Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate
Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch...
Saved in:
Published in | NPJ 2D materials and applications Vol. 5; no. 1; pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2397-7132 2397-7132 |
DOI | 10.1038/s41699-021-00221-4 |
Cover
Loading…
Abstract | Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe
2
, black phosphorus, and antiferromagnetic MnPSe
3
on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure. |
---|---|
AbstractList | Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe2, black phosphorus, and antiferromagnetic MnPSe3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure. Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe 2 , black phosphorus, and antiferromagnetic MnPSe 3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure. Abstract Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity coupling in forming moiré pattern with another layer. This approach, however, is invasive, material-specific, and requires small lattice mismatch and suitable band alignment, largely limited to graphene and transition metal dichalcogenides (TMDs). Hexagonal boron nitride (h-BN) of antiparallel (AA′) stacking has been an indispensable building block, as dielectric substrates and capping layers for realizing high-quality van der Waals devices. There is also emerging interest on parallelly aligned h-BN of Bernal (AB) stacking, where the broken inversion and mirror symmetries lead to out-of-plane electrical polarization. Here we show the that laterally patterned electrical polarization at a nearly parallel interface within the h-BN substrate can be exploited to create noninvasively a universal superlattice potential in general 2D materials. The feasibility is demonstrated by first principle calculations for monolayer MoSe2, black phosphorus, and antiferromagnetic MnPSe3 on such h-BN. The potential strength can reach 200 meV, customizable in this range through choice of distance of target material from the interface in h-BN. We also find sizable out-of-plane electric field at the h-BN surface, which can realize superlattice potential for interlayer excitons in TMD bilayers as well as dipolar molecules. The idea is further generalized to AB-stacked h-BN subject to torsion with adjacent layers all twisted with an angle, which allows the potential and field strength to be scaled up with film thickness, saturating to a quasi-periodic one with chiral structure. |
ArticleNumber | 38 |
Author | Xiao, Chengxin Zhao, Pei Yao, Wang |
Author_xml | – sequence: 1 givenname: Pei surname: Zhao fullname: Zhao, Pei organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics – sequence: 2 givenname: Chengxin orcidid: 0000-0002-3724-9155 surname: Xiao fullname: Xiao, Chengxin organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics – sequence: 3 givenname: Wang orcidid: 0000-0003-2883-4528 surname: Yao fullname: Yao, Wang email: wangyao@hku.hk organization: Department of Physics, University of Hong Kong, HKU-UCAS Joint Institute of Theoretical and Computational Physics |
BookMark | eNp9kU9P3DAQxa0KpFLgC3CKxDmtx3H--FhoKUiIXsoVa-JMqFe79mJ7W_XbMxBEqx642J4n_96M_T6IvRADCXEC8iPIZviUNXTG1FJBLaXiVb8TB6oxfd1Do_b-Ob8XxzmvpJRgoNMtHIi72-B_Ucq4rvJuS2mNpXhH1TYWCsWzPMdUqS_VBgslrnM1p7ipym-fC02VDyzPyIQP2U9U_azPbthqzCUxcST2Z2bo-GU_FLcXX3-cX9bX379dnX--rp1WptSzVC3pzoEmJQ02ODRugIkcIgwdOIDJjX1nmgHlaHoNrem5VgM6VI71Q3G1-E4RV3ab_AbTHxvR22chpnuLiR-2JtuORkEPZgRUWoMaJTSmo5a9OuxHxV6ni9c2xYcd5WJXcZcCj29VC9B2Wg5Pt9Ryy6WYc6L5tStI-xSLXWKxHIt9jsVqhob_IOcLFh8D_5Zfv402C5q5T7in9HeqN6hH1maijA |
CitedBy_id | crossref_primary_10_1038_s41467_025_57111_2 crossref_primary_10_1103_PhysRevApplied_20_044056 crossref_primary_10_1103_PhysRevMaterials_7_L121002 crossref_primary_10_1002_lpor_202401368 crossref_primary_10_1007_s11433_023_2163_3 crossref_primary_10_1021_acs_nanolett_4c02555 crossref_primary_10_1103_PhysRevB_109_195406 crossref_primary_10_1103_PhysRevB_108_155409 crossref_primary_10_1021_acs_nanolett_4c04996 crossref_primary_10_1088_2053_1583_ad2107 crossref_primary_10_1103_PhysRevX_15_011049 crossref_primary_10_1021_acs_chemrev_3c00627 crossref_primary_10_1103_PhysRevB_107_L081402 crossref_primary_10_1103_PhysRevB_110_155419 crossref_primary_10_1021_acs_nanolett_3c00459 crossref_primary_10_1103_PhysRevLett_131_096401 crossref_primary_10_3390_nano11113113 crossref_primary_10_1038_s41563_023_01637_7 crossref_primary_10_1007_s42247_021_00270_x crossref_primary_10_1002_adma_202301472 crossref_primary_10_1088_1361_6463_ad5f98 crossref_primary_10_1088_2053_1583_acbdaa crossref_primary_10_1103_PhysRevX_14_021013 crossref_primary_10_1103_PhysRevX_14_041040 crossref_primary_10_1021_acs_nanolett_4c04241 crossref_primary_10_1038_s41586_021_03979_1 crossref_primary_10_1038_s41467_023_41773_x crossref_primary_10_1039_D4TC02167C crossref_primary_10_1126_science_abe8177 crossref_primary_10_1021_acs_nanolett_4c02548 crossref_primary_10_1063_5_0173960 crossref_primary_10_1088_0256_307X_41_7_077103 crossref_primary_10_1103_PhysRevX_15_011019 crossref_primary_10_1002_adma_202203990 crossref_primary_10_1016_j_jmst_2023_12_080 crossref_primary_10_1038_s41467_024_53440_w crossref_primary_10_1103_PhysRevB_109_165422 crossref_primary_10_1103_PhysRevLett_133_206601 crossref_primary_10_1360_SSPMA_2023_0304 crossref_primary_10_1021_acs_nanolett_1c04467 crossref_primary_10_1038_s41377_024_01523_0 crossref_primary_10_1021_acs_nanolett_4c05062 crossref_primary_10_1038_s41467_024_52314_5 crossref_primary_10_1038_s41467_024_55432_2 crossref_primary_10_1360_nso_20220033 |
Cites_doi | 10.1038/s41586-019-1695-0 10.1126/science.1254966 10.1038/s41586-019-0957-1 10.1038/s41586-020-2458-7 10.1103/PhysRevB.89.205414 10.1126/science.aaw3780 10.1126/science.aay5533 10.1088/2053-1583/abd006 10.1126/sciadv.1701696 10.1038/nature12186 10.1038/nature12385 10.1038/nature26160 10.1038/s41586-019-0986-9 10.1126/science.1237240 10.1038/s41586-019-1393-y 10.1038/nnano.2010.172 10.1088/2053-1583/ab0e24 10.1038/s41586-019-0976-y 10.1038/s41586-019-0975-z 10.1038/s41586-020-2049-7 10.1021/acsnano.7b02756 10.1038/s41586-020-2085-3 10.1126/sciadv.1601459 10.1038/nature26154 10.1038/s41586-020-2191-2 10.1038/nature12187 10.1126/science.aav1910 10.1093/nsr/nwz117 10.1038/s41586-020-2092-4 10.1038/s41586-020-2868-6 10.1073/pnas.1108174108 10.1038/s41467-020-20667-2 10.1038/s41567-021-01171-w 10.1038/s41563-021-00959-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1038/s41699-021-00221-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection ProQuest Materials Science Database (NC LIVE) ProQuest Engineering Collection ProQuest Engineering Database (NC LIVE) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2397-7132 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_5b921719b1a24412b01396e58ac6a7b2 10_1038_s41699_021_00221_4 |
GrantInformation_xml | – fundername: Croucher Senior Research Fellowship, the HKU Seed Funding for Strategic Interdisciplinary Research, and National Key R&D Program of China (2020YFA0309603). |
GroupedDBID | 0R~ AAFWJ AAJSJ AAKAB ABJCF ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. M7S M~E NAO NO~ OK1 PDBOC PIMPY PTHSS RNT SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-f025e46c14e209a3a83c81decaa1861c11dcb76938a0b9741597b7628aca2c693 |
IEDL.DBID | DOA |
ISSN | 2397-7132 |
IngestDate | Wed Aug 27 01:26:10 EDT 2025 Wed Aug 13 06:52:18 EDT 2025 Tue Jul 01 02:21:16 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-f025e46c14e209a3a83c81decaa1861c11dcb76938a0b9741597b7628aca2c693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3724-9155 0000-0003-2883-4528 |
OpenAccessLink | https://doaj.org/article/5b921719b1a24412b01396e58ac6a7b2 |
PQID | 2511564082 |
PQPubID | 4669722 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b921719b1a24412b01396e58ac6a7b2 proquest_journals_2511564082 crossref_primary_10_1038_s41699_021_00221_4 crossref_citationtrail_10_1038_s41699_021_00221_4 springer_journals_10_1038_s41699_021_00221_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-12 |
PublicationDateYYYYMMDD | 2021-04-12 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ 2D materials and applications |
PublicationTitleAbbrev | npj 2D Mater Appl |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Regan (CR19) 2020; 579 Hunt (CR3) 2013; 340 Liu (CR17) 2020; 583 Woods (CR31) 2021; 12 Tong, Chen, Xiao, Yu, Yao (CR36) 2021; 8 Jin (CR7) 2019; 567 Shimazaki (CR20) 2020; 580 Li, Wu (CR29) 2017; 11 Xu (CR21) 2020; 587 Gorbachev (CR4) 2014; 346 CR32 CR30 Yankowitz (CR12) 2019; 363 Sharpe (CR11) 2019; 365 Lu (CR14) 2019; 574 Jung, Raoux, Qiao, MacDonald (CR34) 2014; 89 Gilbert (CR28) 2019; 6 Serlin (CR13) 2020; 367 Yu, Chen, Yao (CR35) 2020; 7 Dean (CR2) 2013; 497 Cao (CR9) 2018; 556 Bistritzer, MacDonald (CR33) 2011; 108 Ponomarenko (CR1) 2013; 497 Cao (CR10) 2018; 556 CR23 CR22 Alexeev (CR8) 2019; 567 Chen (CR15) 2019; 572 Seyler (CR6) 2019; 567 Yu, Liu, Tang, Xu, Yao (CR25) 2017; 3 Tran (CR5) 2019; 567 Tang (CR18) 2020; 579 Chen (CR16) 2020; 579 Geim, Grigorieva (CR27) 2010; 499 Zhang (CR24) 2017; 3 Dean (CR26) 2010; 5 K Tran (221_CR5) 2019; 567 Q Tong (221_CR36) 2021; 8 C Zhang (221_CR24) 2017; 3 R Bistritzer (221_CR33) 2011; 108 M Yankowitz (221_CR12) 2019; 363 Y Xu (221_CR21) 2020; 587 RV Gorbachev (221_CR4) 2014; 346 G Chen (221_CR16) 2020; 579 Y Shimazaki (221_CR20) 2020; 580 L Li (221_CR29) 2017; 11 221_CR23 CR Dean (221_CR2) 2013; 497 221_CR22 EC Regan (221_CR19) 2020; 579 AK Geim (221_CR27) 2010; 499 X Liu (221_CR17) 2020; 583 G Chen (221_CR15) 2019; 572 CR Dean (221_CR26) 2010; 5 KL Seyler (221_CR6) 2019; 567 SM Gilbert (221_CR28) 2019; 6 J Jung (221_CR34) 2014; 89 C Jin (221_CR7) 2019; 567 H Yu (221_CR25) 2017; 3 H Yu (221_CR35) 2020; 7 AL Sharpe (221_CR11) 2019; 365 LA Ponomarenko (221_CR1) 2013; 497 M Serlin (221_CR13) 2020; 367 Y Cao (221_CR10) 2018; 556 221_CR30 Y Cao (221_CR9) 2018; 556 Y Tang (221_CR18) 2020; 579 B Hunt (221_CR3) 2013; 340 CR Woods (221_CR31) 2021; 12 221_CR32 X Lu (221_CR14) 2019; 574 EM Alexeev (221_CR8) 2019; 567 |
References_xml | – ident: CR22 – volume: 574 start-page: 653 year: 2019 end-page: 657 ident: CR14 article-title: Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene publication-title: Nature doi: 10.1038/s41586-019-1695-0 – volume: 346 start-page: 448 year: 2014 end-page: 451 ident: CR4 article-title: Detecting topological currents in graphene superlattices publication-title: Science doi: 10.1126/science.1254966 – volume: 567 start-page: 66 year: 2019 end-page: 70 ident: CR6 article-title: Signatures of moire-trapped valley excitons in MoSe /WSe heterobilayers publication-title: Nature doi: 10.1038/s41586-019-0957-1 – volume: 583 start-page: 221 year: 2020 end-page: 225 ident: CR17 article-title: Tunable spin-polarized correlated states in twisted double bilayer graphene publication-title: Nature doi: 10.1038/s41586-020-2458-7 – volume: 89 start-page: 205414 year: 2014 ident: CR34 article-title: Ab initio theory of moiré superlattice bands in layered two-dimensional materials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205414 – volume: 365 start-page: 605 year: 2019 end-page: 608 ident: CR11 article-title: Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene publication-title: Science doi: 10.1126/science.aaw3780 – volume: 367 start-page: 900 year: 2020 end-page: 903 ident: CR13 article-title: Intrinsic quantized anomalous Hall effect in a moiré heterostructure publication-title: Science doi: 10.1126/science.aay5533 – volume: 8 start-page: 025007 year: 2021 ident: CR36 article-title: Interferences of electrostatic moiré‚ potentials and bichromatic superlattice of electrons and excitons in transition metal dichalcogenides publication-title: 2D Mater doi: 10.1088/2053-1583/abd006 – volume: 3 year: 2017 ident: CR25 article-title: Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices publication-title: Sci. Adv. doi: 10.1126/sciadv.1701696 – ident: CR30 – volume: 497 start-page: 598 year: 2013 end-page: 602 ident: CR2 article-title: Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices publication-title: Nature doi: 10.1038/nature12186 – volume: 499 start-page: 419 year: 2010 ident: CR27 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR10 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 567 start-page: 81 year: 2019 end-page: 86 ident: CR8 article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures publication-title: Nature doi: 10.1038/s41586-019-0986-9 – volume: 340 start-page: 1427 year: 2013 end-page: 1430 ident: CR3 article-title: Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure publication-title: Science doi: 10.1126/science.1237240 – volume: 572 start-page: 215 year: 2019 end-page: 219 ident: CR15 article-title: Signatures of tunable superconductivity in a trilayer graphene moiré superlattice publication-title: Nature doi: 10.1038/s41586-019-1393-y – volume: 5 start-page: 722 year: 2010 ident: CR26 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – ident: CR23 – volume: 6 start-page: 021006 year: 2019 ident: CR28 article-title: Alternative stacking sequences in hexagonal boron nitride publication-title: 2D Mater. doi: 10.1088/2053-1583/ab0e24 – volume: 567 start-page: 76 year: 2019 end-page: 80 ident: CR7 article-title: Observation of moire excitons in WSe /WS heterostructure superlattices publication-title: Nature doi: 10.1038/s41586-019-0976-y – volume: 567 start-page: 71 year: 2019 end-page: 75 ident: CR5 article-title: Evidence for moire excitons in van der Waals heterostructures publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 579 start-page: 56 year: 2020 end-page: 61 ident: CR16 article-title: Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice publication-title: Nature doi: 10.1038/s41586-020-2049-7 – volume: 11 start-page: 6382 year: 2017 end-page: 6388 ident: CR29 article-title: Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.7b02756 – volume: 579 start-page: 353 year: 2020 end-page: 358 ident: CR18 article-title: Simulation of Hubbard model physics in WSe /WS moiré superlattices publication-title: Nature doi: 10.1038/s41586-020-2085-3 – volume: 3 year: 2017 ident: CR24 article-title: Interlayer coulpings, moiré patterns, and 2D electronic superlattices in MoS /WSe hetero-bilayers publication-title: Sci. Adv. doi: 10.1126/sciadv.1601459 – volume: 556 start-page: 80 year: 2018 end-page: 84 ident: CR9 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 580 start-page: 472 year: 2020 end-page: 477 ident: CR20 article-title: Strongly correlated electrons and hybrid excitons in a moiré heterostructure publication-title: Nature doi: 10.1038/s41586-020-2191-2 – volume: 497 start-page: 594 year: 2013 end-page: 597 ident: CR1 article-title: Cloning of Dirac fermions in graphene superlattices publication-title: Nature doi: 10.1038/nature12187 – volume: 363 start-page: 1059 year: 2019 end-page: 1064 ident: CR12 article-title: Tuning superconductivity in twisted bilayer graphene publication-title: Science doi: 10.1126/science.aav1910 – volume: 7 start-page: 12 year: 2020 end-page: 20 ident: CR35 article-title: Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz117 – volume: 579 start-page: 359 year: 2020 end-page: 363 ident: CR19 article-title: Mott and generalized Wigner crystal states in WSe /WS moiré superlattices publication-title: Nature doi: 10.1038/s41586-020-2092-4 – volume: 587 start-page: 214 year: 2020 end-page: 218 ident: CR21 article-title: Correlated insulating states at fractional fillings of moiré superlattices publication-title: Nature doi: 10.1038/s41586-020-2868-6 – ident: CR32 – volume: 108 start-page: 12233 year: 2011 end-page: 12237 ident: CR33 article-title: Moire bands in twisted double-layer graphene publication-title: PNAS doi: 10.1073/pnas.1108174108 – volume: 12 year: 2021 ident: CR31 article-title: Charge-polarized interfacial superlattices in Marginally twisted hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume: 572 start-page: 215 year: 2019 ident: 221_CR15 publication-title: Nature doi: 10.1038/s41586-019-1393-y – volume: 367 start-page: 900 year: 2020 ident: 221_CR13 publication-title: Science doi: 10.1126/science.aay5533 – volume: 497 start-page: 598 year: 2013 ident: 221_CR2 publication-title: Nature doi: 10.1038/nature12186 – volume: 567 start-page: 66 year: 2019 ident: 221_CR6 publication-title: Nature doi: 10.1038/s41586-019-0957-1 – volume: 579 start-page: 359 year: 2020 ident: 221_CR19 publication-title: Nature doi: 10.1038/s41586-020-2092-4 – volume: 7 start-page: 12 year: 2020 ident: 221_CR35 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz117 – volume: 556 start-page: 80 year: 2018 ident: 221_CR9 publication-title: Nature doi: 10.1038/nature26154 – volume: 579 start-page: 353 year: 2020 ident: 221_CR18 publication-title: Nature doi: 10.1038/s41586-020-2085-3 – volume: 574 start-page: 653 year: 2019 ident: 221_CR14 publication-title: Nature doi: 10.1038/s41586-019-1695-0 – volume: 8 start-page: 025007 year: 2021 ident: 221_CR36 publication-title: 2D Mater doi: 10.1088/2053-1583/abd006 – volume: 365 start-page: 605 year: 2019 ident: 221_CR11 publication-title: Science doi: 10.1126/science.aaw3780 – volume: 108 start-page: 12233 year: 2011 ident: 221_CR33 publication-title: PNAS doi: 10.1073/pnas.1108174108 – ident: 221_CR22 doi: 10.1038/s41567-021-01171-w – volume: 499 start-page: 419 year: 2010 ident: 221_CR27 publication-title: Nature doi: 10.1038/nature12385 – ident: 221_CR30 – ident: 221_CR32 – volume: 567 start-page: 81 year: 2019 ident: 221_CR8 publication-title: Nature doi: 10.1038/s41586-019-0986-9 – volume: 340 start-page: 1427 year: 2013 ident: 221_CR3 publication-title: Science doi: 10.1126/science.1237240 – ident: 221_CR23 doi: 10.1038/s41563-021-00959-8 – volume: 363 start-page: 1059 year: 2019 ident: 221_CR12 publication-title: Science doi: 10.1126/science.aav1910 – volume: 6 start-page: 021006 year: 2019 ident: 221_CR28 publication-title: 2D Mater. doi: 10.1088/2053-1583/ab0e24 – volume: 3 year: 2017 ident: 221_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601459 – volume: 587 start-page: 214 year: 2020 ident: 221_CR21 publication-title: Nature doi: 10.1038/s41586-020-2868-6 – volume: 346 start-page: 448 year: 2014 ident: 221_CR4 publication-title: Science doi: 10.1126/science.1254966 – volume: 89 start-page: 205414 year: 2014 ident: 221_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205414 – volume: 556 start-page: 43 year: 2018 ident: 221_CR10 publication-title: Nature doi: 10.1038/nature26160 – volume: 567 start-page: 71 year: 2019 ident: 221_CR5 publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 580 start-page: 472 year: 2020 ident: 221_CR20 publication-title: Nature doi: 10.1038/s41586-020-2191-2 – volume: 567 start-page: 76 year: 2019 ident: 221_CR7 publication-title: Nature doi: 10.1038/s41586-019-0976-y – volume: 12 year: 2021 ident: 221_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume: 579 start-page: 56 year: 2020 ident: 221_CR16 publication-title: Nature doi: 10.1038/s41586-020-2049-7 – volume: 5 start-page: 722 year: 2010 ident: 221_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 497 start-page: 594 year: 2013 ident: 221_CR1 publication-title: Nature doi: 10.1038/nature12187 – volume: 583 start-page: 221 year: 2020 ident: 221_CR17 publication-title: Nature doi: 10.1038/s41586-020-2458-7 – volume: 11 start-page: 6382 year: 2017 ident: 221_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.7b02756 – volume: 3 year: 2017 ident: 221_CR25 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701696 |
SSID | ssj0001916451 |
Score | 2.448142 |
Snippet | Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the proximity... Abstract Lateral superlattices in 2D materials provide a powerful platform for exploring intriguing quantum phenomena, which can be realized through the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/119/995 639/766/25 Antiferromagnetism Bilayers Boron nitride Chemistry and Materials Science Coupling (molecular) Electric fields Excitons Field strength Film thickness First principles Graphene Interlayers Materials Science Nanotechnology Polarization Quantum phenomena Stacking Substrates Superlattices Surfaces and Interfaces Thin Films Transition metal compounds Two dimensional materials |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTyMxDI54XOCw2uUhurCrHLhBxCSTTDMntCwUhAQnkDgRJZ4UkFBb2kH8few0pYAEx8kk0YztxJ8dx2ZsN_ZRawGUIhgPQqvCiICCIyA0hfRKxwrIULy4rM6u9fmNuckOt0kOq5ztiWmjboZAPvIDgsKmovLIh6MnQVWj6HQ1l9BYZMsSNQ1JuO2dzn0siH20kfmuTFHagwniD7p2r9CGRu2F5tMHfZTS9n_Amp-OR5PW6f1kPzJc5P-m_P3FFuJgja2-SyK4zm5zbAV2mzyPyD3XUkAbHw1bigTCZsSlXB1zxKZTceN0p4S3L8ThhlPCiHHf44iHVLuT34ujS5wqpIy6cYNd906u_p-JXDVBAOqWVvQRxUSNJNZRFbUvvS0BQWkE76WtJEjZQKAKiNYXoSZAUXfxWVkPXgG2b7KlwXAQtxhXIGsNtW2kL3RTIjeNidGEbglaA9gOkzPaOcgpxamyxaNLR9uldVN6O6S3S_R2usP23saMpgk1vu19RCx560nJsFPDcHzn8tpyJtRoWMk6kHBpqci1W1fR4B9VvhtUh-3MGOryCp24uTx12P6MyfPXX3_S7-9n22YrKokXpYPcYUvt-Dn-QdzShr9JOF8Bh_vokQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XOCAeIrxUg7coKJJk649wgAhJDiBxIkocTNAQtu0FfH3sbOWlwCJY9OkSm23_pw4nwH2Q5-8FmKWeOMw0So1iSfDSdBXqXRKhxw5ULy6zi9u9eWduZsB1Z6FiUn7kdIy_qbb7LCjCQEHPi-vKPglt0NxzyzMM3U7p_H18t7HugrhHW1kcz4mzYofhn7xQZGq_wu-_LYlGj3N-TIsNRBRHE8ntQIzYbAKi5-IA9fgvsmnoG6TlxEvydWcxCZGw5qzf6iZsKhQp4Lw6NTEBJ8jEfUra7USTBIx7jsa8RTrdYrH5OSaHuUji25Yh9vzs5veRdJUSkiQ_Emd9Am5BE1i1UGlpctckSEB0YDOySKXKGWFnqseFi71JYOIskvXqnDoFFL7BswNhoOwCUKhLDWWRSVdqquMNGhMCMZ3M9QaseiAbGVnsaER52oWzzZuZ2eFncrbkrxtlLfVHTh4HzOakmj82fuEVfLekwmwY8Nw_GAbg7DGlxRMydKzQWmpeDm3zIOhN8pd16sO7LQKtc1XObEcTpmcS2x34LBV8sft36e09b_u27CgorkxJeQOzNXjl7BL2KX2e9FY3wBEoOZX priority: 102 providerName: Springer Nature |
Title | Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate |
URI | https://link.springer.com/article/10.1038/s41699-021-00221-4 https://www.proquest.com/docview/2511564082 https://doaj.org/article/5b921719b1a24412b01396e58ac6a7b2 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED669mV7KG23sfRH0MPeNlNLlhz5MUmblcBC2Vbo04R0VthgpKFx6b_fO9np0sG6lz0Zy5IRd2ffd9LpO4D3cU5eC7HIgvGYaZWbLJDhZBjqXHqlY4kcKH6elRdXenptrjdKfXFOWEsP3Aru1ISKULOsAo_UUvG6XVVGYz2WfhDS35d83kYwlVZXCPVoI7tTMnlhT1eEPPjAvaLomfwWBU5PPFEi7H-CMv_YGE3-ZrIHux1QFMN2gvuwFRcH8GqDPvA1fO-yKqjb6m7JC3MNp7KJ5U3DOUDUTIhUqDNBqLQ1NMGnSURzz7qtBVNF3M49jfiZqnaKH9loRq8KiUs3voGryfm38UXW1UvIkLxKk80Jv0RNwtWRROILbwskOBrRe2lLiVLWGLj2ofV5qBhKVAO6VyRKr5Da38L24mYR34FQKCuNla2lz3VdkB6NidGEQYFaI9oeyLXsHHZk4lzT4pdLm9qFda28HcnbJXk73YMPj2OWLZXGs71HrJLHnkyDnRrIOFxnHO5fxtGD47VCXfdtrhwHVabkQts9-LhW8u_Hf5_S4f-Y0hG8VMkImS7yGLab27t4QrimCX14YSef-rAzHE6_Tuk6Op9dfqHWcTnuJ_N-APua9OQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcgAOiE-xUMAHOIHV2LGz9gEhSlm2tN1TK_WEsSfegoR2l91UFX-K38iMk3QpEr31GMeOkvHLzBt7PMPYyzRFqwVQimgCCK0KIyICR0CsCxmUThWQo3g4qcbH-vOJOdlgv_uzMBRW2evErKjrOdAa-TZRYVNReeR3i5-CqkbR7mpfQqOFxX76dY4u2-rt3i7O7yulRh-PPoxFV1VAAOreRkzRyieNr6CTKlwogy0BSVuCEKStJEhZQ6QKgTYU0ZHBdUO8VjZAUFBR8iVU-Td0WToKIbSjT-s1HeRa2sjubE5R2u0V8h065q_QZ0drie7aJfuXywRc4rb_bMdmKze6y-509JS_b_F0j22k2X12-6-khQ_Yly6WA7utzha0HNhQAB1fzBuKPMJm5MFc7XLkwi28OZ1h4c05IarmlKBiOQ044nuuFcq_iZ0JPirmDL7pITu-Fnk-Ypuz-Sw9ZlyBdBqcrWUodF0ieoxJycRhCVoD2AGTvew8dCnMqZLGD5-30kvrW3l7lLfP8vZ6wF5fjFm0CTyu7L1DU3LRk5Jv54b58tR3_7I30aEjJ10kMGupaCnZVcngF1VhGNWAbfUT6juNsPJr_A7Ym36S17f__0pPrn7aC3ZzfHR44A_2JvtP2S2VoUapKLfYZrM8S8-QMzXxeQYqZ1-v-8_4A_5GJOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xJqHxMG1jaGVs-GFvIxA7dpo8rmVV-bFqD0PiCcu-uAwJtVWbin-fOzeBMbFJPMaxI-fukvvOPn8H8CWMyWshZok3DhOtUpN4MpwEfZVKp3TIkQPFH6N8eK5PLszFGuTtWZiYtB8pLeNvus0OO1wQcODz8oqCX3I7FPcczKrxC3hJeDtly-7n_Ye1FcI82sjmjEyaFU8Mf-SHIl3_I4z517Zo9DaDN_C6gYni22pib2EtTN7B5h_kgVtw2eRUULfFcsbLcjUnsonZtOYMIGomPCrUkSBMujIzwWdJRH3Lmq0EE0XMx45GXMeaneJ30hvRo3xk0g3v4Xzw_Vd_mDTVEhIkn1InY0IvQZNodVBp6TJXZEhgNKBzssglSlmh58qHhUt9yUCi7NK1Khw6hdS-DeuT6SR8AKFQlhrLopIu1VVGWjQmBOO7GWqNWHRAtrKz2FCJc0WLGxu3tLPCruRtSd42ytvqDny9HzNbEWn8t3ePVXLfk0mwY8N0fmUbo7DGlxRQydKzUWmpeEm3zIOhN8pd16sO7LYKtc2XubAcUpmcy2x3YL9V8sPtf09p53nd92Dj59HAnh2PTj_CKxUtjxkid2G9ni_DJ4Iytf8c7fYOqB7qTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+superlattice+potential+for+2D+materials+from+twisted+interface+inside+h-BN+substrate&rft.jtitle=NPJ+2D+materials+and+applications&rft.au=Zhao%2C+Pei&rft.au=Xiao%2C+Chengxin&rft.au=Yao%2C+Wang&rft.date=2021-04-12&rft.issn=2397-7132&rft.eissn=2397-7132&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41699-021-00221-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41699_021_00221_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-7132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-7132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-7132&client=summon |