Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol
Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 48; no. 24; pp. 8791 - 882 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo
3
O
4
and PdFe
3
O
4
nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix
via
facile
in situ
thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo
3
O
4
@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe
3
O
4
@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H
2
-TPR) for nanohybrids, we can conclude that the presence of PdCo-N
x
active sites, and the multiple synergistic effects between Co
3
O
4
and Pd(
ii
), Co
3
O
4
and Pd
0
, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst
via
noble metal modified MOFs as precursors.
The metal-organic-framework-derived Co-Pd bond can more efficiently catalyze the reductive upgrading of furfural to tetrahydrofurfuryl alcohol production as compared to the Fe-Pd bond. |
---|---|
AbstractList | Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors.Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors. Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo 3 O 4 and PdFe 3 O 4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo 3 O 4 @NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe 3 O 4 @NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H 2 -TPR) for nanohybrids, we can conclude that the presence of PdCo-N x active sites, and the multiple synergistic effects between Co 3 O 4 and Pd( ii ), Co 3 O 4 and Pd 0 , as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors. The metal-organic-framework-derived Co-Pd bond can more efficiently catalyze the reductive upgrading of furfural to tetrahydrofurfuryl alcohol production as compared to the Fe-Pd bond. Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal–organic-framework (MOF) assisted preparation of PdCo 3 O 4 and PdFe 3 O 4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo 3 O 4 @NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd–Fe 3 O 4 @NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H 2 -TPR) for nanohybrids, we can conclude that the presence of PdCo-N x active sites, and the multiple synergistic effects between Co 3 O 4 and Pd( ii ), Co 3 O 4 and Pd 0 , as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors. Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a platform molecule) and have garnered colossal research interest due to the urgent demand for sustainable and clean fuels. Herein, we report the palladium-modified metal-organic-framework (MOF) assisted preparation of PdCo3O4 and PdFe3O4 nanoparticles encapsulated in a graphitic N-doped carbon (NC) matrix via facile in situ thermolysis. This provides a change in selectivity with superior catalytic activity for the reductive upgrading of biomass-derived furfural (FA). Under the optimized reaction conditions, the newly designed PdCo3O4@NC catalyst exhibited highly efficient catalytic performance in the hydrogenation of furfural, providing 100% furfural conversion with 95% yield of tetrahydrofurfuryl alcohol (THFAL). In contrast, the as-synthesized Pd-Fe3O4@NC afforded a THFAL yield of 70% after an 8 h reaction with four consecutive recycling tests. Based on different characterization data (XPS, H2-TPR) for nanohybrids, we can conclude that the presence of PdCo-Nx active sites, and the multiple synergistic effects between Co3O4 and Pd(ii), Co3O4 and Pd0, as well as the presence of N in the carbonaceous matrix, are responsible for the superior catalytic activity and improved catalyst stability. Our strategy provides a facile design and synthesis process for a noble-transition metal alloy as a superior biomass refining, robust catalyst via noble metal modified MOFs as precursors. |
Author | Mondal, John Bolla, Srinivasa Rao Lai, Zhiping Nakka, Lingaiah Pendem, Saikiran Morgan, David J Shinde, Digambar B |
AuthorAffiliation | King Abdullah University of Science and Technology (KAUST) Cardiff Catalysis Institute Catalysis and fine chemicals Division Division of Physical Science and Engineering AcSIR-Indian Institute of Chemical Technology School of Chemistry CSIR-Indian Institute of Chemical Technology Cardiff University |
AuthorAffiliation_xml | – name: CSIR-Indian Institute of Chemical Technology – name: Division of Physical Science and Engineering – name: Cardiff Catalysis Institute – name: Cardiff University – name: AcSIR-Indian Institute of Chemical Technology – name: King Abdullah University of Science and Technology (KAUST) – name: Catalysis and fine chemicals Division – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Saikiran surname: Pendem fullname: Pendem, Saikiran – sequence: 2 givenname: Srinivasa Rao surname: Bolla fullname: Bolla, Srinivasa Rao – sequence: 3 givenname: David J surname: Morgan fullname: Morgan, David J – sequence: 4 givenname: Digambar B surname: Shinde fullname: Shinde, Digambar B – sequence: 5 givenname: Zhiping surname: Lai fullname: Lai, Zhiping – sequence: 6 givenname: Lingaiah surname: Nakka fullname: Nakka, Lingaiah – sequence: 7 givenname: John surname: Mondal fullname: Mondal, John |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31124551$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks2LFDEQxYOsuB968a5EvIjQmq_p6RxldFVc0cN6btJJZTa7mU5bSa_M3T_crLOOsIgQSKj3e0XxKsfkYEwjEPKYs1ecSf3aalcY55pd3SNHXC2XjRZSHezfoj0kxzlfMiYEW4gH5FByLtRiwY_Iz89QTGwSrs0YbOPRbOBHwivqAMM1OLpKzVdHhzQ6GjKdEDwg1nq6BqSncCP6hLSWZluqg87TGo0L45omT_2M9ZhIS6IFCpqLrcO0q24jNdGmixQfkvvexAyPbu8T8u303fnqQ3P25f3H1ZuzxiqhSwMddEvF2tZ31oJ1WgwtsAG8sbpjTiorWrPoPJNKM9cOirPBGOGMGqpFOnlCXuz6Tpi-z5BLvwnZQoxmhDTnXggpao56ySr6_A56mWYc63SVUoIJLSWv1NNbah424PoJw8bgtv-TbwVe7gCLKeca3h7hrL9ZXr_Sb89_L-9Thdkd2IZiSkhjDS7Ef1ue7CyY7b713_9Q9Wf_0_vJefkLNCmytA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215159 crossref_primary_10_1016_j_apsusc_2024_160944 crossref_primary_10_1021_acsami_9b12470 crossref_primary_10_1016_j_matchemphys_2020_124152 crossref_primary_10_1039_C9RA10317A crossref_primary_10_1039_D0CY00086H crossref_primary_10_1016_j_apcata_2020_117719 crossref_primary_10_1039_D2DT02986C crossref_primary_10_1002_slct_202003770 crossref_primary_10_1016_j_mcat_2022_112505 crossref_primary_10_1039_D3MA00938F crossref_primary_10_1002_cssc_202301315 crossref_primary_10_1002_cctc_202301291 crossref_primary_10_1039_D2SE00408A crossref_primary_10_3390_suschem2030029 crossref_primary_10_1016_j_nantod_2023_101960 crossref_primary_10_3390_nano9121698 crossref_primary_10_1002_jctb_6577 crossref_primary_10_1016_j_fuel_2020_119015 crossref_primary_10_1021_acscatal_3c01217 crossref_primary_10_1039_D2QM01181F crossref_primary_10_1002_slct_202001869 crossref_primary_10_1002_cctc_202001124 crossref_primary_10_1039_D1GC04592J |
Cites_doi | 10.1038/srep13515 10.1039/C7DT00628D 10.1016/j.tca.2008.04.015 10.1016/j.renene.2014.02.044 10.1039/c3ce41269e 10.1021/acscatal.5b00998 10.1016/j.jcat.2017.07.023 10.1007/s10008-018-4096-7 10.3390/catal8090368 10.1016/j.cattod.2014.10.037 10.1002/adfm.201704537 10.1016/j.ensm.2017.12.027 10.1039/C7FD00041C 10.1080/17518253.2015.1082646 10.1016/j.chempr.2017.12.025 10.1016/j.mencom.2016.01.015 10.1016/j.ensm.2018.06.002 10.1021/ja5003907 10.1039/C8CE00552D 10.1006/jcat.1995.1278 10.1016/j.carbon.2017.06.017 10.1016/j.biombioe.2017.10.041 10.1039/C8CS00410B 10.1016/j.jcat.2010.10.005 10.1038/srep41542 10.1088/0957-4484/23/50/505401 10.1021/ie061137m 10.1016/j.apsusc.2014.09.056 10.1039/C5RA08254D 10.1016/j.mtener.2018.09.013 10.1039/C8MH00133B 10.1016/j.cattod.2017.04.063 10.3390/catal5010145 10.1007/s10562-018-2323-6 10.1016/0920-5861(90)85024-I 10.1016/j.resconrec.2006.09.003 10.1039/C8DT02330A 10.1039/C5GC02530C 10.1039/C6RA00378H 10.1021/acsami.8b02226 10.1016/j.apcata.2018.07.010 10.1021/acsenergylett.8b00809 10.1038/srep45105 10.1039/C6CP05555A 10.1002/chem.201803083 10.1016/j.jcat.2015.04.018 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c9dt01190k |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 882 |
ExternalDocumentID | 31124551 10_1039_C9DT01190K c9dt01190k |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29F 4.4 53G 5GY 70 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- EJD F5P GNO H13 HZ H~N IDZ IPNFZ J3G J3H J3I JG M4U O9- R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 X --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP HZ~ R56 RAOCF -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c429t-e8e874066f8ccecd92b6e0befac980d34c26a58f03490d6b410baa2da4b6f83d3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 09:25:53 EDT 2025 Mon Jun 30 03:04:20 EDT 2025 Wed Feb 19 02:35:03 EST 2025 Tue Jul 01 03:01:33 EDT 2025 Thu Apr 24 23:12:17 EDT 2025 Sat Jan 08 03:27:22 EST 2022 Wed Nov 11 00:29:03 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-e8e874066f8ccecd92b6e0befac980d34c26a58f03490d6b410baa2da4b6f83d3 |
Notes | NC, O 1s XPS spectra of PdCo Electronic supplementary information (ESI) available: Characterization techniques, FE-SEM images of PVP-Pd@ZIF-67, wide angle powder XRD patterns and simulated pattern of Co-ZIF, XRD patterns of Fe-ZIF, pore-size distribution, & FE-SEM images of Pd-Co NC, Pd-Fe NC and PdFe NC, HR-TEM images and N NC, and plausible mechanistic pathway. See DOI O 2 adsorption/desorption isotherms of used Pd-Co 3 4 NC, Fe 2p XP spectra of used Pd-Fe 10.1039/c9dt01190k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9555-6009 0000-0003-1449-0621 0000-0002-6571-5731 0000-0001-7813-2108 |
PMID | 31124551 |
PQID | 2242029331 |
PQPubID | 2047498 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1039_C9DT01190K rsc_primary_c9dt01190k crossref_citationtrail_10_1039_C9DT01190K proquest_miscellaneous_2232119970 proquest_journals_2242029331 pubmed_primary_31124551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhua (C9DT01190K-(cit12)/*[position()=1]) 2018; 13 Young (C9DT01190K-(cit24)/*[position()=1]) 2016; 18 Zhang (C9DT01190K-(cit41)/*[position()=1]) 2013; 15 Isaeva (C9DT01190K-(cit20)/*[position()=1]) 2018; 8 Ganguly (C9DT01190K-(cit1)/*[position()=1]) 2018; 108 Dutta (C9DT01190K-(cit2)/*[position()=1]) 2014; 69 Banerjee (C9DT01190K-(cit14)/*[position()=1]) 2018; 4 Alkasrawi (C9DT01190K-(cit4)/*[position()=1]) 2016; 11 Chen (C9DT01190K-(cit27)/*[position()=1]) 2016; 18 Su (C9DT01190K-(cit25)/*[position()=1]) 2017; 46 Ghasemzadeh (C9DT01190K-(cit39)/*[position()=1]) 2017; 7 Liu (C9DT01190K-(cit28)/*[position()=1]) 2017; 202 Salnikova (C9DT01190K-(cit6)/*[position()=1]) 2018; 70 Ma (C9DT01190K-(cit36)/*[position()=1]) 2018; 10 Xuan (C9DT01190K-(cit13)/*[position()=1]) 2018; 22 Argyle (C9DT01190K-(cit48)/*[position()=1]) 2015; 5 Wan (C9DT01190K-(cit26)/*[position()=1]) 2018; 121 Shen (C9DT01190K-(cit35)/*[position()=1]) 2015; 5 Diallo (C9DT01190K-(cit43)/*[position()=1]) 2015; 8 Wang (C9DT01190K-(cit10)/*[position()=1]) 2018; 5 Doorn (C9DT01190K-(cit49)/*[position()=1]) 1990; 7 Dong (C9DT01190K-(cit30b)/*[position()=1]) 2016; 6 Zhan (C9DT01190K-(cit18)/*[position()=1]) 2018; 20 Mironenko (C9DT01190K-(cit9)/*[position()=1]) 2015; 249 Yang (C9DT01190K-(cit30a)/*[position()=1]) 2017; 9 Tuo (C9DT01190K-(cit40)/*[position()=1]) 2015; 5 Zhaoqiang (C9DT01190K-(cit22)/*[position()=1]) 2018; 14 Soloveva (C9DT01190K-(cit31)/*[position()=1]) 2016; 26 Qu (C9DT01190K-(cit38)/*[position()=1]) 2017; 7 Cho (C9DT01190K-(cit45)/*[position()=1]) 2017; 7 Aijaz (C9DT01190K-(cit16)/*[position()=1]) 2014; 136 Tang (C9DT01190K-(cit44)/*[position()=1]) 2008; 473 Yang (C9DT01190K-(cit15)/*[position()=1]) 2018; 28 Yang (C9DT01190K-(cit11)/*[position()=1]) 2018; 47 Wang (C9DT01190K-(cit23)/*[position()=1]) 2018; 10 Zhang (C9DT01190K-(cit32)/*[position()=1]) 2014; 320 Ramirez-Barria (C9DT01190K-(cit8)/*[position()=1]) 2018; 563 Sudarsanam (C9DT01190K-(cit21)/*[position()=1]) 2018; 47 Wang (C9DT01190K-(cit5)/*[position()=1]) 2018; 148 Savastano (C9DT01190K-(cit37)/*[position()=1]) 2017; 353 Sitthisa (C9DT01190K-(cit47)/*[position()=1]) 2011; 277 Sárkány (C9DT01190K-(cit34)/*[position()=1]) 1995; 157 Zhang (C9DT01190K-(cit17)/*[position()=1]) 2018; 24 Wei (C9DT01190K-(cit33)/*[position()=1]) 2015; 5 Tike (C9DT01190K-(cit29)/*[position()=1]) 2007; 46 Champagne (C9DT01190K-(cit3)/*[position()=1]) 2007; 50 Zhou (C9DT01190K-(cit19)/*[position()=1]) 2018; 3 Song (C9DT01190K-(cit42)/*[position()=1]) 2012; 23 Musci (C9DT01190K-(cit7)/*[position()=1]) 2016; 296 Bhogeswararao (C9DT01190K-(cit46)/*[position()=1]) 2015; 327 |
References_xml | – volume: 5 start-page: 13515 year: 2015 ident: C9DT01190K-(cit40)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep13515 – volume: 46 start-page: 6358 year: 2017 ident: C9DT01190K-(cit25)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00628D – volume: 473 start-page: 68 issue: 1–2 year: 2008 ident: C9DT01190K-(cit44)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2008.04.015 – volume: 69 start-page: 114 year: 2014 ident: C9DT01190K-(cit2)/*[position()=1] publication-title: Renewable Energy doi: 10.1016/j.renene.2014.02.044 – volume: 15 start-page: 8166 year: 2013 ident: C9DT01190K-(cit41)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c3ce41269e – volume: 5 start-page: 5264 year: 2015 ident: C9DT01190K-(cit35)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b00998 – volume: 353 start-page: 239 year: 2017 ident: C9DT01190K-(cit37)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2017.07.023 – volume: 22 start-page: 3873 year: 2018 ident: C9DT01190K-(cit13)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-018-4096-7 – volume: 8 start-page: 368 year: 2018 ident: C9DT01190K-(cit20)/*[position()=1] publication-title: Catalysts doi: 10.3390/catal8090368 – volume: 249 start-page: 145 year: 2015 ident: C9DT01190K-(cit9)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2014.10.037 – volume: 28 start-page: 1704537 year: 2018 ident: C9DT01190K-(cit15)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704537 – volume: 13 start-page: 72 year: 2018 ident: C9DT01190K-(cit12)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.12.027 – volume: 202 start-page: 79 year: 2017 ident: C9DT01190K-(cit28)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/C7FD00041C – volume: 9 start-page: 37 year: 2017 ident: C9DT01190K-(cit30a)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 30 issue: 3–4 year: 2015 ident: C9DT01190K-(cit43)/*[position()=1] publication-title: Green Chem. Lett. Rev. doi: 10.1080/17518253.2015.1082646 – volume: 4 start-page: 466 issue: 3 year: 2018 ident: C9DT01190K-(cit14)/*[position()=1] publication-title: Chem. doi: 10.1016/j.chempr.2017.12.025 – volume: 26 start-page: 38 year: 2016 ident: C9DT01190K-(cit31)/*[position()=1] publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2016.01.015 – volume: 11 start-page: 2287 issue: 1 year: 2016 ident: C9DT01190K-(cit4)/*[position()=1] publication-title: Bio Res. – volume: 14 start-page: 367 year: 2018 ident: C9DT01190K-(cit22)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.002 – volume: 136 start-page: 6790 issue: 19 year: 2014 ident: C9DT01190K-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5003907 – volume: 20 start-page: 3449 issue: 25 year: 2018 ident: C9DT01190K-(cit18)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C8CE00552D – volume: 157 start-page: 179 year: 1995 ident: C9DT01190K-(cit34)/*[position()=1] publication-title: J. Catal. doi: 10.1006/jcat.1995.1278 – volume: 121 start-page: 330 year: 2018 ident: C9DT01190K-(cit26)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.06.017 – volume: 108 start-page: 207 year: 2018 ident: C9DT01190K-(cit1)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.10.041 – volume: 47 start-page: 8349 year: 2018 ident: C9DT01190K-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00410B – volume: 277 start-page: 1 year: 2011 ident: C9DT01190K-(cit47)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2010.10.005 – volume: 7 start-page: 41542 year: 2017 ident: C9DT01190K-(cit38)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep41542 – volume: 23 start-page: 505401 year: 2012 ident: C9DT01190K-(cit42)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/50/505401 – volume: 46 start-page: 3275 year: 2007 ident: C9DT01190K-(cit29)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061137m – volume: 320 start-page: 73 year: 2014 ident: C9DT01190K-(cit32)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.09.056 – volume: 5 start-page: 66141 year: 2015 ident: C9DT01190K-(cit33)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA08254D – volume: 10 start-page: 241 year: 2018 ident: C9DT01190K-(cit36)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.09.013 – volume: 5 start-page: 394 year: 2018 ident: C9DT01190K-(cit10)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C8MH00133B – volume: 296 start-page: 43 year: 2016 ident: C9DT01190K-(cit7)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2017.04.063 – volume: 5 start-page: 145 year: 2015 ident: C9DT01190K-(cit48)/*[position()=1] publication-title: Catalysts doi: 10.3390/catal5010145 – volume: 148 start-page: 1047 year: 2018 ident: C9DT01190K-(cit5)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/s10562-018-2323-6 – volume: 7 start-page: 257 year: 1990 ident: C9DT01190K-(cit49)/*[position()=1] publication-title: Catal. Today doi: 10.1016/0920-5861(90)85024-I – volume: 50 start-page: 211 year: 2007 ident: C9DT01190K-(cit3)/*[position()=1] publication-title: Resour., Conserv. Recycl. doi: 10.1016/j.resconrec.2006.09.003 – volume: 47 start-page: 13657 year: 2018 ident: C9DT01190K-(cit11)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT02330A – volume: 18 start-page: 1212 year: 2016 ident: C9DT01190K-(cit27)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC02530C – volume: 6 start-page: 37118 issue: 43 year: 2016 ident: C9DT01190K-(cit30b)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA00378H – volume: 10 start-page: 14751 issue: 17 year: 2018 ident: C9DT01190K-(cit23)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02226 – volume: 563 start-page: 177 year: 2018 ident: C9DT01190K-(cit8)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2018.07.010 – volume: 3 start-page: 1655 issue: 7 year: 2018 ident: C9DT01190K-(cit19)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00809 – volume: 7 start-page: 75 issue: 1 year: 2017 ident: C9DT01190K-(cit39)/*[position()=1] publication-title: Iran. J. Catal. – volume: 7 start-page: 45105 issue: 1 year: 2017 ident: C9DT01190K-(cit45)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep45105 – volume: 70 start-page: 379 year: 2018 ident: C9DT01190K-(cit6)/*[position()=1] publication-title: Chem. Eng. Trans. – volume: 18 start-page: 29308 year: 2016 ident: C9DT01190K-(cit24)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05555A – volume: 24 start-page: 18137 year: 2018 ident: C9DT01190K-(cit17)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201803083 – volume: 327 start-page: 65 year: 2015 ident: C9DT01190K-(cit46)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2015.04.018 |
SSID | ssj0022052 |
Score | 2.4039876 |
Snippet | Combined noble-transition metal catalysts have been used to produce a wide range of important non-petroleum-based chemicals from biomass-derived furfural (as a... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8791 |
SubjectTerms | Alcohol Biomass Catalysts Catalytic activity Catalytic converters Clean fuels Cobalt oxides Computer simulation Furfural Iron oxides Metal-organic frameworks Nanoparticles Noble metals Organic chemistry Palladium Scanning electron microscopy Selectivity Size distribution Transition metal alloys Transition metals X ray photoelectron spectroscopy |
Title | Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31124551 https://www.proquest.com/docview/2242029331 https://www.proquest.com/docview/2232119970 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeELdBxkBG8IKqgONcmjyObtO4CqFO2lvkW0Y1mlRpOmk88w_4w5zjXNqqnQS8RJXtxGnOF_vz8cl3CHnlacOYTDKXR4K7gSeZK2J4r_QwlDCfJn4srdrnl-j0LPhwHp73er9XopYWlXyjfm79ruR_rAplYFf8SvYfLNtdFArgN9gXjmBhOP6VjT8boM5unZhJuVkbZzXQ0PkVum4L9ysQTPxEZTJHOYDMlBhvjmGbgxODlRhlWKJ8qw0hWswuShtUjxwyW5SZFeVAemoqGJWuNYzatvQaA5ttct1VdnskMEc1pp1oc5DPrctB5FaWYul5XNOraO5_oNrcc8vhOtdmWvutJ5eTcgnkd4heW4EbUFdiLgbfRNGBx16xi9hf2fn6juKQtmJyIaZSlE3S6cbt0Qyrph6kA9x25rUTdGMKYD4qqKpEVyhnxy5XG8Ffnk0tGHzgmUHYaN2uC263VbfIDoe1B--TncPj8ftP3Tqes5C3Srd-8nbZ1S653Z68TnM21i7AZMo2w4xlMuN75G6zBKGHNZ7uk57JH5A7o_bpPyS_bsAVbXBFLa4o4opO5rTDFUVcUYsrCriiHa5ohytaZLTFFa0Kuokr2uDqETk7OR6PTt0mW4ergNNUrokNpneMoixWyiidcBkZJk0mVBIz7QcKhoMwzlAQielIBh6TQnAtAgmn-NrfI_28yM0TQkMuBfNg5uXDKPCEktrXSmFGEq4Dfygd8rp9uKlqpOwxo8qP1IZU-Ek6So7G1iYfHfKyazurBVy2tjpobZQ2r8A8BXbLGdBh33PIi64abIF7aiI3xQLb-KiRmAyZQx7Xtu26abHgkD0wdle8xItD9rdXpDOd7d94vadkF9-I2hF4QPpVuTDPgBpX8nkD1T9H-cHs |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic-framework+derived+Co-Pd+bond+is+preferred+over+Fe-Pd+for+reductive+upgrading+of+furfural+to+tetrahydrofurfuryl+alcohol&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Pendem%2C+Saikiran&rft.au=Bolla%2C+Srinivasa+Rao&rft.au=Morgan%2C+David+J&rft.au=Shinde%2C+Digambar+B&rft.date=2019&rft.eissn=1477-9234&rft_id=info:doi/10.1039%2Fc9dt01190k&rft_id=info%3Apmid%2F31124551&rft.externalDocID=31124551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |