Single-atom exploration of optimized nonequilibrium quantum thermodynamics by reinforcement learning
Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40 Ca + ion, for engineering qua...
Saved in:
Published in | Communications physics Vol. 6; no. 1; pp. 286 - 8 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped
40
Ca
+
ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.
The authors use reinforcement learning (RL), an important algorithm in machine learning, to optimize nonequilibrium quantum thermodynamics. They find the optimized evolution of the state with higher fidelity and less consumption of entropy production as well as less work cost than in the case of free evolution, highlighting the potential of RL strategies. |
---|---|
AbstractList | Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped
40
Ca
+
ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.
The authors use reinforcement learning (RL), an important algorithm in machine learning, to optimize nonequilibrium quantum thermodynamics. They find the optimized evolution of the state with higher fidelity and less consumption of entropy production as well as less work cost than in the case of free evolution, highlighting the potential of RL strategies. Abstract Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40Ca+ ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level. Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40 Ca + ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level. Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40Ca+ ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.The authors use reinforcement learning (RL), an important algorithm in machine learning, to optimize nonequilibrium quantum thermodynamics. They find the optimized evolution of the state with higher fidelity and less consumption of entropy production as well as less work cost than in the case of free evolution, highlighting the potential of RL strategies. |
ArticleNumber | 286 |
Author | Chen, Liang Zhang, Jiawei Bu, Jintao Xiong, Taiping Su, Shilei Feng, Mang Wang, Bin Tan, Qing-Shou Yuan, Wenfei Ding, Geyi Ding, Wenqiang Yan, Leilei Li, Jiachong Zhou, Fei |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0003-1638-6676 surname: Zhang fullname: Zhang, Jiawei organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology – sequence: 2 givenname: Jiachong surname: Li fullname: Li, Jiachong organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences – sequence: 3 givenname: Qing-Shou orcidid: 0000-0002-7929-7702 surname: Tan fullname: Tan, Qing-Shou email: qstan@hnist.edu.cn organization: Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communication, College of Physics and Electronics, Hunan Institute of Science and Technology – sequence: 4 givenname: Jintao surname: Bu fullname: Bu, Jintao organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences – sequence: 5 givenname: Wenfei surname: Yuan fullname: Yuan, Wenfei organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences – sequence: 6 givenname: Bin surname: Wang fullname: Wang, Bin organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences – sequence: 7 givenname: Geyi surname: Ding fullname: Ding, Geyi organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences – sequence: 8 givenname: Wenqiang surname: Ding fullname: Ding, Wenqiang organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, School of Physics, University of the Chinese Academy of Sciences – sequence: 9 givenname: Liang orcidid: 0000-0001-9114-1885 surname: Chen fullname: Chen, Liang organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences – sequence: 10 givenname: Leilei surname: Yan fullname: Yan, Leilei organization: School of Physics, Zhengzhou University – sequence: 11 givenname: Shilei orcidid: 0000-0002-2153-5827 surname: Su fullname: Su, Shilei organization: School of Physics, Zhengzhou University – sequence: 12 givenname: Taiping orcidid: 0000-0002-2822-3340 surname: Xiong fullname: Xiong, Taiping email: xiongtp@guet.edu.cn organization: Key Laboratory of Quantum Information Technology, Guilin University of Electronic Technology – sequence: 13 givenname: Fei orcidid: 0000-0002-0285-2309 surname: Zhou fullname: Zhou, Fei email: zhoufei@wipm.ac.cn organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences – sequence: 14 givenname: Mang orcidid: 0000-0001-8652-6086 surname: Feng fullname: Feng, Mang email: mangfeng@wipm.ac.cn organization: Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Department of Physics, Zhejiang Normal University |
BookMark | eNp9UcuKFDEUDTKC4zg_4KrAdWkelUqylEGdgQEXzj4kqZs2TVXSnaTA9utNd4mKi1ndcDmvm_MaXcUUAaG3BL8nmMkPZaAY8x5T1mMyYNnzF-iaMqV6NnJ89c_7FbotZY8xpg0n2HiNpm8h7mboTU1LBz8Oc8qmhhS75Lt0qGEJP2HqzobHNczB5rAu3XE1sbZZv0Ne0nSKZgmudPbUZQjRp-xggVi7GUyOTf8NeunNXOD297xBT58_Pd3d949fvzzcfXzs3UBV7T0XbmSjMmo0YD0nThGlqPFMWauYE95JwyQQ8FZ4wcFyKmk7u61BGHaDHjbZKZm9PuSwmHzSyQR9WaS80ybX4GbQAk9EysmNTthBcakM85QSMTAFhNuz1rtN65DTcYVS9T6tObb0mkrBJGN8ZA1FN5TLqZQM_o8rwfrcjd660S2kvnSjeSPJ_0gu1Mun12zC_DyVbdTSfOIO8t9Uz7B-AdcPp10 |
CitedBy_id | crossref_primary_10_1364_OE_537239 crossref_primary_10_1103_PhysRevA_109_042417 |
Cites_doi | 10.1088/1367-2630/aaf749 10.1103/PhysRevLett.126.020601 10.1103/PhysRevResearch.2.033082 10.1073/pnas.1811501115 10.1103/PhysRevLett.123.110603 10.1038/nphys3230 10.1103/PhysRevE.60.2721 10.1103/PhysRevA.67.024303 10.1103/PhysRevLett.105.170402 10.1038/nature04061 10.1103/PhysRevResearch.2.043130 10.1103/PhysRevLett.60.2339 10.1088/1367-2630/ab8aaf 10.1103/PhysRevA.101.022330 10.1088/1367-2630/14/10/103035 10.1103/RevModPhys.91.045002 10.1038/nphys4035 10.1038/s41586-021-03242-7 10.1103/PhysRevB.99.214306 10.1038/s42005-019-0169-x 10.1103/PhysRevLett.117.130501 10.1103/PhysRevLett.126.060401 10.1126/sciadv.1600578 10.1103/PhysRevE.56.5018 10.1073/pnas.1714936115 10.1103/PhysRevLett.124.160401 10.1007/s11433-021-1841-2 10.1103/PhysRevLett.127.030502 10.1103/PhysRevLett.78.2690 10.1038/s42254-020-0230-4 10.1103/RevModPhys.79.53 10.1038/s41467-022-33667-1 10.1088/2058-9565/aaef5e 10.1103/RevModPhys.91.045001 10.1088/1367-2630/ab783d 10.1103/PhysRevLett.126.010601 10.1103/PhysRevLett.122.020503 10.1016/B978-0-12-408090-4.00002-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.1038/s42005-023-01408-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2399-3650 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_70d188dc6c7b49589a3f2217439e15ba 10_1038_s42005_023_01408_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U21A20434 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 88I AAFWJ AAJSJ ABDBF ABJCF ABUWG ACGFS ACSMW ACUHS ADBBV ADMLS AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BGLVJ C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ M2P M7S M~E NAO O9- OK1 PIMPY PTHSS RNT SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AARCD L6V PKEHL PQEST PQGLB PQQKQ PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c429t-f57c6369a96aebf51c91992af39bb93c7fc8a38e1efb7f75eb5282023c8ae7a3 |
IEDL.DBID | DOA |
ISSN | 2399-3650 |
IngestDate | Wed Aug 27 01:22:49 EDT 2025 Wed Aug 13 06:05:17 EDT 2025 Tue Jul 01 04:29:31 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Fri Feb 21 02:37:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-f57c6369a96aebf51c91992af39bb93c7fc8a38e1efb7f75eb5282023c8ae7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7929-7702 0000-0001-8652-6086 0000-0003-1638-6676 0000-0002-2822-3340 0000-0002-0285-2309 0000-0001-9114-1885 0000-0002-2153-5827 |
OpenAccessLink | https://doaj.org/article/70d188dc6c7b49589a3f2217439e15ba |
PQID | 2873833563 |
PQPubID | 4669724 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70d188dc6c7b49589a3f2217439e15ba proquest_journals_2873833563 crossref_primary_10_1038_s42005_023_01408_5 crossref_citationtrail_10_1038_s42005_023_01408_5 springer_journals_10_1038_s42005_023_01408_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-07 |
PublicationDateYYYYMMDD | 2023-10-07 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications physics |
PublicationTitleAbbrev | Commun Phys |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Krenn, Erhard, Zeilinger (CR16) 2020; 2 Ai (CR28) 2022; 65 Innocenti, Banchi, Ferraro, Bose, Paternostro (CR24) 2020; 22 Deffner, Lutz (CR7) 2010; 105 Carleo (CR15) 2019; 91 Guéry-Odelin (CR30) 2019; 91 Jarzynski (CR3) 1997; 78 Zhang (CR10) 2020; 2 CR12 Guo (CR29) 2021; 126 CR31 Zhang (CR43) 2021; 127 Crooks (CR5) 1999; 60 Banchi, Grant, Rocchetto, Severini (CR27) 2018; 20 Collin (CR6) 2005; 437 Sriarunothai (CR38) 2019; 4 Dunjko, Taylor, Briegel (CR37) 2016; 117 Saggio (CR39) 2021; 591 Král, Thanopulos, Shapiro (CR1) 2007; 79 Liu, Su, Yung (CR36) 2020; 2 Giordani (CR22) 2019; 122 Giordani (CR23) 2020; 124 Sgroi, Palma, Paternostro (CR11) 2021; 126 Henson (CR13) 2018; 115 Zhou (CR41) 2016; 2 Shiraishi, Saito (CR8) 2019; 123 Melnikov (CR19) 2018; 115 Sjöqvist (CR32) 2012; 14 Porotti, Tamascelli, Restelli, Prati (CR20) 2019; 2 Carrasquilla, Melko (CR17) 2017; 13 Harney, Pirandola, Ferraro, Paternostro (CR25) 2018; 22 Lv (CR35) 2020; 101 Parrondo, Horowitz, Sagawa (CR2) 2015; 11 Jarzynski (CR4) 1997; 56 Vu, Hasegawa (CR9) 2021; 126 CR40 Zhang (CR42) 2022; 13 Yoshioka, Hamazaki (CR18) 2019; 99 Fösel, Tighineanu, Weiss, Marquardt (CR26) 2018; 8 Samuel, Bhandari (CR33) 1988; 60 Zhang, Wei, Asad, Yang, Wang (CR14) 2019; 5 Friedenauer, Sjöqvist (CR34) 2003; 67 Bukov (CR21) 2018; 8 JMR Parrondo (1408_CR2) 2015; 11 A Friedenauer (1408_CR34) 2003; 67 R Porotti (1408_CR20) 2019; 2 1408_CR31 P Sgroi (1408_CR11) 2021; 126 T Fösel (1408_CR26) 2018; 8 V Dunjko (1408_CR37) 2016; 117 1408_CR12 BM Henson (1408_CR13) 2018; 115 AA Melnikov (1408_CR19) 2018; 115 L Banchi (1408_CR27) 2018; 20 S-F Guo (1408_CR29) 2021; 126 1408_CR40 T Giordani (1408_CR22) 2019; 122 C Jarzynski (1408_CR4) 1997; 56 M Bukov (1408_CR21) 2018; 8 D Guéry-Odelin (1408_CR30) 2019; 91 L Innocenti (1408_CR24) 2020; 22 X-M Zhang (1408_CR14) 2019; 5 S Deffner (1408_CR7) 2010; 105 T Sriarunothai (1408_CR38) 2019; 4 F Zhou (1408_CR41) 2016; 2 GE Crooks (1408_CR5) 1999; 60 M-Z Ai (1408_CR28) 2022; 65 G Carleo (1408_CR15) 2019; 91 P Král (1408_CR1) 2007; 79 E Sjöqvist (1408_CR32) 2012; 14 T Giordani (1408_CR23) 2020; 124 B-J Liu (1408_CR36) 2020; 2 V Saggio (1408_CR39) 2021; 591 J-W Zhang (1408_CR42) 2022; 13 J Samuel (1408_CR33) 1988; 60 Q-X Lv (1408_CR35) 2020; 101 TV Vu (1408_CR9) 2021; 126 JW Zhang (1408_CR10) 2020; 2 D Collin (1408_CR6) 2005; 437 C Harney (1408_CR25) 2018; 22 J Carrasquilla (1408_CR17) 2017; 13 M Krenn (1408_CR16) 2020; 2 N Shiraishi (1408_CR8) 2019; 123 N Yoshioka (1408_CR18) 2019; 99 JW Zhang (1408_CR43) 2021; 127 C Jarzynski (1408_CR3) 1997; 78 |
References_xml | – volume: 20 start-page: 123030 year: 2018 ident: CR27 article-title: Modelling non-markovian quantum processes with recurrent neural networks publication-title: New J. Phys. doi: 10.1088/1367-2630/aaf749 – volume: 126 start-page: 020601 year: 2021 ident: CR11 article-title: Reinforcement learning approach to nonequilibrium quantum thermodynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.020601 – volume: 2 start-page: 033082 year: 2020 ident: CR10 article-title: Single-atom verification of the information-theoretical bound of irreversibility at the quantum level publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033082 – volume: 115 start-page: 13216 year: 2018 ident: CR13 article-title: Approaching the adiabatic timescale with machine learning publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1811501115 – volume: 123 start-page: 110603 year: 2019 ident: CR8 article-title: Information-theoretical bound of the irreversibility in thermal relaxation processes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.110603 – volume: 11 start-page: 131 year: 2015 ident: CR2 article-title: Thermodynamics of information publication-title: Nat. Phys. doi: 10.1038/nphys3230 – volume: 60 start-page: 2721 year: 1999 ident: CR5 article-title: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.2721 – volume: 67 start-page: 024303 year: 2003 ident: CR34 article-title: Noncyclic geometric quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.024303 – volume: 105 start-page: 170402 year: 2010 ident: CR7 article-title: Generalized clausius inequality for nonequilibrium quantum processes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.170402 – ident: CR12 – volume: 437 start-page: 231 year: 2005 ident: CR6 article-title: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies publication-title: Nature doi: 10.1038/nature04061 – volume: 2 start-page: 043130 year: 2020 ident: CR36 article-title: Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043130 – volume: 60 start-page: 2339 year: 1988 ident: CR33 article-title: General setting for berry’s phase publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2339 – volume: 22 start-page: 065001 year: 2020 ident: CR24 article-title: Supervised learning of time-independent Hamiltonians for gate design publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8aaf – volume: 101 start-page: 022330 year: 2020 ident: CR35 article-title: Noncyclic geometric quantum computation with shortcut to adiabaticity publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.022330 – volume: 8 start-page: 031084 year: 2018 ident: CR26 article-title: Reinforcement learning with neural networks for quantum feedback publication-title: Phys. Rev. X – volume: 14 start-page: 103035 year: 2012 ident: CR32 article-title: Non-adiabatic holonomic quantum computation publication-title: New J. Phys. doi: 10.1088/1367-2630/14/10/103035 – ident: CR40 – volume: 91 start-page: 045002 year: 2019 ident: CR15 article-title: Machine learning and the physical sciences publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045002 – volume: 13 start-page: 431 year: 2017 ident: CR17 article-title: Machine learning phases of matter publication-title: Nat. Phys. doi: 10.1038/nphys4035 – volume: 591 start-page: 229 year: 2021 ident: CR39 article-title: Experimental quantum speed-up in reinforcement learning agents publication-title: Nature (London) doi: 10.1038/s41586-021-03242-7 – volume: 99 start-page: 214306 year: 2019 ident: CR18 article-title: Constructing neural stationary states for open quantum many-body systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.214306 – volume: 2 start-page: 61 year: 2019 ident: CR20 article-title: Coherent transport of quantum states by deep reinforcement learning publication-title: Commun. Phys. doi: 10.1038/s42005-019-0169-x – volume: 117 start-page: 130501 year: 2016 ident: CR37 article-title: Quantum-enhanced machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.130501 – volume: 5 year: 2019 ident: CR14 article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation publication-title: npj Quant. Inf. – volume: 126 start-page: 060401 year: 2021 ident: CR29 article-title: Faster state preparation across quantum phase transition assisted by reinforcement learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.060401 – volume: 2 start-page: e1600578 year: 2016 ident: CR41 article-title: Verifying Heisenberg’s error-disturbance relation using a single trapped ion publication-title: Sci. Adv. doi: 10.1126/sciadv.1600578 – volume: 56 start-page: 5018 year: 1997 ident: CR4 article-title: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.5018 – volume: 115 start-page: 1221 year: 2018 ident: CR19 article-title: Active learning machine learns to create new quantum experiments publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1714936115 – volume: 124 start-page: 160401 year: 2020 ident: CR23 article-title: Machine learning-based classification of vector vortex beams publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.160401 – volume: 65 start-page: 250312 year: 2022 ident: CR28 article-title: Experimentally realizing efficient quantum control with reinforcement learning publication-title: Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-021-1841-2 – ident: CR31 – volume: 127 start-page: 030502 year: 2021 ident: CR43 article-title: Single-atom verification of the noise-resilient and fast characteristics of universal nonadiabatic noncyclic geometric quantum gates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.030502 – volume: 78 start-page: 2690 year: 1997 ident: CR3 article-title: Nonequilibrium equality for free energy differences publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.78.2690 – volume: 2 start-page: 649 year: 2020 ident: CR16 article-title: Computer-inspired quantum experiments publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0230-4 – volume: 79 start-page: 53 year: 2007 ident: CR1 article-title: Coherently controlled adiabatic passage publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.53 – volume: 8 start-page: 031086 year: 2018 ident: CR21 article-title: Reinforcement learning in different phases of quantum control publication-title: Phys. Rev. X – volume: 13 year: 2022 ident: CR42 article-title: Dynamical control of quantum heat engines using exceptional points publication-title: Nat. Commun. doi: 10.1038/s41467-022-33667-1 – volume: 4 start-page: 015014 year: 2019 ident: CR38 article-title: Speeding-up the decision making of a learning agent using an ion trap quantum processor publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/aaef5e – volume: 91 start-page: 045001 year: 2019 ident: CR30 article-title: Shortcuts to adiabaticity: concepts, methods, and applications publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045001 – volume: 22 start-page: 045001 year: 2018 ident: CR25 article-title: Entanglement classification via neural network quantum states publication-title: New J. Phys. doi: 10.1088/1367-2630/ab783d – volume: 126 start-page: 010601 year: 2021 ident: CR9 article-title: Geometrical bounds of the irreversibility in Markovian systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.010601 – volume: 122 start-page: 020503 year: 2019 ident: CR22 article-title: Experimental engineering of arbitrary qudit states with discrete-time quantum walks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.020503 – volume: 14 start-page: 103035 year: 2012 ident: 1408_CR32 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/10/103035 – volume: 67 start-page: 024303 year: 2003 ident: 1408_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.024303 – volume: 123 start-page: 110603 year: 2019 ident: 1408_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.110603 – volume: 13 year: 2022 ident: 1408_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33667-1 – volume: 126 start-page: 060401 year: 2021 ident: 1408_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.060401 – volume: 126 start-page: 020601 year: 2021 ident: 1408_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.020601 – volume: 437 start-page: 231 year: 2005 ident: 1408_CR6 publication-title: Nature doi: 10.1038/nature04061 – volume: 79 start-page: 53 year: 2007 ident: 1408_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.53 – volume: 2 start-page: 649 year: 2020 ident: 1408_CR16 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0230-4 – volume: 22 start-page: 065001 year: 2020 ident: 1408_CR24 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8aaf – ident: 1408_CR31 doi: 10.1016/B978-0-12-408090-4.00002-5 – volume: 127 start-page: 030502 year: 2021 ident: 1408_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.030502 – volume: 60 start-page: 2339 year: 1988 ident: 1408_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2339 – volume: 8 start-page: 031086 year: 2018 ident: 1408_CR21 publication-title: Phys. Rev. X – volume: 65 start-page: 250312 year: 2022 ident: 1408_CR28 publication-title: Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-021-1841-2 – volume: 591 start-page: 229 year: 2021 ident: 1408_CR39 publication-title: Nature (London) doi: 10.1038/s41586-021-03242-7 – volume: 8 start-page: 031084 year: 2018 ident: 1408_CR26 publication-title: Phys. Rev. X – volume: 11 start-page: 131 year: 2015 ident: 1408_CR2 publication-title: Nat. Phys. doi: 10.1038/nphys3230 – volume: 115 start-page: 1221 year: 2018 ident: 1408_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1714936115 – volume: 101 start-page: 022330 year: 2020 ident: 1408_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.022330 – volume: 91 start-page: 045001 year: 2019 ident: 1408_CR30 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045001 – volume: 20 start-page: 123030 year: 2018 ident: 1408_CR27 publication-title: New J. Phys. doi: 10.1088/1367-2630/aaf749 – volume: 2 start-page: 033082 year: 2020 ident: 1408_CR10 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033082 – volume: 13 start-page: 431 year: 2017 ident: 1408_CR17 publication-title: Nat. Phys. doi: 10.1038/nphys4035 – volume: 99 start-page: 214306 year: 2019 ident: 1408_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.214306 – volume: 56 start-page: 5018 year: 1997 ident: 1408_CR4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.5018 – volume: 22 start-page: 045001 year: 2018 ident: 1408_CR25 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab783d – volume: 124 start-page: 160401 year: 2020 ident: 1408_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.160401 – volume: 78 start-page: 2690 year: 1997 ident: 1408_CR3 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.78.2690 – volume: 117 start-page: 130501 year: 2016 ident: 1408_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.130501 – volume: 115 start-page: 13216 year: 2018 ident: 1408_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1811501115 – volume: 5 year: 2019 ident: 1408_CR14 publication-title: npj Quant. Inf. – volume: 105 start-page: 170402 year: 2010 ident: 1408_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.170402 – ident: 1408_CR12 – volume: 91 start-page: 045002 year: 2019 ident: 1408_CR15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045002 – volume: 122 start-page: 020503 year: 2019 ident: 1408_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.020503 – volume: 2 start-page: e1600578 year: 2016 ident: 1408_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600578 – volume: 2 start-page: 043130 year: 2020 ident: 1408_CR36 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043130 – volume: 126 start-page: 010601 year: 2021 ident: 1408_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.010601 – volume: 2 start-page: 61 year: 2019 ident: 1408_CR20 publication-title: Commun. Phys. doi: 10.1038/s42005-019-0169-x – volume: 60 start-page: 2721 year: 1999 ident: 1408_CR5 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.2721 – volume: 4 start-page: 015014 year: 2019 ident: 1408_CR38 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/aaef5e – ident: 1408_CR40 |
SSID | ssj0002140736 |
Score | 2.262509 |
Snippet | Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum... Abstract Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 286 |
SubjectTerms | 639/766/483/481 639/766/530/951 Accuracy Algorithms Calcium isotopes Consumption Data processing Entropy Evolution Machine learning Nonequilibrium thermodynamics Physics Physics and Astronomy Quantum phenomena Qubits (quantum computing) Spontaneous emission Thermodynamics |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA_aXryIouLrh-TgTUN3N5uvU2lLSxEsohV6C_mYlEKf2_d10L_eSTbvlRba00I2CWEmmcxvZjJDyOemQ8EbJTAhOsN6KQwzBhxD7dTzToNOMT9w_n4hz3_3367EVTW4LWpY5VomFkEdh5Bt5Aeo2fP8QEjyw7sZy1Wjsne1ltB4SbZRBGsEX9vHpxc_fm6sLB3iB5X9kzvj-3J9sOhL8k28qlgGF5qJBzdSSdz_QNt85CAt987ZG_K6Koz0aOTwW_IC_rwj8Rf2vQWGiHlKoYTRFQrTIdEBhcD05h9EisgeZqubEtW_mtLZCqmI36zyTYc4lqJfUP-XzqHkTw3FVEhrIYnr9-Ty7PTy5JzVegks4K2yZEmoILk0zkgHPok2mBxc6hI33hseVAracQ0tJK-SEuAFAi6kBDaDcvwD2coL-0gojo2oOTRK-tTrpndBuNSBMk1C_nVpQto1yWyoucRzSYtbW3zaXNuRzBYnt4XMVkzIl82YuzGTxrO9jzMnNj1zFuzSMMyvbT1UVjWx1ToGGZRHoKeN46kbMRa0wrsJ2Vvz0dajubD3G2lCvq55e__76SXtPD_bLnmVaVkC_dQe2VrOV7CPCsvSf6q78j-kD-oM priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfBSbK34ai059KbB3c3m66gPSxH0Ygu9hSQ7KYU-n30fB_vXO5ndfdKihZ4WkswSZpLMTDLzG8ZOqgYP3k6DUKpxotXKCecgCLROo2ws2NyVBOdv3_XZRfv1Ul1usWbMhaGgfYK0pGN6jA77uGwJMxM1jCg-gRXqGdsp0O1lVU_1dHOv0mCvKS-Sh31Guf0H6T0dRFD99-zLB0-ipGlOX7LdwUTkn_pJ7bEt-LnPnlOoZlq-Yt0PpLoBgd7yjAOF0BF3-TzzOR4As-s76Dh69XC7vqaI_vWM366Rg_gt5t5s3vVl6Jc8_uYLIOzURNeEfCgicXXAzk-_nE_PxFArQSTUKCuRlUlaahecDhCzqpMrgaUhSxejk8nkZIO0UEOOJhsFUaGzhTzBZjBBvmbbZWJvGEfaDq2GyuiYW1u1IamQGzCuyii7Jk9YPTLPpwFHvJSzuPH0ni2t7xnu8eeeGO7VhL3f0PzqUTQeHf25yGQzsiBgU8N8ceWHFeFN1dXWdkknE9HJsy7I3PT-FdQqhgk7GiXqh2259OgeypJlpuWEfRil_Lf7_1M6fNrwt-xF4S0F_Zkjtr1arOEdGi-reEyr9Q9Ll-k_ priority: 102 providerName: Springer Nature |
Title | Single-atom exploration of optimized nonequilibrium quantum thermodynamics by reinforcement learning |
URI | https://link.springer.com/article/10.1038/s42005-023-01408-5 https://www.proquest.com/docview/2873833563 https://doaj.org/article/70d188dc6c7b49589a3f2217439e15ba |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZaeuFSFdGK8Ih84AYWu-v16xgiUhQJhIBK3CzbO0ZIpAGSHOivZ-zd8KhUuPS0ktdeWd-MPd-sxzOE7BYVbryNBCZEZVgthWHGgGPITj2vNOjYpAvOJ6fy-Fc9vhJXr0p9pZiwNj1wC9yBKppS6ybIoDySeW0cj1XLo6EUPlMjtHmvnKm0B1foN6h0LrnZ3ivXB7M6J91EE8WSU6GZeGOJcsL-Nyzzr4PRbG9G38jXjijSQTvBNfIJfq-T5gL73gJDT3lCIYfPZWTpNNIpLv7JzR9oKHr0cL-4ydH8iwm9XyB6-ExUbzJt2hL0M-of6QPkvKkh_yKkXQGJ6-_kcnR0OTxmXZ0EFtCazFkUKkgujTPSgY-iDCYFlbrIjfeGBxWDdlxDCdGrqAR4gY4WIoHNoBz_QVbSxDYIxbENMoZCSR9rXdQuCBcrUKaIKLcq9ki5hMyGLod4KmVxa_NZNte2hdnix22G2Yoe2Xsec9dm0Hi392GSxHPPlP06N6BO2E4n7Ec60SPbSznabknOLLqGPN0wk7xH9peyfXn97ylt_o8pbZHVhHgOA1TbZGX-sIAdpDNz3yef9ehnn3wZDMYXY3weHp2enWPrUA77WaufACkD9XA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABcEAsSWAj7ACawmcfw6VIgWli19XFik3iw_q0rdTfelqvwT_8jYSbYqEr31FMmxLWtmPJ73IPS-qIDxeh4IY5UiNWeKKBUMAenU0koGGX1KcD4-4aNf9Y9TdrqB_vS5MCmssueJmVH7xiUb-Q5I9jQlCHH6-XJGUteo5F3tW2i0ZHEYrq9AZVvsHnwF_H6oquG38f6IdF0FiAPeuySRCccpV0ZxE2xkpVMpBNNEqqxV1InopKEylCFaEQULloFaAk8bDAdhKGz7AD2sKVXpQsnh97VJpwJlRSRn6FabzC53FnWu9AmLSdJkJGG3nr_cJeCWaPuPNzY_csOn6EknneIvLTk9Qxth-hz5nzD3IhBQzyc45Ji9jE7cRNwAx5mc_w4eT5tpmK3OcwrBaoJnK0AZfJN8OWl82_d-ge01nodcrNVluyTuulacvUDj-wDjS7SZDvYKYVjrQUwpBLexlkVtHDOxCkIVEYiligNU9iDTritcnvpnXOjsQKdSt2DWsLnOYNZsgD6u11y2ZTvunL2XMLGemUpu54Fmfqa7G6xF4UspveNOWNAqpTI0Vq1CF0pmzQBt93jUHR9Y6BuqHaBPPW5vfv__SFt37_YOPRqNj4_00cHJ4Wv0OME1RxiKbbS5nK_CG5CUlvZtpk-M9D3fh78CSiZX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXBIWqWwr40BuYJnH8OsLCqi1QIVGk3iw_q0rdbruPA_x6xk6yqAiQOEVyZiJrxvHMZ88DYL9qcOMNIlLOG01bwTXVOlqK3qljjYoqhZzg_PlEHH5rj8_42QaIIRemBO2XkpZlmx6iww4WbamZiRaGZkygKH9zHdIduIv-dpVB11iM12crDVLIfCu522WVqz-w37JDpVz_LR_zt2vRYm0mj-Bh7yaSt93EHsNGvNqCeyVc0y-eQPiKXJeRImKekljC6IqEySyRGW4C04sfMRBE9vFmdVGi-ldTcrNCKeIzu3zTWeha0S-I-07msdRP9eWokPSNJM6fwunkw-n4kPb9EqhHq7KkiUsvmNBWCxtd4rXXObjUJqad08zL5JVlKtYxOZkkj44j4EKZ4HCUlm3DZp7YDhDkDeg5VFK41KqqtZ7b1ESpq4T6a9II6kF4xve1xHNLi0tT7rSZMp3ADX7cFIEbPoJXa57rrpLGP6nfZZ2sKXMV7DIwm5-bflUYWYVaqeCFlw6BntKWpabDWLHmzo5gb9Co6X_NhUGIyHKmmWAjeD1o-dfrv09p9__IX8L9L-8n5tPRycdn8CCLucQAyj3YXM5X8Tn6Mkv3oizcn8-u7Tc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-atom+exploration+of+optimized+nonequilibrium+quantum+thermodynamics+by+reinforcement+learning&rft.jtitle=Communications+physics&rft.au=Jiawei+Zhang&rft.au=Jiachong+Li&rft.au=Qing-Shou+Tan&rft.au=Jintao+Bu&rft.date=2023-10-07&rft.pub=Nature+Portfolio&rft.eissn=2399-3650&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs42005-023-01408-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70d188dc6c7b49589a3f2217439e15ba |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon |