A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm
Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2021; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
15.02.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above-computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method. |
---|---|
AbstractList | Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above-computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method. Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above-computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method. |
ArticleNumber | 31 |
Author | Liu, Jialei Wang, Wen Wei, Bingtao Shi, Congming Wei, Shoulin Liu, Hai |
Author_xml | – sequence: 1 givenname: Congming orcidid: 0000-0002-4666-553X surname: Shi fullname: Shi, Congming organization: School of Software Engineering, Anyang Normal University – sequence: 2 givenname: Bingtao surname: Wei fullname: Wei, Bingtao organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology – sequence: 3 givenname: Shoulin surname: Wei fullname: Wei, Shoulin email: weishoulin@kust.edu.cn organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology – sequence: 4 givenname: Wen surname: Wang fullname: Wang, Wen organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology – sequence: 5 givenname: Hai surname: Liu fullname: Liu, Hai organization: School of Software Engineering, Anyang Normal University – sequence: 6 givenname: Jialei surname: Liu fullname: Liu, Jialei organization: School of Software Engineering, Anyang Normal University |
BookMark | eNp9Uctq3DAUFSWB5tEf6ErQtVs9rm1pGULTDASySdZCkuUZDbbkSHKH_H094z5CF1ndy-Gccx_nEp2FGBxCnyn5SqlovmXKGy4qwmhFqKSkOnxAF7QRbUVByrM3_Ud0mfOeEM5Bsgs03OCXWYfiiy7-p8Odzzb50YcFw6Mru9jh2GM3mHjAU_QL2seEy87hOBU_6gGHeTQuHVl2mHNxKWMf_vQ-bLEetjH5shuv0Xmvh-w-_a5X6Pnu-9PtffXw-GNze_NQWWCyVD1tLOW91l3fcmlZS9paCGCdEQY6U4M13Dbg-o4B1LyRogEwnGsiSAdM8Cu0WX27qPdqWu7R6VVF7dUJiGmrdCreDk4dv2eJs1DXFAx1UlBmhTG0Ni0julm8vqxeU4ovs8tF7eOcwrK-YiAkAGVMLiy2smyKOSfX_51KyWmGWhNSS0LqlJA6LCLxn8ieYoihJO2H96V8lebp-GKX_m31juoX9tyo6g |
CitedBy_id | crossref_primary_10_1080_15513815_2023_2246571 crossref_primary_10_31857_S0002351523060020 crossref_primary_10_1080_15623599_2022_2112898 crossref_primary_10_1016_j_ijepes_2024_109887 crossref_primary_10_1007_s11269_023_03462_8 crossref_primary_10_32604_cmes_2023_031265 crossref_primary_10_3390_s23042061 crossref_primary_10_1038_s41597_025_04561_4 crossref_primary_10_1109_TASLP_2022_3162078 crossref_primary_10_1093_icesjms_fsac157 crossref_primary_10_1002_adom_202102444 crossref_primary_10_1016_j_vehcom_2022_100568 crossref_primary_10_1016_j_resourpol_2024_104771 crossref_primary_10_1016_j_eswa_2024_125991 crossref_primary_10_1002_smi_3511 crossref_primary_10_3390_make5030051 crossref_primary_10_3390_cancers14205015 crossref_primary_10_1016_j_compbiomed_2024_109523 crossref_primary_10_3390_foods13244142 crossref_primary_10_1016_j_aei_2023_102349 crossref_primary_10_1007_s13753_024_00593_3 crossref_primary_10_17670_MPed_2021_3_281 crossref_primary_10_3390_plants13202886 crossref_primary_10_1007_s40314_024_02839_8 crossref_primary_10_1016_j_oceaneng_2025_120770 crossref_primary_10_1016_j_procs_2025_02_113 crossref_primary_10_1080_02640414_2024_2372940 crossref_primary_10_1016_j_scs_2025_106247 crossref_primary_10_1007_s11222_023_10266_8 crossref_primary_10_3390_pr12030471 crossref_primary_10_1093_mnras_stac1497 crossref_primary_10_1371_journal_pone_0313161 crossref_primary_10_3389_fgene_2022_929490 crossref_primary_10_1061_JITSE4_ISENG_2225 crossref_primary_10_3390_life12122035 crossref_primary_10_1080_00268976_2024_2359013 crossref_primary_10_25046_aj090303 crossref_primary_10_30935_cedtech_13253 crossref_primary_10_1080_19476337_2024_2399157 crossref_primary_10_1016_j_pmpp_2024_102379 crossref_primary_10_1016_j_cmpb_2023_107645 crossref_primary_10_23887_ijee_v8i1_67734 crossref_primary_10_3390_fi15110351 crossref_primary_10_1016_j_indmarman_2023_12_021 crossref_primary_10_1016_j_chaos_2024_114486 crossref_primary_10_1145_3606274_3606278 crossref_primary_10_1016_j_heliyon_2024_e33177 crossref_primary_10_7759_cureus_64188 crossref_primary_10_1007_s43657_022_00058_x crossref_primary_10_1016_j_engappai_2023_106635 crossref_primary_10_1007_s00354_022_00199_7 crossref_primary_10_1039_D5TB00074B crossref_primary_10_1016_j_infrared_2025_105746 crossref_primary_10_1016_j_crm_2022_100421 crossref_primary_10_1038_s41598_024_57381_8 crossref_primary_10_1016_j_compbiomed_2024_108735 crossref_primary_10_1080_00207543_2023_2182151 crossref_primary_10_3390_s22114143 crossref_primary_10_3390_su16114591 crossref_primary_10_3389_fmolb_2023_1215499 crossref_primary_10_1016_j_buildenv_2024_112326 crossref_primary_10_1016_j_envpol_2025_126082 crossref_primary_10_3390_s23187925 crossref_primary_10_3390_app13095548 crossref_primary_10_3390_ijgi12070285 crossref_primary_10_1061_JITSE4_ISENG_2447 crossref_primary_10_3389_fped_2023_1035576 crossref_primary_10_1016_j_jfca_2024_106102 crossref_primary_10_3389_fpls_2024_1447855 crossref_primary_10_3390_fi16020055 crossref_primary_10_1016_j_ecosta_2023_03_002 crossref_primary_10_7454_jessd_v7i2_1258 crossref_primary_10_1007_s00500_024_10383_0 crossref_primary_10_1016_j_wss_2025_100242 crossref_primary_10_46604_peti_2024_13900 crossref_primary_10_1016_j_engappai_2023_107653 crossref_primary_10_1016_j_tust_2022_104841 crossref_primary_10_3390_info15030165 crossref_primary_10_1155_2022_7452638 crossref_primary_10_12688_f1000research_121486_1 crossref_primary_10_3390_admsci14110291 crossref_primary_10_1021_acs_analchem_3c03368 crossref_primary_10_7717_peerj_cs_2723 crossref_primary_10_1007_s12572_023_00327_6 crossref_primary_10_1016_j_asr_2024_09_013 crossref_primary_10_3389_fpsyg_2024_1293171 crossref_primary_10_1177_09622802241280784 crossref_primary_10_1016_j_enbuild_2022_112221 crossref_primary_10_1080_08839514_2022_2137632 crossref_primary_10_3390_en17194833 crossref_primary_10_1016_j_ress_2024_110571 crossref_primary_10_1016_j_apenergy_2022_118765 crossref_primary_10_1134_S0001433823060026 crossref_primary_10_1371_journal_pone_0250938 crossref_primary_10_1061_JMENEA_MEENG_6285 crossref_primary_10_1556_112_2024_00167 crossref_primary_10_1080_02626667_2024_2396062 crossref_primary_10_1016_j_procs_2025_02_278 crossref_primary_10_1016_j_apenergy_2024_124355 crossref_primary_10_1016_j_eij_2024_100504 crossref_primary_10_1016_j_compchemeng_2024_108821 crossref_primary_10_1186_s12879_023_08162_7 crossref_primary_10_3390_foods14010127 crossref_primary_10_1007_s00500_022_07200_x crossref_primary_10_1016_j_scitotenv_2023_162123 crossref_primary_10_1039_D2CP02143A crossref_primary_10_1016_j_cie_2025_111039 crossref_primary_10_1364_OPTCON_527576 crossref_primary_10_1016_j_corsci_2023_110964 crossref_primary_10_3390_math12152349 crossref_primary_10_1103_PhysRevD_110_126002 crossref_primary_10_1021_acs_jcim_5c00135 crossref_primary_10_3390_w16213056 crossref_primary_10_1016_j_enpol_2024_114407 crossref_primary_10_3390_su16219244 crossref_primary_10_1007_s11814_024_00286_z crossref_primary_10_1177_02762374221143728 crossref_primary_10_17660_ActaHortic_2022_1350_35 crossref_primary_10_1016_j_procs_2022_09_403 crossref_primary_10_1161_ATVBAHA_122_318112 crossref_primary_10_23887_mi_v28i3_67351 crossref_primary_10_3390_math11143063 crossref_primary_10_1016_j_cpb_2024_100432 crossref_primary_10_3390_app12157515 crossref_primary_10_1038_s41467_024_47884_3 crossref_primary_10_3389_fnins_2024_1445697 crossref_primary_10_2478_amns_2025_0056 crossref_primary_10_1007_s12040_024_02379_z crossref_primary_10_1002_joc_8204 crossref_primary_10_3390_app112311365 crossref_primary_10_1007_s12530_023_09530_z crossref_primary_10_1080_10106049_2024_2326008 crossref_primary_10_1109_TCSS_2022_3231687 crossref_primary_10_1016_j_heliyon_2024_e41209 crossref_primary_10_1109_ACCESS_2023_3257163 crossref_primary_10_3390_infrastructures9090161 crossref_primary_10_1038_s41598_024_80495_y crossref_primary_10_2196_34896 crossref_primary_10_1016_j_artmed_2023_102509 crossref_primary_10_3389_fmed_2022_987182 crossref_primary_10_1016_j_asoc_2024_112231 crossref_primary_10_1016_j_ress_2022_108844 crossref_primary_10_1061_JCEMD4_COENG_15205 crossref_primary_10_1371_journal_pone_0281959 crossref_primary_10_1109_JSYST_2025_3532508 crossref_primary_10_1016_j_comptc_2024_114513 |
Cites_doi | 10.1145/235968.233324 10.1371/journal.pone.0210236 10.3102/1076998619832248 10.1016/j.eswa.2008.01.039 10.1016/j.patcog.2012.07.021 10.1016/S0306-4379(00)00022-3 10.1088/1757-899X/336/1/012017 10.1016/S0169-023X(02)00138-6 10.1109/TFUZZ.2020.2966182 10.1088/1742-6596/1361/1/012015 10.1007/BF02289263 10.3390/j2020016 10.1016/j.asoc.2017.08.032 10.1016/0377-0427(87)90125-7 10.1109/72.159055 10.1142/S0218001418500088 10.1109/TNN.2005.845141 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G 10.1016/0098-3004(84)90020-7 10.1016/j.ins.2018.07.034 10.1093/biomet/76.3.503 10.1109/21.299710 10.1007/s40745-015-0040-1 10.1016/j.swevo.2016.06.004 10.1016/j.patcog.2005.01.012 10.1016/j.patrec.2009.09.011 10.1080/00949655.2017.1327588 10.1080/10635150490522304 10.1016/S0306-4379(01)00008-4 10.1109/TIT.2017.2717599 10.1198/016214503000000666 10.1111/1467-9868.00293 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1186/s13638-021-01910-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_1186c0ec45514b1e9812c8bb15b720a6 10_1186_s13638_021_01910_w |
GrantInformation_xml | – fundername: Henan Province Higher Education Teaching Reform Research and Practice Project grantid: 2019SJGLX386 – fundername: Yunnan Applied Basic Research Project grantid: 2017FB001 – fundername: Yunnan Key Research and Development Program grantid: 2018IA054 funderid: http://dx.doi.org/10.13039/501100013114 – fundername: the Key Science and Technology Program of Henan Province grantid: 202102210152; 212102210611 – fundername: The National Key Research and Development Program of China grantid: 2018YFA0404603 – fundername: the Research and Cultivation Fund Project of Anyang Normal University grantid: AYNUKPY-2019-24; AYNUKPY-2020-25 |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c429t-f16c13faadf739c270758842db8b4db54cb3c64efd24453698644b33a080d4283 |
IEDL.DBID | BENPR |
ISSN | 1687-1499 1687-1472 |
IngestDate | Wed Aug 27 01:20:15 EDT 2025 Fri Jul 25 07:15:59 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Tue Jul 01 00:40:56 EDT 2025 Fri Feb 21 02:49:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Silhouette coefficient Elbow method Clustering Cosine law Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-f16c13faadf739c270758842db8b4db54cb3c64efd24453698644b33a080d4283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4666-553X |
OpenAccessLink | https://www.proquest.com/docview/2489441229?pq-origsite=%requestingapplication% |
PQID | 2489441229 |
PQPubID | 237293 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1186c0ec45514b1e9812c8bb15b720a6 proquest_journals_2489441229 crossref_primary_10_1186_s13638_021_01910_w crossref_citationtrail_10_1186_s13638_021_01910_w springer_journals_10_1186_s13638_021_01910_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-15 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Liu, Deng (CR15) 2020 Guha, Rastogi, Shim (CR6) 2001; 26 Yuan, Yang (CR24) 2019; 2 Hancer, Karaboga (CR18) 2017; 32 Yoder, Priebe (CR16) 2017; 87 Hao, Ho (CR32) 2019; 44 Park, Jun (CR3) 2009; 36 Jain (CR2) 2010; 31 Xu, Wunschll (CR31) 2005; 16 Bezdek, Ehrlich, Full (CR8) 1984; 10 Syakur, Khotimah, Rochman, Satoto (CR12) 2018; 335 Nainggolan, Perangin-angin, Simarmata, Tarigan (CR14) 2019; 1361 Ketchen, Shook (CR13) 1996; 17 Dave, Bhaswan (CR9) 1992; 3 Posada, Buckley (CR29) 2004; 53 Masud, Huang, Wei, Wang, Khan, Zhong (CR19) 2018; 466 Yager, Filev (CR10) 1994; 24 Thorndike (CR11) 1953; 18 Yu, Chu, Wang, Chan, Chang (CR28) 2018; 68 Burman (CR27) 1989; 76 Sugar, James (CR4) 2003; 98 Guha, Rastogi, Shim (CR7) 2000; 25 Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (CR22) 2013; 46 Jain, Nandakumar, Rose (CR17) 2005; 38 Rodriguez, Comin, Casanova, Bruno, Amancio, Costa, Rodrigues (CR20) 2019; 14 Liu, Fen, Jian, Chen (CR25) 2018; 32 Ding, Tarokh, Yang (CR30) 2018; 64 Xu, Tian (CR1) 2015; 2 Zhang, Ramakrishnan, Livny (CR5) 1996; 25 Dash, Liu, Scheuermann, Tan (CR26) 2003; 44 Tibshirani, Walther, Hastie (CR23) 2001; 63 Rousseeuw (CR21) 1987; 20 J Ding (1910_CR30) 2018; 64 S Guha (1910_CR7) 2000; 25 RN Dave (1910_CR9) 1992; 3 R Xu (1910_CR31) 2005; 16 MA Syakur (1910_CR12) 2018; 335 PJ Rousseeuw (1910_CR21) 1987; 20 H Liu (1910_CR25) 2018; 32 F Liu (1910_CR15) 2020 J Yoder (1910_CR16) 2017; 87 MA Masud (1910_CR19) 2018; 466 R Tibshirani (1910_CR23) 2001; 63 S-S Yu (1910_CR28) 2018; 68 MZ Rodriguez (1910_CR20) 2019; 14 R Nainggolan (1910_CR14) 2019; 1361 C Yuan (1910_CR24) 2019; 2 D Posada (1910_CR29) 2004; 53 A Jain (1910_CR17) 2005; 38 P Burman (1910_CR27) 1989; 76 M Dash (1910_CR26) 2003; 44 J Hao (1910_CR32) 2019; 44 RL Thorndike (1910_CR11) 1953; 18 D Xu (1910_CR1) 2015; 2 T Zhang (1910_CR5) 1996; 25 JC Bezdek (1910_CR8) 1984; 10 O Arbelaitz (1910_CR22) 2013; 46 RR Yager (1910_CR10) 1994; 24 CA Sugar (1910_CR4) 2003; 98 DJ Ketchen (1910_CR13) 1996; 17 H-S Park (1910_CR3) 2009; 36 E Hancer (1910_CR18) 2017; 32 AK Jain (1910_CR2) 2010; 31 S Guha (1910_CR6) 2001; 26 |
References_xml | – volume: 25 start-page: 103 issue: 2 year: 1996 end-page: 114 ident: CR5 article-title: BIRCH: an efficient data clustering method for very large databases publication-title: ACM SIGMOD Record. doi: 10.1145/235968.233324 – volume: 14 start-page: e0210236 issue: 1 year: 2019 ident: CR20 article-title: Clustering algorithms: a comparative approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0210236 – volume: 44 start-page: 348 issue: 3 year: 2019 end-page: 361 ident: CR32 article-title: machine learning made easy: a review of Scikit-learn package in python programming language publication-title: J. Educ. Behav. Stat. doi: 10.3102/1076998619832248 – volume: 36 start-page: 3336 issue: 2 year: 2009 end-page: 3341 ident: CR3 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – volume: 46 start-page: 243 issue: 1 year: 2013 end-page: 256 ident: CR22 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.021 – volume: 25 start-page: 345 issue: 5 year: 2000 end-page: 366 ident: CR7 article-title: Rock: a robust clustering algorithm for categorical attributes publication-title: Inf. Syst. doi: 10.1016/S0306-4379(00)00022-3 – volume: 335 start-page: 012017 year: 2018 ident: CR12 article-title: Integration K-means clustering method and elbow method for identification of the best customer profile cluster publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/336/1/012017 – volume: 44 start-page: 109 issue: 1 year: 2003 end-page: 138 ident: CR26 article-title: Fast hierarchical clustering and its validation publication-title: Data Knowl. Eng. doi: 10.1016/S0169-023X(02)00138-6 – year: 2020 ident: CR15 article-title: Determine the number of unknown targets in open World based on Elbow method publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2966182 – volume: 1361 start-page: 012015 year: 2019 ident: CR14 article-title: Improved the performance of the K-means cluster using the sum of squared error (SSE) optimized by using the Elbow method publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/1361/1/012015 – volume: 18 start-page: 267 issue: 4 year: 1953 end-page: 276 ident: CR11 article-title: Who belongs in the family? publication-title: Psychometrika doi: 10.1007/BF02289263 – volume: 2 start-page: 226 issue: 2 year: 2019 end-page: 235 ident: CR24 article-title: Research on K-value selection method of K-means clustering algorithm publication-title: J.-Multidiscip. Sci. J. doi: 10.3390/j2020016 – volume: 68 start-page: 747 year: 2018 end-page: 755 ident: CR28 article-title: Two improved k-means algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.032 – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: CR21 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 3 start-page: 643 issue: 5 year: 1992 end-page: 662 ident: CR9 article-title: Adaptive fuzzy c-shells clustering and detection of ellipses publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.159055 – volume: 32 start-page: 1850008 issue: 03 year: 2018 ident: CR25 article-title: Overlapping community discovery algorithm based on hierarchical agglomerative clustering publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001418500088 – volume: 16 start-page: 645 issue: 3 year: 2005 end-page: 678 ident: CR31 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 17 start-page: 441 issue: 6 year: 1996 end-page: 458 ident: CR13 article-title: The application of cluster analysis in strategic management research: an analysis and critique publication-title: Strateg. Manag. J. doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G – volume: 10 start-page: 191 issue: 2–3 year: 1984 end-page: 203 ident: CR8 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 466 start-page: 129 year: 2018 end-page: 151 ident: CR19 article-title: I-nice: a new approach for identifying the number of clusters and initial cluster centres publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.07.034 – volume: 76 start-page: 503 issue: 3 year: 1989 end-page: 514 ident: CR27 article-title: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods publication-title: Biometrika doi: 10.1093/biomet/76.3.503 – volume: 24 start-page: 1279 issue: 8 year: 1994 end-page: 1284 ident: CR10 article-title: Approximate clustering via the mountain method publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.299710 – volume: 2 start-page: 165 issue: 2 year: 2015 end-page: 193 ident: CR1 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 32 start-page: 49 year: 2017 end-page: 67 ident: CR18 article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.06.004 – volume: 38 start-page: 2270 issue: 12 year: 2005 end-page: 2285 ident: CR17 article-title: Score normalization in multimodal biometric systems publication-title: Patten Recognit. doi: 10.1016/j.patcog.2005.01.012 – volume: 31 start-page: 651 issue: 8 year: 2010 end-page: 666 ident: CR2 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 87 start-page: 2597 issue: 13 year: 2017 end-page: 2608 ident: CR16 article-title: Semi-supervised k-means++ publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2017.1327588 – volume: 53 start-page: 793 issue: 5 year: 2004 end-page: 808 ident: CR29 article-title: Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests publication-title: Syst. Biol. doi: 10.1080/10635150490522304 – volume: 26 start-page: 35 issue: 1 year: 2001 end-page: 58 ident: CR6 article-title: Cure: an efficient clustering algorithm for large databases publication-title: Inf. Syst. doi: 10.1016/S0306-4379(01)00008-4 – volume: 64 start-page: 4024 issue: 6 year: 2018 end-page: 4043 ident: CR30 article-title: Bridging AIC and BIC: a new criterion for autoregression publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2717599 – volume: 98 start-page: 750 issue: 463 year: 2003 end-page: 763 ident: CR4 article-title: Finding the number of clusters in a dataset publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214503000000666 – volume: 63 start-page: 411 issue: 2 year: 2001 end-page: 423 ident: CR23 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol. doi: 10.1111/1467-9868.00293 – volume: 14 start-page: e0210236 issue: 1 year: 2019 ident: 1910_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0210236 – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 1910_CR23 publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol. doi: 10.1111/1467-9868.00293 – volume: 87 start-page: 2597 issue: 13 year: 2017 ident: 1910_CR16 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2017.1327588 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 1910_CR31 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 31 start-page: 651 issue: 8 year: 2010 ident: 1910_CR2 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 25 start-page: 345 issue: 5 year: 2000 ident: 1910_CR7 publication-title: Inf. Syst. doi: 10.1016/S0306-4379(00)00022-3 – volume: 24 start-page: 1279 issue: 8 year: 1994 ident: 1910_CR10 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.299710 – volume: 25 start-page: 103 issue: 2 year: 1996 ident: 1910_CR5 publication-title: ACM SIGMOD Record. doi: 10.1145/235968.233324 – volume: 38 start-page: 2270 issue: 12 year: 2005 ident: 1910_CR17 publication-title: Patten Recognit. doi: 10.1016/j.patcog.2005.01.012 – volume: 335 start-page: 012017 year: 2018 ident: 1910_CR12 publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/336/1/012017 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 1910_CR8 publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 44 start-page: 348 issue: 3 year: 2019 ident: 1910_CR32 publication-title: J. Educ. Behav. Stat. doi: 10.3102/1076998619832248 – volume: 18 start-page: 267 issue: 4 year: 1953 ident: 1910_CR11 publication-title: Psychometrika doi: 10.1007/BF02289263 – volume: 53 start-page: 793 issue: 5 year: 2004 ident: 1910_CR29 publication-title: Syst. Biol. doi: 10.1080/10635150490522304 – year: 2020 ident: 1910_CR15 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2966182 – volume: 1361 start-page: 012015 year: 2019 ident: 1910_CR14 publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/1361/1/012015 – volume: 76 start-page: 503 issue: 3 year: 1989 ident: 1910_CR27 publication-title: Biometrika doi: 10.1093/biomet/76.3.503 – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 1910_CR1 publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 3 start-page: 643 issue: 5 year: 1992 ident: 1910_CR9 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.159055 – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 1910_CR3 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – volume: 26 start-page: 35 issue: 1 year: 2001 ident: 1910_CR6 publication-title: Inf. Syst. doi: 10.1016/S0306-4379(01)00008-4 – volume: 32 start-page: 1850008 issue: 03 year: 2018 ident: 1910_CR25 publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001418500088 – volume: 68 start-page: 747 year: 2018 ident: 1910_CR28 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.032 – volume: 64 start-page: 4024 issue: 6 year: 2018 ident: 1910_CR30 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2717599 – volume: 17 start-page: 441 issue: 6 year: 1996 ident: 1910_CR13 publication-title: Strateg. Manag. J. doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G – volume: 98 start-page: 750 issue: 463 year: 2003 ident: 1910_CR4 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214503000000666 – volume: 44 start-page: 109 issue: 1 year: 2003 ident: 1910_CR26 publication-title: Data Knowl. Eng. doi: 10.1016/S0169-023X(02)00138-6 – volume: 32 start-page: 49 year: 2017 ident: 1910_CR18 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.06.004 – volume: 466 start-page: 129 year: 2018 ident: 1910_CR19 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.07.034 – volume: 20 start-page: 53 year: 1987 ident: 1910_CR21 publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 2 start-page: 226 issue: 2 year: 2019 ident: 1910_CR24 publication-title: J.-Multidiscip. Sci. J. doi: 10.3390/j2020016 – volume: 46 start-page: 243 issue: 1 year: 2013 ident: 1910_CR22 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.021 |
SSID | ssj0033492 |
Score | 2.60965 |
Snippet | Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number... Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Clustering Communications Engineering Cosine law Data analysis Datasets Edge Elbow method Engineering Fog Human-centered Computing in Cloud Information Systems Applications (incl.Internet) Machine learning Mathematical analysis Networks Signal,Image and Speech Processing Silhouette coefficient |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAGUevYSZ0REBVCgolK3az4BZXSpLSp-vc52wkUJGBhiaLESZzz5b7Piu87hC4U1SoeZCpiSvcjZo3TgITNQHGuqSKAQi7B-fEpvR-xh3EyXiv15daEBXngYLgeEOBU9Y1iDtolMRkgkuJSkkQO4n7uxbYB89rJVIjB1GnutSkyPO0tCAU_i9xyBKA0EHlWX2DIq_V_oZjf_op6sBnuoO2GJeLr0LtdtGHKPbS1ph24j4pr_LbMS58jBhELu_TaUKKrrHGoC40ri00hqxWeVRM4CvwUA9_DFYSJKdw-VANxrVSxdIIJCzwp2314CM6Ll2o-qV-nB2g0vHu-vY-a0gmRAoCpI0tSRajNc20HNIPRAGbAOYu15JJpmTAlqUqZsRrgPaGpE2lnktIcCKR2GmyHqFNWpTlCmJiEK6BRXOuMGW5zYy0xLhIA_IMtu4i0lhSq0RV35S0K4ecXPBXB-gKsL7z1xaqLLj-umQVVjV9b37gB-mjpFLH9AfAT0fiJ-MtPuui0HV7RfKYLETOeAR-E9-iiq3bIP0__3KXj_-jSCdqMvUvGEUlOUaeeL80ZUJxanntvfgdmovZb priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lRy8aXHTpN30qKKIoCcFb6F56UJtdbfL_n1n0tYXKngppZ30MZPMfCGZbwg5NNyaeJSZSBg7jIR3yAEJh5GR0nLDIAphgvPNbXp1L64fkoc2KWza7XbvliSDpw7DWqYnU8ahr0S4pQBgCXiP-SJZSnDujku0mOPQ-F-OfHtdesyP7b6EoMDU_wVeflsRDYHmco2stgiRnjYmXScLrtwgK594AzdJcUpfZ3kZ8sPAW1FMrW3Kc5U1bWpC08pTV-hqTl-qMVwFbEoB69EKXMQzPL6pBIJSppghWcKUjsvuHF5C8-Kxmozrp-ctcn95cXd-FbVlEyIDwaWOPEsN4z7PrR_xDCwBqEBKEVsttbA6EUZzkwrnLYT2hKdI0C405zmAR4v8a9ukV1al2yGUuUQagFDS2kw46XPnPXPoBSD0gy77hHWaVKblFMfSFoUKcwuZqkb7CrSvgvbVvE-O3tu8NIwaf0qfoYHeJZENO1yoJo-qHVyhrRk6IxD-aeYyQC1Gas0SPYqHedong868qh2iUxULmQEWhP_ok-PO5B-3f_-k3f-J75HlOHS-OGLJgPTqycztA5Cp9UHot29H5evb priority: 102 providerName: Springer Nature |
Title | A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm |
URI | https://link.springer.com/article/10.1186/s13638-021-01910-w https://www.proquest.com/docview/2489441229 https://doaj.org/article/1186c0ec45514b1e9812c8bb15b720a6 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbN5tIeSp900zTo0FtrsnpYlk9ls2QbCg2ldCE3Yb3SgGNvsl7273dGtpOm0FwGP2TZzEgzn_X4hpCPTnjHi9Jl0vlZJmNADkgQhdPaC8cgCuEG5-_n6mwlv13kF8OA22ZYVjn6xOSofetwjPyYS11C6Oa8_LK-yTBrFM6uDik09sg-uGCtJ2T_5PT8x8_RFwvk3sNfLgVdicmCj9tmtDreMAFtL8MlCgBzwBvtHoSmxOD_AHb-M1OaAtDyBXk-IEc67039kjwJzSvy7C8-wdekntObbdWkfWPgxShuue3TdjUd7XNF0zbSUNt2R9ftFVwFzEoBA9IWXMc1VN9nCMFSrt4iicKGXjXjMbyEVvUlqKX7ff2GrJanvxZn2ZBOIXMQdLosMuWYiFXlYyFKsBCgBa0l91Zb6W0unRVOyRA9hPxcKCRul1aICkClR162t2TStE14RygLuXYArbT3pQw6ViFGFtA7ACQAXU4JGzVp3MA1jikvapP-ObQyvfYNaN8k7ZvdlHy6e2bdM208WvoEDXRXElmy04X29tIMnS4962bBSYSFloUS0IzT1rLcFnxWqSk5HM1rhq67MfcNbUo-jya_v_3_Tzp4vLb35ClPjY1nLD8kk-52Gz4AoOnsEdmTs68g9RJk34LhbMElSrU4SgMFIFd8_geQ0_co |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcIFNgDnMBq9mFnfUCoPEJKH6dW6m3xPlwquXbaOIr4U_xGZtZ2S5HorZcoctZra2b2m29jzzcAb5z0Tkxylyjnx4kqA2lA4sfEae2l45iFqMB5bz-bHarvR-nRGvweamHotcoBEyNQ-8bRf-SbQukcU7cQ-cf5WUJdo-jp6tBCowuLnfBrhVu2xYftL-jft0JMvx58niV9V4HEIfa2Sckzx2VZFL6cyBxvFJOm1kp4q63yNlXOSpepUHrMfKnMSL9cWSkL5Fae5Mlw3ltwW0nM5FSZPv02IL8kpT_a4GW4cLmaiKFIR2ebCy4x0hN6IQJJFWLf6koijP0CrpDcf57LxnQ3fQD3e57KtrrAeghroX4E9_5SL3wM1RY7WxZ1rFJDzGRU4Ns1Catb1nWmZk3JQmWbFZs3J3gUGTJDxskaBKpTnL7rR0KjXLUkyYYFO6mH73gRVlTH6IT25-kTOLwRMz-F9bqpwzNgPKTaIZHT3ucq6LIIZckDYRESELTlCPhgSeN6ZXNqsFGZuMPRmemsb9D6JlrfrEbw7uKceafrce3oT-Sgi5GkyR0PNOfHpl_i8Vw3Dk4RCbU85MidnLaWp3YixkU2go3BvaYHioW5DOsRvB9cfvnz_2_p-fWzvYY7s4O9XbO7vb_zAu6KGHgi4ekGrLfny_ASqVRrX8X4ZfDjphfMH5pOLJI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwV8gBNEu3acxDkg1NKuWgqrClGpNxO_SqU02XZ3teKv8euYyaOlSPTWSxQljmPNjGc-J55vAN7Y2FmR5TaS1o0jGTxxQOIhs0q52HKMQpTg_HWa7h3Jz8fJ8Rr87nNhaFtl7xMbR-1qS9_IR0KqHEO3EPkodNsiDncmH2fnEVWQoj-tfTmN1kQO_K8VLt_mH_Z3UNdvhZjsfv-0F3UVBiKLfngRBZ5aHoeicCGLcxw0BlClpHBGGelMIq2JbSp9cBgFkzglLnNp4rhAnOWIqgz7vQPrGa2KBrC-vTs9_NbHgZh4_2i5l-I05jITfcqOSkdzHqPdR7Q9AiEWesLVtbDYVA-4Bnn_-UvbBL_JQ3jQoVa21ZrZI1jz1WO4_xeX4RMot9j5sqianDX0oIzSfduSYdWCtXWqWR2YL029YrP6FK8iXmaIP1mNbusMu2-rk1ArWy6JwGHOTqv-HF_CivIE1bD4efYUjm5F0M9gUNWV3wDGfaIswjrlXC69CoUPgXvyTAhHUJZD4L0kte14zqncRqmb9Y5KdSt9jdLXjfT1agjvLp-ZtSwfN7beJgVdtiSG7uZCfXGiuwnfPGvH3kqCpIb7HJGUVcbwxGRiXKRD2OzVqzu3MddXRj6E973Kr27_f0jPb-7tNdzFyaK_7E8PXsA90didiHiyCYPFxdK_RFy1MK86A2bw47bnzB_OejIk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantitative+discriminant+method+of+elbow+point+for+the+optimal+number+of+clusters+in+clustering+algorithm&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Shi+Congming&rft.au=Wei+Bingtao&rft.au=Shoulin%2C+Wei&rft.au=Wang%2C+Wen&rft.date=2021-02-15&rft.pub=Springer+Nature+B.V&rft.issn=1687-1472&rft.eissn=1687-1499&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-021-01910-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |