A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm

Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2021; no. 1; pp. 1 - 16
Main Authors Shi, Congming, Wei, Bingtao, Wei, Shoulin, Wang, Wen, Liu, Hai, Liu, Jialei
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 15.02.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above-computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method.
AbstractList Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above-computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method.
Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above-computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method.
ArticleNumber 31
Author Liu, Jialei
Wang, Wen
Wei, Bingtao
Shi, Congming
Wei, Shoulin
Liu, Hai
Author_xml – sequence: 1
  givenname: Congming
  orcidid: 0000-0002-4666-553X
  surname: Shi
  fullname: Shi, Congming
  organization: School of Software Engineering, Anyang Normal University
– sequence: 2
  givenname: Bingtao
  surname: Wei
  fullname: Wei, Bingtao
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology
– sequence: 3
  givenname: Shoulin
  surname: Wei
  fullname: Wei, Shoulin
  email: weishoulin@kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology
– sequence: 4
  givenname: Wen
  surname: Wang
  fullname: Wang, Wen
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology
– sequence: 5
  givenname: Hai
  surname: Liu
  fullname: Liu, Hai
  organization: School of Software Engineering, Anyang Normal University
– sequence: 6
  givenname: Jialei
  surname: Liu
  fullname: Liu, Jialei
  organization: School of Software Engineering, Anyang Normal University
BookMark eNp9Uctq3DAUFSWB5tEf6ErQtVs9rm1pGULTDASySdZCkuUZDbbkSHKH_H094z5CF1ndy-Gccx_nEp2FGBxCnyn5SqlovmXKGy4qwmhFqKSkOnxAF7QRbUVByrM3_Ud0mfOeEM5Bsgs03OCXWYfiiy7-p8Odzzb50YcFw6Mru9jh2GM3mHjAU_QL2seEy87hOBU_6gGHeTQuHVl2mHNxKWMf_vQ-bLEetjH5shuv0Xmvh-w-_a5X6Pnu-9PtffXw-GNze_NQWWCyVD1tLOW91l3fcmlZS9paCGCdEQY6U4M13Dbg-o4B1LyRogEwnGsiSAdM8Cu0WX27qPdqWu7R6VVF7dUJiGmrdCreDk4dv2eJs1DXFAx1UlBmhTG0Ni0julm8vqxeU4ovs8tF7eOcwrK-YiAkAGVMLiy2smyKOSfX_51KyWmGWhNSS0LqlJA6LCLxn8ieYoihJO2H96V8lebp-GKX_m31juoX9tyo6g
CitedBy_id crossref_primary_10_1080_15513815_2023_2246571
crossref_primary_10_31857_S0002351523060020
crossref_primary_10_1080_15623599_2022_2112898
crossref_primary_10_1016_j_ijepes_2024_109887
crossref_primary_10_1007_s11269_023_03462_8
crossref_primary_10_32604_cmes_2023_031265
crossref_primary_10_3390_s23042061
crossref_primary_10_1038_s41597_025_04561_4
crossref_primary_10_1109_TASLP_2022_3162078
crossref_primary_10_1093_icesjms_fsac157
crossref_primary_10_1002_adom_202102444
crossref_primary_10_1016_j_vehcom_2022_100568
crossref_primary_10_1016_j_resourpol_2024_104771
crossref_primary_10_1016_j_eswa_2024_125991
crossref_primary_10_1002_smi_3511
crossref_primary_10_3390_make5030051
crossref_primary_10_3390_cancers14205015
crossref_primary_10_1016_j_compbiomed_2024_109523
crossref_primary_10_3390_foods13244142
crossref_primary_10_1016_j_aei_2023_102349
crossref_primary_10_1007_s13753_024_00593_3
crossref_primary_10_17670_MPed_2021_3_281
crossref_primary_10_3390_plants13202886
crossref_primary_10_1007_s40314_024_02839_8
crossref_primary_10_1016_j_oceaneng_2025_120770
crossref_primary_10_1016_j_procs_2025_02_113
crossref_primary_10_1080_02640414_2024_2372940
crossref_primary_10_1016_j_scs_2025_106247
crossref_primary_10_1007_s11222_023_10266_8
crossref_primary_10_3390_pr12030471
crossref_primary_10_1093_mnras_stac1497
crossref_primary_10_1371_journal_pone_0313161
crossref_primary_10_3389_fgene_2022_929490
crossref_primary_10_1061_JITSE4_ISENG_2225
crossref_primary_10_3390_life12122035
crossref_primary_10_1080_00268976_2024_2359013
crossref_primary_10_25046_aj090303
crossref_primary_10_30935_cedtech_13253
crossref_primary_10_1080_19476337_2024_2399157
crossref_primary_10_1016_j_pmpp_2024_102379
crossref_primary_10_1016_j_cmpb_2023_107645
crossref_primary_10_23887_ijee_v8i1_67734
crossref_primary_10_3390_fi15110351
crossref_primary_10_1016_j_indmarman_2023_12_021
crossref_primary_10_1016_j_chaos_2024_114486
crossref_primary_10_1145_3606274_3606278
crossref_primary_10_1016_j_heliyon_2024_e33177
crossref_primary_10_7759_cureus_64188
crossref_primary_10_1007_s43657_022_00058_x
crossref_primary_10_1016_j_engappai_2023_106635
crossref_primary_10_1007_s00354_022_00199_7
crossref_primary_10_1039_D5TB00074B
crossref_primary_10_1016_j_infrared_2025_105746
crossref_primary_10_1016_j_crm_2022_100421
crossref_primary_10_1038_s41598_024_57381_8
crossref_primary_10_1016_j_compbiomed_2024_108735
crossref_primary_10_1080_00207543_2023_2182151
crossref_primary_10_3390_s22114143
crossref_primary_10_3390_su16114591
crossref_primary_10_3389_fmolb_2023_1215499
crossref_primary_10_1016_j_buildenv_2024_112326
crossref_primary_10_1016_j_envpol_2025_126082
crossref_primary_10_3390_s23187925
crossref_primary_10_3390_app13095548
crossref_primary_10_3390_ijgi12070285
crossref_primary_10_1061_JITSE4_ISENG_2447
crossref_primary_10_3389_fped_2023_1035576
crossref_primary_10_1016_j_jfca_2024_106102
crossref_primary_10_3389_fpls_2024_1447855
crossref_primary_10_3390_fi16020055
crossref_primary_10_1016_j_ecosta_2023_03_002
crossref_primary_10_7454_jessd_v7i2_1258
crossref_primary_10_1007_s00500_024_10383_0
crossref_primary_10_1016_j_wss_2025_100242
crossref_primary_10_46604_peti_2024_13900
crossref_primary_10_1016_j_engappai_2023_107653
crossref_primary_10_1016_j_tust_2022_104841
crossref_primary_10_3390_info15030165
crossref_primary_10_1155_2022_7452638
crossref_primary_10_12688_f1000research_121486_1
crossref_primary_10_3390_admsci14110291
crossref_primary_10_1021_acs_analchem_3c03368
crossref_primary_10_7717_peerj_cs_2723
crossref_primary_10_1007_s12572_023_00327_6
crossref_primary_10_1016_j_asr_2024_09_013
crossref_primary_10_3389_fpsyg_2024_1293171
crossref_primary_10_1177_09622802241280784
crossref_primary_10_1016_j_enbuild_2022_112221
crossref_primary_10_1080_08839514_2022_2137632
crossref_primary_10_3390_en17194833
crossref_primary_10_1016_j_ress_2024_110571
crossref_primary_10_1016_j_apenergy_2022_118765
crossref_primary_10_1134_S0001433823060026
crossref_primary_10_1371_journal_pone_0250938
crossref_primary_10_1061_JMENEA_MEENG_6285
crossref_primary_10_1556_112_2024_00167
crossref_primary_10_1080_02626667_2024_2396062
crossref_primary_10_1016_j_procs_2025_02_278
crossref_primary_10_1016_j_apenergy_2024_124355
crossref_primary_10_1016_j_eij_2024_100504
crossref_primary_10_1016_j_compchemeng_2024_108821
crossref_primary_10_1186_s12879_023_08162_7
crossref_primary_10_3390_foods14010127
crossref_primary_10_1007_s00500_022_07200_x
crossref_primary_10_1016_j_scitotenv_2023_162123
crossref_primary_10_1039_D2CP02143A
crossref_primary_10_1016_j_cie_2025_111039
crossref_primary_10_1364_OPTCON_527576
crossref_primary_10_1016_j_corsci_2023_110964
crossref_primary_10_3390_math12152349
crossref_primary_10_1103_PhysRevD_110_126002
crossref_primary_10_1021_acs_jcim_5c00135
crossref_primary_10_3390_w16213056
crossref_primary_10_1016_j_enpol_2024_114407
crossref_primary_10_3390_su16219244
crossref_primary_10_1007_s11814_024_00286_z
crossref_primary_10_1177_02762374221143728
crossref_primary_10_17660_ActaHortic_2022_1350_35
crossref_primary_10_1016_j_procs_2022_09_403
crossref_primary_10_1161_ATVBAHA_122_318112
crossref_primary_10_23887_mi_v28i3_67351
crossref_primary_10_3390_math11143063
crossref_primary_10_1016_j_cpb_2024_100432
crossref_primary_10_3390_app12157515
crossref_primary_10_1038_s41467_024_47884_3
crossref_primary_10_3389_fnins_2024_1445697
crossref_primary_10_2478_amns_2025_0056
crossref_primary_10_1007_s12040_024_02379_z
crossref_primary_10_1002_joc_8204
crossref_primary_10_3390_app112311365
crossref_primary_10_1007_s12530_023_09530_z
crossref_primary_10_1080_10106049_2024_2326008
crossref_primary_10_1109_TCSS_2022_3231687
crossref_primary_10_1016_j_heliyon_2024_e41209
crossref_primary_10_1109_ACCESS_2023_3257163
crossref_primary_10_3390_infrastructures9090161
crossref_primary_10_1038_s41598_024_80495_y
crossref_primary_10_2196_34896
crossref_primary_10_1016_j_artmed_2023_102509
crossref_primary_10_3389_fmed_2022_987182
crossref_primary_10_1016_j_asoc_2024_112231
crossref_primary_10_1016_j_ress_2022_108844
crossref_primary_10_1061_JCEMD4_COENG_15205
crossref_primary_10_1371_journal_pone_0281959
crossref_primary_10_1109_JSYST_2025_3532508
crossref_primary_10_1016_j_comptc_2024_114513
Cites_doi 10.1145/235968.233324
10.1371/journal.pone.0210236
10.3102/1076998619832248
10.1016/j.eswa.2008.01.039
10.1016/j.patcog.2012.07.021
10.1016/S0306-4379(00)00022-3
10.1088/1757-899X/336/1/012017
10.1016/S0169-023X(02)00138-6
10.1109/TFUZZ.2020.2966182
10.1088/1742-6596/1361/1/012015
10.1007/BF02289263
10.3390/j2020016
10.1016/j.asoc.2017.08.032
10.1016/0377-0427(87)90125-7
10.1109/72.159055
10.1142/S0218001418500088
10.1109/TNN.2005.845141
10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
10.1016/0098-3004(84)90020-7
10.1016/j.ins.2018.07.034
10.1093/biomet/76.3.503
10.1109/21.299710
10.1007/s40745-015-0040-1
10.1016/j.swevo.2016.06.004
10.1016/j.patcog.2005.01.012
10.1016/j.patrec.2009.09.011
10.1080/00949655.2017.1327588
10.1080/10635150490522304
10.1016/S0306-4379(01)00008-4
10.1109/TIT.2017.2717599
10.1198/016214503000000666
10.1111/1467-9868.00293
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13638-021-01910-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 16
ExternalDocumentID oai_doaj_org_article_1186c0ec45514b1e9812c8bb15b720a6
10_1186_s13638_021_01910_w
GrantInformation_xml – fundername: Henan Province Higher Education Teaching Reform Research and Practice Project
  grantid: 2019SJGLX386
– fundername: Yunnan Applied Basic Research Project
  grantid: 2017FB001
– fundername: Yunnan Key Research and Development Program
  grantid: 2018IA054
  funderid: http://dx.doi.org/10.13039/501100013114
– fundername: the Key Science and Technology Program of Henan Province
  grantid: 202102210152; 212102210611
– fundername: The National Key Research and Development Program of China
  grantid: 2018YFA0404603
– fundername: the Research and Cultivation Fund Project of Anyang Normal University
  grantid: AYNUKPY-2019-24; AYNUKPY-2020-25
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c429t-f16c13faadf739c270758842db8b4db54cb3c64efd24453698644b33a080d4283
IEDL.DBID BENPR
ISSN 1687-1499
1687-1472
IngestDate Wed Aug 27 01:20:15 EDT 2025
Fri Jul 25 07:15:59 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Tue Jul 01 00:40:56 EDT 2025
Fri Feb 21 02:49:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Silhouette coefficient
Elbow method
Clustering
Cosine law
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-f16c13faadf739c270758842db8b4db54cb3c64efd24453698644b33a080d4283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4666-553X
OpenAccessLink https://www.proquest.com/docview/2489441229?pq-origsite=%requestingapplication%
PQID 2489441229
PQPubID 237293
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_1186c0ec45514b1e9812c8bb15b720a6
proquest_journals_2489441229
crossref_primary_10_1186_s13638_021_01910_w
crossref_citationtrail_10_1186_s13638_021_01910_w
springer_journals_10_1186_s13638_021_01910_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Liu, Deng (CR15) 2020
Guha, Rastogi, Shim (CR6) 2001; 26
Yuan, Yang (CR24) 2019; 2
Hancer, Karaboga (CR18) 2017; 32
Yoder, Priebe (CR16) 2017; 87
Hao, Ho (CR32) 2019; 44
Park, Jun (CR3) 2009; 36
Jain (CR2) 2010; 31
Xu, Wunschll (CR31) 2005; 16
Bezdek, Ehrlich, Full (CR8) 1984; 10
Syakur, Khotimah, Rochman, Satoto (CR12) 2018; 335
Nainggolan, Perangin-angin, Simarmata, Tarigan (CR14) 2019; 1361
Ketchen, Shook (CR13) 1996; 17
Dave, Bhaswan (CR9) 1992; 3
Posada, Buckley (CR29) 2004; 53
Masud, Huang, Wei, Wang, Khan, Zhong (CR19) 2018; 466
Yager, Filev (CR10) 1994; 24
Thorndike (CR11) 1953; 18
Yu, Chu, Wang, Chan, Chang (CR28) 2018; 68
Burman (CR27) 1989; 76
Sugar, James (CR4) 2003; 98
Guha, Rastogi, Shim (CR7) 2000; 25
Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (CR22) 2013; 46
Jain, Nandakumar, Rose (CR17) 2005; 38
Rodriguez, Comin, Casanova, Bruno, Amancio, Costa, Rodrigues (CR20) 2019; 14
Liu, Fen, Jian, Chen (CR25) 2018; 32
Ding, Tarokh, Yang (CR30) 2018; 64
Xu, Tian (CR1) 2015; 2
Zhang, Ramakrishnan, Livny (CR5) 1996; 25
Dash, Liu, Scheuermann, Tan (CR26) 2003; 44
Tibshirani, Walther, Hastie (CR23) 2001; 63
Rousseeuw (CR21) 1987; 20
J Ding (1910_CR30) 2018; 64
S Guha (1910_CR7) 2000; 25
RN Dave (1910_CR9) 1992; 3
R Xu (1910_CR31) 2005; 16
MA Syakur (1910_CR12) 2018; 335
PJ Rousseeuw (1910_CR21) 1987; 20
H Liu (1910_CR25) 2018; 32
F Liu (1910_CR15) 2020
J Yoder (1910_CR16) 2017; 87
MA Masud (1910_CR19) 2018; 466
R Tibshirani (1910_CR23) 2001; 63
S-S Yu (1910_CR28) 2018; 68
MZ Rodriguez (1910_CR20) 2019; 14
R Nainggolan (1910_CR14) 2019; 1361
C Yuan (1910_CR24) 2019; 2
D Posada (1910_CR29) 2004; 53
A Jain (1910_CR17) 2005; 38
P Burman (1910_CR27) 1989; 76
M Dash (1910_CR26) 2003; 44
J Hao (1910_CR32) 2019; 44
RL Thorndike (1910_CR11) 1953; 18
D Xu (1910_CR1) 2015; 2
T Zhang (1910_CR5) 1996; 25
JC Bezdek (1910_CR8) 1984; 10
O Arbelaitz (1910_CR22) 2013; 46
RR Yager (1910_CR10) 1994; 24
CA Sugar (1910_CR4) 2003; 98
DJ Ketchen (1910_CR13) 1996; 17
H-S Park (1910_CR3) 2009; 36
E Hancer (1910_CR18) 2017; 32
AK Jain (1910_CR2) 2010; 31
S Guha (1910_CR6) 2001; 26
References_xml – volume: 25
  start-page: 103
  issue: 2
  year: 1996
  end-page: 114
  ident: CR5
  article-title: BIRCH: an efficient data clustering method for very large databases
  publication-title: ACM SIGMOD Record.
  doi: 10.1145/235968.233324
– volume: 14
  start-page: e0210236
  issue: 1
  year: 2019
  ident: CR20
  article-title: Clustering algorithms: a comparative approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210236
– volume: 44
  start-page: 348
  issue: 3
  year: 2019
  end-page: 361
  ident: CR32
  article-title: machine learning made easy: a review of Scikit-learn package in python programming language
  publication-title: J. Educ. Behav. Stat.
  doi: 10.3102/1076998619832248
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  end-page: 3341
  ident: CR3
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  end-page: 256
  ident: CR22
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 25
  start-page: 345
  issue: 5
  year: 2000
  end-page: 366
  ident: CR7
  article-title: Rock: a robust clustering algorithm for categorical attributes
  publication-title: Inf. Syst.
  doi: 10.1016/S0306-4379(00)00022-3
– volume: 335
  start-page: 012017
  year: 2018
  ident: CR12
  article-title: Integration K-means clustering method and elbow method for identification of the best customer profile cluster
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/336/1/012017
– volume: 44
  start-page: 109
  issue: 1
  year: 2003
  end-page: 138
  ident: CR26
  article-title: Fast hierarchical clustering and its validation
  publication-title: Data Knowl. Eng.
  doi: 10.1016/S0169-023X(02)00138-6
– year: 2020
  ident: CR15
  article-title: Determine the number of unknown targets in open World based on Elbow method
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2966182
– volume: 1361
  start-page: 012015
  year: 2019
  ident: CR14
  article-title: Improved the performance of the K-means cluster using the sum of squared error (SSE) optimized by using the Elbow method
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/1361/1/012015
– volume: 18
  start-page: 267
  issue: 4
  year: 1953
  end-page: 276
  ident: CR11
  article-title: Who belongs in the family?
  publication-title: Psychometrika
  doi: 10.1007/BF02289263
– volume: 2
  start-page: 226
  issue: 2
  year: 2019
  end-page: 235
  ident: CR24
  article-title: Research on K-value selection method of K-means clustering algorithm
  publication-title: J.-Multidiscip. Sci. J.
  doi: 10.3390/j2020016
– volume: 68
  start-page: 747
  year: 2018
  end-page: 755
  ident: CR28
  article-title: Two improved k-means algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.032
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: CR21
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 3
  start-page: 643
  issue: 5
  year: 1992
  end-page: 662
  ident: CR9
  article-title: Adaptive fuzzy c-shells clustering and detection of ellipses
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.159055
– volume: 32
  start-page: 1850008
  issue: 03
  year: 2018
  ident: CR25
  article-title: Overlapping community discovery algorithm based on hierarchical agglomerative clustering
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001418500088
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  end-page: 678
  ident: CR31
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 17
  start-page: 441
  issue: 6
  year: 1996
  end-page: 458
  ident: CR13
  article-title: The application of cluster analysis in strategic management research: an analysis and critique
  publication-title: Strateg. Manag. J.
  doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  end-page: 203
  ident: CR8
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 466
  start-page: 129
  year: 2018
  end-page: 151
  ident: CR19
  article-title: I-nice: a new approach for identifying the number of clusters and initial cluster centres
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.07.034
– volume: 76
  start-page: 503
  issue: 3
  year: 1989
  end-page: 514
  ident: CR27
  article-title: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
  publication-title: Biometrika
  doi: 10.1093/biomet/76.3.503
– volume: 24
  start-page: 1279
  issue: 8
  year: 1994
  end-page: 1284
  ident: CR10
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.299710
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  end-page: 193
  ident: CR1
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 32
  start-page: 49
  year: 2017
  end-page: 67
  ident: CR18
  article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.06.004
– volume: 38
  start-page: 2270
  issue: 12
  year: 2005
  end-page: 2285
  ident: CR17
  article-title: Score normalization in multimodal biometric systems
  publication-title: Patten Recognit.
  doi: 10.1016/j.patcog.2005.01.012
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  end-page: 666
  ident: CR2
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 87
  start-page: 2597
  issue: 13
  year: 2017
  end-page: 2608
  ident: CR16
  article-title: Semi-supervised k-means++
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2017.1327588
– volume: 53
  start-page: 793
  issue: 5
  year: 2004
  end-page: 808
  ident: CR29
  article-title: Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests
  publication-title: Syst. Biol.
  doi: 10.1080/10635150490522304
– volume: 26
  start-page: 35
  issue: 1
  year: 2001
  end-page: 58
  ident: CR6
  article-title: Cure: an efficient clustering algorithm for large databases
  publication-title: Inf. Syst.
  doi: 10.1016/S0306-4379(01)00008-4
– volume: 64
  start-page: 4024
  issue: 6
  year: 2018
  end-page: 4043
  ident: CR30
  article-title: Bridging AIC and BIC: a new criterion for autoregression
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2717599
– volume: 98
  start-page: 750
  issue: 463
  year: 2003
  end-page: 763
  ident: CR4
  article-title: Finding the number of clusters in a dataset
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000000666
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  end-page: 423
  ident: CR23
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol.
  doi: 10.1111/1467-9868.00293
– volume: 14
  start-page: e0210236
  issue: 1
  year: 2019
  ident: 1910_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210236
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 1910_CR23
  publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol.
  doi: 10.1111/1467-9868.00293
– volume: 87
  start-page: 2597
  issue: 13
  year: 2017
  ident: 1910_CR16
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2017.1327588
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 1910_CR31
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 1910_CR2
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 25
  start-page: 345
  issue: 5
  year: 2000
  ident: 1910_CR7
  publication-title: Inf. Syst.
  doi: 10.1016/S0306-4379(00)00022-3
– volume: 24
  start-page: 1279
  issue: 8
  year: 1994
  ident: 1910_CR10
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.299710
– volume: 25
  start-page: 103
  issue: 2
  year: 1996
  ident: 1910_CR5
  publication-title: ACM SIGMOD Record.
  doi: 10.1145/235968.233324
– volume: 38
  start-page: 2270
  issue: 12
  year: 2005
  ident: 1910_CR17
  publication-title: Patten Recognit.
  doi: 10.1016/j.patcog.2005.01.012
– volume: 335
  start-page: 012017
  year: 2018
  ident: 1910_CR12
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/336/1/012017
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 1910_CR8
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 44
  start-page: 348
  issue: 3
  year: 2019
  ident: 1910_CR32
  publication-title: J. Educ. Behav. Stat.
  doi: 10.3102/1076998619832248
– volume: 18
  start-page: 267
  issue: 4
  year: 1953
  ident: 1910_CR11
  publication-title: Psychometrika
  doi: 10.1007/BF02289263
– volume: 53
  start-page: 793
  issue: 5
  year: 2004
  ident: 1910_CR29
  publication-title: Syst. Biol.
  doi: 10.1080/10635150490522304
– year: 2020
  ident: 1910_CR15
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2966182
– volume: 1361
  start-page: 012015
  year: 2019
  ident: 1910_CR14
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/1361/1/012015
– volume: 76
  start-page: 503
  issue: 3
  year: 1989
  ident: 1910_CR27
  publication-title: Biometrika
  doi: 10.1093/biomet/76.3.503
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 1910_CR1
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 3
  start-page: 643
  issue: 5
  year: 1992
  ident: 1910_CR9
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.159055
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 1910_CR3
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 26
  start-page: 35
  issue: 1
  year: 2001
  ident: 1910_CR6
  publication-title: Inf. Syst.
  doi: 10.1016/S0306-4379(01)00008-4
– volume: 32
  start-page: 1850008
  issue: 03
  year: 2018
  ident: 1910_CR25
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001418500088
– volume: 68
  start-page: 747
  year: 2018
  ident: 1910_CR28
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.032
– volume: 64
  start-page: 4024
  issue: 6
  year: 2018
  ident: 1910_CR30
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2717599
– volume: 17
  start-page: 441
  issue: 6
  year: 1996
  ident: 1910_CR13
  publication-title: Strateg. Manag. J.
  doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
– volume: 98
  start-page: 750
  issue: 463
  year: 2003
  ident: 1910_CR4
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000000666
– volume: 44
  start-page: 109
  issue: 1
  year: 2003
  ident: 1910_CR26
  publication-title: Data Knowl. Eng.
  doi: 10.1016/S0169-023X(02)00138-6
– volume: 32
  start-page: 49
  year: 2017
  ident: 1910_CR18
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.06.004
– volume: 466
  start-page: 129
  year: 2018
  ident: 1910_CR19
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.07.034
– volume: 20
  start-page: 53
  year: 1987
  ident: 1910_CR21
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 2
  start-page: 226
  issue: 2
  year: 2019
  ident: 1910_CR24
  publication-title: J.-Multidiscip. Sci. J.
  doi: 10.3390/j2020016
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 1910_CR22
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
SSID ssj0033492
Score 2.60965
Snippet Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number...
Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Clustering
Communications Engineering
Cosine law
Data analysis
Datasets
Edge
Elbow method
Engineering
Fog
Human-centered Computing in Cloud
Information Systems Applications (incl.Internet)
Machine learning
Mathematical analysis
Networks
Signal,Image and Speech Processing
Silhouette coefficient
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAGUevYSZ0REBVCgolK3az4BZXSpLSp-vc52wkUJGBhiaLESZzz5b7Piu87hC4U1SoeZCpiSvcjZo3TgITNQHGuqSKAQi7B-fEpvR-xh3EyXiv15daEBXngYLgeEOBU9Y1iDtolMRkgkuJSkkQO4n7uxbYB89rJVIjB1GnutSkyPO0tCAU_i9xyBKA0EHlWX2DIq_V_oZjf_op6sBnuoO2GJeLr0LtdtGHKPbS1ph24j4pr_LbMS58jBhELu_TaUKKrrHGoC40ri00hqxWeVRM4CvwUA9_DFYSJKdw-VANxrVSxdIIJCzwp2314CM6Ll2o-qV-nB2g0vHu-vY-a0gmRAoCpI0tSRajNc20HNIPRAGbAOYu15JJpmTAlqUqZsRrgPaGpE2lnktIcCKR2GmyHqFNWpTlCmJiEK6BRXOuMGW5zYy0xLhIA_IMtu4i0lhSq0RV35S0K4ecXPBXB-gKsL7z1xaqLLj-umQVVjV9b37gB-mjpFLH9AfAT0fiJ-MtPuui0HV7RfKYLETOeAR-E9-iiq3bIP0__3KXj_-jSCdqMvUvGEUlOUaeeL80ZUJxanntvfgdmovZb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lRy8aXHTpN30qKKIoCcFb6F56UJtdbfL_n1n0tYXKngppZ30MZPMfCGZbwg5NNyaeJSZSBg7jIR3yAEJh5GR0nLDIAphgvPNbXp1L64fkoc2KWza7XbvliSDpw7DWqYnU8ahr0S4pQBgCXiP-SJZSnDujku0mOPQ-F-OfHtdesyP7b6EoMDU_wVeflsRDYHmco2stgiRnjYmXScLrtwgK594AzdJcUpfZ3kZ8sPAW1FMrW3Kc5U1bWpC08pTV-hqTl-qMVwFbEoB69EKXMQzPL6pBIJSppghWcKUjsvuHF5C8-Kxmozrp-ctcn95cXd-FbVlEyIDwaWOPEsN4z7PrR_xDCwBqEBKEVsttbA6EUZzkwrnLYT2hKdI0C405zmAR4v8a9ukV1al2yGUuUQagFDS2kw46XPnPXPoBSD0gy77hHWaVKblFMfSFoUKcwuZqkb7CrSvgvbVvE-O3tu8NIwaf0qfoYHeJZENO1yoJo-qHVyhrRk6IxD-aeYyQC1Gas0SPYqHedong868qh2iUxULmQEWhP_ok-PO5B-3f_-k3f-J75HlOHS-OGLJgPTqycztA5Cp9UHot29H5evb
  priority: 102
  providerName: Springer Nature
Title A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm
URI https://link.springer.com/article/10.1186/s13638-021-01910-w
https://www.proquest.com/docview/2489441229
https://doaj.org/article/1186c0ec45514b1e9812c8bb15b720a6
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbN5tIeSp900zTo0FtrsnpYlk9ls2QbCg2ldCE3Yb3SgGNvsl7273dGtpOm0FwGP2TZzEgzn_X4hpCPTnjHi9Jl0vlZJmNADkgQhdPaC8cgCuEG5-_n6mwlv13kF8OA22ZYVjn6xOSofetwjPyYS11C6Oa8_LK-yTBrFM6uDik09sg-uGCtJ2T_5PT8x8_RFwvk3sNfLgVdicmCj9tmtDreMAFtL8MlCgBzwBvtHoSmxOD_AHb-M1OaAtDyBXk-IEc67039kjwJzSvy7C8-wdekntObbdWkfWPgxShuue3TdjUd7XNF0zbSUNt2R9ftFVwFzEoBA9IWXMc1VN9nCMFSrt4iicKGXjXjMbyEVvUlqKX7ff2GrJanvxZn2ZBOIXMQdLosMuWYiFXlYyFKsBCgBa0l91Zb6W0unRVOyRA9hPxcKCRul1aICkClR162t2TStE14RygLuXYArbT3pQw6ViFGFtA7ACQAXU4JGzVp3MA1jikvapP-ObQyvfYNaN8k7ZvdlHy6e2bdM208WvoEDXRXElmy04X29tIMnS4962bBSYSFloUS0IzT1rLcFnxWqSk5HM1rhq67MfcNbUo-jya_v_3_Tzp4vLb35ClPjY1nLD8kk-52Gz4AoOnsEdmTs68g9RJk34LhbMElSrU4SgMFIFd8_geQ0_co
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcIFNgDnMBq9mFnfUCoPEJKH6dW6m3xPlwquXbaOIr4U_xGZtZ2S5HorZcoctZra2b2m29jzzcAb5z0Tkxylyjnx4kqA2lA4sfEae2l45iFqMB5bz-bHarvR-nRGvweamHotcoBEyNQ-8bRf-SbQukcU7cQ-cf5WUJdo-jp6tBCowuLnfBrhVu2xYftL-jft0JMvx58niV9V4HEIfa2Sckzx2VZFL6cyBxvFJOm1kp4q63yNlXOSpepUHrMfKnMSL9cWSkL5Fae5Mlw3ltwW0nM5FSZPv02IL8kpT_a4GW4cLmaiKFIR2ebCy4x0hN6IQJJFWLf6koijP0CrpDcf57LxnQ3fQD3e57KtrrAeghroX4E9_5SL3wM1RY7WxZ1rFJDzGRU4Ns1Catb1nWmZk3JQmWbFZs3J3gUGTJDxskaBKpTnL7rR0KjXLUkyYYFO6mH73gRVlTH6IT25-kTOLwRMz-F9bqpwzNgPKTaIZHT3ucq6LIIZckDYRESELTlCPhgSeN6ZXNqsFGZuMPRmemsb9D6JlrfrEbw7uKceafrce3oT-Sgi5GkyR0PNOfHpl_i8Vw3Dk4RCbU85MidnLaWp3YixkU2go3BvaYHioW5DOsRvB9cfvnz_2_p-fWzvYY7s4O9XbO7vb_zAu6KGHgi4ekGrLfny_ASqVRrX8X4ZfDjphfMH5pOLJI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwV8gBNEu3acxDkg1NKuWgqrClGpNxO_SqU02XZ3teKv8euYyaOlSPTWSxQljmPNjGc-J55vAN7Y2FmR5TaS1o0jGTxxQOIhs0q52HKMQpTg_HWa7h3Jz8fJ8Rr87nNhaFtl7xMbR-1qS9_IR0KqHEO3EPkodNsiDncmH2fnEVWQoj-tfTmN1kQO_K8VLt_mH_Z3UNdvhZjsfv-0F3UVBiKLfngRBZ5aHoeicCGLcxw0BlClpHBGGelMIq2JbSp9cBgFkzglLnNp4rhAnOWIqgz7vQPrGa2KBrC-vTs9_NbHgZh4_2i5l-I05jITfcqOSkdzHqPdR7Q9AiEWesLVtbDYVA-4Bnn_-UvbBL_JQ3jQoVa21ZrZI1jz1WO4_xeX4RMot9j5sqianDX0oIzSfduSYdWCtXWqWR2YL029YrP6FK8iXmaIP1mNbusMu2-rk1ArWy6JwGHOTqv-HF_CivIE1bD4efYUjm5F0M9gUNWV3wDGfaIswjrlXC69CoUPgXvyTAhHUJZD4L0kte14zqncRqmb9Y5KdSt9jdLXjfT1agjvLp-ZtSwfN7beJgVdtiSG7uZCfXGiuwnfPGvH3kqCpIb7HJGUVcbwxGRiXKRD2OzVqzu3MddXRj6E973Kr27_f0jPb-7tNdzFyaK_7E8PXsA90didiHiyCYPFxdK_RFy1MK86A2bw47bnzB_OejIk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantitative+discriminant+method+of+elbow+point+for+the+optimal+number+of+clusters+in+clustering+algorithm&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Shi+Congming&rft.au=Wei+Bingtao&rft.au=Shoulin%2C+Wei&rft.au=Wang%2C+Wen&rft.date=2021-02-15&rft.pub=Springer+Nature+B.V&rft.issn=1687-1472&rft.eissn=1687-1499&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-021-01910-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon