Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol

Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 48; no. 24; pp. 8791 - 882
Main Authors Pendem, Saikiran, Bolla, Srinivasa Rao, Morgan, David J, Shinde, Digambar B, Lai, Zhiping, Nakka, Lingaiah, Mondal, John
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo 3 O 4 and PdFe 3 O 4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo 3 O 4 @NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe 3 O 4 @NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H 2 -TPR) for nanohybrids, we can conclude that the presence of PdCo-N x active sites, and the multiple synergistic effects between Co 3 O 4 and Pd( ii ), Co 3 O 4 and Pd 0 , as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors. The metal-organic-framework-derived Co-Pd bond can more efficiently catalyze the reductive upgrading of furfural to tetrahydrofurfuryl alcohol production as compared to the Fe-Pd bond.
AbstractList Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.
Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo 3 O 4 and PdFe 3 O 4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo 3 O 4 @NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe 3 O 4 @NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H 2 -TPR) for nanohybrids, we can conclude that the presence of PdCo-N x active sites, and the multiple synergistic effects between Co 3 O 4 and Pd( ii ), Co 3 O 4 and Pd 0 , as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors. The metal-organic-framework-derived Co-Pd bond can more efficiently catalyze the reductive upgrading of furfural to tetrahydrofurfuryl alcohol production as compared to the Fe-Pd bond.
Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal–organic-framework (MOF) assisted preparation of PdCo 3 O 4 and PdFe 3 O 4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo 3 O 4 @NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd–Fe 3 O 4 @NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H 2 -TPR) for nanohybrids, we can conclude that the presence of PdCo-N x active sites, and the multiple synergistic effects between Co 3 O 4 and Pd( ii ), Co 3 O 4 and Pd 0 , as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.
Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.
Author Mondal, John
Bolla, Srinivasa Rao
Lai, Zhiping
Nakka, Lingaiah
Pendem, Saikiran
Morgan, David J
Shinde, Digambar B
AuthorAffiliation King Abdullah University of Science and Technology (KAUST)
Cardiff Catalysis Institute
Catalysis and fine chemicals Division
Division of Physical Science and Engineering
AcSIR-Indian Institute of Chemical Technology
School of Chemistry
CSIR-Indian Institute of Chemical Technology
Cardiff University
AuthorAffiliation_xml – name: CSIR-Indian Institute of Chemical Technology
– name: Division of Physical Science and Engineering
– name: Cardiff Catalysis Institute
– name: Cardiff University
– name: AcSIR-Indian Institute of Chemical Technology
– name: King Abdullah University of Science and Technology (KAUST)
– name: Catalysis and fine chemicals Division
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Saikiran
  surname: Pendem
  fullname: Pendem, Saikiran
– sequence: 2
  givenname: Srinivasa Rao
  surname: Bolla
  fullname: Bolla, Srinivasa Rao
– sequence: 3
  givenname: David J
  surname: Morgan
  fullname: Morgan, David J
– sequence: 4
  givenname: Digambar B
  surname: Shinde
  fullname: Shinde, Digambar B
– sequence: 5
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
– sequence: 6
  givenname: Lingaiah
  surname: Nakka
  fullname: Nakka, Lingaiah
– sequence: 7
  givenname: John
  surname: Mondal
  fullname: Mondal, John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31124551$$D View this record in MEDLINE/PubMed
BookMark eNp9ks2LFDEQxYOsuB968a5EvIjQmq_p6RxldFVc0cN6btJJZTa7mU5bSa_M3T_crLOOsIgQSKj3e0XxKsfkYEwjEPKYs1ecSf3aalcY55pd3SNHXC2XjRZSHezfoj0kxzlfMiYEW4gH5FByLtRiwY_Iz89QTGwSrs0YbOPRbOBHwivqAMM1OLpKzVdHhzQ6GjKdEDwg1nq6BqSncCP6hLSWZluqg87TGo0L45omT_2M9ZhIS6IFCpqLrcO0q24jNdGmixQfkvvexAyPbu8T8u303fnqQ3P25f3H1ZuzxiqhSwMddEvF2tZ31oJ1WgwtsAG8sbpjTiorWrPoPJNKM9cOirPBGOGMGqpFOnlCXuz6Tpi-z5BLvwnZQoxmhDTnXggpao56ySr6_A56mWYc63SVUoIJLSWv1NNbah424PoJw8bgtv-TbwVe7gCLKeca3h7hrL9ZXr_Sb89_L-9Thdkd2IZiSkhjDS7Ef1ue7CyY7b713_9Q9Wf_0_vJefkLNCmytA
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215159
crossref_primary_10_1016_j_apsusc_2024_160944
crossref_primary_10_1021_acsami_9b12470
crossref_primary_10_1016_j_matchemphys_2020_124152
crossref_primary_10_1039_C9RA10317A
crossref_primary_10_1039_D0CY00086H
crossref_primary_10_1016_j_apcata_2020_117719
crossref_primary_10_1039_D2DT02986C
crossref_primary_10_1002_slct_202003770
crossref_primary_10_1016_j_mcat_2022_112505
crossref_primary_10_1039_D3MA00938F
crossref_primary_10_1002_cssc_202301315
crossref_primary_10_1002_cctc_202301291
crossref_primary_10_1039_D2SE00408A
crossref_primary_10_3390_suschem2030029
crossref_primary_10_1016_j_nantod_2023_101960
crossref_primary_10_3390_nano9121698
crossref_primary_10_1002_jctb_6577
crossref_primary_10_1016_j_fuel_2020_119015
crossref_primary_10_1021_acscatal_3c01217
crossref_primary_10_1039_D2QM01181F
crossref_primary_10_1002_slct_202001869
crossref_primary_10_1002_cctc_202001124
crossref_primary_10_1039_D1GC04592J
Cites_doi 10.1038/srep13515
10.1039/C7DT00628D
10.1016/j.tca.2008.04.015
10.1016/j.renene.2014.02.044
10.1039/c3ce41269e
10.1021/acscatal.5b00998
10.1016/j.jcat.2017.07.023
10.1007/s10008-018-4096-7
10.3390/catal8090368
10.1016/j.cattod.2014.10.037
10.1002/adfm.201704537
10.1016/j.ensm.2017.12.027
10.1039/C7FD00041C
10.1080/17518253.2015.1082646
10.1016/j.chempr.2017.12.025
10.1016/j.mencom.2016.01.015
10.1016/j.ensm.2018.06.002
10.1021/ja5003907
10.1039/C8CE00552D
10.1006/jcat.1995.1278
10.1016/j.carbon.2017.06.017
10.1016/j.biombioe.2017.10.041
10.1039/C8CS00410B
10.1016/j.jcat.2010.10.005
10.1038/srep41542
10.1088/0957-4484/23/50/505401
10.1021/ie061137m
10.1016/j.apsusc.2014.09.056
10.1039/C5RA08254D
10.1016/j.mtener.2018.09.013
10.1039/C8MH00133B
10.1016/j.cattod.2017.04.063
10.3390/catal5010145
10.1007/s10562-018-2323-6
10.1016/0920-5861(90)85024-I
10.1016/j.resconrec.2006.09.003
10.1039/C8DT02330A
10.1039/C5GC02530C
10.1039/C6RA00378H
10.1021/acsami.8b02226
10.1016/j.apcata.2018.07.010
10.1021/acsenergylett.8b00809
10.1038/srep45105
10.1039/C6CP05555A
10.1002/chem.201803083
10.1016/j.jcat.2015.04.018
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c9dt01190k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 882
ExternalDocumentID 31124551
10_1039_C9DT01190K
c9dt01190k
Genre Journal Article
GroupedDBID -
0-7
0R
29F
4.4
53G
5GY
70
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
H13
HZ
H~N
IDZ
IPNFZ
J3G
J3H
J3I
JG
M4U
O9-
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
X
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c429t-e8e874066f8ccecd92b6e0befac980d34c26a58f03490d6b410baa2da4b6f83d3
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 09:25:53 EDT 2025
Mon Jun 30 03:04:20 EDT 2025
Wed Feb 19 02:35:03 EST 2025
Tue Jul 01 03:01:33 EDT 2025
Thu Apr 24 23:12:17 EDT 2025
Sat Jan 08 03:27:22 EST 2022
Wed Nov 11 00:29:03 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-e8e874066f8ccecd92b6e0befac980d34c26a58f03490d6b410baa2da4b6f83d3
Notes NC, O 1s XPS spectra of PdCo
Electronic supplementary information (ESI) available: Characterization techniques, FE-SEM images of PVP-Pd@ZIF-67, wide angle powder XRD patterns and simulated pattern of Co-ZIF, XRD patterns of Fe-ZIF, pore-size distribution, & FE-SEM images of Pd-Co
NC, Pd-Fe
NC and PdFe
NC, HR-TEM images and N
NC, and plausible mechanistic pathway. See DOI
O
2
adsorption/desorption isotherms of used Pd-Co
3
4
NC, Fe 2p XP spectra of used Pd-Fe
10.1039/c9dt01190k
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9555-6009
0000-0003-1449-0621
0000-0002-6571-5731
0000-0001-7813-2108
PMID 31124551
PQID 2242029331
PQPubID 2047498
PageCount 12
ParticipantIDs crossref_primary_10_1039_C9DT01190K
rsc_primary_c9dt01190k
crossref_citationtrail_10_1039_C9DT01190K
proquest_miscellaneous_2232119970
proquest_journals_2242029331
pubmed_primary_31124551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhua (C9DT01190K-(cit12)/*[position()=1]) 2018; 13
Young (C9DT01190K-(cit24)/*[position()=1]) 2016; 18
Zhang (C9DT01190K-(cit41)/*[position()=1]) 2013; 15
Isaeva (C9DT01190K-(cit20)/*[position()=1]) 2018; 8
Ganguly (C9DT01190K-(cit1)/*[position()=1]) 2018; 108
Dutta (C9DT01190K-(cit2)/*[position()=1]) 2014; 69
Banerjee (C9DT01190K-(cit14)/*[position()=1]) 2018; 4
Alkasrawi (C9DT01190K-(cit4)/*[position()=1]) 2016; 11
Chen (C9DT01190K-(cit27)/*[position()=1]) 2016; 18
Su (C9DT01190K-(cit25)/*[position()=1]) 2017; 46
Ghasemzadeh (C9DT01190K-(cit39)/*[position()=1]) 2017; 7
Liu (C9DT01190K-(cit28)/*[position()=1]) 2017; 202
Salnikova (C9DT01190K-(cit6)/*[position()=1]) 2018; 70
Ma (C9DT01190K-(cit36)/*[position()=1]) 2018; 10
Xuan (C9DT01190K-(cit13)/*[position()=1]) 2018; 22
Argyle (C9DT01190K-(cit48)/*[position()=1]) 2015; 5
Wan (C9DT01190K-(cit26)/*[position()=1]) 2018; 121
Shen (C9DT01190K-(cit35)/*[position()=1]) 2015; 5
Diallo (C9DT01190K-(cit43)/*[position()=1]) 2015; 8
Wang (C9DT01190K-(cit10)/*[position()=1]) 2018; 5
Doorn (C9DT01190K-(cit49)/*[position()=1]) 1990; 7
Dong (C9DT01190K-(cit30b)/*[position()=1]) 2016; 6
Zhan (C9DT01190K-(cit18)/*[position()=1]) 2018; 20
Mironenko (C9DT01190K-(cit9)/*[position()=1]) 2015; 249
Yang (C9DT01190K-(cit30a)/*[position()=1]) 2017; 9
Tuo (C9DT01190K-(cit40)/*[position()=1]) 2015; 5
Zhaoqiang (C9DT01190K-(cit22)/*[position()=1]) 2018; 14
Soloveva (C9DT01190K-(cit31)/*[position()=1]) 2016; 26
Qu (C9DT01190K-(cit38)/*[position()=1]) 2017; 7
Cho (C9DT01190K-(cit45)/*[position()=1]) 2017; 7
Aijaz (C9DT01190K-(cit16)/*[position()=1]) 2014; 136
Tang (C9DT01190K-(cit44)/*[position()=1]) 2008; 473
Yang (C9DT01190K-(cit15)/*[position()=1]) 2018; 28
Yang (C9DT01190K-(cit11)/*[position()=1]) 2018; 47
Wang (C9DT01190K-(cit23)/*[position()=1]) 2018; 10
Zhang (C9DT01190K-(cit32)/*[position()=1]) 2014; 320
Ramirez-Barria (C9DT01190K-(cit8)/*[position()=1]) 2018; 563
Sudarsanam (C9DT01190K-(cit21)/*[position()=1]) 2018; 47
Wang (C9DT01190K-(cit5)/*[position()=1]) 2018; 148
Savastano (C9DT01190K-(cit37)/*[position()=1]) 2017; 353
Sitthisa (C9DT01190K-(cit47)/*[position()=1]) 2011; 277
Sárkány (C9DT01190K-(cit34)/*[position()=1]) 1995; 157
Zhang (C9DT01190K-(cit17)/*[position()=1]) 2018; 24
Wei (C9DT01190K-(cit33)/*[position()=1]) 2015; 5
Tike (C9DT01190K-(cit29)/*[position()=1]) 2007; 46
Champagne (C9DT01190K-(cit3)/*[position()=1]) 2007; 50
Zhou (C9DT01190K-(cit19)/*[position()=1]) 2018; 3
Song (C9DT01190K-(cit42)/*[position()=1]) 2012; 23
Musci (C9DT01190K-(cit7)/*[position()=1]) 2016; 296
Bhogeswararao (C9DT01190K-(cit46)/*[position()=1]) 2015; 327
References_xml – volume: 5
  start-page: 13515
  year: 2015
  ident: C9DT01190K-(cit40)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep13515
– volume: 46
  start-page: 6358
  year: 2017
  ident: C9DT01190K-(cit25)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00628D
– volume: 473
  start-page: 68
  issue: 1–2
  year: 2008
  ident: C9DT01190K-(cit44)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2008.04.015
– volume: 69
  start-page: 114
  year: 2014
  ident: C9DT01190K-(cit2)/*[position()=1]
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.02.044
– volume: 15
  start-page: 8166
  year: 2013
  ident: C9DT01190K-(cit41)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c3ce41269e
– volume: 5
  start-page: 5264
  year: 2015
  ident: C9DT01190K-(cit35)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00998
– volume: 353
  start-page: 239
  year: 2017
  ident: C9DT01190K-(cit37)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.07.023
– volume: 22
  start-page: 3873
  year: 2018
  ident: C9DT01190K-(cit13)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-018-4096-7
– volume: 8
  start-page: 368
  year: 2018
  ident: C9DT01190K-(cit20)/*[position()=1]
  publication-title: Catalysts
  doi: 10.3390/catal8090368
– volume: 249
  start-page: 145
  year: 2015
  ident: C9DT01190K-(cit9)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.10.037
– volume: 28
  start-page: 1704537
  year: 2018
  ident: C9DT01190K-(cit15)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704537
– volume: 13
  start-page: 72
  year: 2018
  ident: C9DT01190K-(cit12)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.12.027
– volume: 202
  start-page: 79
  year: 2017
  ident: C9DT01190K-(cit28)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00041C
– volume: 9
  start-page: 37
  year: 2017
  ident: C9DT01190K-(cit30a)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 30
  issue: 3–4
  year: 2015
  ident: C9DT01190K-(cit43)/*[position()=1]
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2015.1082646
– volume: 4
  start-page: 466
  issue: 3
  year: 2018
  ident: C9DT01190K-(cit14)/*[position()=1]
  publication-title: Chem.
  doi: 10.1016/j.chempr.2017.12.025
– volume: 26
  start-page: 38
  year: 2016
  ident: C9DT01190K-(cit31)/*[position()=1]
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2016.01.015
– volume: 11
  start-page: 2287
  issue: 1
  year: 2016
  ident: C9DT01190K-(cit4)/*[position()=1]
  publication-title: Bio Res.
– volume: 14
  start-page: 367
  year: 2018
  ident: C9DT01190K-(cit22)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.06.002
– volume: 136
  start-page: 6790
  issue: 19
  year: 2014
  ident: C9DT01190K-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5003907
– volume: 20
  start-page: 3449
  issue: 25
  year: 2018
  ident: C9DT01190K-(cit18)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00552D
– volume: 157
  start-page: 179
  year: 1995
  ident: C9DT01190K-(cit34)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1006/jcat.1995.1278
– volume: 121
  start-page: 330
  year: 2018
  ident: C9DT01190K-(cit26)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.06.017
– volume: 108
  start-page: 207
  year: 2018
  ident: C9DT01190K-(cit1)/*[position()=1]
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.10.041
– volume: 47
  start-page: 8349
  year: 2018
  ident: C9DT01190K-(cit21)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00410B
– volume: 277
  start-page: 1
  year: 2011
  ident: C9DT01190K-(cit47)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.10.005
– volume: 7
  start-page: 41542
  year: 2017
  ident: C9DT01190K-(cit38)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep41542
– volume: 23
  start-page: 505401
  year: 2012
  ident: C9DT01190K-(cit42)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/50/505401
– volume: 46
  start-page: 3275
  year: 2007
  ident: C9DT01190K-(cit29)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061137m
– volume: 320
  start-page: 73
  year: 2014
  ident: C9DT01190K-(cit32)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.09.056
– volume: 5
  start-page: 66141
  year: 2015
  ident: C9DT01190K-(cit33)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08254D
– volume: 10
  start-page: 241
  year: 2018
  ident: C9DT01190K-(cit36)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2018.09.013
– volume: 5
  start-page: 394
  year: 2018
  ident: C9DT01190K-(cit10)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00133B
– volume: 296
  start-page: 43
  year: 2016
  ident: C9DT01190K-(cit7)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.04.063
– volume: 5
  start-page: 145
  year: 2015
  ident: C9DT01190K-(cit48)/*[position()=1]
  publication-title: Catalysts
  doi: 10.3390/catal5010145
– volume: 148
  start-page: 1047
  year: 2018
  ident: C9DT01190K-(cit5)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-018-2323-6
– volume: 7
  start-page: 257
  year: 1990
  ident: C9DT01190K-(cit49)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(90)85024-I
– volume: 50
  start-page: 211
  year: 2007
  ident: C9DT01190K-(cit3)/*[position()=1]
  publication-title: Resour., Conserv. Recycl.
  doi: 10.1016/j.resconrec.2006.09.003
– volume: 47
  start-page: 13657
  year: 2018
  ident: C9DT01190K-(cit11)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT02330A
– volume: 18
  start-page: 1212
  year: 2016
  ident: C9DT01190K-(cit27)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC02530C
– volume: 6
  start-page: 37118
  issue: 43
  year: 2016
  ident: C9DT01190K-(cit30b)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA00378H
– volume: 10
  start-page: 14751
  issue: 17
  year: 2018
  ident: C9DT01190K-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02226
– volume: 563
  start-page: 177
  year: 2018
  ident: C9DT01190K-(cit8)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2018.07.010
– volume: 3
  start-page: 1655
  issue: 7
  year: 2018
  ident: C9DT01190K-(cit19)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00809
– volume: 7
  start-page: 75
  issue: 1
  year: 2017
  ident: C9DT01190K-(cit39)/*[position()=1]
  publication-title: Iran. J. Catal.
– volume: 7
  start-page: 45105
  issue: 1
  year: 2017
  ident: C9DT01190K-(cit45)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep45105
– volume: 70
  start-page: 379
  year: 2018
  ident: C9DT01190K-(cit6)/*[position()=1]
  publication-title: Chem. Eng. Trans.
– volume: 18
  start-page: 29308
  year: 2016
  ident: C9DT01190K-(cit24)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05555A
– volume: 24
  start-page: 18137
  year: 2018
  ident: C9DT01190K-(cit17)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201803083
– volume: 327
  start-page: 65
  year: 2015
  ident: C9DT01190K-(cit46)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.04.018
SSID ssj0022052
Score 2.4039876
Snippet Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8791
SubjectTerms Alcohol
Biomass
Catalysts
Catalytic activity
Catalytic converters
Clean fuels
Cobalt oxides
Computer simulation
Furfural
Iron oxides
Metal-organic frameworks
Nanoparticles
Noble metals
Organic chemistry
Palladium
Scanning electron microscopy
Selectivity
Size distribution
Transition metal alloys
Transition metals
X ray photoelectron spectroscopy
Title Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol
URI https://www.ncbi.nlm.nih.gov/pubmed/31124551
https://www.proquest.com/docview/2242029331
https://www.proquest.com/docview/2232119970
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeELdBxkBG8IKqgONcmjyObtO4CqFO2lvkW0Y1mlRpOmk88w_4w5zjXNqqnQS8RJXtxGnOF_vz8cl3CHnlacOYTDKXR4K7gSeZK2J4r_QwlDCfJn4srdrnl-j0LPhwHp73er9XopYWlXyjfm79ruR_rAplYFf8SvYfLNtdFArgN9gXjmBhOP6VjT8boM5unZhJuVkbZzXQ0PkVum4L9ysQTPxEZTJHOYDMlBhvjmGbgxODlRhlWKJ8qw0hWswuShtUjxwyW5SZFeVAemoqGJWuNYzatvQaA5ttct1VdnskMEc1pp1oc5DPrctB5FaWYul5XNOraO5_oNrcc8vhOtdmWvutJ5eTcgnkd4heW4EbUFdiLgbfRNGBx16xi9hf2fn6juKQtmJyIaZSlE3S6cbt0Qyrph6kA9x25rUTdGMKYD4qqKpEVyhnxy5XG8Ffnk0tGHzgmUHYaN2uC263VbfIDoe1B--TncPj8ftP3Tqes5C3Srd-8nbZ1S653Z68TnM21i7AZMo2w4xlMuN75G6zBKGHNZ7uk57JH5A7o_bpPyS_bsAVbXBFLa4o4opO5rTDFUVcUYsrCriiHa5ohytaZLTFFa0Kuokr2uDqETk7OR6PTt0mW4ergNNUrokNpneMoixWyiidcBkZJk0mVBIz7QcKhoMwzlAQielIBh6TQnAtAgmn-NrfI_28yM0TQkMuBfNg5uXDKPCEktrXSmFGEq4Dfygd8rp9uKlqpOwxo8qP1IZU-Ek6So7G1iYfHfKyazurBVy2tjpobZQ2r8A8BXbLGdBh33PIi64abIF7aiI3xQLb-KiRmAyZQx7Xtu26abHgkD0wdle8xItD9rdXpDOd7d94vadkF9-I2hF4QPpVuTDPgBpX8nkD1T9H-cHs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic-framework+derived+Co-Pd+bond+is+preferred+over+Fe-Pd+for+reductive+upgrading+of+furfural+to+tetrahydrofurfuryl+alcohol&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Pendem%2C+Saikiran&rft.au=Bolla%2C+Srinivasa+Rao&rft.au=Morgan%2C+David+J&rft.au=Shinde%2C+Digambar+B&rft.date=2019&rft.eissn=1477-9234&rft_id=info:doi/10.1039%2Fc9dt01190k&rft_id=info%3Apmid%2F31124551&rft.externalDocID=31124551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon