Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate

Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch...

Full description

Saved in:
Bibliographic Details
Published inNPJ 2D materials and applications Vol. 5; no. 1; pp. 1 - 7
Main Authors Zhao, Pei, Xiao, Chengxin, Yao, Wang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.04.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2397-7132
2397-7132
DOI10.1038/s41699-021-00221-4

Cover

Loading…
Abstract Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe 2 , black phosphorus, and antiferromagnetic MnPSe 3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure.
AbstractList Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe2, black phosphorus, and antiferromagnetic MnPSe3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure.
Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe 2 , black phosphorus, and antiferromagnetic MnPSe 3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure.
Abstract Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe2, black phosphorus, and antiferromagnetic MnPSe3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure.
ArticleNumber 38
Author Xiao, Chengxin
Zhao, Pei
Yao, Wang
Author_xml – sequence: 1
  givenname: Pei
  surname: Zhao
  fullname: Zhao, Pei
  organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics
– sequence: 2
  givenname: Chengxin
  orcidid: 0000-0002-3724-9155
  surname: Xiao
  fullname: Xiao, Chengxin
  organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics
– sequence: 3
  givenname: Wang
  orcidid: 0000-0003-2883-4528
  surname: Yao
  fullname: Yao, Wang
  email: wangyao@hku.hk
  organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics
BookMark eNp9kU9P3DAQxa0KpFLgC3CKxDmtx3H--FhoKUiIXsoVa-JMqFe79mJ7W_XbMxBEqx642J4n_96M_T6IvRADCXEC8iPIZviUNXTG1FJBLaXiVb8TB6oxfd1Do_b-Ob8XxzmvpJRgoNMtHIi72-B_Ucq4rvJuS2mNpXhH1TYWCsWzPMdUqS_VBgslrnM1p7ipym-fC02VDyzPyIQP2U9U_azPbthqzCUxcST2Z2bo-GU_FLcXX3-cX9bX379dnX--rp1WptSzVC3pzoEmJQ02ODRugIkcIgwdOIDJjX1nmgHlaHoNrem5VgM6VI71Q3G1-E4RV3ab_AbTHxvR22chpnuLiR-2JtuORkEPZgRUWoMaJTSmo5a9OuxHxV6ni9c2xYcd5WJXcZcCj29VC9B2Wg5Pt9Ryy6WYc6L5tStI-xSLXWKxHIt9jsVqhob_IOcLFh8D_5Zfv402C5q5T7in9HeqN6hH1maijA
CitedBy_id crossref_primary_10_1038_s41467_025_57111_2
crossref_primary_10_1103_PhysRevApplied_20_044056
crossref_primary_10_1103_PhysRevMaterials_7_L121002
crossref_primary_10_1002_lpor_202401368
crossref_primary_10_1007_s11433_023_2163_3
crossref_primary_10_1021_acs_nanolett_4c02555
crossref_primary_10_1103_PhysRevB_109_195406
crossref_primary_10_1103_PhysRevB_108_155409
crossref_primary_10_1021_acs_nanolett_4c04996
crossref_primary_10_1088_2053_1583_ad2107
crossref_primary_10_1103_PhysRevX_15_011049
crossref_primary_10_1021_acs_chemrev_3c00627
crossref_primary_10_1103_PhysRevB_107_L081402
crossref_primary_10_1103_PhysRevB_110_155419
crossref_primary_10_1021_acs_nanolett_3c00459
crossref_primary_10_1103_PhysRevLett_131_096401
crossref_primary_10_3390_nano11113113
crossref_primary_10_1038_s41563_023_01637_7
crossref_primary_10_1007_s42247_021_00270_x
crossref_primary_10_1002_adma_202301472
crossref_primary_10_1088_1361_6463_ad5f98
crossref_primary_10_1088_2053_1583_acbdaa
crossref_primary_10_1103_PhysRevX_14_021013
crossref_primary_10_1103_PhysRevX_14_041040
crossref_primary_10_1021_acs_nanolett_4c04241
crossref_primary_10_1038_s41586_021_03979_1
crossref_primary_10_1038_s41467_023_41773_x
crossref_primary_10_1039_D4TC02167C
crossref_primary_10_1126_science_abe8177
crossref_primary_10_1021_acs_nanolett_4c02548
crossref_primary_10_1063_5_0173960
crossref_primary_10_1088_0256_307X_41_7_077103
crossref_primary_10_1103_PhysRevX_15_011019
crossref_primary_10_1002_adma_202203990
crossref_primary_10_1016_j_jmst_2023_12_080
crossref_primary_10_1038_s41467_024_53440_w
crossref_primary_10_1103_PhysRevB_109_165422
crossref_primary_10_1103_PhysRevLett_133_206601
crossref_primary_10_1360_SSPMA_2023_0304
crossref_primary_10_1021_acs_nanolett_1c04467
crossref_primary_10_1038_s41377_024_01523_0
crossref_primary_10_1021_acs_nanolett_4c05062
crossref_primary_10_1038_s41467_024_52314_5
crossref_primary_10_1038_s41467_024_55432_2
crossref_primary_10_1360_nso_20220033
Cites_doi 10.1038/s41586-019-1695-0
10.1126/science.1254966
10.1038/s41586-019-0957-1
10.1038/s41586-020-2458-7
10.1103/PhysRevB.89.205414
10.1126/science.aaw3780
10.1126/science.aay5533
10.1088/2053-1583/abd006
10.1126/sciadv.1701696
10.1038/nature12186
10.1038/nature12385
10.1038/nature26160
10.1038/s41586-019-0986-9
10.1126/science.1237240
10.1038/s41586-019-1393-y
10.1038/nnano.2010.172
10.1088/2053-1583/ab0e24
10.1038/s41586-019-0976-y
10.1038/s41586-019-0975-z
10.1038/s41586-020-2049-7
10.1021/acsnano.7b02756
10.1038/s41586-020-2085-3
10.1126/sciadv.1601459
10.1038/nature26154
10.1038/s41586-020-2191-2
10.1038/nature12187
10.1126/science.aav1910
10.1093/nsr/nwz117
10.1038/s41586-020-2092-4
10.1038/s41586-020-2868-6
10.1073/pnas.1108174108
10.1038/s41467-020-20667-2
10.1038/s41567-021-01171-w
10.1038/s41563-021-00959-8
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1038/s41699-021-00221-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
ProQuest Materials Science Database (NC LIVE)
ProQuest Engineering Collection
ProQuest Engineering Database (NC LIVE)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2397-7132
EndPage 7
ExternalDocumentID oai_doaj_org_article_5b921719b1a24412b01396e58ac6a7b2
10_1038_s41699_021_00221_4
GrantInformation_xml – fundername: Croucher Senior Research Fellowship, the HKU Seed Funding for Strategic Interdisciplinary Research, and National Key R&D Program of China (2020YFA0309603).
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKAB
ABJCF
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
M7S
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PTHSS
RNT
SNYQT
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
8FE
8FG
AARCD
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c429t-f025e46c14e209a3a83c81decaa1861c11dcb76938a0b9741597b7628aca2c693
IEDL.DBID DOA
ISSN 2397-7132
IngestDate Wed Aug 27 01:26:10 EDT 2025
Wed Aug 13 06:52:18 EDT 2025
Tue Jul 01 02:21:16 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-f025e46c14e209a3a83c81decaa1861c11dcb76938a0b9741597b7628aca2c693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3724-9155
0000-0003-2883-4528
OpenAccessLink https://doaj.org/article/5b921719b1a24412b01396e58ac6a7b2
PQID 2511564082
PQPubID 4669722
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_5b921719b1a24412b01396e58ac6a7b2
proquest_journals_2511564082
crossref_primary_10_1038_s41699_021_00221_4
crossref_citationtrail_10_1038_s41699_021_00221_4
springer_journals_10_1038_s41699_021_00221_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-12
PublicationDateYYYYMMDD 2021-04-12
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle NPJ 2D materials and applications
PublicationTitleAbbrev npj 2D Mater Appl
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Regan (CR19) 2020; 579
Hunt (CR3) 2013; 340
Liu (CR17) 2020; 583
Woods (CR31) 2021; 12
Tong, Chen, Xiao, Yu, Yao (CR36) 2021; 8
Jin (CR7) 2019; 567
Shimazaki (CR20) 2020; 580
Li, Wu (CR29) 2017; 11
Xu (CR21) 2020; 587
Gorbachev (CR4) 2014; 346
CR32
CR30
Yankowitz (CR12) 2019; 363
Sharpe (CR11) 2019; 365
Lu (CR14) 2019; 574
Jung, Raoux, Qiao, MacDonald (CR34) 2014; 89
Gilbert (CR28) 2019; 6
Serlin (CR13) 2020; 367
Yu, Chen, Yao (CR35) 2020; 7
Dean (CR2) 2013; 497
Cao (CR9) 2018; 556
Bistritzer, MacDonald (CR33) 2011; 108
Ponomarenko (CR1) 2013; 497
Cao (CR10) 2018; 556
CR23
CR22
Alexeev (CR8) 2019; 567
Chen (CR15) 2019; 572
Seyler (CR6) 2019; 567
Yu, Liu, Tang, Xu, Yao (CR25) 2017; 3
Tran (CR5) 2019; 567
Tang (CR18) 2020; 579
Chen (CR16) 2020; 579
Geim, Grigorieva (CR27) 2010; 499
Zhang (CR24) 2017; 3
Dean (CR26) 2010; 5
K Tran (221_CR5) 2019; 567
Q Tong (221_CR36) 2021; 8
C Zhang (221_CR24) 2017; 3
R Bistritzer (221_CR33) 2011; 108
M Yankowitz (221_CR12) 2019; 363
Y Xu (221_CR21) 2020; 587
RV Gorbachev (221_CR4) 2014; 346
G Chen (221_CR16) 2020; 579
Y Shimazaki (221_CR20) 2020; 580
L Li (221_CR29) 2017; 11
221_CR23
CR Dean (221_CR2) 2013; 497
221_CR22
EC Regan (221_CR19) 2020; 579
AK Geim (221_CR27) 2010; 499
X Liu (221_CR17) 2020; 583
G Chen (221_CR15) 2019; 572
CR Dean (221_CR26) 2010; 5
KL Seyler (221_CR6) 2019; 567
SM Gilbert (221_CR28) 2019; 6
J Jung (221_CR34) 2014; 89
C Jin (221_CR7) 2019; 567
H Yu (221_CR25) 2017; 3
H Yu (221_CR35) 2020; 7
AL Sharpe (221_CR11) 2019; 365
LA Ponomarenko (221_CR1) 2013; 497
M Serlin (221_CR13) 2020; 367
Y Cao (221_CR10) 2018; 556
221_CR30
Y Cao (221_CR9) 2018; 556
Y Tang (221_CR18) 2020; 579
B Hunt (221_CR3) 2013; 340
CR Woods (221_CR31) 2021; 12
221_CR32
X Lu (221_CR14) 2019; 574
EM Alexeev (221_CR8) 2019; 567
References_xml – ident: CR22
– volume: 574
  start-page: 653
  year: 2019
  end-page: 657
  ident: CR14
  article-title: Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene
  publication-title: Nature
  doi: 10.1038/s41586-019-1695-0
– volume: 346
  start-page: 448
  year: 2014
  end-page: 451
  ident: CR4
  article-title: Detecting topological currents in graphene superlattices
  publication-title: Science
  doi: 10.1126/science.1254966
– volume: 567
  start-page: 66
  year: 2019
  end-page: 70
  ident: CR6
  article-title: Signatures of moire-trapped valley excitons in MoSe /WSe heterobilayers
  publication-title: Nature
  doi: 10.1038/s41586-019-0957-1
– volume: 583
  start-page: 221
  year: 2020
  end-page: 225
  ident: CR17
  article-title: Tunable spin-polarized correlated states in twisted double bilayer graphene
  publication-title: Nature
  doi: 10.1038/s41586-020-2458-7
– volume: 89
  start-page: 205414
  year: 2014
  ident: CR34
  article-title: Ab initio theory of moiré superlattice bands in layered two-dimensional materials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205414
– volume: 365
  start-page: 605
  year: 2019
  end-page: 608
  ident: CR11
  article-title: Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
  publication-title: Science
  doi: 10.1126/science.aaw3780
– volume: 367
  start-page: 900
  year: 2020
  end-page: 903
  ident: CR13
  article-title: Intrinsic quantized anomalous Hall effect in a moiré heterostructure
  publication-title: Science
  doi: 10.1126/science.aay5533
– volume: 8
  start-page: 025007
  year: 2021
  ident: CR36
  article-title: Interferences of electrostatic moiré‚ potentials and bichromatic superlattice of electrons and excitons in transition metal dichalcogenides
  publication-title: 2D Mater
  doi: 10.1088/2053-1583/abd006
– volume: 3
  year: 2017
  ident: CR25
  article-title: Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701696
– ident: CR30
– volume: 497
  start-page: 598
  year: 2013
  end-page: 602
  ident: CR2
  article-title: Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices
  publication-title: Nature
  doi: 10.1038/nature12186
– volume: 499
  start-page: 419
  year: 2010
  ident: CR27
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 556
  start-page: 43
  year: 2018
  end-page: 50
  ident: CR10
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 567
  start-page: 81
  year: 2019
  end-page: 86
  ident: CR8
  article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/s41586-019-0986-9
– volume: 340
  start-page: 1427
  year: 2013
  end-page: 1430
  ident: CR3
  article-title: Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure
  publication-title: Science
  doi: 10.1126/science.1237240
– volume: 572
  start-page: 215
  year: 2019
  end-page: 219
  ident: CR15
  article-title: Signatures of tunable superconductivity in a trilayer graphene moiré superlattice
  publication-title: Nature
  doi: 10.1038/s41586-019-1393-y
– volume: 5
  start-page: 722
  year: 2010
  ident: CR26
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– ident: CR23
– volume: 6
  start-page: 021006
  year: 2019
  ident: CR28
  article-title: Alternative stacking sequences in hexagonal boron nitride
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ab0e24
– volume: 567
  start-page: 76
  year: 2019
  end-page: 80
  ident: CR7
  article-title: Observation of moire excitons in WSe /WS heterostructure superlattices
  publication-title: Nature
  doi: 10.1038/s41586-019-0976-y
– volume: 567
  start-page: 71
  year: 2019
  end-page: 75
  ident: CR5
  article-title: Evidence for moire excitons in van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
– volume: 579
  start-page: 56
  year: 2020
  end-page: 61
  ident: CR16
  article-title: Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice
  publication-title: Nature
  doi: 10.1038/s41586-020-2049-7
– volume: 11
  start-page: 6382
  year: 2017
  end-page: 6388
  ident: CR29
  article-title: Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02756
– volume: 579
  start-page: 353
  year: 2020
  end-page: 358
  ident: CR18
  article-title: Simulation of Hubbard model physics in WSe /WS moiré superlattices
  publication-title: Nature
  doi: 10.1038/s41586-020-2085-3
– volume: 3
  year: 2017
  ident: CR24
  article-title: Interlayer coulpings, moiré patterns, and 2D electronic superlattices in MoS /WSe hetero-bilayers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601459
– volume: 556
  start-page: 80
  year: 2018
  end-page: 84
  ident: CR9
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 580
  start-page: 472
  year: 2020
  end-page: 477
  ident: CR20
  article-title: Strongly correlated electrons and hybrid excitons in a moiré heterostructure
  publication-title: Nature
  doi: 10.1038/s41586-020-2191-2
– volume: 497
  start-page: 594
  year: 2013
  end-page: 597
  ident: CR1
  article-title: Cloning of Dirac fermions in graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature12187
– volume: 363
  start-page: 1059
  year: 2019
  end-page: 1064
  ident: CR12
  article-title: Tuning superconductivity in twisted bilayer graphene
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 7
  start-page: 12
  year: 2020
  end-page: 20
  ident: CR35
  article-title: Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz117
– volume: 579
  start-page: 359
  year: 2020
  end-page: 363
  ident: CR19
  article-title: Mott and generalized Wigner crystal states in WSe /WS moiré superlattices
  publication-title: Nature
  doi: 10.1038/s41586-020-2092-4
– volume: 587
  start-page: 214
  year: 2020
  end-page: 218
  ident: CR21
  article-title: Correlated insulating states at fractional fillings of moiré superlattices
  publication-title: Nature
  doi: 10.1038/s41586-020-2868-6
– ident: CR32
– volume: 108
  start-page: 12233
  year: 2011
  end-page: 12237
  ident: CR33
  article-title: Moire bands in twisted double-layer graphene
  publication-title: PNAS
  doi: 10.1073/pnas.1108174108
– volume: 12
  year: 2021
  ident: CR31
  article-title: Charge-polarized interfacial superlattices in Marginally twisted hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume: 572
  start-page: 215
  year: 2019
  ident: 221_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-1393-y
– volume: 367
  start-page: 900
  year: 2020
  ident: 221_CR13
  publication-title: Science
  doi: 10.1126/science.aay5533
– volume: 497
  start-page: 598
  year: 2013
  ident: 221_CR2
  publication-title: Nature
  doi: 10.1038/nature12186
– volume: 567
  start-page: 66
  year: 2019
  ident: 221_CR6
  publication-title: Nature
  doi: 10.1038/s41586-019-0957-1
– volume: 579
  start-page: 359
  year: 2020
  ident: 221_CR19
  publication-title: Nature
  doi: 10.1038/s41586-020-2092-4
– volume: 7
  start-page: 12
  year: 2020
  ident: 221_CR35
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz117
– volume: 556
  start-page: 80
  year: 2018
  ident: 221_CR9
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 579
  start-page: 353
  year: 2020
  ident: 221_CR18
  publication-title: Nature
  doi: 10.1038/s41586-020-2085-3
– volume: 574
  start-page: 653
  year: 2019
  ident: 221_CR14
  publication-title: Nature
  doi: 10.1038/s41586-019-1695-0
– volume: 8
  start-page: 025007
  year: 2021
  ident: 221_CR36
  publication-title: 2D Mater
  doi: 10.1088/2053-1583/abd006
– volume: 365
  start-page: 605
  year: 2019
  ident: 221_CR11
  publication-title: Science
  doi: 10.1126/science.aaw3780
– volume: 108
  start-page: 12233
  year: 2011
  ident: 221_CR33
  publication-title: PNAS
  doi: 10.1073/pnas.1108174108
– ident: 221_CR22
  doi: 10.1038/s41567-021-01171-w
– volume: 499
  start-page: 419
  year: 2010
  ident: 221_CR27
  publication-title: Nature
  doi: 10.1038/nature12385
– ident: 221_CR30
– ident: 221_CR32
– volume: 567
  start-page: 81
  year: 2019
  ident: 221_CR8
  publication-title: Nature
  doi: 10.1038/s41586-019-0986-9
– volume: 340
  start-page: 1427
  year: 2013
  ident: 221_CR3
  publication-title: Science
  doi: 10.1126/science.1237240
– ident: 221_CR23
  doi: 10.1038/s41563-021-00959-8
– volume: 363
  start-page: 1059
  year: 2019
  ident: 221_CR12
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 6
  start-page: 021006
  year: 2019
  ident: 221_CR28
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ab0e24
– volume: 3
  year: 2017
  ident: 221_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601459
– volume: 587
  start-page: 214
  year: 2020
  ident: 221_CR21
  publication-title: Nature
  doi: 10.1038/s41586-020-2868-6
– volume: 346
  start-page: 448
  year: 2014
  ident: 221_CR4
  publication-title: Science
  doi: 10.1126/science.1254966
– volume: 89
  start-page: 205414
  year: 2014
  ident: 221_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205414
– volume: 556
  start-page: 43
  year: 2018
  ident: 221_CR10
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 567
  start-page: 71
  year: 2019
  ident: 221_CR5
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
– volume: 580
  start-page: 472
  year: 2020
  ident: 221_CR20
  publication-title: Nature
  doi: 10.1038/s41586-020-2191-2
– volume: 567
  start-page: 76
  year: 2019
  ident: 221_CR7
  publication-title: Nature
  doi: 10.1038/s41586-019-0976-y
– volume: 12
  year: 2021
  ident: 221_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume: 579
  start-page: 56
  year: 2020
  ident: 221_CR16
  publication-title: Nature
  doi: 10.1038/s41586-020-2049-7
– volume: 5
  start-page: 722
  year: 2010
  ident: 221_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 497
  start-page: 594
  year: 2013
  ident: 221_CR1
  publication-title: Nature
  doi: 10.1038/nature12187
– volume: 583
  start-page: 221
  year: 2020
  ident: 221_CR17
  publication-title: Nature
  doi: 10.1038/s41586-020-2458-7
– volume: 11
  start-page: 6382
  year: 2017
  ident: 221_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02756
– volume: 3
  year: 2017
  ident: 221_CR25
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701696
SSID ssj0001916451
Score 2.448142
Snippet Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity...
Abstract Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301/119/995
639/766/25
Antiferromagnetism
Bilayers
Boron nitride
Chemistry and Materials Science
Coupling (molecular)
Electric fields
Excitons
Field strength
Film thickness
First principles
Graphene
Interlayers
Materials Science
Nanotechnology
Polarization
Quantum phenomena
Stacking
Substrates
Superlattices
Surfaces and Interfaces
Thin Films
Transition metal compounds
Two dimensional materials
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTyMxDI54XOCw2uUhurCrHLhBxCSTTDMntCwUhAQnkDgRJZ4UkFBb2kH8few0pYAEx8kk0YztxJ8dx2ZsN_ZRawGUIhgPQqvCiICCIyA0hfRKxwrIULy4rM6u9fmNuckOt0kOq5ztiWmjboZAPvIDgsKmovLIh6MnQVWj6HQ1l9BYZMsSNQ1JuO2dzn0siH20kfmuTFHagwniD7p2r9CGRu2F5tMHfZTS9n_Amp-OR5PW6f1kPzJc5P-m_P3FFuJgja2-SyK4zm5zbAV2mzyPyD3XUkAbHw1bigTCZsSlXB1zxKZTceN0p4S3L8ThhlPCiHHf44iHVLuT34ujS5wqpIy6cYNd906u_p-JXDVBAOqWVvQRxUSNJNZRFbUvvS0BQWkE76WtJEjZQKAKiNYXoSZAUXfxWVkPXgG2b7KlwXAQtxhXIGsNtW2kL3RTIjeNidGEbglaA9gOkzPaOcgpxamyxaNLR9uldVN6O6S3S_R2usP23saMpgk1vu19RCx560nJsFPDcHzn8tpyJtRoWMk6kHBpqci1W1fR4B9VvhtUh-3MGOryCp24uTx12P6MyfPXX3_S7-9n22YrKokXpYPcYUvt-Dn-QdzShr9JOF8Bh_vokQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XOCAeIrxUg7coKJJk649wgAhJDiBxIkocTNAQtu0FfH3sbOWlwCJY9OkSm23_pw4nwH2Q5-8FmKWeOMw0So1iSfDSdBXqXRKhxw5ULy6zi9u9eWduZsB1Z6FiUn7kdIy_qbb7LCjCQEHPi-vKPglt0NxzyzMM3U7p_H18t7HugrhHW1kcz4mzYofhn7xQZGq_wu-_LYlGj3N-TIsNRBRHE8ntQIzYbAKi5-IA9fgvsmnoG6TlxEvydWcxCZGw5qzf6iZsKhQp4Lw6NTEBJ8jEfUra7USTBIx7jsa8RTrdYrH5OSaHuUji25Yh9vzs5veRdJUSkiQ_Emd9Am5BE1i1UGlpctckSEB0YDOySKXKGWFnqseFi71JYOIskvXqnDoFFL7BswNhoOwCUKhLDWWRSVdqquMNGhMCMZ3M9QaseiAbGVnsaER52oWzzZuZ2eFncrbkrxtlLfVHTh4HzOakmj82fuEVfLekwmwY8Nw_GAbg7DGlxRMydKzQWmpeDm3zIOhN8pd16sO7LQKtc1XObEcTpmcS2x34LBV8sft36e09b_u27CgorkxJeQOzNXjl7BL2KX2e9FY3wBEoOZX
  priority: 102
  providerName: Springer Nature
Title Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate
URI https://link.springer.com/article/10.1038/s41699-021-00221-4
https://www.proquest.com/docview/2511564082
https://doaj.org/article/5b921719b1a24412b01396e58ac6a7b2
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED669mV7KG23sfRH0MPeNlNLlhz5MUmblcBC2Vbo04R0VthgpKFx6b_fO9np0sG6lz0Zy5IRd2ffd9LpO4D3cU5eC7HIgvGYaZWbLJDhZBjqXHqlY4kcKH6elRdXenptrjdKfXFOWEsP3Aru1ISKULOsAo_UUvG6XVVGYz2WfhDS35d83kYwlVZXCPVoI7tTMnlhT1eEPPjAvaLomfwWBU5PPFEi7H-CMv_YGE3-ZrIHux1QFMN2gvuwFRcH8GqDPvA1fO-yKqjb6m7JC3MNp7KJ5U3DOUDUTIhUqDNBqLQ1NMGnSURzz7qtBVNF3M49jfiZqnaKH9loRq8KiUs3voGryfm38UXW1UvIkLxKk80Jv0RNwtWRROILbwskOBrRe2lLiVLWGLj2ofV5qBhKVAO6VyRKr5Da38L24mYR34FQKCuNla2lz3VdkB6NidGEQYFaI9oeyLXsHHZk4lzT4pdLm9qFda28HcnbJXk73YMPj2OWLZXGs71HrJLHnkyDnRrIOFxnHO5fxtGD47VCXfdtrhwHVabkQts9-LhW8u_Hf5_S4f-Y0hG8VMkImS7yGLab27t4QrimCX14YSef-rAzHE6_Tuk6Op9dfqHWcTnuJ_N-APua9OQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcgAOiE-xUMAHOIHV2LGz9gEhSlm2tN1TK_WEsSfegoR2l91UFX-K38iMk3QpEr31GMeOkvHLzBt7PMPYyzRFqwVQimgCCK0KIyICR0CsCxmUThWQo3g4qcbH-vOJOdlgv_uzMBRW2evErKjrOdAa-TZRYVNReeR3i5-CqkbR7mpfQqOFxX76dY4u2-rt3i7O7yulRh-PPoxFV1VAAOreRkzRyieNr6CTKlwogy0BSVuCEKStJEhZQ6QKgTYU0ZHBdUO8VjZAUFBR8iVU-Td0WToKIbSjT-s1HeRa2sjubE5R2u0V8h065q_QZ0drie7aJfuXywRc4rb_bMdmKze6y-509JS_b_F0j22k2X12-6-khQ_Yly6WA7utzha0HNhQAB1fzBuKPMJm5MFc7XLkwi28OZ1h4c05IarmlKBiOQ044nuuFcq_iZ0JPirmDL7pITu-Fnk-Ypuz-Sw9ZlyBdBqcrWUodF0ieoxJycRhCVoD2AGTvew8dCnMqZLGD5-30kvrW3l7lLfP8vZ6wF5fjFm0CTyu7L1DU3LRk5Jv54b58tR3_7I30aEjJ10kMGupaCnZVcngF1VhGNWAbfUT6juNsPJr_A7Ym36S17f__0pPrn7aC3ZzfHR44A_2JvtP2S2VoUapKLfYZrM8S8-QMzXxeQYqZ1-v-8_4A_5GJOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xJqHxMG1jaGVs-GFvIxA7dpo8rmVV-bFqD0PiCcu-uAwJtVWbin-fOzeBMbFJPMaxI-fukvvOPn8H8CWMyWshZok3DhOtUpN4MpwEfZVKp3TIkQPFH6N8eK5PLszFGuTtWZiYtB8pLeNvus0OO1wQcODz8oqCX3I7FPcczKrxC3hJeDtly-7n_Ye1FcI82sjmjEyaFU8Mf-SHIl3_I4z517Zo9DaDN_C6gYni22pib2EtTN7B5h_kgVtw2eRUULfFcsbLcjUnsonZtOYMIGomPCrUkSBMujIzwWdJRH3Lmq0EE0XMx45GXMeaneJ30hvRo3xk0g3v4Xzw_Vd_mDTVEhIkn1InY0IvQZNodVBp6TJXZEhgNKBzssglSlmh58qHhUt9yUCi7NK1Khw6hdS-DeuT6SR8AKFQlhrLopIu1VVGWjQmBOO7GWqNWHRAtrKz2FCJc0WLGxu3tLPCruRtSd42ytvqDny9HzNbEWn8t3ePVXLfk0mwY8N0fmUbo7DGlxRQydKzUWmpeEm3zIOhN8pd16sO7LYKtc2XubAcUpmcy2x3YL9V8sPtf09p53nd92Dj59HAnh2PTj_CKxUtjxkid2G9ni_DJ4Iytf8c7fYOqB7qTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+superlattice+potential+for+2D+materials+from+twisted+interface+inside+h-BN+substrate&rft.jtitle=NPJ+2D+materials+and+applications&rft.au=Zhao%2C+Pei&rft.au=Xiao%2C+Chengxin&rft.au=Yao%2C+Wang&rft.date=2021-04-12&rft.issn=2397-7132&rft.eissn=2397-7132&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41699-021-00221-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41699_021_00221_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-7132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-7132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-7132&client=summon