Molecular dynamics simulations shed light into the donor substrate specificity of vertebrate poly-alpha-2,8-sialyltransferases ST8Sia IV

Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms und...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 8; p. 130647
Main Authors Teppa, Roxana Elin, Galuska, Sebastian Peter, Harduin-Lepers, Anne
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2024
Elsevier
SeriesBiochimica et Biophysica Acta (BBA) - General Subjects
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. •Human and salmonid ST8Sia IV have different sugar-nucleotide donor specificity.•MD simulations highlight significant differences between highly mobile regions of human and fish ST8Sia IV.•Human ST8Sia IV shows a narrow specificity towards CMP-Neu5Ac donor substrate.•Fish ST8Sia IV forms stable complexes with CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn.•Family motif “a” contains key residues to stabilize different Sia parts of the donor.
AbstractList BackgroundSialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.MethodsComputational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.ResultsOur MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.General significanceThis work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. •Human and salmonid ST8Sia IV have different sugar-nucleotide donor specificity.•MD simulations highlight significant differences between highly mobile regions of human and fish ST8Sia IV.•Human ST8Sia IV shows a narrow specificity towards CMP-Neu5Ac donor substrate.•Fish ST8Sia IV forms stable complexes with CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn.•Family motif “a” contains key residues to stabilize different Sia parts of the donor.
Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.BACKGROUNDSialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.METHODSComputational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.RESULTSOur MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.GENERAL SIGNIFICANCEThis work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
ArticleNumber 130647
Author Harduin-Lepers, Anne
Galuska, Sebastian Peter
Teppa, Roxana Elin
Author_xml – sequence: 1
  givenname: Roxana Elin
  surname: Teppa
  fullname: Teppa, Roxana Elin
  email: elin.teppa@univ-lille.fr
  organization: Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
– sequence: 2
  givenname: Sebastian Peter
  surname: Galuska
  fullname: Galuska, Sebastian Peter
  organization: Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
– sequence: 3
  givenname: Anne
  surname: Harduin-Lepers
  fullname: Harduin-Lepers, Anne
  email: anne.harduin-lepers@univ-lille.fr
  organization: Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38801837$$D View this record in MEDLINE/PubMed
https://hal.univ-lille.fr/hal-04625502$$DView record in HAL
BookMark eNqNks1u1DAUhS1URKeFN0DIS5DI4J_ESVggVRXQSoNYtLC1HOem8ciJg-2MlDfgsfE0LQsWgDe2rr9zdHXvOUMnoxsBoZeUbCmh4t1-2zTqDsYtIyzfUk5EXj5BG1qVLKsIESdoQzjJs5yK4hSdhbAn6RR18Qyd8qoitOLlBv384izo2SqP22VUg9EBBzOkQjRuTO8eWmzNXR-xGaPDsQfcutF5HOYmRK8i4DCBNp3RJi7YdfgAPkJz_zM5u2TKTr3K2NsqC0bZxSbRGDrwKkDAN7fVjVH4-vtz9LRTNsCLh_scffv08fbyKtt9_Xx9ebHLdM7qmEHO8oZ1XVPWjWJaV8AKoVSdg6hbXZa8JBTaVCsVsFoRIQhvkxIaAkWja36O3qy-vbJy8mZQfpFOGXl1sZPHGskFKwrCDjSxr1d28u7HDCHKwQQN1qoR3BwkpwUv6qqo_wMlglJeM1Im9NUDOjcDtL-beFxKAt6vgPYuBA-dTKO930canbGSEnlMgNzLNQHymAC5JiCJ8z_Ej_7_kH1YZZBmfzDgZdAGRg2t8aCjbJ35u8EvTePMqA
CitedBy_id crossref_primary_10_1002_cbic_202400539
crossref_primary_10_1016_j_bbagen_2024_130750
Cites_doi 10.1038/s41598-023-42095-0
10.1152/physrev.00033.2013
10.2174/138945009788488422
10.1016/j.jsb.2020.107628
10.1016/S0021-9258(18)62130-1
10.1038/nsb0902-646
10.1002/cbic.201500344
10.1021/acs.jmedchem.8b01757
10.1107/S0907444913015412
10.1074/jbc.M809696200
10.1002/cbic.202000715
10.1073/pnas.182257399
10.1021/acschembio.8b00478
10.1007/s10719-006-6356-5
10.1186/1471-2148-8-258
10.1002/jcc.21816
10.1093/glycob/cwj046
10.1093/nar/gkab294
10.1002/jcc.20084
10.1038/s41589-019-0350-2
10.3109/10409238.2014.976606
10.1016/j.sbi.2012.06.007
10.1016/0006-291X(78)91497-3
10.1002/jcc.23354
10.1016/S0065-2318(08)60109-2
10.1002/jcc.21787
10.1111/j.1749-6632.2012.06517.x
10.1093/glycob/cwj016
10.1016/j.softx.2015.06.001
10.1016/j.sbi.2009.06.003
10.1038/nsmb.1685
10.1021/acs.jcim.8b00512
10.1074/jbc.M113.519041
10.1038/s41586-021-03819-2
10.1038/nsmb.3060
10.1038/nchembio.2539
10.4137/GBI.S3123
10.1093/glycob/7.2.161
10.1093/nar/gkab1045
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
DOI 10.1016/j.bbagen.2024.130647
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID oai_HAL_hal_04625502v1
38801837
10_1016_j_bbagen_2024_130647
S0304416524000904
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c429t-e424b2ffb79ba2cc8e256aa94e69dc773701ed2567ae29a06603d429eb0e5bc93
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri May 23 06:27:00 EDT 2025
Wed Jul 02 03:21:47 EDT 2025
Thu Aug 07 15:19:26 EDT 2025
Mon Jul 21 05:41:19 EDT 2025
Tue Jul 01 00:22:19 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Tue Jun 18 08:52:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Neu5Ac
RMSF
Molecular dynamics
RMSD
Neu5Gc
Modeling
STs
Kdn
Sialyltransferases
Sugar donor
Rg
Substrate specificity
MD
Polysialyltransferases
Structure
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-e424b2ffb79ba2cc8e256aa94e69dc773701ed2567ae29a06603d429eb0e5bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1233-3799
PMID 38801837
PQID 3061139207
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04625502v1
proquest_miscellaneous_3153598591
proquest_miscellaneous_3061139207
pubmed_primary_38801837
crossref_citationtrail_10_1016_j_bbagen_2024_130647
crossref_primary_10_1016_j_bbagen_2024_130647
elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationSeriesTitle Biochimica et Biophysica Acta (BBA) - General Subjects
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Moremen, Ramiah, Stuart, Steel, Meng, Forouhar, Moniz, Gahlay, Gao, Chapla, Wang, Yang, Prabhakar, Johnson, Rosa, Geisler, Nairn, Seetharaman, Wu, Tong, Gilbert, LaBaer, Jarvis (bb0115) 2018; 14
Dold, Wittmann (bb0210) 2021; 22
Huang, MacKerell (bb0170) 2013; 34
Schnaar, Gerardy-Schahn, Hildebrandt (bb0025) 2014; 94
Harrus, Harduin-Lepers, Glumoff (bb0070) 2020; 212
Schauer (bb0050) 2009; 19
Chou, Hayakawa, Diaz, Krings, Indriati, Leakey, Paabo, Satta, Takahata, Varki (bb0015) 2002; 99
Meng, Forouhar, Thieker, Gao, Ramiah, Moniz, Xiang, Seetharaman, Milaninia, Su, Bridger, Veillon, Azadi, Kornhaber, Wells, Montelione, Woods, Tong, Moremen (bb0110) 2013; 288
Rao, Rich, Rakic, Buddai, Schwartz, Johnson, Bowe, Wakarchuk, Defrees, Withers, Strynadka (bb0075) 2009; 16
Moremen, Haltiwanger (bb0130) 2019; 15
Morrison, Ebner (bb0140) 1971; 246
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Zidek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler, Back, Petersen, Reiman, Clancy, Zielinski, Steinegger, Pacholska, Berghammer, Bodenstein, Silver, Vinyals, Senior, Kavukcuoglu, Kohli, Hassabis (bb0150) 2021; 596
M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA, Nucleic Acids Res., 49 (2021) W530-W534.
Inoue, Iwasaki (bb0040) 1978; 83
Datta (bb0065) 2009; 10
Zoete, Cuendet, Grosdidier, Michielin (bb0175) 2011; 32
Drula, Garron, Dogan, Lombard, Henrissat, Terrapon (bb0060) 2022; 50
Volkers, Worrall, Kwan, Yu, Baumann, Lameignere, Wasney, Scott, Wakarchuk, Foster, Withers, Strynadka (bb0120) 2015; 22
Galuska, Lutteke, Galuska (bb0035) 2017; 6
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bb0160) 2004; 25
Kuhn, Benz, Greif, Engel, Sobek, Rudolph (bb0105) 2013; 69
Schauer (bb0005) 1982; 40
Cheng, Xie, Dong, Chen (bb0205) 2016; 17
Decloquement, Venuto, Cogez, Steinmetz, Schulz, Lion, Noel, Rigolot, Teppa, Biot, Rebl, Galuska, Harduin-Lepers (bb0145) 2023; 13
Volkers, Lizak, Niesser, Rosell, Preidl, Gnanapragassam, Horstkorte, Rademann, Strynadka (bb0200) 2018; 13
Sato (bb0020) 2013; vol. 5
Michaud-Agrawal, Denning, Woolf, Beckstein (bb0180) 2011; 32
Breton, Fournel-Gigleux, Palcic (bb0125) 2012; 22
Tubiana, Carvaillo, Boulard, Bressanelli (bb0185) 2018; 58
Nakata, Zhang, Troy (bb0095) 2006; 23
Karplus, McCammon (bb0155) 2002; 9
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0165) 2015; 1
Miyagi (bb0045) 2007
Harduin-Lepers (bb0085) 2010; 2
Patel, Balaji (bb0080) 2006; 16
Heise, Pijnenborg, Büll, van Hilten, Kers-Rebel, Balneger, Elferink, Adema, Boltje (bb0215) 2018; 62
Foley, Swartzentruber, Colley (bb0100) 2009; 284
Geremia, Harduin-Lepers, Delannoy (bb0195) 1997; 7
Varki, Gagneux (bb0055) 2012; 1253
Harduin-Lepers (bb0010) 2023
Harduin-Lepers, Petit, Mollicone, Delannoy, Petit, Oriol (bb0090) 2008; 8
Breton, Snajdrova, Jeanneau, Koca, Imberty (bb0135) 2006; 16
Colley, Kitajima, Sato (bb0030) 2014; 49
Patel (10.1016/j.bbagen.2024.130647_bb0080) 2006; 16
Jumper (10.1016/j.bbagen.2024.130647_bb0150) 2021; 596
Schnaar (10.1016/j.bbagen.2024.130647_bb0025) 2014; 94
Inoue (10.1016/j.bbagen.2024.130647_bb0040) 1978; 83
Karplus (10.1016/j.bbagen.2024.130647_bb0155) 2002; 9
Galuska (10.1016/j.bbagen.2024.130647_bb0035) 2017; 6
Chou (10.1016/j.bbagen.2024.130647_bb0015) 2002; 99
Schauer (10.1016/j.bbagen.2024.130647_bb0050) 2009; 19
Harduin-Lepers (10.1016/j.bbagen.2024.130647_bb0010) 2023
Nakata (10.1016/j.bbagen.2024.130647_bb0095) 2006; 23
Volkers (10.1016/j.bbagen.2024.130647_bb0200) 2018; 13
Huang (10.1016/j.bbagen.2024.130647_bb0170) 2013; 34
Breton (10.1016/j.bbagen.2024.130647_bb0125) 2012; 22
Datta (10.1016/j.bbagen.2024.130647_bb0065) 2009; 10
Michaud-Agrawal (10.1016/j.bbagen.2024.130647_bb0180) 2011; 32
Volkers (10.1016/j.bbagen.2024.130647_bb0120) 2015; 22
Morrison (10.1016/j.bbagen.2024.130647_bb0140) 1971; 246
Zoete (10.1016/j.bbagen.2024.130647_bb0175) 2011; 32
Colley (10.1016/j.bbagen.2024.130647_bb0030) 2014; 49
Drula (10.1016/j.bbagen.2024.130647_bb0060) 2022; 50
Varki (10.1016/j.bbagen.2024.130647_bb0055) 2012; 1253
Tubiana (10.1016/j.bbagen.2024.130647_bb0185) 2018; 58
Sato (10.1016/j.bbagen.2024.130647_bb0020) 2013; vol. 5
Harduin-Lepers (10.1016/j.bbagen.2024.130647_bb0090) 2008; 8
Meng (10.1016/j.bbagen.2024.130647_bb0110) 2013; 288
Harrus (10.1016/j.bbagen.2024.130647_bb0070) 2020; 212
Cheng (10.1016/j.bbagen.2024.130647_bb0205) 2016; 17
Abraham (10.1016/j.bbagen.2024.130647_bb0165) 2015; 1
Harduin-Lepers (10.1016/j.bbagen.2024.130647_bb0085) 2010; 2
Geremia (10.1016/j.bbagen.2024.130647_bb0195) 1997; 7
Decloquement (10.1016/j.bbagen.2024.130647_bb0145) 2023; 13
Rao (10.1016/j.bbagen.2024.130647_bb0075) 2009; 16
10.1016/j.bbagen.2024.130647_bb0190
Pettersen (10.1016/j.bbagen.2024.130647_bb0160) 2004; 25
Kuhn (10.1016/j.bbagen.2024.130647_bb0105) 2013; 69
Foley (10.1016/j.bbagen.2024.130647_bb0100) 2009; 284
Schauer (10.1016/j.bbagen.2024.130647_bb0005) 1982; 40
Moremen (10.1016/j.bbagen.2024.130647_bb0130) 2019; 15
Moremen (10.1016/j.bbagen.2024.130647_bb0115) 2018; 14
Miyagi (10.1016/j.bbagen.2024.130647_bb0045) 2007
Breton (10.1016/j.bbagen.2024.130647_bb0135) 2006; 16
Heise (10.1016/j.bbagen.2024.130647_bb0215) 2018; 62
Dold (10.1016/j.bbagen.2024.130647_bb0210) 2021; 22
References_xml – volume: 69
  start-page: 1826
  year: 2013
  end-page: 1838
  ident: bb0105
  article-title: The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 6
  year: 2017
  ident: bb0035
  article-title: Is polysialylated NCAM not only a regulator during brain development but also during the formation of other organs?
  publication-title: Biology (Basel)
– volume: 22
  start-page: 1243
  year: 2021
  end-page: 1251
  ident: bb0210
  article-title: Metabolic glycoengineering with azide-and alkene-modified hexosamines: quantification of sialic acid levels
  publication-title: ChemBioChem
– volume: 7
  start-page: v
  year: 1997
  end-page: vii
  ident: bb0195
  article-title: Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action
  publication-title: Glycobiology
– volume: 1253
  start-page: 16
  year: 2012
  end-page: 36
  ident: bb0055
  article-title: Multifarious roles of sialic acids in immunity
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 19
  start-page: 507
  year: 2009
  end-page: 514
  ident: bb0050
  article-title: Sialic acids as regulators of molecular and cellular interactions
  publication-title: Curr. Opin. Struct. Biol.
– volume: 15
  start-page: 853
  year: 2019
  end-page: 864
  ident: bb0130
  article-title: Emerging structural insights into glycosyltransferase-mediated synthesis of glycans
  publication-title: Nat. Chem. Biol.
– reference: M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA, Nucleic Acids Res., 49 (2021) W530-W534.
– volume: 8
  start-page: 258
  year: 2008
  ident: bb0090
  article-title: Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes
  publication-title: BMC Evol. Biol.
– volume: 50
  start-page: D571
  year: 2022
  end-page: D577
  ident: bb0060
  article-title: The carbohydrate-active enzyme database: functions and literature
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 108
  year: 2006
  end-page: 116
  ident: bb0080
  article-title: Identification of linkage-specific sequence motifs in sialyltransferases
  publication-title: Glycobiology
– volume: 32
  start-page: 2319
  year: 2011
  end-page: 2327
  ident: bb0180
  article-title: MDAnalysis: a toolkit for the analysis of molecular dynamics simulations
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 646
  year: 2002
  end-page: 652
  ident: bb0155
  article-title: Molecular dynamics simulations of biomolecules
  publication-title: Nat. Struct. Biol.
– volume: 10
  start-page: 483
  year: 2009
  end-page: 498
  ident: bb0065
  article-title: Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs
  publication-title: Curr. Drug Targets
– volume: 22
  start-page: 540
  year: 2012
  end-page: 549
  ident: bb0125
  article-title: Recent structures, evolution and mechanisms of glycosyltransferases
  publication-title: Curr. Opin. Struct. Biol.
– volume: 16
  start-page: 29R
  year: 2006
  end-page: 37R
  ident: bb0135
  article-title: Structures and mechanisms of glycosyltransferases
  publication-title: Glycobiology
– volume: 2
  start-page: 29
  year: 2010
  end-page: 61
  ident: bb0085
  article-title: Comprehensive analysis of sialyltransferases in vertebrate genomes
  publication-title: Glycobiol. Insights
– volume: 284
  start-page: 15505
  year: 2009
  end-page: 15516
  ident: bb0100
  article-title: Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM
  publication-title: J. Biol. Chem.
– volume: 288
  start-page: 34680
  year: 2013
  end-page: 34698
  ident: bb0110
  article-title: Enzymatic basis for N-glycan sialylation: structure of rat α2,6-SIalyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation*
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 423
  year: 2006
  end-page: 436
  ident: bb0095
  article-title: Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the a2,8-polysialyltransferases is essential for polysialylation
  publication-title: Glycoconj. J.
– volume: 17
  start-page: 11
  year: 2016
  end-page: 27
  ident: bb0205
  article-title: Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances
  publication-title: ChemBioChem
– volume: 34
  start-page: 2135
  year: 2013
  end-page: 2145
  ident: bb0170
  article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data
  publication-title: J. Comput. Chem.
– volume: 40
  start-page: 131
  year: 1982
  end-page: 234
  ident: bb0005
  article-title: Chemistry, metabolism, and biological functions of sialic acids
  publication-title: Adv. Carbohydr. Chem. Biochem.
– volume: vol. 5
  start-page: 33
  year: 2013
  end-page: 75
  ident: bb0020
  article-title: Polysialic acid
  publication-title: Sialobiology: Structure, Biosynthesis and Function
– volume: 58
  start-page: 2178
  year: 2018
  end-page: 2182
  ident: bb0185
  article-title: TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries
  publication-title: J. Chem. Inf. Model.
– volume: 49
  start-page: 498
  year: 2014
  end-page: 532
  ident: bb0030
  article-title: Polysialic acid: biosynthesis, novel functions and applications
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 16
  start-page: 1186
  year: 2009
  end-page: 1188
  ident: bb0075
  article-title: Structural insight into mammalian sialyltransferases
  publication-title: Nat. Struct. Mol. Biol.
– volume: 22
  start-page: 627
  year: 2015
  end-page: 635
  ident: bb0120
  article-title: Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 62
  start-page: 1014
  year: 2018
  end-page: 1021
  ident: bb0215
  article-title: Potent metabolic sialylation inhibitors based on C-5-modified fluorinated sialic acids
  publication-title: J. Med. Chem.
– start-page: 1
  year: 2023
  end-page: 20
  ident: bb0010
  article-title: The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases
  publication-title: Glycoconj. J.
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: bb0150
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 13
  start-page: 15610
  year: 2023
  ident: bb0145
  article-title: Salmonid polysialyltransferases to generate a variety of sialic acid polymers
  publication-title: Sci. Rep.
– volume: 1
  start-page: 19
  year: 2015
  end-page: 25
  ident: bb0165
  article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bb0160
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 246
  start-page: 3985
  year: 1971
  end-page: 3991
  ident: bb0140
  article-title: Studies on galactosyltransferase. Kinetic investigations with glucose as the galactosyl group acceptor
  publication-title: J. Biol. Chem.
– volume: 212
  year: 2020
  ident: bb0070
  article-title: Unliganded and CMP-Neu5Ac bound structures of human alpha-2,6-sialyltransferase ST6Gal I at high resolution
  publication-title: J. Struct. Biol.
– volume: 13
  start-page: 2320
  year: 2018
  end-page: 2328
  ident: bb0200
  article-title: Structural basis for binding of fluorescent CMP-Neu5Ac mimetics to enzymes of the human ST8Sia family
  publication-title: ACS Chem. Biol.
– volume: 32
  start-page: 2359
  year: 2011
  end-page: 2368
  ident: bb0175
  article-title: SwissParam: a fast force field generation tool for small organic molecules
  publication-title: J. Comput. Chem.
– volume: 83
  start-page: 1018
  year: 1978
  end-page: 1023
  ident: bb0040
  article-title: Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 14
  start-page: 156
  year: 2018
  end-page: 162
  ident: bb0115
  article-title: Expression system for structural and functional studies of human glycosylation enzymes
  publication-title: Nat. Chem. Biol.
– start-page: 297
  year: 2007
  end-page: 322
  ident: bb0045
  article-title: Sialic acids, Biochemistry of glycans: sialic acids in comprehensive glycoscience
– volume: 99
  start-page: 11736
  year: 2002
  end-page: 11741
  ident: bb0015
  article-title: Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 94
  start-page: 461
  year: 2014
  end-page: 518
  ident: bb0025
  article-title: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration
  publication-title: Physiol. Rev.
– volume: 13
  start-page: 15610
  year: 2023
  ident: 10.1016/j.bbagen.2024.130647_bb0145
  article-title: Salmonid polysialyltransferases to generate a variety of sialic acid polymers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-42095-0
– volume: 94
  start-page: 461
  year: 2014
  ident: 10.1016/j.bbagen.2024.130647_bb0025
  article-title: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00033.2013
– volume: 10
  start-page: 483
  year: 2009
  ident: 10.1016/j.bbagen.2024.130647_bb0065
  article-title: Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs
  publication-title: Curr. Drug Targets
  doi: 10.2174/138945009788488422
– volume: 212
  year: 2020
  ident: 10.1016/j.bbagen.2024.130647_bb0070
  article-title: Unliganded and CMP-Neu5Ac bound structures of human alpha-2,6-sialyltransferase ST6Gal I at high resolution
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2020.107628
– volume: 246
  start-page: 3985
  year: 1971
  ident: 10.1016/j.bbagen.2024.130647_bb0140
  article-title: Studies on galactosyltransferase. Kinetic investigations with glucose as the galactosyl group acceptor
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)62130-1
– volume: 9
  start-page: 646
  year: 2002
  ident: 10.1016/j.bbagen.2024.130647_bb0155
  article-title: Molecular dynamics simulations of biomolecules
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0902-646
– volume: 17
  start-page: 11
  year: 2016
  ident: 10.1016/j.bbagen.2024.130647_bb0205
  article-title: Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201500344
– volume: 62
  start-page: 1014
  year: 2018
  ident: 10.1016/j.bbagen.2024.130647_bb0215
  article-title: Potent metabolic sialylation inhibitors based on C-5-modified fluorinated sialic acids
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b01757
– volume: 69
  start-page: 1826
  year: 2013
  ident: 10.1016/j.bbagen.2024.130647_bb0105
  article-title: The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913015412
– volume: 6
  year: 2017
  ident: 10.1016/j.bbagen.2024.130647_bb0035
  article-title: Is polysialylated NCAM not only a regulator during brain development but also during the formation of other organs?
  publication-title: Biology (Basel)
– volume: 284
  start-page: 15505
  year: 2009
  ident: 10.1016/j.bbagen.2024.130647_bb0100
  article-title: Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809696200
– volume: 22
  start-page: 1243
  year: 2021
  ident: 10.1016/j.bbagen.2024.130647_bb0210
  article-title: Metabolic glycoengineering with azide-and alkene-modified hexosamines: quantification of sialic acid levels
  publication-title: ChemBioChem
  doi: 10.1002/cbic.202000715
– volume: 99
  start-page: 11736
  year: 2002
  ident: 10.1016/j.bbagen.2024.130647_bb0015
  article-title: Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.182257399
– volume: 13
  start-page: 2320
  year: 2018
  ident: 10.1016/j.bbagen.2024.130647_bb0200
  article-title: Structural basis for binding of fluorescent CMP-Neu5Ac mimetics to enzymes of the human ST8Sia family
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.8b00478
– start-page: 297
  year: 2007
  ident: 10.1016/j.bbagen.2024.130647_bb0045
– volume: 23
  start-page: 423
  year: 2006
  ident: 10.1016/j.bbagen.2024.130647_bb0095
  article-title: Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the a2,8-polysialyltransferases is essential for polysialylation
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-006-6356-5
– volume: 8
  start-page: 258
  year: 2008
  ident: 10.1016/j.bbagen.2024.130647_bb0090
  article-title: Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-8-258
– volume: 32
  start-page: 2359
  year: 2011
  ident: 10.1016/j.bbagen.2024.130647_bb0175
  article-title: SwissParam: a fast force field generation tool for small organic molecules
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21816
– volume: 16
  start-page: 108
  year: 2006
  ident: 10.1016/j.bbagen.2024.130647_bb0080
  article-title: Identification of linkage-specific sequence motifs in sialyltransferases
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj046
– ident: 10.1016/j.bbagen.2024.130647_bb0190
  doi: 10.1093/nar/gkab294
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.bbagen.2024.130647_bb0160
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 15
  start-page: 853
  year: 2019
  ident: 10.1016/j.bbagen.2024.130647_bb0130
  article-title: Emerging structural insights into glycosyltransferase-mediated synthesis of glycans
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0350-2
– volume: 49
  start-page: 498
  year: 2014
  ident: 10.1016/j.bbagen.2024.130647_bb0030
  article-title: Polysialic acid: biosynthesis, novel functions and applications
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2014.976606
– volume: 22
  start-page: 540
  year: 2012
  ident: 10.1016/j.bbagen.2024.130647_bb0125
  article-title: Recent structures, evolution and mechanisms of glycosyltransferases
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2012.06.007
– volume: 83
  start-page: 1018
  year: 1978
  ident: 10.1016/j.bbagen.2024.130647_bb0040
  article-title: Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(78)91497-3
– volume: 34
  start-page: 2135
  year: 2013
  ident: 10.1016/j.bbagen.2024.130647_bb0170
  article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23354
– volume: vol. 5
  start-page: 33
  year: 2013
  ident: 10.1016/j.bbagen.2024.130647_bb0020
  article-title: Polysialic acid
– volume: 40
  start-page: 131
  year: 1982
  ident: 10.1016/j.bbagen.2024.130647_bb0005
  article-title: Chemistry, metabolism, and biological functions of sialic acids
  publication-title: Adv. Carbohydr. Chem. Biochem.
  doi: 10.1016/S0065-2318(08)60109-2
– volume: 32
  start-page: 2319
  year: 2011
  ident: 10.1016/j.bbagen.2024.130647_bb0180
  article-title: MDAnalysis: a toolkit for the analysis of molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21787
– volume: 1253
  start-page: 16
  year: 2012
  ident: 10.1016/j.bbagen.2024.130647_bb0055
  article-title: Multifarious roles of sialic acids in immunity
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2012.06517.x
– start-page: 1
  year: 2023
  ident: 10.1016/j.bbagen.2024.130647_bb0010
  article-title: The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases
  publication-title: Glycoconj. J.
– volume: 16
  start-page: 29R
  year: 2006
  ident: 10.1016/j.bbagen.2024.130647_bb0135
  article-title: Structures and mechanisms of glycosyltransferases
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj016
– volume: 1
  start-page: 19
  year: 2015
  ident: 10.1016/j.bbagen.2024.130647_bb0165
  article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 19
  start-page: 507
  year: 2009
  ident: 10.1016/j.bbagen.2024.130647_bb0050
  article-title: Sialic acids as regulators of molecular and cellular interactions
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.06.003
– volume: 16
  start-page: 1186
  issue: 11
  year: 2009
  ident: 10.1016/j.bbagen.2024.130647_bb0075
  article-title: Structural insight into mammalian sialyltransferases
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1685
– volume: 58
  start-page: 2178
  year: 2018
  ident: 10.1016/j.bbagen.2024.130647_bb0185
  article-title: TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00512
– volume: 288
  start-page: 34680
  year: 2013
  ident: 10.1016/j.bbagen.2024.130647_bb0110
  article-title: Enzymatic basis for N-glycan sialylation: structure of rat α2,6-SIalyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation*
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.519041
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.bbagen.2024.130647_bb0150
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 22
  start-page: 627
  year: 2015
  ident: 10.1016/j.bbagen.2024.130647_bb0120
  article-title: Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3060
– volume: 14
  start-page: 156
  year: 2018
  ident: 10.1016/j.bbagen.2024.130647_bb0115
  article-title: Expression system for structural and functional studies of human glycosylation enzymes
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2539
– volume: 2
  start-page: 29
  year: 2010
  ident: 10.1016/j.bbagen.2024.130647_bb0085
  article-title: Comprehensive analysis of sialyltransferases in vertebrate genomes
  publication-title: Glycobiol. Insights
  doi: 10.4137/GBI.S3123
– volume: 7
  start-page: v
  year: 1997
  ident: 10.1016/j.bbagen.2024.130647_bb0195
  article-title: Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action
  publication-title: Glycobiology
  doi: 10.1093/glycob/7.2.161
– volume: 50
  start-page: D571
  year: 2022
  ident: 10.1016/j.bbagen.2024.130647_bb0060
  article-title: The carbohydrate-active enzyme database: functions and literature
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1045
SSID ssj0000595
Score 2.4493077
Snippet Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia...
BackgroundSialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130647
SubjectTerms Animals
Catalytic Domain
Chemical Sciences
Coregonus
fish
glycoconjugates
glycosyltransferases
Humans
Life Sciences
Modeling
Molecular dynamics
Molecular Dynamics Simulation
or physical chemistry
Polysialyltransferases
sialic acid
Sialic Acids - chemistry
Sialic Acids - metabolism
Sialyltransferases
Sialyltransferases - chemistry
Sialyltransferases - metabolism
Structure
Substrate Specificity
Sugar donor
Theoretical and
Title Molecular dynamics simulations shed light into the donor substrate specificity of vertebrate poly-alpha-2,8-sialyltransferases ST8Sia IV
URI https://dx.doi.org/10.1016/j.bbagen.2024.130647
https://www.ncbi.nlm.nih.gov/pubmed/38801837
https://www.proquest.com/docview/3061139207
https://www.proquest.com/docview/3153598591
https://hal.univ-lille.fr/hal-04625502
Volume 1868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILgvJaHpVBHDGbdRw7Pq5WVFugvWyLerNsx1G3WpLVJkXaC2d-NjNxsggJqMQtcew4yUxmPssz8xHyVtnU2iJTzBdcMZG7lGntNPO5nEiZqzyRmI18cirn5-LjRXaxR2ZDLgyGVfa2P9r0zlr3LeP-a47Xy-V4gZt6ACcyjIJMdFcTVAiFWv7--68wD4APWdxJEAx7D-lzXYyXc_DTYhVULpAWWSLJyp_d061LjJP8GwjtnNHRA3K_R5F0Gh_0IdkL1QG5E3kltwfk7mygcXtEfpwMBLi0iOzzDW2WX3vWLji-DAVd4RKdLqu2pgAIaVFX9YY2YFO62rUU0zExpAgQO61LihTOuN8MV9b1asu6fF3G3-WsAW3ertoODIcNOMiGLs7yxdLS4y-PyfnRh7PZnPX0C8yDk2pZEFw4XpZOaWe593kAeGStFkHqwiuVqmQSCmhTNnBtAbskaQEjg0tC5rxOn5D9qq7CM0JLAad5KVPupQiJdtwneSFLC_hQuDIZkXT46sb3tcmRImNlhiC0KxNlZVBWJspqRNhu1DrW5rihvxoEan7TMQPu44aRb0D-u0mwJPd8-tlgGyb3wiqPf5uMyOtBPQzIGDdebBXq68bAPSaAtHmi_tEHXE-msZrgiDyNurWbDwv2gOlVz__7BV6Qe3gWIxdfkv12cx1eAZpq3WH3uxyS29PjT_PTn1_kHgg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGENouCAZs5dMgjpimjmPHx6li6qDdpR3azbIdRysqSdVkSL1w5s_mvXwUIQGTuCX-iJM8-72f5ffej5C3ysbWZoliPuOKidTFTGunmU_lSMpUpZHEaOTZhZxcio9XydUeGfexMOhW2en-Vqc32rorGXZ_c7heLodzPNQDOJGgF2SkMSfoXQHLF2kM3n__5ecB-CFpjxIEw-Z9_Fzj5OUcrFpMg8oF8iJLZFn5s326c42Okn9DoY01OntA7ncwkp62b_qQ7IXiiNxriSW3R-Rg3PO4PSI_Zj0DLs1a-vmKVsuvHW0XXF-HjK5wj06XRV1SQIQ0K4tyQytQKk3yWorxmOhTBJCdljlFDmc8cIaadbnasiZgl_F3KatgOm9XdYOGwwYsZEXni3S-tPT882NyefZhMZ6wjn-BebBSNQuCC8fz3CntLPc-DYCPrNUiSJ15pWIVjUIGZcoGri2AlyjOoGdwUUic1_ETsl-URTghNBdwm-Yy5l6KEGnHfZRmMrcAEIXLowGJ-79ufJecHDkyVqb3QvtiWlkZlJVpZTUgbNdr3SbnuKW96gVqfptkBuzHLT3fgPx3g2BO7snp1GAZRvfCNo9_Gw3I6356GJAxnrzYIpQ3lYFnjABq80j9ow3YnkRjOsEBOW7n1m48zNgDulc9_e8PeEUOJovZ1EzPLz49I4dY07oxPif79eYmvABoVbuXzdL5CbPsH5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+shed+light+into+the+donor+substrate+specificity+of+vertebrate+poly-alpha-2%2C8-sialyltransferases+ST8Sia+IV&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Teppa%2C+Roxana+Elin&rft.au=Galuska%2C+Sebastian+Peter&rft.au=Harduin-Lepers%2C+Anne&rft.date=2024-08-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1868&rft.issue=8&rft.spage=130647&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130647&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon