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehydeCatal Sci Technol20188462646371:CAS:528:DC%2BC1cXhtlCmtbzN10.1039/C8CY01109E – reference: BrookesCWellsPPDimitratosNThe nature of the molybdenum surface in iron molybdate. the active phase in selective methanol oxidationJ Phys Chem C201411826155261611:CAS:528:DC%2BC2cXhslKktr7M10.1021/jp5081753 – reference: BealeAMJacquesSDMSacaliuc-ParvalescuEAn iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterizationAppl Catal A Gen20093631431521:CAS:528:DC%2BD1MXnvVWqtbk%3D10.1016/j.apcata.2009.05.008 – reference: TeeLSGotohSStewartWEMolecular parameters for normal fluids. Lennard–Jones 12–6 potentialInd Eng Chem Fundam1966535636310.1021/i160019a011 – reference: IvanovKIDimitrovDYDeactivation of an industrial iron-molybdate catalyst for methanol oxidationCatal Today20101542502551:CAS:528:DC%2BC3cXpvFOgt7g%3D10.1016/j.cattod.2010.03.051 – reference: PeláezRMarínPOrdóñezSSynthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalystAppl Catal A Gen20165271371451:CAS:528:DC%2BC28XhsFWitLvP10.1016/j.apcata.2016.09.002 – reference: PopovBIBibinVNBoreskovGKStudy of an iron-molybfate oxide catalyst for oxidation of methanol to formaldehydeKinet Catal197617322327 – reference: AnderssonAHernelindMAugustssonOA study of the ageing and deactivation phenomena occurring during operation of an iron molybdate catalyst in formaldehyde productionCatal Today200611240441:CAS:528:DC%2BD28XhvVSntLw%3D10.1016/j.cattod.2005.11.052 – reference: DhageSRHassanMSYangOBLow temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformationMater Chem Phys20091145115141:CAS:528:DC%2BD1MXht1Gkt7c%3D10.1016/j.matchemphys.2008.10.076 – reference: VanLeeuwen MEDerivation of Stockmayer potential parametersFluid Phase Equilib19949911810.1016/0378-3812(94)80018-9 – reference: BowkerMBrookesCCarleyAFEvolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxidePhys Chem Chem Phys20131511988120031:CAS:528:DC%2BC3sXhtFSrt7bK10.1039/c3cp50399b – reference: CoelhoAATOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++J Appl Cryst2018512102181:CAS:528:DC%2BC1cXitlWnu7o%3D10.1107/S1600576718000183 – reference: LunkHJHartlHHartlMA“Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveriesInorg Chem201049940094081:CAS:528:DC%2BC3cXhtFGhsLvK10.1021/ic101103g20839845 – reference: LohbeckKHaferkornHFuhrmannWFedtkeNManganese and manganese alloysUllmann’s Encycl Ind Chem200510.1002/14356007.a16 – reference: HøjMKesslerTBeatoPStructure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHDAppl Catal A Gen201447229381:CAS:528:DC%2BC2cXjsVWqtrc%3D10.1016/j.apcata.2013.11.027 – reference: BowkerMCarleyAFHouseMContrasting the behaviour of MoO3 and MoO2 for the oxidation of methanolCatal Lett200812034391:CAS:528:DC%2BD1cXit1Krs78%3D10.1007/s10562-007-9255-x – reference: FagherazziGPerniconeNStructural study of a methanol oxidation catalystJ Catal1970163213251:CAS:528:DyaE3cXptlKktg%3D%3D10.1016/0021-9517(70)90228-9 – reference: SchuhKKleistWHøjMSelective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdatesAppl Catal A Gen20144821451561:CAS:528:DC%2BC2cXhtF2ktL%2FE10.1016/j.apcata.2014.05.038 – reference: Rellán-PiñeiroMLópezNThe active molybdenum oxide phase in the methanol oxidation to formaldehyde (Formox process): a DFT studyChemsuschem20158223122391:CAS:528:DC%2BC2MXhtVegsbnN10.1002/cssc.20150031526083992 – reference: PerniconeNDeactivation of Fe–Mo oxide catalyst in industrial plant and simulation tests on laboratory scaleCatal Today19911185911:CAS:528:DyaK38XmtVShtw%3D%3D10.1016/0920-5861(91)87009-C – reference: BrookesCWellsPPCibinGMolybdenum oxide on Fe2O3 core–shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysisACS Catal201442432501:CAS:528:DC%2BC3sXhvFWlt73F10.1021/cs400683e – reference: McCarronEMIβ-MoO3: a metastable analogue of WO3J Chem Soc, Chem Commun198610133633810.1039/C39860000336 – reference: Magnusson A, Thevenin P (2018) In: Informally speaking (newsletter from Formox), winter 2017/2018 – reference: Vieira SoaresAPFarinha PortelaMKiennemannAMethanol selective oxidation to formaldehyde over iron-molybdate catalystsCatal Rev Sci Eng20054712517410.1081/CR-200049088 – reference: BahmanpourAMHoadleyATanksaleACritical review and exergy analysis of formaldehyde production processesRev Chem Eng201410.1515/revce-2014-0022 – reference: BrazCGMendesARochaJModel of an industrial multitubular reactor for methanol to formaldehyde oxidation in the presence of catalyst deactivationChem Eng Sci20191953473551:CAS:528:DC%2BC1cXhvVyhtb3L10.1016/J.CES.2018.09.033 – reference: BowkerMHouseMAlshehriASelectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdateCatal Struct React201519510010.1179/2055075815Y.0000000002 – year: 2005 ident: 3034_CR20 publication-title: Ullmann’s Encycl Ind Chem doi: 10.1002/14356007.a16 – volume: 5 start-page: 356 year: 1966 ident: 3034_CR29 publication-title: Ind Eng Chem Fundam doi: 10.1021/i160019a011 – volume: 101 start-page: 336 year: 1986 ident: 3034_CR21 publication-title: J Chem Soc, Chem Commun doi: 10.1039/C39860000336 – volume: 363 start-page: 143 year: 2009 ident: 3034_CR26 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2009.05.008 – volume: 47 start-page: 125 year: 2005 ident: 3034_CR19 publication-title: Catal Rev Sci Eng doi: 10.1081/CR-200049088 – volume: 51 start-page: 210 year: 2018 ident: 3034_CR31 publication-title: J Appl Cryst doi: 10.1107/S1600576718000183 – volume: 195 start-page: 347 year: 2019 ident: 3034_CR32 publication-title: Chem Eng Sci doi: 10.1016/J.CES.2018.09.033 – volume: 47 start-page: 125 year: 2005 ident: 3034_CR7 publication-title: Catal Rev doi: 10.1081/CR-200049088 – volume: 472 start-page: 29 year: 2014 ident: 3034_CR27 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2013.11.027 – volume: 482 start-page: 145 year: 2014 ident: 3034_CR35 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2014.05.038 – volume: 15 start-page: 11988 year: 2013 ident: 3034_CR12 publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp50399b – volume: 118 start-page: 26155 year: 2014 ident: 3034_CR11 publication-title: J Phys Chem C doi: 10.1021/jp5081753 – volume: 10 start-page: 1336 year: 2015 ident: 3034_CR23 publication-title: J Exp Nanosci doi: 10.1080/17458080.2015.1012654 – volume: 154 start-page: 250 year: 2010 ident: 3034_CR6 publication-title: Catal Today doi: 10.1016/j.cattod.2010.03.051 – volume: 120 start-page: 34 year: 2008 ident: 3034_CR9 publication-title: Catal Lett doi: 10.1007/s10562-007-9255-x – ident: 3034_CR2 – volume: 50 start-page: 145 year: 2008 ident: 3034_CR8 publication-title: Top Catal doi: 10.1007/s11244-008-9112-1 – ident: 3034_CR4 – volume: 112 start-page: 40 year: 2006 ident: 3034_CR16 publication-title: Catal Today doi: 10.1016/j.cattod.2005.11.052 – volume: 4 start-page: 243 year: 2014 ident: 3034_CR38 publication-title: ACS Catal doi: 10.1021/cs400683e – volume: 49 start-page: 9400 year: 2010 ident: 3034_CR34 publication-title: Inorg Chem doi: 10.1021/ic101103g – volume: 17 start-page: 322 year: 1976 ident: 3034_CR15 publication-title: Kinet Catal – year: 2019 ident: 3034_CR25 publication-title: ChemCatChem doi: 10.1002/cctc.201901025 – volume: 55 start-page: 3007 year: 1977 ident: 3034_CR30 publication-title: Can J Chem doi: 10.1139/v77-418 – volume: 648 start-page: 163 year: 2016 ident: 3034_CR10 publication-title: Surf Sci doi: 10.1016/j.susc.2015.11.010 – start-page: 61 volume-title: A macrokinetic study of the oxidation of methanol to formaldehyde on Fe2O3–MoO3 oxide catalyst year: 2016 ident: 3034_CR33 – volume: 48 start-page: 158 year: 2008 ident: 3034_CR36 publication-title: Top Catal doi: 10.1007/s11244-008-9058-3 – volume: 527 start-page: 137 year: 2016 ident: 3034_CR37 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2016.09.002 – volume: 8 start-page: 4626 year: 2018 ident: 3034_CR24 publication-title: Catal Sci Technol doi: 10.1039/C8CY01109E – year: 2014 ident: 3034_CR3 publication-title: Rev Chem Eng doi: 10.1515/revce-2014-0022 – ident: 3034_CR1 – volume: 11 start-page: 85 year: 1991 ident: 3034_CR17 publication-title: Catal Today doi: 10.1016/0920-5861(91)87009-C – volume: 1 start-page: 95 year: 2015 ident: 3034_CR13 publication-title: Catal Struct React doi: 10.1179/2055075815Y.0000000002 – volume: 99 start-page: 1 year: 1994 ident: 3034_CR28 publication-title: Fluid Phase Equilib doi: 10.1016/0378-3812(94)80018-9 – ident: 3034_CR5 – volume: 8 start-page: 2231 year: 2015 ident: 3034_CR14 publication-title: Chemsuschem doi: 10.1002/cssc.201500315 – volume: 112 start-page: 9387 year: 2008 ident: 3034_CR18 publication-title: J Phys Chem C doi: 10.1021/jp800359p – volume: 114 start-page: 511 year: 2009 ident: 3034_CR22 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.10.076 – volume: 16 start-page: 321 year: 1970 ident: 3034_CR39 publication-title: J Catal doi: 10.1016/0021-9517(70)90228-9 |
SSID | ssj0009719 |
Score | 2.4115567 |
Snippet | Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally... Iron molybdate/molybdenum oxide catalysts with varying content of Mo (Mo/Fe = 1.6 and 2.0) were synthesized by a mild hydrothermal method and structurally... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1434 |
SubjectTerms | Analysis Catalysis Catalysts Catalytic activity Chemical synthesis Chemistry Chemistry and Materials Science Crystals Deactivation Depletion Formaldehyde Heat treatment Hydrothermal crystal growth Industrial Chemistry/Chemical Engineering Iron Low temperature Methanol Methods Molybdenum oxides Molybdenum trioxide Organometallic Chemistry Oxidation Oxidation-reduction reaction Physical Chemistry Raman spectroscopy X ray photoelectron spectroscopy |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgPAAP0xiglY3JQkg8gKU0dhJ7b1VFtSIVEKNS3yx_BSZVCWoyie6v352brNsYSDznnK87-35n3_2OkLfgkVwpec48D4rBTHRM-oIzmStlAR-lIcRsi8_56Vx8WmSLriis6bPd-yPJuFLfKHYDXw2hr2JgmFww9ZA8yiB2R7uep6Mt1W4R23kMcfOPF-miK5W5_x633NHdRfmP09HodCZ7ZLdDi3S0Ue8z8iBU--TxuG_Stk-e3uATfE4uATrGZNc1rUs6XdUVm9XLtcWono5xo2bdtA0FnErPYv8bWOrol9_nm75KOGYWcCu9XtK2phOEs0sffq59OKHTvpsJin1dhQ1nOIyaxR7UL8h88vH7-JR1zRWYAxfUstJkKU45P-SC51YoWYahK0yReFkq43PpwPfbHAn3jJEJRLIgUiiZGZMkPvCXZKeqq3BAqBSpkNZ5p3wuLE-syAwgQS8BnVllywEZ9v9Yu455HBtgLPWWMxn1okEvOupFqwF5fz3m14Z345_Sb1B1GgktKsyY-WEumkZPz77pEUSIXMC6lg7Iu06orOHxznQFCPARyIF1S_KoNwHdTelGA7bJ8AxVFAPyoTeL7eW_v9yr_xM_JE9SjOljUuUR2WlXF-E1AJ_WHkc7vwKU3veV priority: 102 providerName: Springer Nature |
Title | Stability of Iron-Molybdate Catalysts for Selective Oxidation of Methanol to Formaldehyde: Influence of Preparation Method |
URI | https://link.springer.com/article/10.1007/s10562-019-03034-9 https://www.proquest.com/docview/2385585147 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagPQAHBAXUQKkshMQBLHbX-7C5oBAlbUApVUukcLL8WkCKdkt2KxF-PTMbL6EgeoqUjPOa8cw34_F8hDyHiGRLwXPmuJcMdqJlwhWciVxKA_go8b7rtjjJj-fp-0W2CAW3JrRV9j6xc9Sutlgjfw2hJcMjrLR4e_GdIWsUnq4GCo2bZDeGSIMWLiZH26G7RUfsEWMZkBfJIlyaCVfnIPJDIi0ZmDlPmbwSmP52z_-ck3bhZ3KP3A24kQ43ir5Pbvhqj9wa9XRte-TOH5MFH5CfACK7ttc1rUs6XdUVm9XLtcH8no6wZLNu2oYCYqXnHRMOOD368ce3DcMSrpl5LKrXS9rWdILAdun817Xzb-i05zVBsdOV30wPh1Wzjo36IZlPxp9GxyzQLDALwahlpc4S3Hwu5inPTSpF6WNb6CJyopTa5cICCjA5jt7TWkSQ04JIIUWmdRQ5zx-Rnaqu_D6hIk1SYayz0uWp4ZFJMw2Y0AnAaUaackDi_j9WNswgRyqMpdpOT0a9KNCL6vSi5IC8_L3mYjOB41rpZ6g6haMtKuyd-aIvm0ZNz8_UEHJFnoKHSwbkRRAqa_h4q8NVBPgROA3riuRBbwIqbO5GbU1xQF71ZrF9-f9f7vH17_aE3E4wm-_aKQ_ITru69E8B8rTmsLPrQ7I7PPr8YQyP78Ynp2fw7DwZ_gJ70P7R |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKORQOCAqIhQIWAnEAi2zsJDYSQtXCsku7BdFW2ptxYqdFWiVlkwrCj-I3MuMkLAXRW88Z52vGM-Px-D1CHkNEynLJY2a5UwxmYsakTTiTsVIp5Eehc77bYi-eHIr382i-Rn72Z2GwrbL3id5R2zLDGvkLCC0RbmGJ5PXJV4asUbi72lNotGax45pvsGSrXk3fgH6fhOH47cFowjpWAZaB761ZbqIQbc0OueBxKpTM3TBLTBJYmStjY5lB0EtjRJozRgawhAORRMnImCCwjsN9L5HLgnOFLYRy_G4F8pt4IpEhlh15Es67QzrdUT3INGDhrhhMKy6YOhMI_w4H_-zL-nA3vk6udXkq3W4N6wZZc8Um2Rj19HCb5OofSIY3yQ9IWn2bbUPLnE6XZcFm5aJJsZ5AR1giaqq6opAh033PvANOln74_qVldMIxM4dF_HJB65KOMZFeWHfcWPeSTnseFRT7uHQtWjmMmnn261vk8EIUcJusF2Xh7hAqRShkmtlM2VikPEhFZCAHtRLywlSl-YAM-3-ssw7zHKk3FnqF1ox60aAX7fWi1YA8-z3mpEX8OFf6EapOI5RGgb06R-a0qvR0_5PehrUpF-BRwwF52gnlJTw-M93RB_gIRN86I7nVm4DunEmlV6Y_IM97s1hd_v_L3T3_bg_JxuRgtqt3p3s798iVECsJvpVzi6zXy1N3H9KtOn3gbZySzxc9qX4Bm9w2sw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkXgcECwgCgtYCIkDWJvETmJzqwrVFuiyYqnUm2XHDiBVyarJSpRfz4yT0C4viXPGec3Y84098w0hz8AjFaXkGXPcKwYzsWDS5ZzJTCkL-CjxPmRbHGdHC_F2mS53qvhDtvtwJNnVNCBLU9UenrnycKfwDfw2hMGKgZFywdRlcgWW4xiTuhbJeEu7m4fWHjFuBPI8WfZlM3--xwXX9OsC_dtJaXBA01vkZo8c6bhT9W1yyVf75NpkaNi2T27scAveId8BRobE1w2tSzpb1xWb16uNxQifTnDTZtO0DQXMSk9DLxxY9uiHb1-7Hks4Zu5xW71e0bamU4S2K-e_bJx_RWdDZxMUO1n7jj8cRs1DP-q7ZDF982lyxPpGC6wAd9Sy0qQJTj8Xc8EzK5QsfVzkJo-cLJVxmSwAB9gMyfeMkRFEtSCSK5kaE0XO83tkr6orf59QKRIhbeEK5TJheWRFagAVOglIzSpbjkg8_GNd9Czk2Axjpbf8yagXDXrRQS9ajciLn2POOg6Of0o_RdVpJLeoMHvmszlvGj07_ajHEC1yAWtcMiLPe6GyhscXpi9GgI9APqwLkgeDCeh-ejcacE6K56kiH5GXg1lsL__95R78n_gTcvXk9VS_nx2_e0iuJxjqh1zLA7LXrs_9I8BDrX0cTP4H3Yr-xA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Iron-Molybdate+Catalysts+for+Selective+Oxidation+of+Methanol+to+Formaldehyde%3A+Influence+of+Preparation+Method&rft.jtitle=Catalysis+letters&rft.au=Raun%2C+Kristian+Viegaard&rft.au=Lundegaard%2C+Lars+Fahl&rft.au=Beato%2C+Pablo&rft.au=Appel%2C+Charlotte+Clausen&rft.date=2020-05-01&rft.pub=Springer&rft.issn=1011-372X&rft.volume=150&rft.issue=5&rft.spage=1434&rft_id=info:doi/10.1007%2Fs10562-019-03034-9&rft.externalDocID=A619347032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon |