Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress

SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empag...

Full description

Saved in:
Bibliographic Details
Published inLife sciences (1973) Vol. 307; p. 120862
Main Authors Bugga, Paramesha, Mohammed, Soheb Anwar, Alam, Md Jahangir, Katare, Parmeshwar, Meghwani, Himanshu, Maulik, Subir Kumar, Arava, Sudheer, Banerjee, Sanjay Kumar
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.10.2022
Subjects
Online AccessGet full text
ISSN0024-3205
1879-0631
1879-0631
DOI10.1016/j.lfs.2022.120862

Cover

Loading…
Abstract SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.
AbstractList SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.
SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.
SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.
ArticleNumber 120862
Author Arava, Sudheer
Bugga, Paramesha
Katare, Parmeshwar
Alam, Md Jahangir
Maulik, Subir Kumar
Mohammed, Soheb Anwar
Meghwani, Himanshu
Banerjee, Sanjay Kumar
Author_xml – sequence: 1
  givenname: Paramesha
  surname: Bugga
  fullname: Bugga, Paramesha
  email: buggap@pitt.edu
  organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India
– sequence: 2
  givenname: Soheb Anwar
  surname: Mohammed
  fullname: Mohammed, Soheb Anwar
  email: SOM57@pitt.edu
  organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India
– sequence: 3
  givenname: Md Jahangir
  surname: Alam
  fullname: Alam, Md Jahangir
  organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India
– sequence: 4
  givenname: Parmeshwar
  surname: Katare
  fullname: Katare, Parmeshwar
  organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India
– sequence: 5
  givenname: Himanshu
  surname: Meghwani
  fullname: Meghwani, Himanshu
  organization: Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
– sequence: 6
  givenname: Subir Kumar
  surname: Maulik
  fullname: Maulik, Subir Kumar
  organization: Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
– sequence: 7
  givenname: Sudheer
  surname: Arava
  fullname: Arava, Sudheer
  organization: Department of Pathology, All India Institute of Medical Sciences, New Delhi 110001, India
– sequence: 8
  givenname: Sanjay Kumar
  surname: Banerjee
  fullname: Banerjee, Sanjay Kumar
  email: skbanerjee@thsti.res.in, sanjay@niperguwahati.in
  organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India
BookMark eNqFkb1uHCEURlFkS1n_PIA7yjSzAWZgBqWKLMeJZClNUiMWLt67moUNMKs4D5DnDvamSuE0XOnqO1fiOxfkLKYIhNxwtuaMq_e79RzKWjAh1lywSYk3ZMWnUXdM9fyMrBgTQ9cLJt-Si1J2jDEpx35Fft_tD_ZxxjCnXxjpIactbrAWusXHbRfy4moqQD1C7TD6xYGnzmaP1lH_VMISXcUUaWOzbdgRLbW1Qlzsyz4Fusea3DZFn9F27TlCW_9E3wJHoKVmKOWKnAc7F7j-Oy_J9093324_dw9f77_cfnzo3CB07UBqy1yAaRiUlWr0G-tHL-TUa2UHCIopJp0EwYPkWg3CsY3zoTUUNpMC31-Sd6e77aM_FijV7LE4mGcbIS3FiJFP_SD1qP8fVVprOTLOW5Sfoi6nUjIEc8i4t_nJcGae9ZidaXrMsx5z0tOY8R_GYX3prGaL86vkhxMJragjQjbFIcRmBjO4anzCV-g_acCvxQ
CitedBy_id crossref_primary_10_1007_s43188_023_00204_1
crossref_primary_10_3892_mmr_2024_13197
crossref_primary_10_3390_nu15183950
crossref_primary_10_1007_s11255_025_04443_z
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107080
crossref_primary_10_3390_biomedicines10123009
crossref_primary_10_1007_s11010_024_05084_z
crossref_primary_10_1016_j_cbi_2024_111229
crossref_primary_10_1016_j_yjmcc_2025_02_005
crossref_primary_10_1210_endrev_bnad004
crossref_primary_10_3389_fcvm_2023_1005408
crossref_primary_10_3389_fphar_2025_1523727
crossref_primary_10_3390_life12101663
crossref_primary_10_3390_ijms24097789
crossref_primary_10_2459_JCM_0000000000001453
Cites_doi 10.1155/2013/653789
10.1161/CIRCULATIONAHA.116.021887
10.1038/nrendo.2011.183
10.3390/nu9010011
10.1089/ars.2019.7923
10.1016/j.diabres.2015.12.012
10.2337/dc20-1096
10.1186/s13098-017-0296-z
10.3390/antiox10030338
10.1155/2019/2052675
10.1007/s00125-014-3171-6
10.1161/CIRCRESAHA.118.311371
10.2337/diabetes.52.1.1
10.1111/j.1476-5381.2010.00680.x
10.1155/2019/3218275
10.1186/s12986-016-0074-1
10.1038/srep27460
10.1152/ajpheart.00199.2010
10.1161/01.HYP.37.4.1053
10.1038/s41598-018-27788-1
10.2337/ds15-0044
10.2119/2008-00024.Xing
10.1161/CIRCULATIONAHA.118.037778
10.1016/j.bbadis.2020.165935
10.1016/j.jacbts.2020.02.004
10.3390/ijms22031177
10.1186/s12933-019-0964-4
10.1128/MCB.05603-11
10.3390/diseases8020014
10.1038/embor.2011.65
10.1038/414782a
10.1177/1559827615619159
10.1097/HJH.0000000000000551
10.7150/thno.33684
10.1080/00325481.2017.1358064
10.3389/fphys.2017.01077
10.1002/mnfr.201900109
10.1007/s12038-016-9627-8
10.1001/jamacardio.2021.2056
10.1186/s12933-018-0745-5
10.2337/db19-0991
10.2991/j.jegh.2017.11.004
10.3389/fnins.2018.00414
10.1093/eurheartj/ehv239
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.lfs.2022.120862
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1879-0631
ExternalDocumentID 10_1016_j_lfs_2022_120862
S0024320522005628
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5RE
5VS
6TJ
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABZDS
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
C45
CNWQP
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
L7B
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSP
SSZ
T5K
TEORI
YZZ
~G-
.55
.GJ
29L
3O-
53G
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGHFR
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMG
HMT
HVGLF
HZ~
H~9
J5H
MVM
R2-
RIG
SEW
SIN
SPT
WUQ
X7M
Y6R
YYP
ZGI
ZKB
ZXP
ZY4
7X8
AGRNS
7S9
L.6
ID FETCH-LOGICAL-c429t-e59a0cfe8446a567dbad7d258396a4ef60605c5e21f519642c0bcdf101fb86ed3
IEDL.DBID .~1
ISSN 0024-3205
1879-0631
IngestDate Thu Jul 10 19:08:36 EDT 2025
Mon Jul 21 10:46:41 EDT 2025
Thu Aug 14 00:14:29 EDT 2025
Thu Apr 24 23:09:45 EDT 2025
Sat Aug 30 17:14:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Empagliflozin
Oxidative stress
Insulin resistance
Mitochondrial dysfunction
Palmitate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-e59a0cfe8446a567dbad7d258396a4ef60605c5e21f519642c0bcdf101fb86ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2699957011
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718345979
proquest_miscellaneous_2699957011
crossref_primary_10_1016_j_lfs_2022_120862
crossref_citationtrail_10_1016_j_lfs_2022_120862
elsevier_sciencedirect_doi_10_1016_j_lfs_2022_120862
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Life sciences (1973)
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Park, Ku, Kim, Park, Lee (bb0105) 2018; 8
Lozano, Van der Werf, Bietiger, Seyfritz, Peronet, Pinget, Jeandidier, Maillard, Marchioni, Sigrist, Dal (bb0165) 2016; 13
Zhang, Kong, Yuan, Guan, Li, Niu (bb0110) 2019; 2019
Bugger, Abel (bb0025) 2014; 57
Louhelainen, Merasto, Finckenberg, Vahtola, Kaheinen, Levijoki, Mervaala (bb0030) 2010; 160
Saisho (bb0045) 2020; 8
Zimmet, Alberti, Shaw (bb0005) 2001; 414
Onyango, Onyango (bb0010) 2018; 8
Matheus, Tannus, Cobas, Palma, Negrato (bb0020) 2013; 2013
Reddy, Maitra, Jhelum, Kumar, Bagul, Kaur, Banerjee, Kumar, Chakravarty (bb0175) 2016; 41
Hu, Ding, Tang, Gao, Li, Wang, Qi, Qiu, Zhao, Chang, Fu, Li (bb0235) 2019; 9
Jheng, Tsai, Guo, Kuo, Chang, Su, Chang, Tsai (bb0230) 2012; 32
Joshi, Parikh (bb0015) 2007; 55
Trang, Chung, Lee, Cheng, Kao, Huang, Lee, Chen (bb0065) 2021; 22
Shao, Meng, Lee, Tse, Gong, Zhang, Zhao, Zhao, Li, Liu (bb0075) 2019; 18
Paramesha, Anwar, Meghwani, Maulik, Arava, Banerjee (bb0120) 2021; 10
Andreadou, Efentakis, Balafas, Togliatto, Davos, Varela, Dimitriou, Nikolaou, Maratou, Lambadiari, Ikonomidis, Kostomitsopoulos, Brizzi, Dimitriadis, Iliodromitis (bb0090) 2017; 8
Szűcs, Sója, Péter, Sárközy, Bruszel, Siska, Földesi, Szabó, Janáky, Vígh, Balogh, Csont (bb0100) 2019; 2019
Lee, Chen, Lin, Chung, Lu, Kao, Chen (bb0060) 2019; 20
Xing, Tan, Bi, Zhong, Zhang, Zhang (bb0205) 2008; 14
Bouchard-Thomassin, Lachance, Drolet, Couet, Arsenault (bb0185) 2011; 300
Pierce, Dhalla (bb0095) 1983; 245
Neeland, Kasai, Inzucchi, Wojeck, Yaggi, Johansen, EMPA-REG OUTCOME Investigators (bb0145) 2020; 43
Fitchett, Inzucchi, Cannon, McGuire, Scirica, Johansen, Sambevski, Kaspers, Pfarr, George, Zinman (bb0150) 2019; 139
Liu, Li, Li, Yu, Wang, Chen (bb0170) 2016; 115
Machado, Sumarsono, Vaduganathan (bb0155) 2021; 6
Sowers, Epstein, Frohlich (bb0195) 2001; 37
Nikolaou, Efentakis, Abu Qourah, Femminò, Makridakis, Kanaki, Varela, Tsoumani, Davos, Dimitriou, Tasouli, Dimitriadis, Kostomitsopoulos, Zuurbier, Vlahou, Klinakis, Brizzi, Iliodromitis, Andreadou (bb0080) 2021; 34
Lahnwong, Chattipakorn, Chattipakorn (bb0085) 2018; 17
Chong, Ding, Byun, Comino, Bauman, Jalaludin (bb0135) 2017; 30
Sousa, Jardim, Costa, Magalhães, Montelo, Souza, Jardim, Sousa (bb0190) 2017; 9
Galaviz, Narayan, Lobelo, Weber (bb0160) 2018; 12
Zheng, Shi, Liang, Xu, Li, Gao, Sun, Yu, Zhang (bb0220) 2018; 12
Ramírez-Camacho, García-Niño, Flores-García, Pedraza-Chaverri, Zazueta (bb0225) 2020; 1866
Chen, Magliano, Zimmet (bb0130) 2011; 8
Yandrapalli, Jolly, Horblitt, Sanaani, Aronow (bb0035) 2017; 129
Sun, Han, Lu, Li, Ren, Zhang, Han, Xiang, Li (bb0070) 2020; 69
Kang, Zhang, Ma, Zhang, Jia, Liu, Wang, Kong (bb0200) 2016; 6
Klein, Kiat (bb0125) 2015; 33
Kenny, Abel (bb0040) 2019; 124
Chen, Zhang, Lin, Lei, Guan, Zhao, Xiong (bb0215) 2011; 12
Nizami, Katare, Prabhakar, Kumar, Arava, Chakraborty, Maulik, Banerjee (bb0115) 2019; 63
Ferrannini, DeFronzo (bb0140) 2015; 36
Heerspink, Perkins, Fitchett, Husain, Cherney (bb0050) 2016; 134
Lopaschuk, Verma (bb0055) 2020; 5
Evans, Goldfine, Maddux, Grodsky (bb0210) 2003; 52
Yoo, Ahn, Park (bb0180) 2016; 9
Lee (10.1016/j.lfs.2022.120862_bb0060) 2019; 20
Saisho (10.1016/j.lfs.2022.120862_bb0045) 2020; 8
Bouchard-Thomassin (10.1016/j.lfs.2022.120862_bb0185) 2011; 300
Paramesha (10.1016/j.lfs.2022.120862_bb0120) 2021; 10
Ferrannini (10.1016/j.lfs.2022.120862_bb0140) 2015; 36
Kenny (10.1016/j.lfs.2022.120862_bb0040) 2019; 124
Zheng (10.1016/j.lfs.2022.120862_bb0220) 2018; 12
Hu (10.1016/j.lfs.2022.120862_bb0235) 2019; 9
Neeland (10.1016/j.lfs.2022.120862_bb0145) 2020; 43
Andreadou (10.1016/j.lfs.2022.120862_bb0090) 2017; 8
Sowers (10.1016/j.lfs.2022.120862_bb0195) 2001; 37
Heerspink (10.1016/j.lfs.2022.120862_bb0050) 2016; 134
Reddy (10.1016/j.lfs.2022.120862_bb0175) 2016; 41
Galaviz (10.1016/j.lfs.2022.120862_bb0160) 2018; 12
Szűcs (10.1016/j.lfs.2022.120862_bb0100) 2019; 2019
Joshi (10.1016/j.lfs.2022.120862_bb0015) 2007; 55
Zimmet (10.1016/j.lfs.2022.120862_bb0005) 2001; 414
Trang (10.1016/j.lfs.2022.120862_bb0065) 2021; 22
Ramírez-Camacho (10.1016/j.lfs.2022.120862_bb0225) 2020; 1866
Bugger (10.1016/j.lfs.2022.120862_bb0025) 2014; 57
Lopaschuk (10.1016/j.lfs.2022.120862_bb0055) 2020; 5
Matheus (10.1016/j.lfs.2022.120862_bb0020) 2013; 2013
Lozano (10.1016/j.lfs.2022.120862_bb0165) 2016; 13
Evans (10.1016/j.lfs.2022.120862_bb0210) 2003; 52
Pierce (10.1016/j.lfs.2022.120862_bb0095) 1983; 245
Onyango (10.1016/j.lfs.2022.120862_bb0010) 2018; 8
Yoo (10.1016/j.lfs.2022.120862_bb0180) 2016; 9
Kang (10.1016/j.lfs.2022.120862_bb0200) 2016; 6
Zhang (10.1016/j.lfs.2022.120862_bb0110) 2019; 2019
Nizami (10.1016/j.lfs.2022.120862_bb0115) 2019; 63
Louhelainen (10.1016/j.lfs.2022.120862_bb0030) 2010; 160
Sun (10.1016/j.lfs.2022.120862_bb0070) 2020; 69
Park (10.1016/j.lfs.2022.120862_bb0105) 2018; 8
Xing (10.1016/j.lfs.2022.120862_bb0205) 2008; 14
Yandrapalli (10.1016/j.lfs.2022.120862_bb0035) 2017; 129
Machado (10.1016/j.lfs.2022.120862_bb0155) 2021; 6
Sousa (10.1016/j.lfs.2022.120862_bb0190) 2017; 9
Lahnwong (10.1016/j.lfs.2022.120862_bb0085) 2018; 17
Klein (10.1016/j.lfs.2022.120862_bb0125) 2015; 33
Jheng (10.1016/j.lfs.2022.120862_bb0230) 2012; 32
Chong (10.1016/j.lfs.2022.120862_bb0135) 2017; 30
Liu (10.1016/j.lfs.2022.120862_bb0170) 2016; 115
Chen (10.1016/j.lfs.2022.120862_bb0215) 2011; 12
Shao (10.1016/j.lfs.2022.120862_bb0075) 2019; 18
Fitchett (10.1016/j.lfs.2022.120862_bb0150) 2019; 139
Nikolaou (10.1016/j.lfs.2022.120862_bb0080) 2021; 34
Chen (10.1016/j.lfs.2022.120862_bb0130) 2011; 8
References_xml – volume: 8
  year: 2020
  ident: bb0045
  article-title: SGLT2 inhibitors: the star in the treatment of type 2 diabetes?
  publication-title: Diseases
– volume: 8
  start-page: 1077
  year: 2017
  ident: bb0090
  article-title: Empagliflozin limits myocardial infarction in vivo and cell death in vitro: role of STAT3, mitochondria, and redox aspects
  publication-title: Front. Physiol.
– volume: 2019
  year: 2019
  ident: bb0100
  article-title: Prediabetes induced by fructose-enriched diet influences cardiac lipidome and proteome and leads to deterioration of cardiac function prior to the development of excessive oxidative stress and cell damage
  publication-title: Oxidative Med. Cell. Longev.
– volume: 33
  start-page: 912
  year: 2015
  end-page: 920
  ident: bb0125
  article-title: The mechanisms underlying fructose-induced hypertension: a review
  publication-title: J. Hypertens.
– volume: 37
  start-page: 1053
  year: 2001
  end-page: 1059
  ident: bb0195
  article-title: Diabetes, hypertension, and cardiovascular disease: an update
  publication-title: Hypertension
– volume: 10
  start-page: 338
  year: 2021
  ident: bb0120
  article-title: Sirt1 and Sirt3 activation improved cardiac function of diabetic rats via modulation of mitochondrial function
  publication-title: Antioxidants (Basel)
– volume: 129
  start-page: 811
  year: 2017
  end-page: 821
  ident: bb0035
  article-title: Cardiovascular benefits and safety of non-insulin medications used in the treatment of type 2 diabetes mellitus
  publication-title: Postgrad. Med.
– volume: 55
  start-page: 323
  year: 2007
  end-page: 324
  ident: bb0015
  article-title: India–diabetes capital of the world: now heading towards hypertension
  publication-title: J. Assoc. Physicians India
– volume: 160
  start-page: 142
  year: 2010
  end-page: 152
  ident: bb0030
  article-title: Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic goto-kakizaki rats
  publication-title: Br. J. Pharmacol.
– volume: 41
  start-page: 407
  year: 2016
  end-page: 417
  ident: bb0175
  article-title: Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats
  publication-title: J. Biosci.
– volume: 32
  start-page: 309
  year: 2012
  end-page: 319
  ident: bb0230
  article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
  publication-title: Mol. Cell. Biol.
– volume: 69
  start-page: 1292
  year: 2020
  end-page: 1305
  ident: bb0070
  article-title: Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating Sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice
  publication-title: Diabetes
– volume: 6
  start-page: 27460
  year: 2016
  ident: bb0200
  article-title: Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation
  publication-title: Sci. Rep.
– volume: 34
  start-page: 551
  year: 2021
  end-page: 571
  ident: bb0080
  article-title: Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress
  publication-title: Antioxid. Redox Signal.
– volume: 36
  start-page: 2288
  year: 2015
  end-page: 2296
  ident: bb0140
  article-title: Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes
  publication-title: Eur. Heart J.
– volume: 300
  start-page: H125
  year: 2011
  end-page: H134
  ident: bb0185
  article-title: A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 9
  start-page: 3687
  year: 2019
  end-page: 3706
  ident: bb0235
  article-title: Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy
  publication-title: Theranostics.
– volume: 57
  start-page: 660
  year: 2014
  end-page: 671
  ident: bb0025
  article-title: Molecular mechanisms of diabetic cardiomyopathy
  publication-title: Diabetologia
– volume: 6
  start-page: 1152
  year: 2021
  end-page: 1160
  ident: bb0155
  article-title: Midlife wealth mobility and long-term cardiovascular health
  publication-title: JAMA Cardiol.
– volume: 17
  start-page: 101
  year: 2018
  ident: bb0085
  article-title: Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors
  publication-title: Cardiovasc. Diabetol.
– volume: 20
  year: 2019
  ident: bb0060
  article-title: Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats
  publication-title: Int. J. Mol. Sci.
– volume: 63
  year: 2019
  ident: bb0115
  article-title: Vitamin D deficiency in rats causes cardiac dysfunction by inducing myocardial insulin resistance
  publication-title: Mol. Nutr. Food Res.
– volume: 13
  start-page: 15
  year: 2016
  ident: bb0165
  article-title: High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications
  publication-title: Nutr. Metab. (Lond.)
– volume: 5
  start-page: 632
  year: 2020
  end-page: 644
  ident: bb0055
  article-title: Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review
  publication-title: JACC Basic Transl. Sci.
– volume: 139
  start-page: 1384
  year: 2019
  end-page: 1395
  ident: bb0150
  article-title: Empagliflozin reduced mortality and hospitalization for heart failure across the Spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial
  publication-title: Circulation
– volume: 12
  start-page: 4
  year: 2018
  end-page: 20
  ident: bb0160
  article-title: Lifestyle and the prevention of type 2 diabetes: a status report
  publication-title: Am. J. Lifestyle Med.
– volume: 22
  start-page: 1177
  year: 2021
  ident: bb0065
  article-title: Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats
  publication-title: Int. J. Mol. Sci.
– volume: 2013
  year: 2013
  ident: bb0020
  article-title: Impact of diabetes on cardiovascular disease: an update
  publication-title: Int. J. Hypertens.
– volume: 115
  start-page: 140
  year: 2016
  end-page: 149
  ident: bb0170
  article-title: Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet
  publication-title: Diabetes Res. Clin. Pract.
– volume: 12
  start-page: 534
  year: 2011
  end-page: 541
  ident: bb0215
  article-title: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
  publication-title: EMBO Rep.
– volume: 124
  start-page: 121
  year: 2019
  end-page: 141
  ident: bb0040
  article-title: Heart failure in type 2 diabetes mellitus
  publication-title: Circ. Res.
– volume: 43
  start-page: 3007
  year: 2020
  end-page: 3015
  ident: bb0145
  article-title: Response to comment on Neeland et al. The impact of empagliflozin on obstructive sleep apnea and cardiovascular and renal outcomes: an exploratory analysis of the EMPA-REG OUTCOME Trial
  publication-title: Diabetes Care
– volume: 8
  start-page: 9464
  year: 2018
  ident: bb0105
  article-title: Amelioration of high fructose-induced cardiac hypertrophy by naringin
  publication-title: Sci. Rep.
– volume: 8
  start-page: 228
  year: 2011
  end-page: 236
  ident: bb0130
  article-title: The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives
  publication-title: Nat Rev Endocrinol.
– volume: 14
  start-page: 395
  year: 2008
  end-page: 402
  ident: bb0205
  article-title: Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats
  publication-title: Mol. Med.
– volume: 245
  start-page: C241
  year: 1983
  end-page: C247
  ident: bb0095
  article-title: Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart
  publication-title: Am. J. Phys.
– volume: 414
  start-page: 782
  year: 2001
  end-page: 787
  ident: bb0005
  article-title: Global and societal implications of the diabetes epidemic
  publication-title: Nature
– volume: 134
  start-page: 752
  year: 2016
  end-page: 772
  ident: bb0050
  article-title: Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications
  publication-title: Circulation
– volume: 18
  start-page: 165
  year: 2019
  ident: bb0075
  article-title: Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats
  publication-title: Cardiovasc. Diabetol.
– volume: 30
  start-page: 43
  year: 2017
  end-page: 50
  ident: bb0135
  article-title: Lifestyle changes after a diagnosis of type 2 diabetes
  publication-title: Diabetes Spectr.
– volume: 1866
  year: 2020
  ident: bb0225
  article-title: Alteration of mitochondrial supercomplexes assembly in metabolic diseases
  publication-title: Biochim. Biophys. Acta Mol. basis Dis.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0010
  article-title: The rise of noncommunicable diseases in Kenya: an examination of the time trends and contribution of the changes in diet and physical inactivity
  publication-title: J. Epidemiol. Glob. Health
– volume: 9
  year: 2016
  ident: bb0180
  article-title: High dietary fructose intake on cardiovascular disease related parameters in growing rats
  publication-title: Nutrients
– volume: 52
  start-page: 1
  year: 2003
  end-page: 8
  ident: bb0210
  article-title: Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?
  publication-title: Diabetes
– volume: 2019
  year: 2019
  ident: bb0110
  article-title: Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance
  publication-title: J. Diabetes Res.
– volume: 9
  start-page: 98
  year: 2017
  ident: bb0190
  article-title: Hypertensive diabetic patients: incidence of cardiovascular and renal outcomes in a historical cohort over 11 years
  publication-title: Diabetol. Metab. Syndr.
– volume: 12
  start-page: 414
  year: 2018
  ident: bb0220
  article-title: Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats
  publication-title: Front. Neurosci.
– volume: 2013
  year: 2013
  ident: 10.1016/j.lfs.2022.120862_bb0020
  article-title: Impact of diabetes on cardiovascular disease: an update
  publication-title: Int. J. Hypertens.
  doi: 10.1155/2013/653789
– volume: 134
  start-page: 752
  year: 2016
  ident: 10.1016/j.lfs.2022.120862_bb0050
  article-title: Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.021887
– volume: 8
  start-page: 228
  year: 2011
  ident: 10.1016/j.lfs.2022.120862_bb0130
  article-title: The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives
  publication-title: Nat Rev Endocrinol.
  doi: 10.1038/nrendo.2011.183
– volume: 9
  year: 2016
  ident: 10.1016/j.lfs.2022.120862_bb0180
  article-title: High dietary fructose intake on cardiovascular disease related parameters in growing rats
  publication-title: Nutrients
  doi: 10.3390/nu9010011
– volume: 34
  start-page: 551
  year: 2021
  ident: 10.1016/j.lfs.2022.120862_bb0080
  article-title: Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2019.7923
– volume: 115
  start-page: 140
  year: 2016
  ident: 10.1016/j.lfs.2022.120862_bb0170
  article-title: Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2015.12.012
– volume: 43
  start-page: 3007
  year: 2020
  ident: 10.1016/j.lfs.2022.120862_bb0145
  article-title: Response to comment on Neeland et al. The impact of empagliflozin on obstructive sleep apnea and cardiovascular and renal outcomes: an exploratory analysis of the EMPA-REG OUTCOME Trial
  publication-title: Diabetes Care
  doi: 10.2337/dc20-1096
– volume: 9
  start-page: 98
  year: 2017
  ident: 10.1016/j.lfs.2022.120862_bb0190
  article-title: Hypertensive diabetic patients: incidence of cardiovascular and renal outcomes in a historical cohort over 11 years
  publication-title: Diabetol. Metab. Syndr.
  doi: 10.1186/s13098-017-0296-z
– volume: 10
  start-page: 338
  year: 2021
  ident: 10.1016/j.lfs.2022.120862_bb0120
  article-title: Sirt1 and Sirt3 activation improved cardiac function of diabetic rats via modulation of mitochondrial function
  publication-title: Antioxidants (Basel)
  doi: 10.3390/antiox10030338
– volume: 2019
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0110
  article-title: Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance
  publication-title: J. Diabetes Res.
  doi: 10.1155/2019/2052675
– volume: 57
  start-page: 660
  year: 2014
  ident: 10.1016/j.lfs.2022.120862_bb0025
  article-title: Molecular mechanisms of diabetic cardiomyopathy
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3171-6
– volume: 124
  start-page: 121
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0040
  article-title: Heart failure in type 2 diabetes mellitus
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.311371
– volume: 245
  start-page: C241
  year: 1983
  ident: 10.1016/j.lfs.2022.120862_bb0095
  article-title: Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart
  publication-title: Am. J. Phys.
– volume: 52
  start-page: 1
  year: 2003
  ident: 10.1016/j.lfs.2022.120862_bb0210
  article-title: Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.1.1
– volume: 160
  start-page: 142
  year: 2010
  ident: 10.1016/j.lfs.2022.120862_bb0030
  article-title: Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic goto-kakizaki rats
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2010.00680.x
– volume: 20
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0060
  article-title: Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats
  publication-title: Int. J. Mol. Sci.
– volume: 2019
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0100
  article-title: Prediabetes induced by fructose-enriched diet influences cardiac lipidome and proteome and leads to deterioration of cardiac function prior to the development of excessive oxidative stress and cell damage
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2019/3218275
– volume: 13
  start-page: 15
  year: 2016
  ident: 10.1016/j.lfs.2022.120862_bb0165
  article-title: High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications
  publication-title: Nutr. Metab. (Lond.)
  doi: 10.1186/s12986-016-0074-1
– volume: 6
  start-page: 27460
  year: 2016
  ident: 10.1016/j.lfs.2022.120862_bb0200
  article-title: Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation
  publication-title: Sci. Rep.
  doi: 10.1038/srep27460
– volume: 300
  start-page: H125
  year: 2011
  ident: 10.1016/j.lfs.2022.120862_bb0185
  article-title: A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00199.2010
– volume: 37
  start-page: 1053
  year: 2001
  ident: 10.1016/j.lfs.2022.120862_bb0195
  article-title: Diabetes, hypertension, and cardiovascular disease: an update
  publication-title: Hypertension
  doi: 10.1161/01.HYP.37.4.1053
– volume: 8
  start-page: 9464
  year: 2018
  ident: 10.1016/j.lfs.2022.120862_bb0105
  article-title: Amelioration of high fructose-induced cardiac hypertrophy by naringin
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27788-1
– volume: 55
  start-page: 323
  year: 2007
  ident: 10.1016/j.lfs.2022.120862_bb0015
  article-title: India–diabetes capital of the world: now heading towards hypertension
  publication-title: J. Assoc. Physicians India
– volume: 30
  start-page: 43
  year: 2017
  ident: 10.1016/j.lfs.2022.120862_bb0135
  article-title: Lifestyle changes after a diagnosis of type 2 diabetes
  publication-title: Diabetes Spectr.
  doi: 10.2337/ds15-0044
– volume: 14
  start-page: 395
  year: 2008
  ident: 10.1016/j.lfs.2022.120862_bb0205
  article-title: Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats
  publication-title: Mol. Med.
  doi: 10.2119/2008-00024.Xing
– volume: 139
  start-page: 1384
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0150
  article-title: Empagliflozin reduced mortality and hospitalization for heart failure across the Spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.037778
– volume: 1866
  year: 2020
  ident: 10.1016/j.lfs.2022.120862_bb0225
  article-title: Alteration of mitochondrial supercomplexes assembly in metabolic diseases
  publication-title: Biochim. Biophys. Acta Mol. basis Dis.
  doi: 10.1016/j.bbadis.2020.165935
– volume: 5
  start-page: 632
  year: 2020
  ident: 10.1016/j.lfs.2022.120862_bb0055
  article-title: Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2020.02.004
– volume: 22
  start-page: 1177
  year: 2021
  ident: 10.1016/j.lfs.2022.120862_bb0065
  article-title: Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22031177
– volume: 18
  start-page: 165
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0075
  article-title: Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-019-0964-4
– volume: 32
  start-page: 309
  year: 2012
  ident: 10.1016/j.lfs.2022.120862_bb0230
  article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.05603-11
– volume: 8
  year: 2020
  ident: 10.1016/j.lfs.2022.120862_bb0045
  article-title: SGLT2 inhibitors: the star in the treatment of type 2 diabetes?
  publication-title: Diseases
  doi: 10.3390/diseases8020014
– volume: 12
  start-page: 534
  year: 2011
  ident: 10.1016/j.lfs.2022.120862_bb0215
  article-title: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.65
– volume: 414
  start-page: 782
  year: 2001
  ident: 10.1016/j.lfs.2022.120862_bb0005
  article-title: Global and societal implications of the diabetes epidemic
  publication-title: Nature
  doi: 10.1038/414782a
– volume: 12
  start-page: 4
  year: 2018
  ident: 10.1016/j.lfs.2022.120862_bb0160
  article-title: Lifestyle and the prevention of type 2 diabetes: a status report
  publication-title: Am. J. Lifestyle Med.
  doi: 10.1177/1559827615619159
– volume: 33
  start-page: 912
  year: 2015
  ident: 10.1016/j.lfs.2022.120862_bb0125
  article-title: The mechanisms underlying fructose-induced hypertension: a review
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000000551
– volume: 9
  start-page: 3687
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0235
  article-title: Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy
  publication-title: Theranostics.
  doi: 10.7150/thno.33684
– volume: 129
  start-page: 811
  year: 2017
  ident: 10.1016/j.lfs.2022.120862_bb0035
  article-title: Cardiovascular benefits and safety of non-insulin medications used in the treatment of type 2 diabetes mellitus
  publication-title: Postgrad. Med.
  doi: 10.1080/00325481.2017.1358064
– volume: 8
  start-page: 1077
  year: 2017
  ident: 10.1016/j.lfs.2022.120862_bb0090
  article-title: Empagliflozin limits myocardial infarction in vivo and cell death in vitro: role of STAT3, mitochondria, and redox aspects
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.01077
– volume: 63
  year: 2019
  ident: 10.1016/j.lfs.2022.120862_bb0115
  article-title: Vitamin D deficiency in rats causes cardiac dysfunction by inducing myocardial insulin resistance
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201900109
– volume: 41
  start-page: 407
  year: 2016
  ident: 10.1016/j.lfs.2022.120862_bb0175
  article-title: Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats
  publication-title: J. Biosci.
  doi: 10.1007/s12038-016-9627-8
– volume: 6
  start-page: 1152
  year: 2021
  ident: 10.1016/j.lfs.2022.120862_bb0155
  article-title: Midlife wealth mobility and long-term cardiovascular health
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2021.2056
– volume: 17
  start-page: 101
  year: 2018
  ident: 10.1016/j.lfs.2022.120862_bb0085
  article-title: Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0745-5
– volume: 69
  start-page: 1292
  year: 2020
  ident: 10.1016/j.lfs.2022.120862_bb0070
  article-title: Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating Sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice
  publication-title: Diabetes
  doi: 10.2337/db19-0991
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.lfs.2022.120862_bb0010
  article-title: The rise of noncommunicable diseases in Kenya: an examination of the time trends and contribution of the changes in diet and physical inactivity
  publication-title: J. Epidemiol. Glob. Health
  doi: 10.2991/j.jegh.2017.11.004
– volume: 12
  start-page: 414
  year: 2018
  ident: 10.1016/j.lfs.2022.120862_bb0220
  article-title: Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00414
– volume: 36
  start-page: 2288
  year: 2015
  ident: 10.1016/j.lfs.2022.120862_bb0140
  article-title: Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehv239
SSID ssj0005573
Score 2.4796002
Snippet SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120862
SubjectTerms blood pressure
cardiac output
cardioprotective effect
echocardiography
electrocardiography
Empagliflozin
fibrosis
glucose
high fructose diet
Insulin resistance
membrane potential
mitochondria
Mitochondrial dysfunction
noninsulin-dependent diabetes mellitus
Oxidative stress
Palmitate
palmitic acid
protein synthesis
rats
sodium glucose cotransporter-2 inhibitors
Title Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress
URI https://dx.doi.org/10.1016/j.lfs.2022.120862
https://www.proquest.com/docview/2699957011
https://www.proquest.com/docview/2718345979
Volume 307
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF7EUvAi1SpaW9mCBxVWk327yctRRHlW9KTgLexPXXlNxMRSe-ixf3dnko2o4Dt4eZDHbBJ2Zr6Zye58S8hWKlRifOaYKJRiIheKqVwXTBfacfQ-abAb-ew8m1yKH1fyao4cDr0wuK0yYn-P6R1ax3_242zu34WAPb5cjHgCCQTyWXJs-EX2OrDpvb_PtnnIuMrMBUPpYWWz2-M19cjYzfleyjG1fys2vULpLvQcfyKLMWekB_1rLZE5Vy2Tj_0pko_LZCn6Z0O3I4n0zmfy7wj8_Hoa_LT-EyoKt74JOrQNRX5i5pE0tm4ctcG1DMpyULClprMWQ-1jg-EOVUZhLNhIQ38FRZGKs-qpwWnt6U8AAwDPyoINM_gB2KT172A7KnHaN6GskMvjo4vDCYtnLjADkallThaoPDeGMlHJLLda2dxyCXlUpoTzUO8k0kjHUy-Ry4ubRBvrYT69HmfOjlbJfFVXbo3QsRRGSA3ILqCKVKaQSYZfXVPNRT4SfJ0kw2yXJhKS47kY03LYeXZbgoJKVFDZK2id7D4NuevZOGYJi0GF5QuTKiFazBr2fVB3Ca6G6yeqcvUDCGWQTcscEHGGDMT6kYAqrfjyvsdvkAW8wvCYyq9kvr1_cN8g72n1ZmfYm-TDwcnp5Pw_AIEEFg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgguiBYQpTyMxAGQTBOvnWyOVdVqS9s9tVJvlp_FaEkqkqKWH9Df3ZnEAYHEHrjsIetJIs_MNzOx5zMh73KhMxsKz0SlNROl0EyXpmKmMp6j90mL3cgni2J-Jj6fy_M1sjf2wuC2yoT9A6b3aJ2u7KTZ3LmMEXt8uZjyDBII5LPks3tkHdmpxISs7x4ezRe_d3rItNDMBUOBcXGz3-a1DEjazfmnnGN2_6_w9BdQ99Hn4DF5lNJGuju82QZZ8_UmuT8cJHmzSTaSi7b0feKR_vCE3O6Dq18sY1g2P2NN4dZfooldS5GimAXkjW1aT130HYPKHHTsqO0NxlJ302LEQ61RkAUzaemPqCmycdYDOzhtAv0GeAD4WTswYwY_gJy0uY6uZxOnQx_KU3J2sH-6N2fp2AVmITh1zMsK9ednUClqWZTOaFc6LiGVKrTwAUqeTFrpeR4k0nlxmxnrAsxnMLPCu-kzMqmb2j8ndCaFFdIAuAsoJLWtZFbgh9fccFFOBd8i2TjbyiZOcjwaY6nGzWdfFShIoYLUoKAt8vGXyOVAyLFqsBhVqP6wKgUBY5XY21HdCrwNl1B07ZsrGFRAQi1LAMUVYyDcTwUUatWL_3v8G_JgfnpyrI4PF0fb5CH-g9Eyly_JpPt-5V9BGtSZ18nM7wDfMwbH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empagliflozin+prohibits+high-fructose+diet-induced+cardiac+dysfunction+in+rats+via+attenuation+of+mitochondria-driven+oxidative+stress&rft.jtitle=Life+sciences+%281973%29&rft.au=Bugga%2C+Paramesha&rft.au=Mohammed%2C+Soheb+Anwar&rft.au=Alam%2C+Md+Jahangir&rft.au=Katare%2C+Parmeshwar&rft.date=2022-10-15&rft.issn=1879-0631&rft.eissn=1879-0631&rft.volume=307&rft.spage=120862&rft_id=info:doi/10.1016%2Fj.lfs.2022.120862&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon