Single-atom exploration of optimized nonequilibrium quantum thermodynamics by reinforcement learning

Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40 Ca + ion, for engineering qua...

Full description

Saved in:
Bibliographic Details
Published inCommunications physics Vol. 6; no. 1; pp. 286 - 8
Main Authors Zhang, Jiawei, Li, Jiachong, Tan, Qing-Shou, Bu, Jintao, Yuan, Wenfei, Wang, Bin, Ding, Geyi, Ding, Wenqiang, Chen, Liang, Yan, Leilei, Su, Shilei, Xiong, Taiping, Zhou, Fei, Feng, Mang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40 Ca + ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level. The authors use reinforcement learning (RL), an important algorithm in machine learning, to optimize nonequilibrium quantum thermodynamics. They find the optimized evolution of the state with higher fidelity and less consumption of entropy production as well as less work cost than in the case of free evolution, highlighting the potential of RL strategies.
AbstractList Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40 Ca + ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level. The authors use reinforcement learning (RL), an important algorithm in machine learning, to optimize nonequilibrium quantum thermodynamics. They find the optimized evolution of the state with higher fidelity and less consumption of entropy production as well as less work cost than in the case of free evolution, highlighting the potential of RL strategies.
Abstract Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40Ca+ ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.
Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40 Ca + ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.
Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40Ca+ ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.The authors use reinforcement learning (RL), an important algorithm in machine learning, to optimize nonequilibrium quantum thermodynamics. They find the optimized evolution of the state with higher fidelity and less consumption of entropy production as well as less work cost than in the case of free evolution, highlighting the potential of RL strategies.
ArticleNumber 286
Author Chen, Liang
Zhang, Jiawei
Bu, Jintao
Xiong, Taiping
Su, Shilei
Feng, Mang
Wang, Bin
Tan, Qing-Shou
Yuan, Wenfei
Ding, Geyi
Ding, Wenqiang
Yan, Leilei
Li, Jiachong
Zhou, Fei
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0003-1638-6676
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology
– sequence: 2
  givenname: Jiachong
  surname: Li
  fullname: Li, Jiachong
  organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences
– sequence: 3
  givenname: Qing-Shou
  orcidid: 0000-0002-7929-7702
  surname: Tan
  fullname: Tan, Qing-Shou
  email: qstan@hnist.edu.cn
  organization: Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communication, College of Physics and Electronics, Hunan Institute of Science and Technology
– sequence: 4
  givenname: Jintao
  surname: Bu
  fullname: Bu, Jintao
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences
– sequence: 5
  givenname: Wenfei
  surname: Yuan
  fullname: Yuan, Wenfei
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences
– sequence: 6
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences
– sequence: 7
  givenname: Geyi
  surname: Ding
  fullname: Ding, Geyi
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences
– sequence: 8
  givenname: Wenqiang
  surname: Ding
  fullname: Ding, Wenqiang
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences
– sequence: 9
  givenname: Liang
  orcidid: 0000-0001-9114-1885
  surname: Chen
  fullname: Chen, Liang
  organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences
– sequence: 10
  givenname: Leilei
  surname: Yan
  fullname: Yan, Leilei
  organization: School of Physics, Zhengzhou University
– sequence: 11
  givenname: Shilei
  orcidid: 0000-0002-2153-5827
  surname: Su
  fullname: Su, Shilei
  organization: School of Physics, Zhengzhou University
– sequence: 12
  givenname: Taiping
  orcidid: 0000-0002-2822-3340
  surname: Xiong
  fullname: Xiong, Taiping
  email: xiongtp@guet.edu.cn
  organization: Key Laboratory of Quantum Information Technology, Guilin University of Electronic Technology
– sequence: 13
  givenname: Fei
  orcidid: 0000-0002-0285-2309
  surname: Zhou
  fullname: Zhou, Fei
  email: zhoufei@wipm.ac.cn
  organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences
– sequence: 14
  givenname: Mang
  orcidid: 0000-0001-8652-6086
  surname: Feng
  fullname: Feng, Mang
  email: mangfeng@wipm.ac.cn
  organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Department of Physics, Zhejiang Normal University
BookMark eNp9UcuKFDEUDTKC4zg_4KrAdWkelUqylEGdgQEXzj4kqZs2TVXSnaTA9utNd4mKi1ndcDmvm_MaXcUUAaG3BL8nmMkPZaAY8x5T1mMyYNnzF-iaMqV6NnJ89c_7FbotZY8xpg0n2HiNpm8h7mboTU1LBz8Oc8qmhhS75Lt0qGEJP2HqzobHNczB5rAu3XE1sbZZv0Ne0nSKZgmudPbUZQjRp-xggVi7GUyOTf8NeunNXOD297xBT58_Pd3d949fvzzcfXzs3UBV7T0XbmSjMmo0YD0nThGlqPFMWauYE95JwyQQ8FZ4wcFyKmk7u61BGHaDHjbZKZm9PuSwmHzSyQR9WaS80ybX4GbQAk9EysmNTthBcakM85QSMTAFhNuz1rtN65DTcYVS9T6tObb0mkrBJGN8ZA1FN5TLqZQM_o8rwfrcjd660S2kvnSjeSPJ_0gu1Mun12zC_DyVbdTSfOIO8t9Uz7B-AdcPp10
CitedBy_id crossref_primary_10_1364_OE_537239
crossref_primary_10_1103_PhysRevA_109_042417
Cites_doi 10.1088/1367-2630/aaf749
10.1103/PhysRevLett.126.020601
10.1103/PhysRevResearch.2.033082
10.1073/pnas.1811501115
10.1103/PhysRevLett.123.110603
10.1038/nphys3230
10.1103/PhysRevE.60.2721
10.1103/PhysRevA.67.024303
10.1103/PhysRevLett.105.170402
10.1038/nature04061
10.1103/PhysRevResearch.2.043130
10.1103/PhysRevLett.60.2339
10.1088/1367-2630/ab8aaf
10.1103/PhysRevA.101.022330
10.1088/1367-2630/14/10/103035
10.1103/RevModPhys.91.045002
10.1038/nphys4035
10.1038/s41586-021-03242-7
10.1103/PhysRevB.99.214306
10.1038/s42005-019-0169-x
10.1103/PhysRevLett.117.130501
10.1103/PhysRevLett.126.060401
10.1126/sciadv.1600578
10.1103/PhysRevE.56.5018
10.1073/pnas.1714936115
10.1103/PhysRevLett.124.160401
10.1007/s11433-021-1841-2
10.1103/PhysRevLett.127.030502
10.1103/PhysRevLett.78.2690
10.1038/s42254-020-0230-4
10.1103/RevModPhys.79.53
10.1038/s41467-022-33667-1
10.1088/2058-9565/aaef5e
10.1103/RevModPhys.91.045001
10.1088/1367-2630/ab783d
10.1103/PhysRevLett.126.010601
10.1103/PhysRevLett.122.020503
10.1016/B978-0-12-408090-4.00002-5
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.1038/s42005-023-01408-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2399-3650
EndPage 8
ExternalDocumentID oai_doaj_org_article_70d188dc6c7b49589a3f2217439e15ba
10_1038_s42005_023_01408_5
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U21A20434
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 0R~
88I
AAFWJ
AAJSJ
ABDBF
ABJCF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
M2P
M7S
M~E
NAO
O9-
OK1
PIMPY
PTHSS
RNT
SNYQT
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AARCD
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c429t-f57c6369a96aebf51c91992af39bb93c7fc8a38e1efb7f75eb5282023c8ae7a3
IEDL.DBID DOA
ISSN 2399-3650
IngestDate Wed Aug 27 01:22:49 EDT 2025
Wed Aug 13 06:05:17 EDT 2025
Tue Jul 01 04:29:31 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-f57c6369a96aebf51c91992af39bb93c7fc8a38e1efb7f75eb5282023c8ae7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7929-7702
0000-0001-8652-6086
0000-0003-1638-6676
0000-0002-2822-3340
0000-0002-0285-2309
0000-0001-9114-1885
0000-0002-2153-5827
OpenAccessLink https://doaj.org/article/70d188dc6c7b49589a3f2217439e15ba
PQID 2873833563
PQPubID 4669724
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_70d188dc6c7b49589a3f2217439e15ba
proquest_journals_2873833563
crossref_primary_10_1038_s42005_023_01408_5
crossref_citationtrail_10_1038_s42005_023_01408_5
springer_journals_10_1038_s42005_023_01408_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-07
PublicationDateYYYYMMDD 2023-10-07
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications physics
PublicationTitleAbbrev Commun Phys
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Krenn, Erhard, Zeilinger (CR16) 2020; 2
Ai (CR28) 2022; 65
Innocenti, Banchi, Ferraro, Bose, Paternostro (CR24) 2020; 22
Deffner, Lutz (CR7) 2010; 105
Carleo (CR15) 2019; 91
Guéry-Odelin (CR30) 2019; 91
Jarzynski (CR3) 1997; 78
Zhang (CR10) 2020; 2
CR12
Guo (CR29) 2021; 126
CR31
Zhang (CR43) 2021; 127
Crooks (CR5) 1999; 60
Banchi, Grant, Rocchetto, Severini (CR27) 2018; 20
Collin (CR6) 2005; 437
Sriarunothai (CR38) 2019; 4
Dunjko, Taylor, Briegel (CR37) 2016; 117
Saggio (CR39) 2021; 591
Král, Thanopulos, Shapiro (CR1) 2007; 79
Liu, Su, Yung (CR36) 2020; 2
Giordani (CR22) 2019; 122
Giordani (CR23) 2020; 124
Sgroi, Palma, Paternostro (CR11) 2021; 126
Henson (CR13) 2018; 115
Zhou (CR41) 2016; 2
Shiraishi, Saito (CR8) 2019; 123
Melnikov (CR19) 2018; 115
Sjöqvist (CR32) 2012; 14
Porotti, Tamascelli, Restelli, Prati (CR20) 2019; 2
Carrasquilla, Melko (CR17) 2017; 13
Harney, Pirandola, Ferraro, Paternostro (CR25) 2018; 22
Lv (CR35) 2020; 101
Parrondo, Horowitz, Sagawa (CR2) 2015; 11
Jarzynski (CR4) 1997; 56
Vu, Hasegawa (CR9) 2021; 126
CR40
Zhang (CR42) 2022; 13
Yoshioka, Hamazaki (CR18) 2019; 99
Fösel, Tighineanu, Weiss, Marquardt (CR26) 2018; 8
Samuel, Bhandari (CR33) 1988; 60
Zhang, Wei, Asad, Yang, Wang (CR14) 2019; 5
Friedenauer, Sjöqvist (CR34) 2003; 67
Bukov (CR21) 2018; 8
JMR Parrondo (1408_CR2) 2015; 11
A Friedenauer (1408_CR34) 2003; 67
R Porotti (1408_CR20) 2019; 2
1408_CR31
P Sgroi (1408_CR11) 2021; 126
T Fösel (1408_CR26) 2018; 8
V Dunjko (1408_CR37) 2016; 117
1408_CR12
BM Henson (1408_CR13) 2018; 115
AA Melnikov (1408_CR19) 2018; 115
L Banchi (1408_CR27) 2018; 20
S-F Guo (1408_CR29) 2021; 126
1408_CR40
T Giordani (1408_CR22) 2019; 122
C Jarzynski (1408_CR4) 1997; 56
M Bukov (1408_CR21) 2018; 8
D Guéry-Odelin (1408_CR30) 2019; 91
L Innocenti (1408_CR24) 2020; 22
X-M Zhang (1408_CR14) 2019; 5
S Deffner (1408_CR7) 2010; 105
T Sriarunothai (1408_CR38) 2019; 4
F Zhou (1408_CR41) 2016; 2
GE Crooks (1408_CR5) 1999; 60
M-Z Ai (1408_CR28) 2022; 65
G Carleo (1408_CR15) 2019; 91
P Král (1408_CR1) 2007; 79
E Sjöqvist (1408_CR32) 2012; 14
T Giordani (1408_CR23) 2020; 124
B-J Liu (1408_CR36) 2020; 2
V Saggio (1408_CR39) 2021; 591
J-W Zhang (1408_CR42) 2022; 13
J Samuel (1408_CR33) 1988; 60
Q-X Lv (1408_CR35) 2020; 101
TV Vu (1408_CR9) 2021; 126
JW Zhang (1408_CR10) 2020; 2
D Collin (1408_CR6) 2005; 437
C Harney (1408_CR25) 2018; 22
J Carrasquilla (1408_CR17) 2017; 13
M Krenn (1408_CR16) 2020; 2
N Shiraishi (1408_CR8) 2019; 123
N Yoshioka (1408_CR18) 2019; 99
JW Zhang (1408_CR43) 2021; 127
C Jarzynski (1408_CR3) 1997; 78
References_xml – volume: 20
  start-page: 123030
  year: 2018
  ident: CR27
  article-title: Modelling non-markovian quantum processes with recurrent neural networks
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaf749
– volume: 126
  start-page: 020601
  year: 2021
  ident: CR11
  article-title: Reinforcement learning approach to nonequilibrium quantum thermodynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.020601
– volume: 2
  start-page: 033082
  year: 2020
  ident: CR10
  article-title: Single-atom verification of the information-theoretical bound of irreversibility at the quantum level
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033082
– volume: 115
  start-page: 13216
  year: 2018
  ident: CR13
  article-title: Approaching the adiabatic timescale with machine learning
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1811501115
– volume: 123
  start-page: 110603
  year: 2019
  ident: CR8
  article-title: Information-theoretical bound of the irreversibility in thermal relaxation processes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.110603
– volume: 11
  start-page: 131
  year: 2015
  ident: CR2
  article-title: Thermodynamics of information
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3230
– volume: 60
  start-page: 2721
  year: 1999
  ident: CR5
  article-title: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.60.2721
– volume: 67
  start-page: 024303
  year: 2003
  ident: CR34
  article-title: Noncyclic geometric quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.024303
– volume: 105
  start-page: 170402
  year: 2010
  ident: CR7
  article-title: Generalized clausius inequality for nonequilibrium quantum processes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.170402
– ident: CR12
– volume: 437
  start-page: 231
  year: 2005
  ident: CR6
  article-title: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies
  publication-title: Nature
  doi: 10.1038/nature04061
– volume: 2
  start-page: 043130
  year: 2020
  ident: CR36
  article-title: Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043130
– volume: 60
  start-page: 2339
  year: 1988
  ident: CR33
  article-title: General setting for berry’s phase
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2339
– volume: 22
  start-page: 065001
  year: 2020
  ident: CR24
  article-title: Supervised learning of time-independent Hamiltonians for gate design
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8aaf
– volume: 101
  start-page: 022330
  year: 2020
  ident: CR35
  article-title: Noncyclic geometric quantum computation with shortcut to adiabaticity
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.022330
– volume: 8
  start-page: 031084
  year: 2018
  ident: CR26
  article-title: Reinforcement learning with neural networks for quantum feedback
  publication-title: Phys. Rev. X
– volume: 14
  start-page: 103035
  year: 2012
  ident: CR32
  article-title: Non-adiabatic holonomic quantum computation
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/10/103035
– ident: CR40
– volume: 91
  start-page: 045002
  year: 2019
  ident: CR15
  article-title: Machine learning and the physical sciences
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 13
  start-page: 431
  year: 2017
  ident: CR17
  article-title: Machine learning phases of matter
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4035
– volume: 591
  start-page: 229
  year: 2021
  ident: CR39
  article-title: Experimental quantum speed-up in reinforcement learning agents
  publication-title: Nature (London)
  doi: 10.1038/s41586-021-03242-7
– volume: 99
  start-page: 214306
  year: 2019
  ident: CR18
  article-title: Constructing neural stationary states for open quantum many-body systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.214306
– volume: 2
  start-page: 61
  year: 2019
  ident: CR20
  article-title: Coherent transport of quantum states by deep reinforcement learning
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0169-x
– volume: 117
  start-page: 130501
  year: 2016
  ident: CR37
  article-title: Quantum-enhanced machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.130501
– volume: 5
  year: 2019
  ident: CR14
  article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation
  publication-title: npj Quant. Inf.
– volume: 126
  start-page: 060401
  year: 2021
  ident: CR29
  article-title: Faster state preparation across quantum phase transition assisted by reinforcement learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.060401
– volume: 2
  start-page: e1600578
  year: 2016
  ident: CR41
  article-title: Verifying Heisenberg’s error-disturbance relation using a single trapped ion
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600578
– volume: 56
  start-page: 5018
  year: 1997
  ident: CR4
  article-title: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.5018
– volume: 115
  start-page: 1221
  year: 2018
  ident: CR19
  article-title: Active learning machine learns to create new quantum experiments
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1714936115
– volume: 124
  start-page: 160401
  year: 2020
  ident: CR23
  article-title: Machine learning-based classification of vector vortex beams
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.160401
– volume: 65
  start-page: 250312
  year: 2022
  ident: CR28
  article-title: Experimentally realizing efficient quantum control with reinforcement learning
  publication-title: Sci. China-Phys. Mech. Astron.
  doi: 10.1007/s11433-021-1841-2
– ident: CR31
– volume: 127
  start-page: 030502
  year: 2021
  ident: CR43
  article-title: Single-atom verification of the noise-resilient and fast characteristics of universal nonadiabatic noncyclic geometric quantum gates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.030502
– volume: 78
  start-page: 2690
  year: 1997
  ident: CR3
  article-title: Nonequilibrium equality for free energy differences
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.78.2690
– volume: 2
  start-page: 649
  year: 2020
  ident: CR16
  article-title: Computer-inspired quantum experiments
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0230-4
– volume: 79
  start-page: 53
  year: 2007
  ident: CR1
  article-title: Coherently controlled adiabatic passage
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.53
– volume: 8
  start-page: 031086
  year: 2018
  ident: CR21
  article-title: Reinforcement learning in different phases of quantum control
  publication-title: Phys. Rev. X
– volume: 13
  year: 2022
  ident: CR42
  article-title: Dynamical control of quantum heat engines using exceptional points
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33667-1
– volume: 4
  start-page: 015014
  year: 2019
  ident: CR38
  article-title: Speeding-up the decision making of a learning agent using an ion trap quantum processor
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aaef5e
– volume: 91
  start-page: 045001
  year: 2019
  ident: CR30
  article-title: Shortcuts to adiabaticity: concepts, methods, and applications
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045001
– volume: 22
  start-page: 045001
  year: 2018
  ident: CR25
  article-title: Entanglement classification via neural network quantum states
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab783d
– volume: 126
  start-page: 010601
  year: 2021
  ident: CR9
  article-title: Geometrical bounds of the irreversibility in Markovian systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.010601
– volume: 122
  start-page: 020503
  year: 2019
  ident: CR22
  article-title: Experimental engineering of arbitrary qudit states with discrete-time quantum walks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.020503
– volume: 14
  start-page: 103035
  year: 2012
  ident: 1408_CR32
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/10/103035
– volume: 67
  start-page: 024303
  year: 2003
  ident: 1408_CR34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.024303
– volume: 123
  start-page: 110603
  year: 2019
  ident: 1408_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.110603
– volume: 13
  year: 2022
  ident: 1408_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33667-1
– volume: 126
  start-page: 060401
  year: 2021
  ident: 1408_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.060401
– volume: 126
  start-page: 020601
  year: 2021
  ident: 1408_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.020601
– volume: 437
  start-page: 231
  year: 2005
  ident: 1408_CR6
  publication-title: Nature
  doi: 10.1038/nature04061
– volume: 79
  start-page: 53
  year: 2007
  ident: 1408_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.53
– volume: 2
  start-page: 649
  year: 2020
  ident: 1408_CR16
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0230-4
– volume: 22
  start-page: 065001
  year: 2020
  ident: 1408_CR24
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8aaf
– ident: 1408_CR31
  doi: 10.1016/B978-0-12-408090-4.00002-5
– volume: 127
  start-page: 030502
  year: 2021
  ident: 1408_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.030502
– volume: 60
  start-page: 2339
  year: 1988
  ident: 1408_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2339
– volume: 8
  start-page: 031086
  year: 2018
  ident: 1408_CR21
  publication-title: Phys. Rev. X
– volume: 65
  start-page: 250312
  year: 2022
  ident: 1408_CR28
  publication-title: Sci. China-Phys. Mech. Astron.
  doi: 10.1007/s11433-021-1841-2
– volume: 591
  start-page: 229
  year: 2021
  ident: 1408_CR39
  publication-title: Nature (London)
  doi: 10.1038/s41586-021-03242-7
– volume: 8
  start-page: 031084
  year: 2018
  ident: 1408_CR26
  publication-title: Phys. Rev. X
– volume: 11
  start-page: 131
  year: 2015
  ident: 1408_CR2
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3230
– volume: 115
  start-page: 1221
  year: 2018
  ident: 1408_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1714936115
– volume: 101
  start-page: 022330
  year: 2020
  ident: 1408_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.022330
– volume: 91
  start-page: 045001
  year: 2019
  ident: 1408_CR30
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045001
– volume: 20
  start-page: 123030
  year: 2018
  ident: 1408_CR27
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaf749
– volume: 2
  start-page: 033082
  year: 2020
  ident: 1408_CR10
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033082
– volume: 13
  start-page: 431
  year: 2017
  ident: 1408_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4035
– volume: 99
  start-page: 214306
  year: 2019
  ident: 1408_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.214306
– volume: 56
  start-page: 5018
  year: 1997
  ident: 1408_CR4
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.5018
– volume: 22
  start-page: 045001
  year: 2018
  ident: 1408_CR25
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab783d
– volume: 124
  start-page: 160401
  year: 2020
  ident: 1408_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.160401
– volume: 78
  start-page: 2690
  year: 1997
  ident: 1408_CR3
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.78.2690
– volume: 117
  start-page: 130501
  year: 2016
  ident: 1408_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.130501
– volume: 115
  start-page: 13216
  year: 2018
  ident: 1408_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1811501115
– volume: 5
  year: 2019
  ident: 1408_CR14
  publication-title: npj Quant. Inf.
– volume: 105
  start-page: 170402
  year: 2010
  ident: 1408_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.170402
– ident: 1408_CR12
– volume: 91
  start-page: 045002
  year: 2019
  ident: 1408_CR15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 122
  start-page: 020503
  year: 2019
  ident: 1408_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.020503
– volume: 2
  start-page: e1600578
  year: 2016
  ident: 1408_CR41
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600578
– volume: 2
  start-page: 043130
  year: 2020
  ident: 1408_CR36
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043130
– volume: 126
  start-page: 010601
  year: 2021
  ident: 1408_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.010601
– volume: 2
  start-page: 61
  year: 2019
  ident: 1408_CR20
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0169-x
– volume: 60
  start-page: 2721
  year: 1999
  ident: 1408_CR5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.60.2721
– volume: 4
  start-page: 015014
  year: 2019
  ident: 1408_CR38
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aaef5e
– ident: 1408_CR40
SSID ssj0002140736
Score 2.262509
Snippet Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum...
Abstract Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 286
SubjectTerms 639/766/483/481
639/766/530/951
Accuracy
Algorithms
Calcium isotopes
Consumption
Data processing
Entropy
Evolution
Machine learning
Nonequilibrium thermodynamics
Physics
Physics and Astronomy
Quantum phenomena
Qubits (quantum computing)
Spontaneous emission
Thermodynamics
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA_aXryIouLrh-TgTUN3N5uvU2lLSxEsohV6C_mYlEKf2_d10L_eSTbvlRba00I2CWEmmcxvZjJDyOemQ8EbJTAhOsN6KQwzBhxD7dTzToNOMT9w_n4hz3_3367EVTW4LWpY5VomFkEdh5Bt5Aeo2fP8QEjyw7sZy1Wjsne1ltB4SbZRBGsEX9vHpxc_fm6sLB3iB5X9kzvj-3J9sOhL8k28qlgGF5qJBzdSSdz_QNt85CAt987ZG_K6Koz0aOTwW_IC_rwj8Rf2vQWGiHlKoYTRFQrTIdEBhcD05h9EisgeZqubEtW_mtLZCqmI36zyTYc4lqJfUP-XzqHkTw3FVEhrIYnr9-Ty7PTy5JzVegks4K2yZEmoILk0zkgHPok2mBxc6hI33hseVAracQ0tJK-SEuAFAi6kBDaDcvwD2coL-0gojo2oOTRK-tTrpndBuNSBMk1C_nVpQto1yWyoucRzSYtbW3zaXNuRzBYnt4XMVkzIl82YuzGTxrO9jzMnNj1zFuzSMMyvbT1UVjWx1ToGGZRHoKeN46kbMRa0wrsJ2Vvz0dajubD3G2lCvq55e__76SXtPD_bLnmVaVkC_dQe2VrOV7CPCsvSf6q78j-kD-oM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfBSbK34ai059KbB3c3m66gPSxH0Ygu9hSQ7KYU-n30fB_vXO5ndfdKihZ4WkswSZpLMTDLzG8ZOqgYP3k6DUKpxotXKCecgCLROo2ws2NyVBOdv3_XZRfv1Ul1usWbMhaGgfYK0pGN6jA77uGwJMxM1jCg-gRXqGdsp0O1lVU_1dHOv0mCvKS-Sh31Guf0H6T0dRFD99-zLB0-ipGlOX7LdwUTkn_pJ7bEt-LnPnlOoZlq-Yt0PpLoBgd7yjAOF0BF3-TzzOR4As-s76Dh69XC7vqaI_vWM366Rg_gt5t5s3vVl6Jc8_uYLIOzURNeEfCgicXXAzk-_nE_PxFArQSTUKCuRlUlaahecDhCzqpMrgaUhSxejk8nkZIO0UEOOJhsFUaGzhTzBZjBBvmbbZWJvGEfaDq2GyuiYW1u1IamQGzCuyii7Jk9YPTLPpwFHvJSzuPH0ni2t7xnu8eeeGO7VhL3f0PzqUTQeHf25yGQzsiBgU8N8ceWHFeFN1dXWdkknE9HJsy7I3PT-FdQqhgk7GiXqh2259OgeypJlpuWEfRil_Lf7_1M6fNrwt-xF4S0F_Zkjtr1arOEdGi-reEyr9Q9Ll-k_
  priority: 102
  providerName: Springer Nature
Title Single-atom exploration of optimized nonequilibrium quantum thermodynamics by reinforcement learning
URI https://link.springer.com/article/10.1038/s42005-023-01408-5
https://www.proquest.com/docview/2873833563
https://doaj.org/article/70d188dc6c7b49589a3f2217439e15ba
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZaeuFSFdGK8Ih84AYWu-v16xgiUhQJhIBK3CzbO0ZIpAGSHOivZ-zd8KhUuPS0ktdeWd-MPd-sxzOE7BYVbryNBCZEZVgthWHGgGPITj2vNOjYpAvOJ6fy-Fc9vhJXr0p9pZiwNj1wC9yBKppS6ybIoDySeW0cj1XLo6EUPlMjtHmvnKm0B1foN6h0LrnZ3ivXB7M6J91EE8WSU6GZeGOJcsL-Nyzzr4PRbG9G38jXjijSQTvBNfIJfq-T5gL73gJDT3lCIYfPZWTpNNIpLv7JzR9oKHr0cL-4ydH8iwm9XyB6-ExUbzJt2hL0M-of6QPkvKkh_yKkXQGJ6-_kcnR0OTxmXZ0EFtCazFkUKkgujTPSgY-iDCYFlbrIjfeGBxWDdlxDCdGrqAR4gY4WIoHNoBz_QVbSxDYIxbENMoZCSR9rXdQuCBcrUKaIKLcq9ki5hMyGLod4KmVxa_NZNte2hdnix22G2Yoe2Xsec9dm0Hi392GSxHPPlP06N6BO2E4n7Ec60SPbSznabknOLLqGPN0wk7xH9peyfXn97ylt_o8pbZHVhHgOA1TbZGX-sIAdpDNz3yef9ehnn3wZDMYXY3weHp2enWPrUA77WaufACkD9XA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABcEAsSWAj7ACawmcfw6VIgWli19XFik3iw_q0rdTfelqvwT_8jYSbYqEr31FMmxLWtmPJ73IPS-qIDxeh4IY5UiNWeKKBUMAenU0koGGX1KcD4-4aNf9Y9TdrqB_vS5MCmssueJmVH7xiUb-Q5I9jQlCHH6-XJGUteo5F3tW2i0ZHEYrq9AZVvsHnwF_H6oquG38f6IdF0FiAPeuySRCccpV0ZxE2xkpVMpBNNEqqxV1InopKEylCFaEQULloFaAk8bDAdhKGz7AD2sKVXpQsnh97VJpwJlRSRn6FabzC53FnWu9AmLSdJkJGG3nr_cJeCWaPuPNzY_csOn6EknneIvLTk9Qxth-hz5nzD3IhBQzyc45Ji9jE7cRNwAx5mc_w4eT5tpmK3OcwrBaoJnK0AZfJN8OWl82_d-ge01nodcrNVluyTuulacvUDj-wDjS7SZDvYKYVjrQUwpBLexlkVtHDOxCkIVEYiligNU9iDTritcnvpnXOjsQKdSt2DWsLnOYNZsgD6u11y2ZTvunL2XMLGemUpu54Fmfqa7G6xF4UspveNOWNAqpTI0Vq1CF0pmzQBt93jUHR9Y6BuqHaBPPW5vfv__SFt37_YOPRqNj4_00cHJ4Wv0OME1RxiKbbS5nK_CG5CUlvZtpk-M9D3fh78CSiZX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXBIWqWwr40BuYJnH8OsLCqi1QIVGk3iw_q0rdbruPA_x6xk6yqAiQOEVyZiJrxvHMZ88DYL9qcOMNIlLOG01bwTXVOlqK3qljjYoqhZzg_PlEHH5rj8_42QaIIRemBO2XkpZlmx6iww4WbamZiRaGZkygKH9zHdIduIv-dpVB11iM12crDVLIfCu522WVqz-w37JDpVz_LR_zt2vRYm0mj-Bh7yaSt93EHsNGvNqCeyVc0y-eQPiKXJeRImKekljC6IqEySyRGW4C04sfMRBE9vFmdVGi-ldTcrNCKeIzu3zTWeha0S-I-07msdRP9eWokPSNJM6fwunkw-n4kPb9EqhHq7KkiUsvmNBWCxtd4rXXObjUJqad08zL5JVlKtYxOZkkj44j4EKZ4HCUlm3DZp7YDhDkDeg5VFK41KqqtZ7b1ESpq4T6a9II6kF4xve1xHNLi0tT7rSZMp3ADX7cFIEbPoJXa57rrpLGP6nfZZ2sKXMV7DIwm5-bflUYWYVaqeCFlw6BntKWpabDWLHmzo5gb9Co6X_NhUGIyHKmmWAjeD1o-dfrv09p9__IX8L9L-8n5tPRycdn8CCLucQAyj3YXM5X8Tn6Mkv3oizcn8-u7Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-atom+exploration+of+optimized+nonequilibrium+quantum+thermodynamics+by+reinforcement+learning&rft.jtitle=Communications+physics&rft.au=Jiawei+Zhang&rft.au=Jiachong+Li&rft.au=Qing-Shou+Tan&rft.au=Jintao+Bu&rft.date=2023-10-07&rft.pub=Nature+Portfolio&rft.eissn=2399-3650&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs42005-023-01408-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70d188dc6c7b49589a3f2217439e15ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon