On-chip pressure measurements and channel deformation after oil absorption
Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these stru...
Saved in:
Published in | SN applied sciences Vol. 2; no. 9; pp. 1501 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2020
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before (
2.80
±
0.03
MPa) and after (
1.32
±
0.04
MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS. |
---|---|
AbstractList | Abstract Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( $$2.80 \pm 0.03$$ 2.80 ± 0.03 MPa) and after ( $$1.32 \pm 0.04$$ 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS. Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( $$2.80 \pm 0.03$$ 2.80 ± 0.03 MPa) and after ( $$1.32 \pm 0.04$$ 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS. Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before (2.80±0.03 MPa) and after (1.32±0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS. Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( 2.80 ± 0.03 MPa) and after ( 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS. |
ArticleNumber | 1501 |
Author | Shim, Jung-uk Gala de Pablo, Julia Evans, Stephen D. Thomson, Neil H. Hunter, Liam Stammers, Ashley C. |
Author_xml | – sequence: 1 givenname: Liam orcidid: 0000-0002-2728-0837 surname: Hunter fullname: Hunter, Liam organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds – sequence: 2 givenname: Julia orcidid: 0000-0003-0557-9632 surname: Gala de Pablo fullname: Gala de Pablo, Julia organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds – sequence: 3 givenname: Ashley C. orcidid: 0000-0002-5277-779X surname: Stammers fullname: Stammers, Ashley C. organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds – sequence: 4 givenname: Neil H. orcidid: 0000-0001-7332-790X surname: Thomson fullname: Thomson, Neil H. organization: Division of Oral Biology, School of Dentistry, University of Leeds, St James’s University Hospital – sequence: 5 givenname: Stephen D. orcidid: 0000-0001-8342-5335 surname: Evans fullname: Evans, Stephen D. organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds – sequence: 6 givenname: Jung-uk orcidid: 0000-0003-4577-1952 surname: Shim fullname: Shim, Jung-uk email: J.Shim@leeds.ac.uk organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds |
BookMark | eNp9kUtPwzAQhC1UJKD0D3CKxDngV2L7iBBPVeoFztbWXkOq1g52euDfkxIEN067Gs18u9KckVlMEQm5YPSKUaqui-Sy4TXltKaCa13rI3LKGy5qYRSb_e6tOCGLUjaUUq6MkFqckudVrN1711d9xlL2GasdwmHuMA6lgugr9w4x4rbyGFLewdClWEEYMFep21awLin3B_GcHAfYFlz8zDl5vb97uX2sl6uHp9ubZe0kN0ONCMyIwAI1pmGtUNS3yMFDo6kPSgXGsG20xoY1jgnjWvA8rFnwVGvnuJiTp4nrE2xsn7sd5E-boLPfQspvFvLQuS3aEWAClWvhUErUbE2dAuAqeC-1F2JkXU6sPqePPZbBbtI-x_F9y5XWUhit9Ojik8vlVErG8HuVUXuowE4V2LEC-12BPYTEFCqjOb5h_kP_k_oCjUSLFw |
CitedBy_id | crossref_primary_10_1088_1361_648X_ac327d crossref_primary_10_1016_j_cofs_2022_100957 crossref_primary_10_3390_cancers14143535 crossref_primary_10_3389_fcvm_2021_647086 crossref_primary_10_3390_pharmaceutics12121186 |
Cites_doi | 10.1021/ac0346712 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c 10.1016/S0091-679X(07)83022-6 10.1039/b813061b 10.1039/b513524a 10.1039/b907515a 10.1039/c8sm02105h 10.1126/science.1188302 10.1039/b706549c 10.1023/B:BMMD.0000048559.29932.27 10.1016/j.krcp.2015.08.001 10.1038/s41578-018-0034-7 10.1016/j.polymer.2018.02.022 10.1007/s10404-018-2150-5 10.1021/ma800536y 10.1073/pnas.0610868104 10.1039/c003504a 10.1016/j.mee.2014.04.041 10.1063/1.4720394 10.1007/s10404-017-1908-5 10.1021/ma052727j 10.1039/C5TC01927C 10.1126/science.288.5463.113 10.1088/0960-1317/24/3/035017 10.1007/s10404-016-1702-9 10.1111/j.1574-6968.2009.01808.x 10.1017/jfm.2018.30 10.1098/rsif.2014.1079 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42452-020-03288-8 |
DatabaseName | SpringerOpen CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2523-3971 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_5c19f04b3ce44e81b0c7aa27fdd48d33 10_1007_s42452_020_03288_8 |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: http://dx.doi.org/10.13039/501100000266 |
GroupedDBID | -EM 2JN 88I AAHNG AAJSJ AAKKN AAYZJ ABDZT ABECU ABFGW ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACBMV ACBRV ACBYP ACIGE ACIPQ ACMLO ACOKC ACTTH ADKNI ADMDM ADURQ ADYFF AEFTE AEJRE AESTI AEVTX AFGXO AFKRA AFNRJ AFQWF AGDGC AGGBP AGJBK AHBXF AILAN AIMYW AITGF AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW AAYXX CITATION H13 ZMTXR |
ID | FETCH-LOGICAL-c429t-eea193f1f099516370d6e2ada580df77f11e6588e515c139c6ad2fb1fd088cc23 |
IEDL.DBID | DOA |
ISSN | 2523-3963 |
IngestDate | Tue Oct 22 15:15:16 EDT 2024 Thu Dec 12 11:10:57 EST 2024 Thu Nov 21 20:51:27 EST 2024 Sat Dec 16 12:02:57 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Channel deformation Diffusion Pressure drop Nanoindentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-eea193f1f099516370d6e2ada580df77f11e6588e515c139c6ad2fb1fd088cc23 |
ORCID | 0000-0001-8342-5335 0000-0002-5277-779X 0000-0001-7332-790X 0000-0003-4577-1952 0000-0002-2728-0837 0000-0003-0557-9632 |
OpenAccessLink | https://doaj.org/article/5c19f04b3ce44e81b0c7aa27fdd48d33 |
PQID | 2788439878 |
PQPubID | 5758472 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c19f04b3ce44e81b0c7aa27fdd48d33 proquest_journals_2788439878 crossref_primary_10_1007_s42452_020_03288_8 springer_journals_10_1007_s42452_020_03288_8 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | SN applied sciences |
PublicationTitleAbbrev | SN Appl. Sci |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – sequence: 0 name: Springer Nature B.V – name: Springer International Publishing – name: Springer |
References | Raj, Sen (CR7) 2016; 20 Rumens, Ziai, Belsey, Batchelor, Holder (CR24) 2015; 3 Fuerstman, Lai, Thurlow, Shevkoplyas, Stone, Whitesides (CR27) 2007; 7 Jang, Suh (CR15) 2010; 10 Cesaria, Arima, Manera, Rella (CR25) 2018; 139 Müller, Wapler, Wallrabe (CR28) 2019; 15 McDonald, Duffy, Anderson, Chiu, Wu, Schueller, Whitesides (CR1) 2000; 21 Gervais, El-Ali, Günther, Jensen (CR5) 2006; 6 Song, Tranchida, Vancso (CR18) 2008; 41 Dangla, Gallaire, Baroud (CR22) 2010; 10 Johnston, McCluskey, Tan, Tracey (CR17) 2014; 24 Cheung, Toda-Peters, Shen (CR10) 2012; 6 Hardy, Uechi, Zhen, Pirouz Kavehpour (CR6) 2009; 9 Lee, Park, Whitesides (CR23) 2003; 75 CR4 Engler, Rehfeldt, Sen, Discher (CR20) 2007; 83 CR9 Kim, Huang, Choi, Hidrovo (CR26) 2014; 124 Huh, Matthews, Mammoto, Montoya-Zavala, Yuan Hsin, Ingber (CR13) 2010; 328 Huh, Fujioka, Tung, Futai, Paine, Grotberg, Takayama (CR14) 2007; 104 Raj, Suthanthiraraj, Sen (CR2) 2018; 22 Tranchida, Piccarolo, Soliman (CR19) 2006; 39 Zhang, Korolj, Lai, Radisic (CR12) 2018; 3 Unger (CR3) 2000; 288 CR21 Raj, DasGupta, Chakraborty (CR8) 2017; 21 Shin, Matsuda, Ishii, Terai, Kaazempur-Mofrad, Borenstein, Vacanti (CR16) 2004; 6 Kim, Takayama (CR11) 2015; 34 ID Johnston (3288_CR17) 2014; 24 B Zhang (3288_CR12) 2018; 3 A Raj (3288_CR7) 2016; 20 D Huh (3288_CR13) 2010; 328 S Kim (3288_CR11) 2015; 34 MA Unger (3288_CR3) 2000; 288 M Kim (3288_CR26) 2014; 124 JC McDonald (3288_CR1) 2000; 21 T Gervais (3288_CR5) 2006; 6 D Tranchida (3288_CR19) 2006; 39 BS Hardy (3288_CR6) 2009; 9 D Huh (3288_CR14) 2007; 104 MK Raj (3288_CR8) 2017; 21 A Müller (3288_CR28) 2019; 15 J Song (3288_CR18) 2008; 41 AJ Engler (3288_CR20) 2007; 83 A Raj (3288_CR2) 2018; 22 3288_CR4 M Shin (3288_CR16) 2004; 6 3288_CR21 JN Lee (3288_CR23) 2003; 75 3288_CR9 CV Rumens (3288_CR24) 2015; 3 KJ Jang (3288_CR15) 2010; 10 R Dangla (3288_CR22) 2010; 10 M Cesaria (3288_CR25) 2018; 139 P Cheung (3288_CR10) 2012; 6 MJ Fuerstman (3288_CR27) 2007; 7 |
References_xml | – volume: 75 start-page: 6544 issue: 23 year: 2003 end-page: 6554 ident: CR23 article-title: Solvent compatibility of poly(dimethylsiloxane)—based microfluidic devices publication-title: Anal Chem doi: 10.1021/ac0346712 contributor: fullname: Whitesides – volume: 21 start-page: 27 issue: 1 year: 2000 end-page: 40 ident: CR1 article-title: Fabrication of microfluidic systems in poly(dimethylsiloxane) publication-title: Electrophoresis doi: 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c contributor: fullname: Whitesides – ident: CR4 – volume: 83 start-page: 521 issue: 07 year: 2007 end-page: 545 ident: CR20 article-title: Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation publication-title: Methods Cell Biol doi: 10.1016/S0091-679X(07)83022-6 contributor: fullname: Discher – volume: 9 start-page: 935 issue: 7 year: 2009 end-page: 938 ident: CR6 article-title: The deformation of flexible PDMS microchannels under a pressure driven flow publication-title: Lab Chip doi: 10.1039/b813061b contributor: fullname: Pirouz Kavehpour – volume: 6 start-page: 500 issue: 4 year: 2006 end-page: 507 ident: CR5 article-title: Flow-induced deformation of shallow microfluidic channels publication-title: Lab Chip doi: 10.1039/b513524a contributor: fullname: Jensen – volume: 10 start-page: 36 issue: 1 year: 2010 end-page: 42 ident: CR15 article-title: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells publication-title: Lab Chip doi: 10.1039/b907515a contributor: fullname: Suh – volume: 15 start-page: 779 issue: 4 year: 2019 end-page: 784 ident: CR28 article-title: A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS publication-title: Soft Matter doi: 10.1039/c8sm02105h contributor: fullname: Wallrabe – volume: 328 start-page: 1662 issue: 5986 year: 2010 end-page: 1668 ident: CR13 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science doi: 10.1126/science.1188302 contributor: fullname: Ingber – volume: 7 start-page: 1479 issue: 11 year: 2007 end-page: 1489 ident: CR27 article-title: The pressure drop along rectangular microchannels containing bubbles publication-title: Lab Chip doi: 10.1039/b706549c contributor: fullname: Whitesides – volume: 6 start-page: 269 issue: 4 year: 2004 end-page: 278 ident: CR16 article-title: Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane) publication-title: Biomed Microdevices doi: 10.1023/B:BMMD.0000048559.29932.27 contributor: fullname: Vacanti – volume: 34 start-page: 165 issue: 3 year: 2015 end-page: 169 ident: CR11 article-title: Organ-on-a-chip and the kidney publication-title: Kidney Res Clin Pract doi: 10.1016/j.krcp.2015.08.001 contributor: fullname: Takayama – ident: CR21 – volume: 3 start-page: 257 issue: 8 year: 2018 end-page: 278 ident: CR12 article-title: Advances in organ-on-a-chip engineering publication-title: Nat Rev Mater doi: 10.1038/s41578-018-0034-7 contributor: fullname: Radisic – volume: 139 start-page: 145 year: 2018 end-page: 154 ident: CR25 article-title: Protocol of thermal aging against the swelling of poly(dimethylsiloxane) and physical insight in swelling regimes publication-title: Polymer (United Kingdom) doi: 10.1016/j.polymer.2018.02.022 contributor: fullname: Rella – volume: 22 start-page: 128 issue: 11 year: 2018 ident: CR2 article-title: Pressure-driven flow through PDMSbased flexible microchannels and their applications in microfluidics publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-018-2150-5 contributor: fullname: Sen – volume: 41 start-page: 6757 issue: 18 year: 2008 end-page: 6762 ident: CR18 article-title: Contact mechanics of UV/ozone-treated PDMS by AFM and JKR testing: mechanical performance from nano- to micro-meter length scales publication-title: Macromolecules doi: 10.1021/ma800536y contributor: fullname: Vancso – volume: 104 start-page: 18886 issue: 48 year: 2007 end-page: 18891 ident: CR14 article-title: Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0610868104 contributor: fullname: Takayama – volume: 10 start-page: 2972 issue: 21 year: 2010 end-page: 2978 ident: CR22 article-title: Microchannel deformations due to solvent induced PDMS swelling publication-title: Lab Chip doi: 10.1039/c003504a contributor: fullname: Baroud – volume: 124 start-page: 66 year: 2014 end-page: 75 ident: CR26 article-title: The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices publication-title: Microelectron Eng doi: 10.1016/j.mee.2014.04.041 contributor: fullname: Hidrovo – volume: 6 start-page: 026501 issue: 2 year: 2012 ident: CR10 article-title: In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices publication-title: Biomicrofluidics doi: 10.1063/1.4720394 contributor: fullname: Shen – ident: CR9 – volume: 21 start-page: 1 issue: 4 year: 2017 end-page: 12 ident: CR8 article-title: Hydrodynamics in deformable microchannels publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-017-1908-5 contributor: fullname: Chakraborty – volume: 39 start-page: 4547 issue: 13 year: 2006 end-page: 4556 ident: CR19 article-title: Nanoscale mechanical characterization of polymers by AFM nanoindentations: critical approach to the elastic characterization publication-title: Macromolecules doi: 10.1021/ma052727j contributor: fullname: Soliman – volume: 3 start-page: 10091 issue: 39 year: 2015 end-page: 10098 ident: CR24 article-title: Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors publication-title: J Mater Chem C doi: 10.1039/C5TC01927C contributor: fullname: Holder – volume: 288 start-page: 113 issue: 5463 year: 2000 end-page: 116 ident: CR3 article-title: Monolithic microfabricated valves and pumps by multilayer soft lithography publication-title: Science doi: 10.1126/science.288.5463.113 contributor: fullname: Unger – volume: 24 start-page: 035017 issue: 3 year: 2014 ident: CR17 article-title: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering publication-title: J Micromech Microeng doi: 10.1088/0960-1317/24/3/035017 contributor: fullname: Tracey – volume: 20 start-page: 1 issue: 2 year: 2016 end-page: 13 ident: CR7 article-title: Flow-induced deformation of compliant microchannels and its effect on pressure-flow characteristics publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-016-1702-9 contributor: fullname: Sen – volume: 24 start-page: 035017 issue: 3 year: 2014 ident: 3288_CR17 publication-title: J Micromech Microeng doi: 10.1088/0960-1317/24/3/035017 contributor: fullname: ID Johnston – volume: 10 start-page: 2972 issue: 21 year: 2010 ident: 3288_CR22 publication-title: Lab Chip doi: 10.1039/c003504a contributor: fullname: R Dangla – volume: 288 start-page: 113 issue: 5463 year: 2000 ident: 3288_CR3 publication-title: Science doi: 10.1126/science.288.5463.113 contributor: fullname: MA Unger – volume: 104 start-page: 18886 issue: 48 year: 2007 ident: 3288_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0610868104 contributor: fullname: D Huh – volume: 10 start-page: 36 issue: 1 year: 2010 ident: 3288_CR15 publication-title: Lab Chip doi: 10.1039/b907515a contributor: fullname: KJ Jang – volume: 3 start-page: 257 issue: 8 year: 2018 ident: 3288_CR12 publication-title: Nat Rev Mater doi: 10.1038/s41578-018-0034-7 contributor: fullname: B Zhang – volume: 21 start-page: 1 issue: 4 year: 2017 ident: 3288_CR8 publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-017-1908-5 contributor: fullname: MK Raj – volume: 20 start-page: 1 issue: 2 year: 2016 ident: 3288_CR7 publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-016-1702-9 contributor: fullname: A Raj – volume: 9 start-page: 935 issue: 7 year: 2009 ident: 3288_CR6 publication-title: Lab Chip doi: 10.1039/b813061b contributor: fullname: BS Hardy – volume: 6 start-page: 026501 issue: 2 year: 2012 ident: 3288_CR10 publication-title: Biomicrofluidics doi: 10.1063/1.4720394 contributor: fullname: P Cheung – volume: 41 start-page: 6757 issue: 18 year: 2008 ident: 3288_CR18 publication-title: Macromolecules doi: 10.1021/ma800536y contributor: fullname: J Song – ident: 3288_CR9 doi: 10.1111/j.1574-6968.2009.01808.x – volume: 7 start-page: 1479 issue: 11 year: 2007 ident: 3288_CR27 publication-title: Lab Chip doi: 10.1039/b706549c contributor: fullname: MJ Fuerstman – volume: 22 start-page: 128 issue: 11 year: 2018 ident: 3288_CR2 publication-title: Microfluid Nanofluidics doi: 10.1007/s10404-018-2150-5 contributor: fullname: A Raj – volume: 39 start-page: 4547 issue: 13 year: 2006 ident: 3288_CR19 publication-title: Macromolecules doi: 10.1021/ma052727j contributor: fullname: D Tranchida – volume: 34 start-page: 165 issue: 3 year: 2015 ident: 3288_CR11 publication-title: Kidney Res Clin Pract doi: 10.1016/j.krcp.2015.08.001 contributor: fullname: S Kim – volume: 83 start-page: 521 issue: 07 year: 2007 ident: 3288_CR20 publication-title: Methods Cell Biol doi: 10.1016/S0091-679X(07)83022-6 contributor: fullname: AJ Engler – volume: 6 start-page: 500 issue: 4 year: 2006 ident: 3288_CR5 publication-title: Lab Chip doi: 10.1039/b513524a contributor: fullname: T Gervais – ident: 3288_CR4 doi: 10.1017/jfm.2018.30 – volume: 139 start-page: 145 year: 2018 ident: 3288_CR25 publication-title: Polymer (United Kingdom) doi: 10.1016/j.polymer.2018.02.022 contributor: fullname: M Cesaria – volume: 15 start-page: 779 issue: 4 year: 2019 ident: 3288_CR28 publication-title: Soft Matter doi: 10.1039/c8sm02105h contributor: fullname: A Müller – volume: 21 start-page: 27 issue: 1 year: 2000 ident: 3288_CR1 publication-title: Electrophoresis doi: 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c contributor: fullname: JC McDonald – volume: 6 start-page: 269 issue: 4 year: 2004 ident: 3288_CR16 publication-title: Biomed Microdevices doi: 10.1023/B:BMMD.0000048559.29932.27 contributor: fullname: M Shin – volume: 124 start-page: 66 year: 2014 ident: 3288_CR26 publication-title: Microelectron Eng doi: 10.1016/j.mee.2014.04.041 contributor: fullname: M Kim – volume: 75 start-page: 6544 issue: 23 year: 2003 ident: 3288_CR23 publication-title: Anal Chem doi: 10.1021/ac0346712 contributor: fullname: JN Lee – ident: 3288_CR21 doi: 10.1098/rsif.2014.1079 – volume: 3 start-page: 10091 issue: 39 year: 2015 ident: 3288_CR24 publication-title: J Mater Chem C doi: 10.1039/C5TC01927C contributor: fullname: CV Rumens – volume: 328 start-page: 1662 issue: 5986 year: 2010 ident: 3288_CR13 publication-title: Science doi: 10.1126/science.1188302 contributor: fullname: D Huh |
SSID | ssj0002793483 ssib051670015 ssib054396270 |
Score | 2.2128263 |
Snippet | Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can... Abstract Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments,... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1501 |
SubjectTerms | 6. Interdisciplinary (general) Absorption Applied and Technical Physics Atomic force microscopy Blood vessels Channel deformation Channels Chemistry/Food Science Deformation Diffusion Diffusion coefficient Earth Sciences Engineering Environment Flow profiles Flow velocity Fluorescence microscopy Geometry Infiltration Internal pressure Materials Science Measurement methods Mechanical properties Microfluidics Microscopy Mineral oils Modulus of elasticity Nanoindentation Polydimethylsiloxane Polymers Pressure Pressure drop Pressure measurement Raman spectroscopy Research Article Silicon wafers |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECY-LnowPmO1Gg7elMiydKFHbTTGRL3YxBsBBqJGt00f_9-BbusjevC6SxbyzcB87DAfhJx4ESW32rJSFBWTFQBzuEAy7wQoZy13OdF-d1_d9OXtU-epkclJtTA_8vfn45SZEyxtcpLym2Z6maxiDFbJm3tVb-47nSLVmzSh7TUn1LqlzCqcAvdarERHa2pmfv_st7iU5fu_cc4fadIcfa43yUZDG-nFzM5bZCnU22T9i5jgDrl9qJl_fhnSfLR1Ogr0_fP_35jaGmiq8q3DG4WwqFmk-ZJwOnh5o9aNB6O8guyS_vXVY--GNTclMI_xZMJCsEjEYhGR7yESpeJQBWHBdjSHqFQsioBUQwdEziPn85UFEV0RARcZ70W5R1bqQR32CUW-AcAdCN-1EkSlNWiuKlCRiyA1tMjpHCcznAlimIX0cUbVIKomo2p0i1wmKBctk5h1foA2Ns3cMDikbuTSlT5IGZBHc6-sFSoCYIdl2SLtuSFMM8PGRuDeHcmUVtjH2dw4n6__HtLB_5ofkjWR3SQdK2uTlcloGo6Qh0zccXbAD7Az0RU priority: 102 providerName: Springer Nature |
Title | On-chip pressure measurements and channel deformation after oil absorption |
URI | https://link.springer.com/article/10.1007/s42452-020-03288-8 https://www.proquest.com/docview/2788439878 https://doaj.org/article/5c19f04b3ce44e81b0c7aa27fdd48d33 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELVaeqGHin4gtqUrH7i1Vh3Hsb3H7QqEVgIOLRI3y_bYAgRZtLv8f8ZO9gMk1EuvcaQ4byaeNxnPMyFHQSTJnXGsFpViUgEwjwskC16A9s5xXwrtZ-fq9FJOr5qrraO-8p6wTh64A-5XE6pR4tLXIUoZkWTxoJ0TOgFIA3Wn88nFVjKFntRUuftkE-gaDLtK9J55W8pto1oWjU6BmRjD0brvqCl9dbkcKFjOrLLcnGHmWdQq4v7PGOmLImqJTSd75ENPKum4e5mP5E1sP5H3W1KDn8n0omXh-uaBlo2vj_NI7zd_BxfUtUBzD3Ab7yjEdUcjLUeI09nNHXV-MZuX9eULuTw5_js5Zf05CixgtFmyGB3StFQlZIOITK05qCgcuMZwSFqnqopIRExEbhOQEQblQCRfJcAlKARR75OddtbGA0KRjQBwDyKMnAShjAHDtQKduIhojwH5scLJPnRyGXYtjFxQtYiqLahaMyC_M5TrO7PUdbmADmB7B7D_coABOVwZwvbf38IKzOzR5kbjM36ujLMZfn1KX__HlL6RXVGcJ29FOyQ7y_lj_I7cZemH5N14PP0zHZK3EzUZFqd9ArT254E |
link.rule.ids | 314,780,784,864,2102,27924,27925,41120,42189,51576 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVoOLQcEP0SgUB96K216vU6a-cIEShQoJcgcbNsjy2CwiZKwv9nbDYJIHrgumutrZnxzJsdzzMhP72IklttWSmKiskKgDl0kMw7AcpZy10utF9eVYNreX7TvWloclIvzKv6_Z95qswJlpKcxPymmf5ANiXGpWTB_aq_tJ1ukfpNmtB2lwtqvVJmFk6BuRYr0dCanpm3P_siLmX6_heY81WZNEef0x2y3cBGevSk589kI9RfyNYzMsGv5PxfzfztaErz0daHWaD36_9_c2proKnLtw5jCmHVs0jzJeF0MhpT6-aTWfYg38j16cmwP2DNTQnMYzxZsBAsArFYRMR7KIlScaiCsGC7mkNUKhZFQKihA6IXj5jPVxZEdEUEdDLei_I7adWTOuwSingDgDsQvmcliEpr0FxVoCIXQWpok19LOZnpEyGGWVEfZ6kalKrJUjW6TY6TKFcjE5l1foA6Ns3eMLikXuTSlT5IGRBHc6-sFSoC4IRl2SadpSJMs8PmRmDujmBKK5zj91I569f_X9Le-4b_IB8Hw8sLc3F29XeffBLZZNIRsw5pLWYP4QAxycIdZmN8BKAn0_8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELUoSKgcUKGgpkDxoTew8HqdtXOE0IivAgeQuFm2x26pYBMl4f937OwGqOiB6661tmbGnucdv2dCvnsRJbfaslIUFZMVAHO4QDLvBChnLXe50P7zsjq5lWd33bsXLP582r0tSc44DUmlqZ4ejCAezIlvqV4nWNr6JD04zfQHsiQROqTLG_pVv42obpFYKE3C-5PLbL1SZm1OgTswVmL4NUyatz_7KltlUf9XSPSf4mnOSYNPZLUBk_Rw5v01shDqdbLyQmLwMzm7qpn_fT-i-cDr0zjQx-e_ghNqa6CJ-1uHBwphzmSk-epwOrx_oNZNhuO8rmyQ28GPm_4Ja-5PYB6zzJSFYBGexSIiCkRLlIpDFYQF29UcolKxKAICEB0Q03hEgr6yIKIrIuDS470oN8liPazDF0IRhQBwB8L3rARRaQ2aqwpU5CJIDR2y19rJjGYyGWYuiJytatCqJlvV6A45Sqact0wS1_nBcPzLNDPG4JB6kUtX-iBlQHTNvbJWqAiAHZZlh2y3jjDNvJsYgTt6hFhaYR_7rXOeX_9_SF_f13yXLF8fD8zF6eX5FvkocsSkc2fbZHE6fgo7CFSm7luOxb8O6tw9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-chip+pressure+measurements+and+channel+deformation+after+oil+absorption&rft.jtitle=SN+applied+sciences&rft.au=Hunter%2C+Liam&rft.au=Gala+de+Pablo%2C+Julia&rft.au=Stammers%2C+Ashley+C.&rft.au=Thomson%2C+Neil+H.&rft.date=2020-09-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=9&rft_id=info:doi/10.1007%2Fs42452-020-03288-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_020_03288_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |