On-chip pressure measurements and channel deformation after oil absorption

Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these stru...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 2; no. 9; pp. 1501 - 8
Main Authors Hunter, Liam, Gala de Pablo, Julia, Stammers, Ashley C., Thomson, Neil H., Evans, Stephen D., Shim, Jung-uk
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2020
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( 2.80 ± 0.03 MPa) and after ( 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS.
AbstractList Abstract Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( $$2.80 \pm 0.03$$ 2.80 ± 0.03 MPa) and after ( $$1.32 \pm 0.04$$ 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS.
Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( $$2.80 \pm 0.03$$ 2.80 ± 0.03 MPa) and after ( $$1.32 \pm 0.04$$ 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS.
Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before (2.80±0.03 MPa) and after (1.32±0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS.
Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can be used for the simulation of fluid filled structures such as blood and lung vessels. The control of pressure and flow rate within these structures is vital to mimic physiological conditions. The flexibility of PDMS leads to pressure-induced deformation under flow, leading to variable flow profiles along a device. Here, we investigate the change in Young’s modulus of microfluidic channels due to infiltration of mineral oil, a PDMS permeable fluid, and how this affects the resulting pressure profile using a novel pressure measurement method. We found a 53% decrease in Young’s modulus of PDMS due to mineral oil absorption over the course of 3 h accounted for lower internal pressure and larger channel deformation compared to fresh PDMS at a given flow rate. Confocal fluorescence microscopy used to image channel profiles before and after the introduction of mineral oil showed a change in pressure-induced deformation after infiltration of the oil. Atomic force microscopy (AFM) nanoindentation was used to measure Young’s modulus of PDMS before ( 2.80 ± 0.03 MPa) and after ( 1.32 ± 0.04 MPa) mineral oil absorption. Raman spectroscopy showed the infiltration of mineral oil into PDMS from channel walls and revealed the diffusion coefficient of mineral oil in PDMS.
ArticleNumber 1501
Author Shim, Jung-uk
Gala de Pablo, Julia
Evans, Stephen D.
Thomson, Neil H.
Hunter, Liam
Stammers, Ashley C.
Author_xml – sequence: 1
  givenname: Liam
  orcidid: 0000-0002-2728-0837
  surname: Hunter
  fullname: Hunter, Liam
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds
– sequence: 2
  givenname: Julia
  orcidid: 0000-0003-0557-9632
  surname: Gala de Pablo
  fullname: Gala de Pablo, Julia
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds
– sequence: 3
  givenname: Ashley C.
  orcidid: 0000-0002-5277-779X
  surname: Stammers
  fullname: Stammers, Ashley C.
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds
– sequence: 4
  givenname: Neil H.
  orcidid: 0000-0001-7332-790X
  surname: Thomson
  fullname: Thomson, Neil H.
  organization: Division of Oral Biology, School of Dentistry, University of Leeds, St James’s University Hospital
– sequence: 5
  givenname: Stephen D.
  orcidid: 0000-0001-8342-5335
  surname: Evans
  fullname: Evans, Stephen D.
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds
– sequence: 6
  givenname: Jung-uk
  orcidid: 0000-0003-4577-1952
  surname: Shim
  fullname: Shim, Jung-uk
  email: J.Shim@leeds.ac.uk
  organization: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds
BookMark eNp9kUtPwzAQhC1UJKD0D3CKxDngV2L7iBBPVeoFztbWXkOq1g52euDfkxIEN067Gs18u9KckVlMEQm5YPSKUaqui-Sy4TXltKaCa13rI3LKGy5qYRSb_e6tOCGLUjaUUq6MkFqckudVrN1711d9xlL2GasdwmHuMA6lgugr9w4x4rbyGFLewdClWEEYMFep21awLin3B_GcHAfYFlz8zDl5vb97uX2sl6uHp9ubZe0kN0ONCMyIwAI1pmGtUNS3yMFDo6kPSgXGsG20xoY1jgnjWvA8rFnwVGvnuJiTp4nrE2xsn7sd5E-boLPfQspvFvLQuS3aEWAClWvhUErUbE2dAuAqeC-1F2JkXU6sPqePPZbBbtI-x_F9y5XWUhit9Ojik8vlVErG8HuVUXuowE4V2LEC-12BPYTEFCqjOb5h_kP_k_oCjUSLFw
CitedBy_id crossref_primary_10_1088_1361_648X_ac327d
crossref_primary_10_1016_j_cofs_2022_100957
crossref_primary_10_3390_cancers14143535
crossref_primary_10_3389_fcvm_2021_647086
crossref_primary_10_3390_pharmaceutics12121186
Cites_doi 10.1021/ac0346712
10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c
10.1016/S0091-679X(07)83022-6
10.1039/b813061b
10.1039/b513524a
10.1039/b907515a
10.1039/c8sm02105h
10.1126/science.1188302
10.1039/b706549c
10.1023/B:BMMD.0000048559.29932.27
10.1016/j.krcp.2015.08.001
10.1038/s41578-018-0034-7
10.1016/j.polymer.2018.02.022
10.1007/s10404-018-2150-5
10.1021/ma800536y
10.1073/pnas.0610868104
10.1039/c003504a
10.1016/j.mee.2014.04.041
10.1063/1.4720394
10.1007/s10404-017-1908-5
10.1021/ma052727j
10.1039/C5TC01927C
10.1126/science.288.5463.113
10.1088/0960-1317/24/3/035017
10.1007/s10404-016-1702-9
10.1111/j.1574-6968.2009.01808.x
10.1017/jfm.2018.30
10.1098/rsif.2014.1079
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42452-020-03288-8
DatabaseName SpringerOpen
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
EndPage 8
ExternalDocumentID oai_doaj_org_article_5c19f04b3ce44e81b0c7aa27fdd48d33
10_1007_s42452_020_03288_8
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -EM
2JN
88I
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ADKNI
ADMDM
ADURQ
ADYFF
AEFTE
AEJRE
AESTI
AEVTX
AFGXO
AFKRA
AFNRJ
AFQWF
AGDGC
AGGBP
AGJBK
AHBXF
AILAN
AIMYW
AITGF
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
AAYXX
CITATION
H13
ZMTXR
ID FETCH-LOGICAL-c429t-eea193f1f099516370d6e2ada580df77f11e6588e515c139c6ad2fb1fd088cc23
IEDL.DBID DOA
ISSN 2523-3963
IngestDate Tue Oct 22 15:15:16 EDT 2024
Thu Dec 12 11:10:57 EST 2024
Thu Nov 21 20:51:27 EST 2024
Sat Dec 16 12:02:57 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Channel deformation
Diffusion
Pressure drop
Nanoindentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-eea193f1f099516370d6e2ada580df77f11e6588e515c139c6ad2fb1fd088cc23
ORCID 0000-0001-8342-5335
0000-0002-5277-779X
0000-0001-7332-790X
0000-0003-4577-1952
0000-0002-2728-0837
0000-0003-0557-9632
OpenAccessLink https://doaj.org/article/5c19f04b3ce44e81b0c7aa27fdd48d33
PQID 2788439878
PQPubID 5758472
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_5c19f04b3ce44e81b0c7aa27fdd48d33
proquest_journals_2788439878
crossref_primary_10_1007_s42452_020_03288_8
springer_journals_10_1007_s42452_020_03288_8
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – sequence: 0
  name: Springer Nature B.V
– name: Springer International Publishing
– name: Springer
References Raj, Sen (CR7) 2016; 20
Rumens, Ziai, Belsey, Batchelor, Holder (CR24) 2015; 3
Fuerstman, Lai, Thurlow, Shevkoplyas, Stone, Whitesides (CR27) 2007; 7
Jang, Suh (CR15) 2010; 10
Cesaria, Arima, Manera, Rella (CR25) 2018; 139
Müller, Wapler, Wallrabe (CR28) 2019; 15
McDonald, Duffy, Anderson, Chiu, Wu, Schueller, Whitesides (CR1) 2000; 21
Gervais, El-Ali, Günther, Jensen (CR5) 2006; 6
Song, Tranchida, Vancso (CR18) 2008; 41
Dangla, Gallaire, Baroud (CR22) 2010; 10
Johnston, McCluskey, Tan, Tracey (CR17) 2014; 24
Cheung, Toda-Peters, Shen (CR10) 2012; 6
Hardy, Uechi, Zhen, Pirouz Kavehpour (CR6) 2009; 9
Lee, Park, Whitesides (CR23) 2003; 75
CR4
Engler, Rehfeldt, Sen, Discher (CR20) 2007; 83
CR9
Kim, Huang, Choi, Hidrovo (CR26) 2014; 124
Huh, Matthews, Mammoto, Montoya-Zavala, Yuan Hsin, Ingber (CR13) 2010; 328
Huh, Fujioka, Tung, Futai, Paine, Grotberg, Takayama (CR14) 2007; 104
Raj, Suthanthiraraj, Sen (CR2) 2018; 22
Tranchida, Piccarolo, Soliman (CR19) 2006; 39
Zhang, Korolj, Lai, Radisic (CR12) 2018; 3
Unger (CR3) 2000; 288
CR21
Raj, DasGupta, Chakraborty (CR8) 2017; 21
Shin, Matsuda, Ishii, Terai, Kaazempur-Mofrad, Borenstein, Vacanti (CR16) 2004; 6
Kim, Takayama (CR11) 2015; 34
ID Johnston (3288_CR17) 2014; 24
B Zhang (3288_CR12) 2018; 3
A Raj (3288_CR7) 2016; 20
D Huh (3288_CR13) 2010; 328
S Kim (3288_CR11) 2015; 34
MA Unger (3288_CR3) 2000; 288
M Kim (3288_CR26) 2014; 124
JC McDonald (3288_CR1) 2000; 21
T Gervais (3288_CR5) 2006; 6
D Tranchida (3288_CR19) 2006; 39
BS Hardy (3288_CR6) 2009; 9
D Huh (3288_CR14) 2007; 104
MK Raj (3288_CR8) 2017; 21
A Müller (3288_CR28) 2019; 15
J Song (3288_CR18) 2008; 41
AJ Engler (3288_CR20) 2007; 83
A Raj (3288_CR2) 2018; 22
3288_CR4
M Shin (3288_CR16) 2004; 6
3288_CR21
JN Lee (3288_CR23) 2003; 75
3288_CR9
CV Rumens (3288_CR24) 2015; 3
KJ Jang (3288_CR15) 2010; 10
R Dangla (3288_CR22) 2010; 10
M Cesaria (3288_CR25) 2018; 139
P Cheung (3288_CR10) 2012; 6
MJ Fuerstman (3288_CR27) 2007; 7
References_xml – volume: 75
  start-page: 6544
  issue: 23
  year: 2003
  end-page: 6554
  ident: CR23
  article-title: Solvent compatibility of poly(dimethylsiloxane)—based microfluidic devices
  publication-title: Anal Chem
  doi: 10.1021/ac0346712
  contributor:
    fullname: Whitesides
– volume: 21
  start-page: 27
  issue: 1
  year: 2000
  end-page: 40
  ident: CR1
  article-title: Fabrication of microfluidic systems in poly(dimethylsiloxane)
  publication-title: Electrophoresis
  doi: 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c
  contributor:
    fullname: Whitesides
– ident: CR4
– volume: 83
  start-page: 521
  issue: 07
  year: 2007
  end-page: 545
  ident: CR20
  article-title: Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(07)83022-6
  contributor:
    fullname: Discher
– volume: 9
  start-page: 935
  issue: 7
  year: 2009
  end-page: 938
  ident: CR6
  article-title: The deformation of flexible PDMS microchannels under a pressure driven flow
  publication-title: Lab Chip
  doi: 10.1039/b813061b
  contributor:
    fullname: Pirouz Kavehpour
– volume: 6
  start-page: 500
  issue: 4
  year: 2006
  end-page: 507
  ident: CR5
  article-title: Flow-induced deformation of shallow microfluidic channels
  publication-title: Lab Chip
  doi: 10.1039/b513524a
  contributor:
    fullname: Jensen
– volume: 10
  start-page: 36
  issue: 1
  year: 2010
  end-page: 42
  ident: CR15
  article-title: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
  publication-title: Lab Chip
  doi: 10.1039/b907515a
  contributor:
    fullname: Suh
– volume: 15
  start-page: 779
  issue: 4
  year: 2019
  end-page: 784
  ident: CR28
  article-title: A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS
  publication-title: Soft Matter
  doi: 10.1039/c8sm02105h
  contributor:
    fullname: Wallrabe
– volume: 328
  start-page: 1662
  issue: 5986
  year: 2010
  end-page: 1668
  ident: CR13
  article-title: Reconstituting organ-level lung functions on a chip
  publication-title: Science
  doi: 10.1126/science.1188302
  contributor:
    fullname: Ingber
– volume: 7
  start-page: 1479
  issue: 11
  year: 2007
  end-page: 1489
  ident: CR27
  article-title: The pressure drop along rectangular microchannels containing bubbles
  publication-title: Lab Chip
  doi: 10.1039/b706549c
  contributor:
    fullname: Whitesides
– volume: 6
  start-page: 269
  issue: 4
  year: 2004
  end-page: 278
  ident: CR16
  article-title: Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
  publication-title: Biomed Microdevices
  doi: 10.1023/B:BMMD.0000048559.29932.27
  contributor:
    fullname: Vacanti
– volume: 34
  start-page: 165
  issue: 3
  year: 2015
  end-page: 169
  ident: CR11
  article-title: Organ-on-a-chip and the kidney
  publication-title: Kidney Res Clin Pract
  doi: 10.1016/j.krcp.2015.08.001
  contributor:
    fullname: Takayama
– ident: CR21
– volume: 3
  start-page: 257
  issue: 8
  year: 2018
  end-page: 278
  ident: CR12
  article-title: Advances in organ-on-a-chip engineering
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-018-0034-7
  contributor:
    fullname: Radisic
– volume: 139
  start-page: 145
  year: 2018
  end-page: 154
  ident: CR25
  article-title: Protocol of thermal aging against the swelling of poly(dimethylsiloxane) and physical insight in swelling regimes
  publication-title: Polymer (United Kingdom)
  doi: 10.1016/j.polymer.2018.02.022
  contributor:
    fullname: Rella
– volume: 22
  start-page: 128
  issue: 11
  year: 2018
  ident: CR2
  article-title: Pressure-driven flow through PDMSbased flexible microchannels and their applications in microfluidics
  publication-title: Microfluid Nanofluidics
  doi: 10.1007/s10404-018-2150-5
  contributor:
    fullname: Sen
– volume: 41
  start-page: 6757
  issue: 18
  year: 2008
  end-page: 6762
  ident: CR18
  article-title: Contact mechanics of UV/ozone-treated PDMS by AFM and JKR testing: mechanical performance from nano- to micro-meter length scales
  publication-title: Macromolecules
  doi: 10.1021/ma800536y
  contributor:
    fullname: Vancso
– volume: 104
  start-page: 18886
  issue: 48
  year: 2007
  end-page: 18891
  ident: CR14
  article-title: Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0610868104
  contributor:
    fullname: Takayama
– volume: 10
  start-page: 2972
  issue: 21
  year: 2010
  end-page: 2978
  ident: CR22
  article-title: Microchannel deformations due to solvent induced PDMS swelling
  publication-title: Lab Chip
  doi: 10.1039/c003504a
  contributor:
    fullname: Baroud
– volume: 124
  start-page: 66
  year: 2014
  end-page: 75
  ident: CR26
  article-title: The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2014.04.041
  contributor:
    fullname: Hidrovo
– volume: 6
  start-page: 026501
  issue: 2
  year: 2012
  ident: CR10
  article-title: In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4720394
  contributor:
    fullname: Shen
– ident: CR9
– volume: 21
  start-page: 1
  issue: 4
  year: 2017
  end-page: 12
  ident: CR8
  article-title: Hydrodynamics in deformable microchannels
  publication-title: Microfluid Nanofluidics
  doi: 10.1007/s10404-017-1908-5
  contributor:
    fullname: Chakraborty
– volume: 39
  start-page: 4547
  issue: 13
  year: 2006
  end-page: 4556
  ident: CR19
  article-title: Nanoscale mechanical characterization of polymers by AFM nanoindentations: critical approach to the elastic characterization
  publication-title: Macromolecules
  doi: 10.1021/ma052727j
  contributor:
    fullname: Soliman
– volume: 3
  start-page: 10091
  issue: 39
  year: 2015
  end-page: 10098
  ident: CR24
  article-title: Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors
  publication-title: J Mater Chem C
  doi: 10.1039/C5TC01927C
  contributor:
    fullname: Holder
– volume: 288
  start-page: 113
  issue: 5463
  year: 2000
  end-page: 116
  ident: CR3
  article-title: Monolithic microfabricated valves and pumps by multilayer soft lithography
  publication-title: Science
  doi: 10.1126/science.288.5463.113
  contributor:
    fullname: Unger
– volume: 24
  start-page: 035017
  issue: 3
  year: 2014
  ident: CR17
  article-title: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/24/3/035017
  contributor:
    fullname: Tracey
– volume: 20
  start-page: 1
  issue: 2
  year: 2016
  end-page: 13
  ident: CR7
  article-title: Flow-induced deformation of compliant microchannels and its effect on pressure-flow characteristics
  publication-title: Microfluid Nanofluidics
  doi: 10.1007/s10404-016-1702-9
  contributor:
    fullname: Sen
– volume: 24
  start-page: 035017
  issue: 3
  year: 2014
  ident: 3288_CR17
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/24/3/035017
  contributor:
    fullname: ID Johnston
– volume: 10
  start-page: 2972
  issue: 21
  year: 2010
  ident: 3288_CR22
  publication-title: Lab Chip
  doi: 10.1039/c003504a
  contributor:
    fullname: R Dangla
– volume: 288
  start-page: 113
  issue: 5463
  year: 2000
  ident: 3288_CR3
  publication-title: Science
  doi: 10.1126/science.288.5463.113
  contributor:
    fullname: MA Unger
– volume: 104
  start-page: 18886
  issue: 48
  year: 2007
  ident: 3288_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0610868104
  contributor:
    fullname: D Huh
– volume: 10
  start-page: 36
  issue: 1
  year: 2010
  ident: 3288_CR15
  publication-title: Lab Chip
  doi: 10.1039/b907515a
  contributor:
    fullname: KJ Jang
– volume: 3
  start-page: 257
  issue: 8
  year: 2018
  ident: 3288_CR12
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-018-0034-7
  contributor:
    fullname: B Zhang
– volume: 21
  start-page: 1
  issue: 4
  year: 2017
  ident: 3288_CR8
  publication-title: Microfluid Nanofluidics
  doi: 10.1007/s10404-017-1908-5
  contributor:
    fullname: MK Raj
– volume: 20
  start-page: 1
  issue: 2
  year: 2016
  ident: 3288_CR7
  publication-title: Microfluid Nanofluidics
  doi: 10.1007/s10404-016-1702-9
  contributor:
    fullname: A Raj
– volume: 9
  start-page: 935
  issue: 7
  year: 2009
  ident: 3288_CR6
  publication-title: Lab Chip
  doi: 10.1039/b813061b
  contributor:
    fullname: BS Hardy
– volume: 6
  start-page: 026501
  issue: 2
  year: 2012
  ident: 3288_CR10
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4720394
  contributor:
    fullname: P Cheung
– volume: 41
  start-page: 6757
  issue: 18
  year: 2008
  ident: 3288_CR18
  publication-title: Macromolecules
  doi: 10.1021/ma800536y
  contributor:
    fullname: J Song
– ident: 3288_CR9
  doi: 10.1111/j.1574-6968.2009.01808.x
– volume: 7
  start-page: 1479
  issue: 11
  year: 2007
  ident: 3288_CR27
  publication-title: Lab Chip
  doi: 10.1039/b706549c
  contributor:
    fullname: MJ Fuerstman
– volume: 22
  start-page: 128
  issue: 11
  year: 2018
  ident: 3288_CR2
  publication-title: Microfluid Nanofluidics
  doi: 10.1007/s10404-018-2150-5
  contributor:
    fullname: A Raj
– volume: 39
  start-page: 4547
  issue: 13
  year: 2006
  ident: 3288_CR19
  publication-title: Macromolecules
  doi: 10.1021/ma052727j
  contributor:
    fullname: D Tranchida
– volume: 34
  start-page: 165
  issue: 3
  year: 2015
  ident: 3288_CR11
  publication-title: Kidney Res Clin Pract
  doi: 10.1016/j.krcp.2015.08.001
  contributor:
    fullname: S Kim
– volume: 83
  start-page: 521
  issue: 07
  year: 2007
  ident: 3288_CR20
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(07)83022-6
  contributor:
    fullname: AJ Engler
– volume: 6
  start-page: 500
  issue: 4
  year: 2006
  ident: 3288_CR5
  publication-title: Lab Chip
  doi: 10.1039/b513524a
  contributor:
    fullname: T Gervais
– ident: 3288_CR4
  doi: 10.1017/jfm.2018.30
– volume: 139
  start-page: 145
  year: 2018
  ident: 3288_CR25
  publication-title: Polymer (United Kingdom)
  doi: 10.1016/j.polymer.2018.02.022
  contributor:
    fullname: M Cesaria
– volume: 15
  start-page: 779
  issue: 4
  year: 2019
  ident: 3288_CR28
  publication-title: Soft Matter
  doi: 10.1039/c8sm02105h
  contributor:
    fullname: A Müller
– volume: 21
  start-page: 27
  issue: 1
  year: 2000
  ident: 3288_CR1
  publication-title: Electrophoresis
  doi: 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c
  contributor:
    fullname: JC McDonald
– volume: 6
  start-page: 269
  issue: 4
  year: 2004
  ident: 3288_CR16
  publication-title: Biomed Microdevices
  doi: 10.1023/B:BMMD.0000048559.29932.27
  contributor:
    fullname: M Shin
– volume: 124
  start-page: 66
  year: 2014
  ident: 3288_CR26
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2014.04.041
  contributor:
    fullname: M Kim
– volume: 75
  start-page: 6544
  issue: 23
  year: 2003
  ident: 3288_CR23
  publication-title: Anal Chem
  doi: 10.1021/ac0346712
  contributor:
    fullname: JN Lee
– ident: 3288_CR21
  doi: 10.1098/rsif.2014.1079
– volume: 3
  start-page: 10091
  issue: 39
  year: 2015
  ident: 3288_CR24
  publication-title: J Mater Chem C
  doi: 10.1039/C5TC01927C
  contributor:
    fullname: CV Rumens
– volume: 328
  start-page: 1662
  issue: 5986
  year: 2010
  ident: 3288_CR13
  publication-title: Science
  doi: 10.1126/science.1188302
  contributor:
    fullname: D Huh
SSID ssj0002793483
ssib051670015
ssib054396270
Score 2.2128263
Snippet Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments, and can...
Abstract Microfluidic channels moulded from the soft polymer poly(dimethylsiloxane) (PDMS) are widely used as a platform for mimicking biological environments,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1501
SubjectTerms 6. Interdisciplinary (general)
Absorption
Applied and Technical Physics
Atomic force microscopy
Blood vessels
Channel deformation
Channels
Chemistry/Food Science
Deformation
Diffusion
Diffusion coefficient
Earth Sciences
Engineering
Environment
Flow profiles
Flow velocity
Fluorescence microscopy
Geometry
Infiltration
Internal pressure
Materials Science
Measurement methods
Mechanical properties
Microfluidics
Microscopy
Mineral oils
Modulus of elasticity
Nanoindentation
Polydimethylsiloxane
Polymers
Pressure
Pressure drop
Pressure measurement
Raman spectroscopy
Research Article
Silicon wafers
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECY-LnowPmO1Gg7elMiydKFHbTTGRL3YxBsBBqJGt00f_9-BbusjevC6SxbyzcB87DAfhJx4ESW32rJSFBWTFQBzuEAy7wQoZy13OdF-d1_d9OXtU-epkclJtTA_8vfn45SZEyxtcpLym2Z6maxiDFbJm3tVb-47nSLVmzSh7TUn1LqlzCqcAvdarERHa2pmfv_st7iU5fu_cc4fadIcfa43yUZDG-nFzM5bZCnU22T9i5jgDrl9qJl_fhnSfLR1Ogr0_fP_35jaGmiq8q3DG4WwqFmk-ZJwOnh5o9aNB6O8guyS_vXVY--GNTclMI_xZMJCsEjEYhGR7yESpeJQBWHBdjSHqFQsioBUQwdEziPn85UFEV0RARcZ70W5R1bqQR32CUW-AcAdCN-1EkSlNWiuKlCRiyA1tMjpHCcznAlimIX0cUbVIKomo2p0i1wmKBctk5h1foA2Ns3cMDikbuTSlT5IGZBHc6-sFSoCYIdl2SLtuSFMM8PGRuDeHcmUVtjH2dw4n6__HtLB_5ofkjWR3SQdK2uTlcloGo6Qh0zccXbAD7Az0RU
  priority: 102
  providerName: Springer Nature
Title On-chip pressure measurements and channel deformation after oil absorption
URI https://link.springer.com/article/10.1007/s42452-020-03288-8
https://www.proquest.com/docview/2788439878
https://doaj.org/article/5c19f04b3ce44e81b0c7aa27fdd48d33
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELVaeqGHin4gtqUrH7i1Vh3Hsb3H7QqEVgIOLRI3y_bYAgRZtLv8f8ZO9gMk1EuvcaQ4byaeNxnPMyFHQSTJnXGsFpViUgEwjwskC16A9s5xXwrtZ-fq9FJOr5qrraO-8p6wTh64A-5XE6pR4tLXIUoZkWTxoJ0TOgFIA3Wn88nFVjKFntRUuftkE-gaDLtK9J55W8pto1oWjU6BmRjD0brvqCl9dbkcKFjOrLLcnGHmWdQq4v7PGOmLImqJTSd75ENPKum4e5mP5E1sP5H3W1KDn8n0omXh-uaBlo2vj_NI7zd_BxfUtUBzD3Ab7yjEdUcjLUeI09nNHXV-MZuX9eULuTw5_js5Zf05CixgtFmyGB3StFQlZIOITK05qCgcuMZwSFqnqopIRExEbhOQEQblQCRfJcAlKARR75OddtbGA0KRjQBwDyKMnAShjAHDtQKduIhojwH5scLJPnRyGXYtjFxQtYiqLahaMyC_M5TrO7PUdbmADmB7B7D_coABOVwZwvbf38IKzOzR5kbjM36ujLMZfn1KX__HlL6RXVGcJ29FOyQ7y_lj_I7cZemH5N14PP0zHZK3EzUZFqd9ArT254E
link.rule.ids 314,780,784,864,2102,27924,27925,41120,42189,51576
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVoOLQcEP0SgUB96K216vU6a-cIEShQoJcgcbNsjy2CwiZKwv9nbDYJIHrgumutrZnxzJsdzzMhP72IklttWSmKiskKgDl0kMw7AcpZy10utF9eVYNreX7TvWloclIvzKv6_Z95qswJlpKcxPymmf5ANiXGpWTB_aq_tJ1ukfpNmtB2lwtqvVJmFk6BuRYr0dCanpm3P_siLmX6_heY81WZNEef0x2y3cBGevSk589kI9RfyNYzMsGv5PxfzfztaErz0daHWaD36_9_c2proKnLtw5jCmHVs0jzJeF0MhpT6-aTWfYg38j16cmwP2DNTQnMYzxZsBAsArFYRMR7KIlScaiCsGC7mkNUKhZFQKihA6IXj5jPVxZEdEUEdDLei_I7adWTOuwSingDgDsQvmcliEpr0FxVoCIXQWpok19LOZnpEyGGWVEfZ6kalKrJUjW6TY6TKFcjE5l1foA6Ns3eMLikXuTSlT5IGRBHc6-sFSoC4IRl2SadpSJMs8PmRmDujmBKK5zj91I569f_X9Le-4b_IB8Hw8sLc3F29XeffBLZZNIRsw5pLWYP4QAxycIdZmN8BKAn0_8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELUoSKgcUKGgpkDxoTew8HqdtXOE0IivAgeQuFm2x26pYBMl4f937OwGqOiB6661tmbGnucdv2dCvnsRJbfaslIUFZMVAHO4QDLvBChnLXe50P7zsjq5lWd33bsXLP582r0tSc44DUmlqZ4ejCAezIlvqV4nWNr6JD04zfQHsiQROqTLG_pVv42obpFYKE3C-5PLbL1SZm1OgTswVmL4NUyatz_7KltlUf9XSPSf4mnOSYNPZLUBk_Rw5v01shDqdbLyQmLwMzm7qpn_fT-i-cDr0zjQx-e_ghNqa6CJ-1uHBwphzmSk-epwOrx_oNZNhuO8rmyQ28GPm_4Ja-5PYB6zzJSFYBGexSIiCkRLlIpDFYQF29UcolKxKAICEB0Q03hEgr6yIKIrIuDS470oN8liPazDF0IRhQBwB8L3rARRaQ2aqwpU5CJIDR2y19rJjGYyGWYuiJytatCqJlvV6A45Sqact0wS1_nBcPzLNDPG4JB6kUtX-iBlQHTNvbJWqAiAHZZlh2y3jjDNvJsYgTt6hFhaYR_7rXOeX_9_SF_f13yXLF8fD8zF6eX5FvkocsSkc2fbZHE6fgo7CFSm7luOxb8O6tw9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-chip+pressure+measurements+and+channel+deformation+after+oil+absorption&rft.jtitle=SN+applied+sciences&rft.au=Hunter%2C+Liam&rft.au=Gala+de+Pablo%2C+Julia&rft.au=Stammers%2C+Ashley+C.&rft.au=Thomson%2C+Neil+H.&rft.date=2020-09-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=9&rft_id=info:doi/10.1007%2Fs42452-020-03288-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_020_03288_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon