Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress
SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empag...
Saved in:
Published in | Life sciences (1973) Vol. 307; p. 120862 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0024-3205 1879-0631 1879-0631 |
DOI | 10.1016/j.lfs.2022.120862 |
Cover
Loading…
Abstract | SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts.
We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment.
We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells.
Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion. |
---|---|
AbstractList | SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts.
We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment.
We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells.
Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion. SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion. SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion. |
ArticleNumber | 120862 |
Author | Arava, Sudheer Bugga, Paramesha Katare, Parmeshwar Alam, Md Jahangir Maulik, Subir Kumar Mohammed, Soheb Anwar Meghwani, Himanshu Banerjee, Sanjay Kumar |
Author_xml | – sequence: 1 givenname: Paramesha surname: Bugga fullname: Bugga, Paramesha email: buggap@pitt.edu organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India – sequence: 2 givenname: Soheb Anwar surname: Mohammed fullname: Mohammed, Soheb Anwar email: SOM57@pitt.edu organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India – sequence: 3 givenname: Md Jahangir surname: Alam fullname: Alam, Md Jahangir organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India – sequence: 4 givenname: Parmeshwar surname: Katare fullname: Katare, Parmeshwar organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India – sequence: 5 givenname: Himanshu surname: Meghwani fullname: Meghwani, Himanshu organization: Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India – sequence: 6 givenname: Subir Kumar surname: Maulik fullname: Maulik, Subir Kumar organization: Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India – sequence: 7 givenname: Sudheer surname: Arava fullname: Arava, Sudheer organization: Department of Pathology, All India Institute of Medical Sciences, New Delhi 110001, India – sequence: 8 givenname: Sanjay Kumar surname: Banerjee fullname: Banerjee, Sanjay Kumar email: skbanerjee@thsti.res.in, sanjay@niperguwahati.in organization: Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India |
BookMark | eNqFkb1uHCEURlFkS1n_PIA7yjSzAWZgBqWKLMeJZClNUiMWLt67moUNMKs4D5DnDvamSuE0XOnqO1fiOxfkLKYIhNxwtuaMq_e79RzKWjAh1lywSYk3ZMWnUXdM9fyMrBgTQ9cLJt-Si1J2jDEpx35Fft_tD_ZxxjCnXxjpIactbrAWusXHbRfy4moqQD1C7TD6xYGnzmaP1lH_VMISXcUUaWOzbdgRLbW1Qlzsyz4Fusea3DZFn9F27TlCW_9E3wJHoKVmKOWKnAc7F7j-Oy_J9093324_dw9f77_cfnzo3CB07UBqy1yAaRiUlWr0G-tHL-TUa2UHCIopJp0EwYPkWg3CsY3zoTUUNpMC31-Sd6e77aM_FijV7LE4mGcbIS3FiJFP_SD1qP8fVVprOTLOW5Sfoi6nUjIEc8i4t_nJcGae9ZidaXrMsx5z0tOY8R_GYX3prGaL86vkhxMJragjQjbFIcRmBjO4anzCV-g_acCvxQ |
CitedBy_id | crossref_primary_10_1007_s43188_023_00204_1 crossref_primary_10_3892_mmr_2024_13197 crossref_primary_10_3390_nu15183950 crossref_primary_10_1007_s11255_025_04443_z crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107080 crossref_primary_10_3390_biomedicines10123009 crossref_primary_10_1007_s11010_024_05084_z crossref_primary_10_1016_j_cbi_2024_111229 crossref_primary_10_1016_j_yjmcc_2025_02_005 crossref_primary_10_1210_endrev_bnad004 crossref_primary_10_3389_fcvm_2023_1005408 crossref_primary_10_3389_fphar_2025_1523727 crossref_primary_10_3390_life12101663 crossref_primary_10_3390_ijms24097789 crossref_primary_10_2459_JCM_0000000000001453 |
Cites_doi | 10.1155/2013/653789 10.1161/CIRCULATIONAHA.116.021887 10.1038/nrendo.2011.183 10.3390/nu9010011 10.1089/ars.2019.7923 10.1016/j.diabres.2015.12.012 10.2337/dc20-1096 10.1186/s13098-017-0296-z 10.3390/antiox10030338 10.1155/2019/2052675 10.1007/s00125-014-3171-6 10.1161/CIRCRESAHA.118.311371 10.2337/diabetes.52.1.1 10.1111/j.1476-5381.2010.00680.x 10.1155/2019/3218275 10.1186/s12986-016-0074-1 10.1038/srep27460 10.1152/ajpheart.00199.2010 10.1161/01.HYP.37.4.1053 10.1038/s41598-018-27788-1 10.2337/ds15-0044 10.2119/2008-00024.Xing 10.1161/CIRCULATIONAHA.118.037778 10.1016/j.bbadis.2020.165935 10.1016/j.jacbts.2020.02.004 10.3390/ijms22031177 10.1186/s12933-019-0964-4 10.1128/MCB.05603-11 10.3390/diseases8020014 10.1038/embor.2011.65 10.1038/414782a 10.1177/1559827615619159 10.1097/HJH.0000000000000551 10.7150/thno.33684 10.1080/00325481.2017.1358064 10.3389/fphys.2017.01077 10.1002/mnfr.201900109 10.1007/s12038-016-9627-8 10.1001/jamacardio.2021.2056 10.1186/s12933-018-0745-5 10.2337/db19-0991 10.2991/j.jegh.2017.11.004 10.3389/fnins.2018.00414 10.1093/eurheartj/ehv239 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.lfs.2022.120862 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1879-0631 |
ExternalDocumentID | 10_1016_j_lfs_2022_120862 S0024320522005628 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5RE 5VS 6TJ 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABZDS ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFPUW AFRAH AFTJW AFXIZ AGCQF AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV C45 CNWQP CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM L7B M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSP SSZ T5K TEORI YZZ ~G- .55 .GJ 29L 3O- 53G AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGHFR AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMG HMT HVGLF HZ~ H~9 J5H MVM R2- RIG SEW SIN SPT WUQ X7M Y6R YYP ZGI ZKB ZXP ZY4 7X8 AGRNS 7S9 L.6 |
ID | FETCH-LOGICAL-c429t-e59a0cfe8446a567dbad7d258396a4ef60605c5e21f519642c0bcdf101fb86ed3 |
IEDL.DBID | .~1 |
ISSN | 0024-3205 1879-0631 |
IngestDate | Thu Jul 10 19:08:36 EDT 2025 Mon Jul 21 10:46:41 EDT 2025 Thu Aug 14 00:14:29 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Sat Aug 30 17:14:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Empagliflozin Oxidative stress Insulin resistance Mitochondrial dysfunction Palmitate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-e59a0cfe8446a567dbad7d258396a4ef60605c5e21f519642c0bcdf101fb86ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2699957011 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718345979 proquest_miscellaneous_2699957011 crossref_primary_10_1016_j_lfs_2022_120862 crossref_citationtrail_10_1016_j_lfs_2022_120862 elsevier_sciencedirect_doi_10_1016_j_lfs_2022_120862 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Life sciences (1973) |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Park, Ku, Kim, Park, Lee (bb0105) 2018; 8 Lozano, Van der Werf, Bietiger, Seyfritz, Peronet, Pinget, Jeandidier, Maillard, Marchioni, Sigrist, Dal (bb0165) 2016; 13 Zhang, Kong, Yuan, Guan, Li, Niu (bb0110) 2019; 2019 Bugger, Abel (bb0025) 2014; 57 Louhelainen, Merasto, Finckenberg, Vahtola, Kaheinen, Levijoki, Mervaala (bb0030) 2010; 160 Saisho (bb0045) 2020; 8 Zimmet, Alberti, Shaw (bb0005) 2001; 414 Onyango, Onyango (bb0010) 2018; 8 Matheus, Tannus, Cobas, Palma, Negrato (bb0020) 2013; 2013 Reddy, Maitra, Jhelum, Kumar, Bagul, Kaur, Banerjee, Kumar, Chakravarty (bb0175) 2016; 41 Hu, Ding, Tang, Gao, Li, Wang, Qi, Qiu, Zhao, Chang, Fu, Li (bb0235) 2019; 9 Jheng, Tsai, Guo, Kuo, Chang, Su, Chang, Tsai (bb0230) 2012; 32 Joshi, Parikh (bb0015) 2007; 55 Trang, Chung, Lee, Cheng, Kao, Huang, Lee, Chen (bb0065) 2021; 22 Shao, Meng, Lee, Tse, Gong, Zhang, Zhao, Zhao, Li, Liu (bb0075) 2019; 18 Paramesha, Anwar, Meghwani, Maulik, Arava, Banerjee (bb0120) 2021; 10 Andreadou, Efentakis, Balafas, Togliatto, Davos, Varela, Dimitriou, Nikolaou, Maratou, Lambadiari, Ikonomidis, Kostomitsopoulos, Brizzi, Dimitriadis, Iliodromitis (bb0090) 2017; 8 Szűcs, Sója, Péter, Sárközy, Bruszel, Siska, Földesi, Szabó, Janáky, Vígh, Balogh, Csont (bb0100) 2019; 2019 Lee, Chen, Lin, Chung, Lu, Kao, Chen (bb0060) 2019; 20 Xing, Tan, Bi, Zhong, Zhang, Zhang (bb0205) 2008; 14 Bouchard-Thomassin, Lachance, Drolet, Couet, Arsenault (bb0185) 2011; 300 Pierce, Dhalla (bb0095) 1983; 245 Neeland, Kasai, Inzucchi, Wojeck, Yaggi, Johansen, EMPA-REG OUTCOME Investigators (bb0145) 2020; 43 Fitchett, Inzucchi, Cannon, McGuire, Scirica, Johansen, Sambevski, Kaspers, Pfarr, George, Zinman (bb0150) 2019; 139 Liu, Li, Li, Yu, Wang, Chen (bb0170) 2016; 115 Machado, Sumarsono, Vaduganathan (bb0155) 2021; 6 Sowers, Epstein, Frohlich (bb0195) 2001; 37 Nikolaou, Efentakis, Abu Qourah, Femminò, Makridakis, Kanaki, Varela, Tsoumani, Davos, Dimitriou, Tasouli, Dimitriadis, Kostomitsopoulos, Zuurbier, Vlahou, Klinakis, Brizzi, Iliodromitis, Andreadou (bb0080) 2021; 34 Lahnwong, Chattipakorn, Chattipakorn (bb0085) 2018; 17 Chong, Ding, Byun, Comino, Bauman, Jalaludin (bb0135) 2017; 30 Sousa, Jardim, Costa, Magalhães, Montelo, Souza, Jardim, Sousa (bb0190) 2017; 9 Galaviz, Narayan, Lobelo, Weber (bb0160) 2018; 12 Zheng, Shi, Liang, Xu, Li, Gao, Sun, Yu, Zhang (bb0220) 2018; 12 Ramírez-Camacho, García-Niño, Flores-García, Pedraza-Chaverri, Zazueta (bb0225) 2020; 1866 Chen, Magliano, Zimmet (bb0130) 2011; 8 Yandrapalli, Jolly, Horblitt, Sanaani, Aronow (bb0035) 2017; 129 Sun, Han, Lu, Li, Ren, Zhang, Han, Xiang, Li (bb0070) 2020; 69 Kang, Zhang, Ma, Zhang, Jia, Liu, Wang, Kong (bb0200) 2016; 6 Klein, Kiat (bb0125) 2015; 33 Kenny, Abel (bb0040) 2019; 124 Chen, Zhang, Lin, Lei, Guan, Zhao, Xiong (bb0215) 2011; 12 Nizami, Katare, Prabhakar, Kumar, Arava, Chakraborty, Maulik, Banerjee (bb0115) 2019; 63 Ferrannini, DeFronzo (bb0140) 2015; 36 Heerspink, Perkins, Fitchett, Husain, Cherney (bb0050) 2016; 134 Lopaschuk, Verma (bb0055) 2020; 5 Evans, Goldfine, Maddux, Grodsky (bb0210) 2003; 52 Yoo, Ahn, Park (bb0180) 2016; 9 Lee (10.1016/j.lfs.2022.120862_bb0060) 2019; 20 Saisho (10.1016/j.lfs.2022.120862_bb0045) 2020; 8 Bouchard-Thomassin (10.1016/j.lfs.2022.120862_bb0185) 2011; 300 Paramesha (10.1016/j.lfs.2022.120862_bb0120) 2021; 10 Ferrannini (10.1016/j.lfs.2022.120862_bb0140) 2015; 36 Kenny (10.1016/j.lfs.2022.120862_bb0040) 2019; 124 Zheng (10.1016/j.lfs.2022.120862_bb0220) 2018; 12 Hu (10.1016/j.lfs.2022.120862_bb0235) 2019; 9 Neeland (10.1016/j.lfs.2022.120862_bb0145) 2020; 43 Andreadou (10.1016/j.lfs.2022.120862_bb0090) 2017; 8 Sowers (10.1016/j.lfs.2022.120862_bb0195) 2001; 37 Heerspink (10.1016/j.lfs.2022.120862_bb0050) 2016; 134 Reddy (10.1016/j.lfs.2022.120862_bb0175) 2016; 41 Galaviz (10.1016/j.lfs.2022.120862_bb0160) 2018; 12 Szűcs (10.1016/j.lfs.2022.120862_bb0100) 2019; 2019 Joshi (10.1016/j.lfs.2022.120862_bb0015) 2007; 55 Zimmet (10.1016/j.lfs.2022.120862_bb0005) 2001; 414 Trang (10.1016/j.lfs.2022.120862_bb0065) 2021; 22 Ramírez-Camacho (10.1016/j.lfs.2022.120862_bb0225) 2020; 1866 Bugger (10.1016/j.lfs.2022.120862_bb0025) 2014; 57 Lopaschuk (10.1016/j.lfs.2022.120862_bb0055) 2020; 5 Matheus (10.1016/j.lfs.2022.120862_bb0020) 2013; 2013 Lozano (10.1016/j.lfs.2022.120862_bb0165) 2016; 13 Evans (10.1016/j.lfs.2022.120862_bb0210) 2003; 52 Pierce (10.1016/j.lfs.2022.120862_bb0095) 1983; 245 Onyango (10.1016/j.lfs.2022.120862_bb0010) 2018; 8 Yoo (10.1016/j.lfs.2022.120862_bb0180) 2016; 9 Kang (10.1016/j.lfs.2022.120862_bb0200) 2016; 6 Zhang (10.1016/j.lfs.2022.120862_bb0110) 2019; 2019 Nizami (10.1016/j.lfs.2022.120862_bb0115) 2019; 63 Louhelainen (10.1016/j.lfs.2022.120862_bb0030) 2010; 160 Sun (10.1016/j.lfs.2022.120862_bb0070) 2020; 69 Park (10.1016/j.lfs.2022.120862_bb0105) 2018; 8 Xing (10.1016/j.lfs.2022.120862_bb0205) 2008; 14 Yandrapalli (10.1016/j.lfs.2022.120862_bb0035) 2017; 129 Machado (10.1016/j.lfs.2022.120862_bb0155) 2021; 6 Sousa (10.1016/j.lfs.2022.120862_bb0190) 2017; 9 Lahnwong (10.1016/j.lfs.2022.120862_bb0085) 2018; 17 Klein (10.1016/j.lfs.2022.120862_bb0125) 2015; 33 Jheng (10.1016/j.lfs.2022.120862_bb0230) 2012; 32 Chong (10.1016/j.lfs.2022.120862_bb0135) 2017; 30 Liu (10.1016/j.lfs.2022.120862_bb0170) 2016; 115 Chen (10.1016/j.lfs.2022.120862_bb0215) 2011; 12 Shao (10.1016/j.lfs.2022.120862_bb0075) 2019; 18 Fitchett (10.1016/j.lfs.2022.120862_bb0150) 2019; 139 Nikolaou (10.1016/j.lfs.2022.120862_bb0080) 2021; 34 Chen (10.1016/j.lfs.2022.120862_bb0130) 2011; 8 |
References_xml | – volume: 8 year: 2020 ident: bb0045 article-title: SGLT2 inhibitors: the star in the treatment of type 2 diabetes? publication-title: Diseases – volume: 8 start-page: 1077 year: 2017 ident: bb0090 article-title: Empagliflozin limits myocardial infarction in vivo and cell death in vitro: role of STAT3, mitochondria, and redox aspects publication-title: Front. Physiol. – volume: 2019 year: 2019 ident: bb0100 article-title: Prediabetes induced by fructose-enriched diet influences cardiac lipidome and proteome and leads to deterioration of cardiac function prior to the development of excessive oxidative stress and cell damage publication-title: Oxidative Med. Cell. Longev. – volume: 33 start-page: 912 year: 2015 end-page: 920 ident: bb0125 article-title: The mechanisms underlying fructose-induced hypertension: a review publication-title: J. Hypertens. – volume: 37 start-page: 1053 year: 2001 end-page: 1059 ident: bb0195 article-title: Diabetes, hypertension, and cardiovascular disease: an update publication-title: Hypertension – volume: 10 start-page: 338 year: 2021 ident: bb0120 article-title: Sirt1 and Sirt3 activation improved cardiac function of diabetic rats via modulation of mitochondrial function publication-title: Antioxidants (Basel) – volume: 129 start-page: 811 year: 2017 end-page: 821 ident: bb0035 article-title: Cardiovascular benefits and safety of non-insulin medications used in the treatment of type 2 diabetes mellitus publication-title: Postgrad. Med. – volume: 55 start-page: 323 year: 2007 end-page: 324 ident: bb0015 article-title: India–diabetes capital of the world: now heading towards hypertension publication-title: J. Assoc. Physicians India – volume: 160 start-page: 142 year: 2010 end-page: 152 ident: bb0030 article-title: Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic goto-kakizaki rats publication-title: Br. J. Pharmacol. – volume: 41 start-page: 407 year: 2016 end-page: 417 ident: bb0175 article-title: Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats publication-title: J. Biosci. – volume: 32 start-page: 309 year: 2012 end-page: 319 ident: bb0230 article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle publication-title: Mol. Cell. Biol. – volume: 69 start-page: 1292 year: 2020 end-page: 1305 ident: bb0070 article-title: Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating Sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice publication-title: Diabetes – volume: 6 start-page: 27460 year: 2016 ident: bb0200 article-title: Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation publication-title: Sci. Rep. – volume: 34 start-page: 551 year: 2021 end-page: 571 ident: bb0080 article-title: Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress publication-title: Antioxid. Redox Signal. – volume: 36 start-page: 2288 year: 2015 end-page: 2296 ident: bb0140 article-title: Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes publication-title: Eur. Heart J. – volume: 300 start-page: H125 year: 2011 end-page: H134 ident: bb0185 article-title: A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 9 start-page: 3687 year: 2019 end-page: 3706 ident: bb0235 article-title: Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy publication-title: Theranostics. – volume: 57 start-page: 660 year: 2014 end-page: 671 ident: bb0025 article-title: Molecular mechanisms of diabetic cardiomyopathy publication-title: Diabetologia – volume: 6 start-page: 1152 year: 2021 end-page: 1160 ident: bb0155 article-title: Midlife wealth mobility and long-term cardiovascular health publication-title: JAMA Cardiol. – volume: 17 start-page: 101 year: 2018 ident: bb0085 article-title: Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors publication-title: Cardiovasc. Diabetol. – volume: 20 year: 2019 ident: bb0060 article-title: Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats publication-title: Int. J. Mol. Sci. – volume: 63 year: 2019 ident: bb0115 article-title: Vitamin D deficiency in rats causes cardiac dysfunction by inducing myocardial insulin resistance publication-title: Mol. Nutr. Food Res. – volume: 13 start-page: 15 year: 2016 ident: bb0165 article-title: High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications publication-title: Nutr. Metab. (Lond.) – volume: 5 start-page: 632 year: 2020 end-page: 644 ident: bb0055 article-title: Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review publication-title: JACC Basic Transl. Sci. – volume: 139 start-page: 1384 year: 2019 end-page: 1395 ident: bb0150 article-title: Empagliflozin reduced mortality and hospitalization for heart failure across the Spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial publication-title: Circulation – volume: 12 start-page: 4 year: 2018 end-page: 20 ident: bb0160 article-title: Lifestyle and the prevention of type 2 diabetes: a status report publication-title: Am. J. Lifestyle Med. – volume: 22 start-page: 1177 year: 2021 ident: bb0065 article-title: Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats publication-title: Int. J. Mol. Sci. – volume: 2013 year: 2013 ident: bb0020 article-title: Impact of diabetes on cardiovascular disease: an update publication-title: Int. J. Hypertens. – volume: 115 start-page: 140 year: 2016 end-page: 149 ident: bb0170 article-title: Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet publication-title: Diabetes Res. Clin. Pract. – volume: 12 start-page: 534 year: 2011 end-page: 541 ident: bb0215 article-title: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS publication-title: EMBO Rep. – volume: 124 start-page: 121 year: 2019 end-page: 141 ident: bb0040 article-title: Heart failure in type 2 diabetes mellitus publication-title: Circ. Res. – volume: 43 start-page: 3007 year: 2020 end-page: 3015 ident: bb0145 article-title: Response to comment on Neeland et al. The impact of empagliflozin on obstructive sleep apnea and cardiovascular and renal outcomes: an exploratory analysis of the EMPA-REG OUTCOME Trial publication-title: Diabetes Care – volume: 8 start-page: 9464 year: 2018 ident: bb0105 article-title: Amelioration of high fructose-induced cardiac hypertrophy by naringin publication-title: Sci. Rep. – volume: 8 start-page: 228 year: 2011 end-page: 236 ident: bb0130 article-title: The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives publication-title: Nat Rev Endocrinol. – volume: 14 start-page: 395 year: 2008 end-page: 402 ident: bb0205 article-title: Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats publication-title: Mol. Med. – volume: 245 start-page: C241 year: 1983 end-page: C247 ident: bb0095 article-title: Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart publication-title: Am. J. Phys. – volume: 414 start-page: 782 year: 2001 end-page: 787 ident: bb0005 article-title: Global and societal implications of the diabetes epidemic publication-title: Nature – volume: 134 start-page: 752 year: 2016 end-page: 772 ident: bb0050 article-title: Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications publication-title: Circulation – volume: 18 start-page: 165 year: 2019 ident: bb0075 article-title: Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats publication-title: Cardiovasc. Diabetol. – volume: 30 start-page: 43 year: 2017 end-page: 50 ident: bb0135 article-title: Lifestyle changes after a diagnosis of type 2 diabetes publication-title: Diabetes Spectr. – volume: 1866 year: 2020 ident: bb0225 article-title: Alteration of mitochondrial supercomplexes assembly in metabolic diseases publication-title: Biochim. Biophys. Acta Mol. basis Dis. – volume: 8 start-page: 1 year: 2018 end-page: 7 ident: bb0010 article-title: The rise of noncommunicable diseases in Kenya: an examination of the time trends and contribution of the changes in diet and physical inactivity publication-title: J. Epidemiol. Glob. Health – volume: 9 year: 2016 ident: bb0180 article-title: High dietary fructose intake on cardiovascular disease related parameters in growing rats publication-title: Nutrients – volume: 52 start-page: 1 year: 2003 end-page: 8 ident: bb0210 article-title: Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? publication-title: Diabetes – volume: 2019 year: 2019 ident: bb0110 article-title: Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance publication-title: J. Diabetes Res. – volume: 9 start-page: 98 year: 2017 ident: bb0190 article-title: Hypertensive diabetic patients: incidence of cardiovascular and renal outcomes in a historical cohort over 11 years publication-title: Diabetol. Metab. Syndr. – volume: 12 start-page: 414 year: 2018 ident: bb0220 article-title: Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats publication-title: Front. Neurosci. – volume: 2013 year: 2013 ident: 10.1016/j.lfs.2022.120862_bb0020 article-title: Impact of diabetes on cardiovascular disease: an update publication-title: Int. J. Hypertens. doi: 10.1155/2013/653789 – volume: 134 start-page: 752 year: 2016 ident: 10.1016/j.lfs.2022.120862_bb0050 article-title: Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.021887 – volume: 8 start-page: 228 year: 2011 ident: 10.1016/j.lfs.2022.120862_bb0130 article-title: The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives publication-title: Nat Rev Endocrinol. doi: 10.1038/nrendo.2011.183 – volume: 9 year: 2016 ident: 10.1016/j.lfs.2022.120862_bb0180 article-title: High dietary fructose intake on cardiovascular disease related parameters in growing rats publication-title: Nutrients doi: 10.3390/nu9010011 – volume: 34 start-page: 551 year: 2021 ident: 10.1016/j.lfs.2022.120862_bb0080 article-title: Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2019.7923 – volume: 115 start-page: 140 year: 2016 ident: 10.1016/j.lfs.2022.120862_bb0170 article-title: Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2015.12.012 – volume: 43 start-page: 3007 year: 2020 ident: 10.1016/j.lfs.2022.120862_bb0145 article-title: Response to comment on Neeland et al. The impact of empagliflozin on obstructive sleep apnea and cardiovascular and renal outcomes: an exploratory analysis of the EMPA-REG OUTCOME Trial publication-title: Diabetes Care doi: 10.2337/dc20-1096 – volume: 9 start-page: 98 year: 2017 ident: 10.1016/j.lfs.2022.120862_bb0190 article-title: Hypertensive diabetic patients: incidence of cardiovascular and renal outcomes in a historical cohort over 11 years publication-title: Diabetol. Metab. Syndr. doi: 10.1186/s13098-017-0296-z – volume: 10 start-page: 338 year: 2021 ident: 10.1016/j.lfs.2022.120862_bb0120 article-title: Sirt1 and Sirt3 activation improved cardiac function of diabetic rats via modulation of mitochondrial function publication-title: Antioxidants (Basel) doi: 10.3390/antiox10030338 – volume: 2019 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0110 article-title: Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance publication-title: J. Diabetes Res. doi: 10.1155/2019/2052675 – volume: 57 start-page: 660 year: 2014 ident: 10.1016/j.lfs.2022.120862_bb0025 article-title: Molecular mechanisms of diabetic cardiomyopathy publication-title: Diabetologia doi: 10.1007/s00125-014-3171-6 – volume: 124 start-page: 121 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0040 article-title: Heart failure in type 2 diabetes mellitus publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.311371 – volume: 245 start-page: C241 year: 1983 ident: 10.1016/j.lfs.2022.120862_bb0095 article-title: Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart publication-title: Am. J. Phys. – volume: 52 start-page: 1 year: 2003 ident: 10.1016/j.lfs.2022.120862_bb0210 article-title: Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? publication-title: Diabetes doi: 10.2337/diabetes.52.1.1 – volume: 160 start-page: 142 year: 2010 ident: 10.1016/j.lfs.2022.120862_bb0030 article-title: Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic goto-kakizaki rats publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2010.00680.x – volume: 20 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0060 article-title: Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats publication-title: Int. J. Mol. Sci. – volume: 2019 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0100 article-title: Prediabetes induced by fructose-enriched diet influences cardiac lipidome and proteome and leads to deterioration of cardiac function prior to the development of excessive oxidative stress and cell damage publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2019/3218275 – volume: 13 start-page: 15 year: 2016 ident: 10.1016/j.lfs.2022.120862_bb0165 article-title: High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications publication-title: Nutr. Metab. (Lond.) doi: 10.1186/s12986-016-0074-1 – volume: 6 start-page: 27460 year: 2016 ident: 10.1016/j.lfs.2022.120862_bb0200 article-title: Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation publication-title: Sci. Rep. doi: 10.1038/srep27460 – volume: 300 start-page: H125 year: 2011 ident: 10.1016/j.lfs.2022.120862_bb0185 article-title: A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00199.2010 – volume: 37 start-page: 1053 year: 2001 ident: 10.1016/j.lfs.2022.120862_bb0195 article-title: Diabetes, hypertension, and cardiovascular disease: an update publication-title: Hypertension doi: 10.1161/01.HYP.37.4.1053 – volume: 8 start-page: 9464 year: 2018 ident: 10.1016/j.lfs.2022.120862_bb0105 article-title: Amelioration of high fructose-induced cardiac hypertrophy by naringin publication-title: Sci. Rep. doi: 10.1038/s41598-018-27788-1 – volume: 55 start-page: 323 year: 2007 ident: 10.1016/j.lfs.2022.120862_bb0015 article-title: India–diabetes capital of the world: now heading towards hypertension publication-title: J. Assoc. Physicians India – volume: 30 start-page: 43 year: 2017 ident: 10.1016/j.lfs.2022.120862_bb0135 article-title: Lifestyle changes after a diagnosis of type 2 diabetes publication-title: Diabetes Spectr. doi: 10.2337/ds15-0044 – volume: 14 start-page: 395 year: 2008 ident: 10.1016/j.lfs.2022.120862_bb0205 article-title: Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats publication-title: Mol. Med. doi: 10.2119/2008-00024.Xing – volume: 139 start-page: 1384 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0150 article-title: Empagliflozin reduced mortality and hospitalization for heart failure across the Spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037778 – volume: 1866 year: 2020 ident: 10.1016/j.lfs.2022.120862_bb0225 article-title: Alteration of mitochondrial supercomplexes assembly in metabolic diseases publication-title: Biochim. Biophys. Acta Mol. basis Dis. doi: 10.1016/j.bbadis.2020.165935 – volume: 5 start-page: 632 year: 2020 ident: 10.1016/j.lfs.2022.120862_bb0055 article-title: Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2020.02.004 – volume: 22 start-page: 1177 year: 2021 ident: 10.1016/j.lfs.2022.120862_bb0065 article-title: Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22031177 – volume: 18 start-page: 165 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0075 article-title: Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-019-0964-4 – volume: 32 start-page: 309 year: 2012 ident: 10.1016/j.lfs.2022.120862_bb0230 article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05603-11 – volume: 8 year: 2020 ident: 10.1016/j.lfs.2022.120862_bb0045 article-title: SGLT2 inhibitors: the star in the treatment of type 2 diabetes? publication-title: Diseases doi: 10.3390/diseases8020014 – volume: 12 start-page: 534 year: 2011 ident: 10.1016/j.lfs.2022.120862_bb0215 article-title: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS publication-title: EMBO Rep. doi: 10.1038/embor.2011.65 – volume: 414 start-page: 782 year: 2001 ident: 10.1016/j.lfs.2022.120862_bb0005 article-title: Global and societal implications of the diabetes epidemic publication-title: Nature doi: 10.1038/414782a – volume: 12 start-page: 4 year: 2018 ident: 10.1016/j.lfs.2022.120862_bb0160 article-title: Lifestyle and the prevention of type 2 diabetes: a status report publication-title: Am. J. Lifestyle Med. doi: 10.1177/1559827615619159 – volume: 33 start-page: 912 year: 2015 ident: 10.1016/j.lfs.2022.120862_bb0125 article-title: The mechanisms underlying fructose-induced hypertension: a review publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000551 – volume: 9 start-page: 3687 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0235 article-title: Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy publication-title: Theranostics. doi: 10.7150/thno.33684 – volume: 129 start-page: 811 year: 2017 ident: 10.1016/j.lfs.2022.120862_bb0035 article-title: Cardiovascular benefits and safety of non-insulin medications used in the treatment of type 2 diabetes mellitus publication-title: Postgrad. Med. doi: 10.1080/00325481.2017.1358064 – volume: 8 start-page: 1077 year: 2017 ident: 10.1016/j.lfs.2022.120862_bb0090 article-title: Empagliflozin limits myocardial infarction in vivo and cell death in vitro: role of STAT3, mitochondria, and redox aspects publication-title: Front. Physiol. doi: 10.3389/fphys.2017.01077 – volume: 63 year: 2019 ident: 10.1016/j.lfs.2022.120862_bb0115 article-title: Vitamin D deficiency in rats causes cardiac dysfunction by inducing myocardial insulin resistance publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201900109 – volume: 41 start-page: 407 year: 2016 ident: 10.1016/j.lfs.2022.120862_bb0175 article-title: Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats publication-title: J. Biosci. doi: 10.1007/s12038-016-9627-8 – volume: 6 start-page: 1152 year: 2021 ident: 10.1016/j.lfs.2022.120862_bb0155 article-title: Midlife wealth mobility and long-term cardiovascular health publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2021.2056 – volume: 17 start-page: 101 year: 2018 ident: 10.1016/j.lfs.2022.120862_bb0085 article-title: Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-018-0745-5 – volume: 69 start-page: 1292 year: 2020 ident: 10.1016/j.lfs.2022.120862_bb0070 article-title: Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating Sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice publication-title: Diabetes doi: 10.2337/db19-0991 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.lfs.2022.120862_bb0010 article-title: The rise of noncommunicable diseases in Kenya: an examination of the time trends and contribution of the changes in diet and physical inactivity publication-title: J. Epidemiol. Glob. Health doi: 10.2991/j.jegh.2017.11.004 – volume: 12 start-page: 414 year: 2018 ident: 10.1016/j.lfs.2022.120862_bb0220 article-title: Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00414 – volume: 36 start-page: 2288 year: 2015 ident: 10.1016/j.lfs.2022.120862_bb0140 article-title: Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv239 |
SSID | ssj0005573 |
Score | 2.4796002 |
Snippet | SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120862 |
SubjectTerms | blood pressure cardiac output cardioprotective effect echocardiography electrocardiography Empagliflozin fibrosis glucose high fructose diet Insulin resistance membrane potential mitochondria Mitochondrial dysfunction noninsulin-dependent diabetes mellitus Oxidative stress Palmitate palmitic acid protein synthesis rats sodium glucose cotransporter-2 inhibitors |
Title | Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress |
URI | https://dx.doi.org/10.1016/j.lfs.2022.120862 https://www.proquest.com/docview/2699957011 https://www.proquest.com/docview/2718345979 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF7EUvAi1SpaW9mCBxVWk327yctRRHlW9KTgLexPXXlNxMRSe-ixf3dnko2o4Dt4eZDHbBJ2Zr6Zye58S8hWKlRifOaYKJRiIheKqVwXTBfacfQ-abAb-ew8m1yKH1fyao4cDr0wuK0yYn-P6R1ax3_242zu34WAPb5cjHgCCQTyWXJs-EX2OrDpvb_PtnnIuMrMBUPpYWWz2-M19cjYzfleyjG1fys2vULpLvQcfyKLMWekB_1rLZE5Vy2Tj_0pko_LZCn6Z0O3I4n0zmfy7wj8_Hoa_LT-EyoKt74JOrQNRX5i5pE0tm4ctcG1DMpyULClprMWQ-1jg-EOVUZhLNhIQ38FRZGKs-qpwWnt6U8AAwDPyoINM_gB2KT172A7KnHaN6GskMvjo4vDCYtnLjADkallThaoPDeGMlHJLLda2dxyCXlUpoTzUO8k0kjHUy-Ry4ubRBvrYT69HmfOjlbJfFVXbo3QsRRGSA3ILqCKVKaQSYZfXVPNRT4SfJ0kw2yXJhKS47kY03LYeXZbgoJKVFDZK2id7D4NuevZOGYJi0GF5QuTKiFazBr2fVB3Ca6G6yeqcvUDCGWQTcscEHGGDMT6kYAqrfjyvsdvkAW8wvCYyq9kvr1_cN8g72n1ZmfYm-TDwcnp5Pw_AIEEFg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVgguiBYQpTyMxAGQTBOvnWyOVdVqS9s9tVJvlp_FaEkqkqKWH9Df3ZnEAYHEHrjsIetJIs_MNzOx5zMh73KhMxsKz0SlNROl0EyXpmKmMp6j90mL3cgni2J-Jj6fy_M1sjf2wuC2yoT9A6b3aJ2u7KTZ3LmMEXt8uZjyDBII5LPks3tkHdmpxISs7x4ezRe_d3rItNDMBUOBcXGz3-a1DEjazfmnnGN2_6_w9BdQ99Hn4DF5lNJGuju82QZZ8_UmuT8cJHmzSTaSi7b0feKR_vCE3O6Dq18sY1g2P2NN4dZfooldS5GimAXkjW1aT130HYPKHHTsqO0NxlJ302LEQ61RkAUzaemPqCmycdYDOzhtAv0GeAD4WTswYwY_gJy0uY6uZxOnQx_KU3J2sH-6N2fp2AVmITh1zMsK9ednUClqWZTOaFc6LiGVKrTwAUqeTFrpeR4k0nlxmxnrAsxnMLPCu-kzMqmb2j8ndCaFFdIAuAsoJLWtZFbgh9fccFFOBd8i2TjbyiZOcjwaY6nGzWdfFShIoYLUoKAt8vGXyOVAyLFqsBhVqP6wKgUBY5XY21HdCrwNl1B07ZsrGFRAQi1LAMUVYyDcTwUUatWL_3v8G_JgfnpyrI4PF0fb5CH-g9Eyly_JpPt-5V9BGtSZ18nM7wDfMwbH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empagliflozin+prohibits+high-fructose+diet-induced+cardiac+dysfunction+in+rats+via+attenuation+of+mitochondria-driven+oxidative+stress&rft.jtitle=Life+sciences+%281973%29&rft.au=Bugga%2C+Paramesha&rft.au=Mohammed%2C+Soheb+Anwar&rft.au=Alam%2C+Md+Jahangir&rft.au=Katare%2C+Parmeshwar&rft.date=2022-10-15&rft.issn=1879-0631&rft.eissn=1879-0631&rft.volume=307&rft.spage=120862&rft_id=info:doi/10.1016%2Fj.lfs.2022.120862&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon |