Molecular dynamics simulations shed light into the donor substrate specificity of vertebrate poly-alpha-2,8-sialyltransferases ST8Sia IV
Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms und...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1868; no. 8; p. 130647 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2024
Elsevier |
Series | Biochimica et Biophysica Acta (BBA) - General Subjects |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.
Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.
Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.
This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
•Human and salmonid ST8Sia IV have different sugar-nucleotide donor specificity.•MD simulations highlight significant differences between highly mobile regions of human and fish ST8Sia IV.•Human ST8Sia IV shows a narrow specificity towards CMP-Neu5Ac donor substrate.•Fish ST8Sia IV forms stable complexes with CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn.•Family motif “a” contains key residues to stabilize different Sia parts of the donor. |
---|---|
AbstractList | BackgroundSialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.MethodsComputational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.ResultsOur MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.General significanceThis work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. •Human and salmonid ST8Sia IV have different sugar-nucleotide donor specificity.•MD simulations highlight significant differences between highly mobile regions of human and fish ST8Sia IV.•Human ST8Sia IV shows a narrow specificity towards CMP-Neu5Ac donor substrate.•Fish ST8Sia IV forms stable complexes with CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn.•Family motif “a” contains key residues to stabilize different Sia parts of the donor. Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.BACKGROUNDSialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.METHODSComputational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.RESULTSOur MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors.This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.GENERAL SIGNIFICANCEThis work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases. |
ArticleNumber | 130647 |
Author | Harduin-Lepers, Anne Galuska, Sebastian Peter Teppa, Roxana Elin |
Author_xml | – sequence: 1 givenname: Roxana Elin surname: Teppa fullname: Teppa, Roxana Elin email: elin.teppa@univ-lille.fr organization: Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France – sequence: 2 givenname: Sebastian Peter surname: Galuska fullname: Galuska, Sebastian Peter organization: Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany – sequence: 3 givenname: Anne surname: Harduin-Lepers fullname: Harduin-Lepers, Anne email: anne.harduin-lepers@univ-lille.fr organization: Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38801837$$D View this record in MEDLINE/PubMed https://hal.univ-lille.fr/hal-04625502$$DView record in HAL |
BookMark | eNqNks1u1DAUhS1URKeFN0DIS5DI4J_ESVggVRXQSoNYtLC1HOem8ciJg-2MlDfgsfE0LQsWgDe2rr9zdHXvOUMnoxsBoZeUbCmh4t1-2zTqDsYtIyzfUk5EXj5BG1qVLKsIESdoQzjJs5yK4hSdhbAn6RR18Qyd8qoitOLlBv384izo2SqP22VUg9EBBzOkQjRuTO8eWmzNXR-xGaPDsQfcutF5HOYmRK8i4DCBNp3RJi7YdfgAPkJz_zM5u2TKTr3K2NsqC0bZxSbRGDrwKkDAN7fVjVH4-vtz9LRTNsCLh_scffv08fbyKtt9_Xx9ebHLdM7qmEHO8oZ1XVPWjWJaV8AKoVSdg6hbXZa8JBTaVCsVsFoRIQhvkxIaAkWja36O3qy-vbJy8mZQfpFOGXl1sZPHGskFKwrCDjSxr1d28u7HDCHKwQQN1qoR3BwkpwUv6qqo_wMlglJeM1Im9NUDOjcDtL-beFxKAt6vgPYuBA-dTKO930canbGSEnlMgNzLNQHymAC5JiCJ8z_Ej_7_kH1YZZBmfzDgZdAGRg2t8aCjbJ35u8EvTePMqA |
CitedBy_id | crossref_primary_10_1002_cbic_202400539 crossref_primary_10_1016_j_bbagen_2024_130750 |
Cites_doi | 10.1038/s41598-023-42095-0 10.1152/physrev.00033.2013 10.2174/138945009788488422 10.1016/j.jsb.2020.107628 10.1016/S0021-9258(18)62130-1 10.1038/nsb0902-646 10.1002/cbic.201500344 10.1021/acs.jmedchem.8b01757 10.1107/S0907444913015412 10.1074/jbc.M809696200 10.1002/cbic.202000715 10.1073/pnas.182257399 10.1021/acschembio.8b00478 10.1007/s10719-006-6356-5 10.1186/1471-2148-8-258 10.1002/jcc.21816 10.1093/glycob/cwj046 10.1093/nar/gkab294 10.1002/jcc.20084 10.1038/s41589-019-0350-2 10.3109/10409238.2014.976606 10.1016/j.sbi.2012.06.007 10.1016/0006-291X(78)91497-3 10.1002/jcc.23354 10.1016/S0065-2318(08)60109-2 10.1002/jcc.21787 10.1111/j.1749-6632.2012.06517.x 10.1093/glycob/cwj016 10.1016/j.softx.2015.06.001 10.1016/j.sbi.2009.06.003 10.1038/nsmb.1685 10.1021/acs.jcim.8b00512 10.1074/jbc.M113.519041 10.1038/s41586-021-03819-2 10.1038/nsmb.3060 10.1038/nchembio.2539 10.4137/GBI.S3123 10.1093/glycob/7.2.161 10.1093/nar/gkab1045 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.bbagen.2024.130647 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | oai_HAL_hal_04625502v1 38801837 10_1016_j_bbagen_2024_130647 S0304416524000904 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c429t-e424b2ffb79ba2cc8e256aa94e69dc773701ed2567ae29a06603d429eb0e5bc93 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri May 23 06:27:00 EDT 2025 Wed Jul 02 03:21:47 EDT 2025 Thu Aug 07 15:19:26 EDT 2025 Mon Jul 21 05:41:19 EDT 2025 Tue Jul 01 00:22:19 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jun 18 08:52:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Neu5Ac RMSF Molecular dynamics RMSD Neu5Gc Modeling STs Kdn Sialyltransferases Sugar donor Rg Substrate specificity MD Polysialyltransferases Structure |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-e424b2ffb79ba2cc8e256aa94e69dc773701ed2567ae29a06603d429eb0e5bc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1233-3799 |
PMID | 38801837 |
PQID | 3061139207 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_04625502v1 proquest_miscellaneous_3153598591 proquest_miscellaneous_3061139207 pubmed_primary_38801837 crossref_citationtrail_10_1016_j_bbagen_2024_130647 crossref_primary_10_1016_j_bbagen_2024_130647 elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 20240801 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationSeriesTitle | Biochimica et Biophysica Acta (BBA) - General Subjects |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Moremen, Ramiah, Stuart, Steel, Meng, Forouhar, Moniz, Gahlay, Gao, Chapla, Wang, Yang, Prabhakar, Johnson, Rosa, Geisler, Nairn, Seetharaman, Wu, Tong, Gilbert, LaBaer, Jarvis (bb0115) 2018; 14 Dold, Wittmann (bb0210) 2021; 22 Huang, MacKerell (bb0170) 2013; 34 Schnaar, Gerardy-Schahn, Hildebrandt (bb0025) 2014; 94 Harrus, Harduin-Lepers, Glumoff (bb0070) 2020; 212 Schauer (bb0050) 2009; 19 Chou, Hayakawa, Diaz, Krings, Indriati, Leakey, Paabo, Satta, Takahata, Varki (bb0015) 2002; 99 Meng, Forouhar, Thieker, Gao, Ramiah, Moniz, Xiang, Seetharaman, Milaninia, Su, Bridger, Veillon, Azadi, Kornhaber, Wells, Montelione, Woods, Tong, Moremen (bb0110) 2013; 288 Rao, Rich, Rakic, Buddai, Schwartz, Johnson, Bowe, Wakarchuk, Defrees, Withers, Strynadka (bb0075) 2009; 16 Moremen, Haltiwanger (bb0130) 2019; 15 Morrison, Ebner (bb0140) 1971; 246 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Zidek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler, Back, Petersen, Reiman, Clancy, Zielinski, Steinegger, Pacholska, Berghammer, Bodenstein, Silver, Vinyals, Senior, Kavukcuoglu, Kohli, Hassabis (bb0150) 2021; 596 M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA, Nucleic Acids Res., 49 (2021) W530-W534. Inoue, Iwasaki (bb0040) 1978; 83 Datta (bb0065) 2009; 10 Zoete, Cuendet, Grosdidier, Michielin (bb0175) 2011; 32 Drula, Garron, Dogan, Lombard, Henrissat, Terrapon (bb0060) 2022; 50 Volkers, Worrall, Kwan, Yu, Baumann, Lameignere, Wasney, Scott, Wakarchuk, Foster, Withers, Strynadka (bb0120) 2015; 22 Galuska, Lutteke, Galuska (bb0035) 2017; 6 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bb0160) 2004; 25 Kuhn, Benz, Greif, Engel, Sobek, Rudolph (bb0105) 2013; 69 Schauer (bb0005) 1982; 40 Cheng, Xie, Dong, Chen (bb0205) 2016; 17 Decloquement, Venuto, Cogez, Steinmetz, Schulz, Lion, Noel, Rigolot, Teppa, Biot, Rebl, Galuska, Harduin-Lepers (bb0145) 2023; 13 Volkers, Lizak, Niesser, Rosell, Preidl, Gnanapragassam, Horstkorte, Rademann, Strynadka (bb0200) 2018; 13 Sato (bb0020) 2013; vol. 5 Michaud-Agrawal, Denning, Woolf, Beckstein (bb0180) 2011; 32 Breton, Fournel-Gigleux, Palcic (bb0125) 2012; 22 Tubiana, Carvaillo, Boulard, Bressanelli (bb0185) 2018; 58 Nakata, Zhang, Troy (bb0095) 2006; 23 Karplus, McCammon (bb0155) 2002; 9 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0165) 2015; 1 Miyagi (bb0045) 2007 Harduin-Lepers (bb0085) 2010; 2 Patel, Balaji (bb0080) 2006; 16 Heise, Pijnenborg, Büll, van Hilten, Kers-Rebel, Balneger, Elferink, Adema, Boltje (bb0215) 2018; 62 Foley, Swartzentruber, Colley (bb0100) 2009; 284 Geremia, Harduin-Lepers, Delannoy (bb0195) 1997; 7 Varki, Gagneux (bb0055) 2012; 1253 Harduin-Lepers (bb0010) 2023 Harduin-Lepers, Petit, Mollicone, Delannoy, Petit, Oriol (bb0090) 2008; 8 Breton, Snajdrova, Jeanneau, Koca, Imberty (bb0135) 2006; 16 Colley, Kitajima, Sato (bb0030) 2014; 49 Patel (10.1016/j.bbagen.2024.130647_bb0080) 2006; 16 Jumper (10.1016/j.bbagen.2024.130647_bb0150) 2021; 596 Schnaar (10.1016/j.bbagen.2024.130647_bb0025) 2014; 94 Inoue (10.1016/j.bbagen.2024.130647_bb0040) 1978; 83 Karplus (10.1016/j.bbagen.2024.130647_bb0155) 2002; 9 Galuska (10.1016/j.bbagen.2024.130647_bb0035) 2017; 6 Chou (10.1016/j.bbagen.2024.130647_bb0015) 2002; 99 Schauer (10.1016/j.bbagen.2024.130647_bb0050) 2009; 19 Harduin-Lepers (10.1016/j.bbagen.2024.130647_bb0010) 2023 Nakata (10.1016/j.bbagen.2024.130647_bb0095) 2006; 23 Volkers (10.1016/j.bbagen.2024.130647_bb0200) 2018; 13 Huang (10.1016/j.bbagen.2024.130647_bb0170) 2013; 34 Breton (10.1016/j.bbagen.2024.130647_bb0125) 2012; 22 Datta (10.1016/j.bbagen.2024.130647_bb0065) 2009; 10 Michaud-Agrawal (10.1016/j.bbagen.2024.130647_bb0180) 2011; 32 Volkers (10.1016/j.bbagen.2024.130647_bb0120) 2015; 22 Morrison (10.1016/j.bbagen.2024.130647_bb0140) 1971; 246 Zoete (10.1016/j.bbagen.2024.130647_bb0175) 2011; 32 Colley (10.1016/j.bbagen.2024.130647_bb0030) 2014; 49 Drula (10.1016/j.bbagen.2024.130647_bb0060) 2022; 50 Varki (10.1016/j.bbagen.2024.130647_bb0055) 2012; 1253 Tubiana (10.1016/j.bbagen.2024.130647_bb0185) 2018; 58 Sato (10.1016/j.bbagen.2024.130647_bb0020) 2013; vol. 5 Harduin-Lepers (10.1016/j.bbagen.2024.130647_bb0090) 2008; 8 Meng (10.1016/j.bbagen.2024.130647_bb0110) 2013; 288 Harrus (10.1016/j.bbagen.2024.130647_bb0070) 2020; 212 Cheng (10.1016/j.bbagen.2024.130647_bb0205) 2016; 17 Abraham (10.1016/j.bbagen.2024.130647_bb0165) 2015; 1 Harduin-Lepers (10.1016/j.bbagen.2024.130647_bb0085) 2010; 2 Geremia (10.1016/j.bbagen.2024.130647_bb0195) 1997; 7 Decloquement (10.1016/j.bbagen.2024.130647_bb0145) 2023; 13 Rao (10.1016/j.bbagen.2024.130647_bb0075) 2009; 16 10.1016/j.bbagen.2024.130647_bb0190 Pettersen (10.1016/j.bbagen.2024.130647_bb0160) 2004; 25 Kuhn (10.1016/j.bbagen.2024.130647_bb0105) 2013; 69 Foley (10.1016/j.bbagen.2024.130647_bb0100) 2009; 284 Schauer (10.1016/j.bbagen.2024.130647_bb0005) 1982; 40 Moremen (10.1016/j.bbagen.2024.130647_bb0130) 2019; 15 Moremen (10.1016/j.bbagen.2024.130647_bb0115) 2018; 14 Miyagi (10.1016/j.bbagen.2024.130647_bb0045) 2007 Breton (10.1016/j.bbagen.2024.130647_bb0135) 2006; 16 Heise (10.1016/j.bbagen.2024.130647_bb0215) 2018; 62 Dold (10.1016/j.bbagen.2024.130647_bb0210) 2021; 22 |
References_xml | – volume: 69 start-page: 1826 year: 2013 end-page: 1838 ident: bb0105 article-title: The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 6 year: 2017 ident: bb0035 article-title: Is polysialylated NCAM not only a regulator during brain development but also during the formation of other organs? publication-title: Biology (Basel) – volume: 22 start-page: 1243 year: 2021 end-page: 1251 ident: bb0210 article-title: Metabolic glycoengineering with azide-and alkene-modified hexosamines: quantification of sialic acid levels publication-title: ChemBioChem – volume: 7 start-page: v year: 1997 end-page: vii ident: bb0195 article-title: Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action publication-title: Glycobiology – volume: 1253 start-page: 16 year: 2012 end-page: 36 ident: bb0055 article-title: Multifarious roles of sialic acids in immunity publication-title: Ann. N. Y. Acad. Sci. – volume: 19 start-page: 507 year: 2009 end-page: 514 ident: bb0050 article-title: Sialic acids as regulators of molecular and cellular interactions publication-title: Curr. Opin. Struct. Biol. – volume: 15 start-page: 853 year: 2019 end-page: 864 ident: bb0130 article-title: Emerging structural insights into glycosyltransferase-mediated synthesis of glycans publication-title: Nat. Chem. Biol. – reference: M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA, Nucleic Acids Res., 49 (2021) W530-W534. – volume: 8 start-page: 258 year: 2008 ident: bb0090 article-title: Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes publication-title: BMC Evol. Biol. – volume: 50 start-page: D571 year: 2022 end-page: D577 ident: bb0060 article-title: The carbohydrate-active enzyme database: functions and literature publication-title: Nucleic Acids Res. – volume: 16 start-page: 108 year: 2006 end-page: 116 ident: bb0080 article-title: Identification of linkage-specific sequence motifs in sialyltransferases publication-title: Glycobiology – volume: 32 start-page: 2319 year: 2011 end-page: 2327 ident: bb0180 article-title: MDAnalysis: a toolkit for the analysis of molecular dynamics simulations publication-title: J. Comput. Chem. – volume: 9 start-page: 646 year: 2002 end-page: 652 ident: bb0155 article-title: Molecular dynamics simulations of biomolecules publication-title: Nat. Struct. Biol. – volume: 10 start-page: 483 year: 2009 end-page: 498 ident: bb0065 article-title: Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs publication-title: Curr. Drug Targets – volume: 22 start-page: 540 year: 2012 end-page: 549 ident: bb0125 article-title: Recent structures, evolution and mechanisms of glycosyltransferases publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: 29R year: 2006 end-page: 37R ident: bb0135 article-title: Structures and mechanisms of glycosyltransferases publication-title: Glycobiology – volume: 2 start-page: 29 year: 2010 end-page: 61 ident: bb0085 article-title: Comprehensive analysis of sialyltransferases in vertebrate genomes publication-title: Glycobiol. Insights – volume: 284 start-page: 15505 year: 2009 end-page: 15516 ident: bb0100 article-title: Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM publication-title: J. Biol. Chem. – volume: 288 start-page: 34680 year: 2013 end-page: 34698 ident: bb0110 article-title: Enzymatic basis for N-glycan sialylation: structure of rat α2,6-SIalyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation* publication-title: J. Biol. Chem. – volume: 23 start-page: 423 year: 2006 end-page: 436 ident: bb0095 article-title: Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the a2,8-polysialyltransferases is essential for polysialylation publication-title: Glycoconj. J. – volume: 17 start-page: 11 year: 2016 end-page: 27 ident: bb0205 article-title: Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances publication-title: ChemBioChem – volume: 34 start-page: 2135 year: 2013 end-page: 2145 ident: bb0170 article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data publication-title: J. Comput. Chem. – volume: 40 start-page: 131 year: 1982 end-page: 234 ident: bb0005 article-title: Chemistry, metabolism, and biological functions of sialic acids publication-title: Adv. Carbohydr. Chem. Biochem. – volume: vol. 5 start-page: 33 year: 2013 end-page: 75 ident: bb0020 article-title: Polysialic acid publication-title: Sialobiology: Structure, Biosynthesis and Function – volume: 58 start-page: 2178 year: 2018 end-page: 2182 ident: bb0185 article-title: TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries publication-title: J. Chem. Inf. Model. – volume: 49 start-page: 498 year: 2014 end-page: 532 ident: bb0030 article-title: Polysialic acid: biosynthesis, novel functions and applications publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 16 start-page: 1186 year: 2009 end-page: 1188 ident: bb0075 article-title: Structural insight into mammalian sialyltransferases publication-title: Nat. Struct. Mol. Biol. – volume: 22 start-page: 627 year: 2015 end-page: 635 ident: bb0120 article-title: Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation publication-title: Nat. Struct. Mol. Biol. – volume: 62 start-page: 1014 year: 2018 end-page: 1021 ident: bb0215 article-title: Potent metabolic sialylation inhibitors based on C-5-modified fluorinated sialic acids publication-title: J. Med. Chem. – start-page: 1 year: 2023 end-page: 20 ident: bb0010 article-title: The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases publication-title: Glycoconj. J. – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: bb0150 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 13 start-page: 15610 year: 2023 ident: bb0145 article-title: Salmonid polysialyltransferases to generate a variety of sialic acid polymers publication-title: Sci. Rep. – volume: 1 start-page: 19 year: 2015 end-page: 25 ident: bb0165 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bb0160 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 246 start-page: 3985 year: 1971 end-page: 3991 ident: bb0140 article-title: Studies on galactosyltransferase. Kinetic investigations with glucose as the galactosyl group acceptor publication-title: J. Biol. Chem. – volume: 212 year: 2020 ident: bb0070 article-title: Unliganded and CMP-Neu5Ac bound structures of human alpha-2,6-sialyltransferase ST6Gal I at high resolution publication-title: J. Struct. Biol. – volume: 13 start-page: 2320 year: 2018 end-page: 2328 ident: bb0200 article-title: Structural basis for binding of fluorescent CMP-Neu5Ac mimetics to enzymes of the human ST8Sia family publication-title: ACS Chem. Biol. – volume: 32 start-page: 2359 year: 2011 end-page: 2368 ident: bb0175 article-title: SwissParam: a fast force field generation tool for small organic molecules publication-title: J. Comput. Chem. – volume: 83 start-page: 1018 year: 1978 end-page: 1023 ident: bb0040 article-title: Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains publication-title: Biochem. Biophys. Res. Commun. – volume: 14 start-page: 156 year: 2018 end-page: 162 ident: bb0115 article-title: Expression system for structural and functional studies of human glycosylation enzymes publication-title: Nat. Chem. Biol. – start-page: 297 year: 2007 end-page: 322 ident: bb0045 article-title: Sialic acids, Biochemistry of glycans: sialic acids in comprehensive glycoscience – volume: 99 start-page: 11736 year: 2002 end-page: 11741 ident: bb0015 article-title: Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 94 start-page: 461 year: 2014 end-page: 518 ident: bb0025 article-title: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration publication-title: Physiol. Rev. – volume: 13 start-page: 15610 year: 2023 ident: 10.1016/j.bbagen.2024.130647_bb0145 article-title: Salmonid polysialyltransferases to generate a variety of sialic acid polymers publication-title: Sci. Rep. doi: 10.1038/s41598-023-42095-0 – volume: 94 start-page: 461 year: 2014 ident: 10.1016/j.bbagen.2024.130647_bb0025 article-title: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration publication-title: Physiol. Rev. doi: 10.1152/physrev.00033.2013 – volume: 10 start-page: 483 year: 2009 ident: 10.1016/j.bbagen.2024.130647_bb0065 article-title: Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs publication-title: Curr. Drug Targets doi: 10.2174/138945009788488422 – volume: 212 year: 2020 ident: 10.1016/j.bbagen.2024.130647_bb0070 article-title: Unliganded and CMP-Neu5Ac bound structures of human alpha-2,6-sialyltransferase ST6Gal I at high resolution publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2020.107628 – volume: 246 start-page: 3985 year: 1971 ident: 10.1016/j.bbagen.2024.130647_bb0140 article-title: Studies on galactosyltransferase. Kinetic investigations with glucose as the galactosyl group acceptor publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)62130-1 – volume: 9 start-page: 646 year: 2002 ident: 10.1016/j.bbagen.2024.130647_bb0155 article-title: Molecular dynamics simulations of biomolecules publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0902-646 – volume: 17 start-page: 11 year: 2016 ident: 10.1016/j.bbagen.2024.130647_bb0205 article-title: Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances publication-title: ChemBioChem doi: 10.1002/cbic.201500344 – volume: 62 start-page: 1014 year: 2018 ident: 10.1016/j.bbagen.2024.130647_bb0215 article-title: Potent metabolic sialylation inhibitors based on C-5-modified fluorinated sialic acids publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b01757 – volume: 69 start-page: 1826 year: 2013 ident: 10.1016/j.bbagen.2024.130647_bb0105 article-title: The structure of human alpha-2,6-sialyltransferase reveals the binding mode of complex glycans publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913015412 – volume: 6 year: 2017 ident: 10.1016/j.bbagen.2024.130647_bb0035 article-title: Is polysialylated NCAM not only a regulator during brain development but also during the formation of other organs? publication-title: Biology (Basel) – volume: 284 start-page: 15505 year: 2009 ident: 10.1016/j.bbagen.2024.130647_bb0100 article-title: Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809696200 – volume: 22 start-page: 1243 year: 2021 ident: 10.1016/j.bbagen.2024.130647_bb0210 article-title: Metabolic glycoengineering with azide-and alkene-modified hexosamines: quantification of sialic acid levels publication-title: ChemBioChem doi: 10.1002/cbic.202000715 – volume: 99 start-page: 11736 year: 2002 ident: 10.1016/j.bbagen.2024.130647_bb0015 article-title: Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.182257399 – volume: 13 start-page: 2320 year: 2018 ident: 10.1016/j.bbagen.2024.130647_bb0200 article-title: Structural basis for binding of fluorescent CMP-Neu5Ac mimetics to enzymes of the human ST8Sia family publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00478 – start-page: 297 year: 2007 ident: 10.1016/j.bbagen.2024.130647_bb0045 – volume: 23 start-page: 423 year: 2006 ident: 10.1016/j.bbagen.2024.130647_bb0095 article-title: Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the a2,8-polysialyltransferases is essential for polysialylation publication-title: Glycoconj. J. doi: 10.1007/s10719-006-6356-5 – volume: 8 start-page: 258 year: 2008 ident: 10.1016/j.bbagen.2024.130647_bb0090 article-title: Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-8-258 – volume: 32 start-page: 2359 year: 2011 ident: 10.1016/j.bbagen.2024.130647_bb0175 article-title: SwissParam: a fast force field generation tool for small organic molecules publication-title: J. Comput. Chem. doi: 10.1002/jcc.21816 – volume: 16 start-page: 108 year: 2006 ident: 10.1016/j.bbagen.2024.130647_bb0080 article-title: Identification of linkage-specific sequence motifs in sialyltransferases publication-title: Glycobiology doi: 10.1093/glycob/cwj046 – ident: 10.1016/j.bbagen.2024.130647_bb0190 doi: 10.1093/nar/gkab294 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.bbagen.2024.130647_bb0160 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 15 start-page: 853 year: 2019 ident: 10.1016/j.bbagen.2024.130647_bb0130 article-title: Emerging structural insights into glycosyltransferase-mediated synthesis of glycans publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0350-2 – volume: 49 start-page: 498 year: 2014 ident: 10.1016/j.bbagen.2024.130647_bb0030 article-title: Polysialic acid: biosynthesis, novel functions and applications publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2014.976606 – volume: 22 start-page: 540 year: 2012 ident: 10.1016/j.bbagen.2024.130647_bb0125 article-title: Recent structures, evolution and mechanisms of glycosyltransferases publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2012.06.007 – volume: 83 start-page: 1018 year: 1978 ident: 10.1016/j.bbagen.2024.130647_bb0040 article-title: Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(78)91497-3 – volume: 34 start-page: 2135 year: 2013 ident: 10.1016/j.bbagen.2024.130647_bb0170 article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data publication-title: J. Comput. Chem. doi: 10.1002/jcc.23354 – volume: vol. 5 start-page: 33 year: 2013 ident: 10.1016/j.bbagen.2024.130647_bb0020 article-title: Polysialic acid – volume: 40 start-page: 131 year: 1982 ident: 10.1016/j.bbagen.2024.130647_bb0005 article-title: Chemistry, metabolism, and biological functions of sialic acids publication-title: Adv. Carbohydr. Chem. Biochem. doi: 10.1016/S0065-2318(08)60109-2 – volume: 32 start-page: 2319 year: 2011 ident: 10.1016/j.bbagen.2024.130647_bb0180 article-title: MDAnalysis: a toolkit for the analysis of molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21787 – volume: 1253 start-page: 16 year: 2012 ident: 10.1016/j.bbagen.2024.130647_bb0055 article-title: Multifarious roles of sialic acids in immunity publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2012.06517.x – start-page: 1 year: 2023 ident: 10.1016/j.bbagen.2024.130647_bb0010 article-title: The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases publication-title: Glycoconj. J. – volume: 16 start-page: 29R year: 2006 ident: 10.1016/j.bbagen.2024.130647_bb0135 article-title: Structures and mechanisms of glycosyltransferases publication-title: Glycobiology doi: 10.1093/glycob/cwj016 – volume: 1 start-page: 19 year: 2015 ident: 10.1016/j.bbagen.2024.130647_bb0165 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 19 start-page: 507 year: 2009 ident: 10.1016/j.bbagen.2024.130647_bb0050 article-title: Sialic acids as regulators of molecular and cellular interactions publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.06.003 – volume: 16 start-page: 1186 issue: 11 year: 2009 ident: 10.1016/j.bbagen.2024.130647_bb0075 article-title: Structural insight into mammalian sialyltransferases publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1685 – volume: 58 start-page: 2178 year: 2018 ident: 10.1016/j.bbagen.2024.130647_bb0185 article-title: TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00512 – volume: 288 start-page: 34680 year: 2013 ident: 10.1016/j.bbagen.2024.130647_bb0110 article-title: Enzymatic basis for N-glycan sialylation: structure of rat α2,6-SIalyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation* publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.519041 – volume: 596 start-page: 583 year: 2021 ident: 10.1016/j.bbagen.2024.130647_bb0150 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 22 start-page: 627 year: 2015 ident: 10.1016/j.bbagen.2024.130647_bb0120 article-title: Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3060 – volume: 14 start-page: 156 year: 2018 ident: 10.1016/j.bbagen.2024.130647_bb0115 article-title: Expression system for structural and functional studies of human glycosylation enzymes publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2539 – volume: 2 start-page: 29 year: 2010 ident: 10.1016/j.bbagen.2024.130647_bb0085 article-title: Comprehensive analysis of sialyltransferases in vertebrate genomes publication-title: Glycobiol. Insights doi: 10.4137/GBI.S3123 – volume: 7 start-page: v year: 1997 ident: 10.1016/j.bbagen.2024.130647_bb0195 article-title: Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action publication-title: Glycobiology doi: 10.1093/glycob/7.2.161 – volume: 50 start-page: D571 year: 2022 ident: 10.1016/j.bbagen.2024.130647_bb0060 article-title: The carbohydrate-active enzyme database: functions and literature publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1045 |
SSID | ssj0000595 |
Score | 2.4493077 |
Snippet | Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia... BackgroundSialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130647 |
SubjectTerms | Animals Catalytic Domain Chemical Sciences Coregonus fish glycoconjugates glycosyltransferases Humans Life Sciences Modeling Molecular dynamics Molecular Dynamics Simulation or physical chemistry Polysialyltransferases sialic acid Sialic Acids - chemistry Sialic Acids - metabolism Sialyltransferases Sialyltransferases - chemistry Sialyltransferases - metabolism Structure Substrate Specificity Sugar donor Theoretical and |
Title | Molecular dynamics simulations shed light into the donor substrate specificity of vertebrate poly-alpha-2,8-sialyltransferases ST8Sia IV |
URI | https://dx.doi.org/10.1016/j.bbagen.2024.130647 https://www.ncbi.nlm.nih.gov/pubmed/38801837 https://www.proquest.com/docview/3061139207 https://www.proquest.com/docview/3153598591 https://hal.univ-lille.fr/hal-04625502 |
Volume | 1868 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILgvJaHpVBHDGbdRw7Pq5WVFugvWyLerNsx1G3WpLVJkXaC2d-NjNxsggJqMQtcew4yUxmPssz8xHyVtnU2iJTzBdcMZG7lGntNPO5nEiZqzyRmI18cirn5-LjRXaxR2ZDLgyGVfa2P9r0zlr3LeP-a47Xy-V4gZt6ACcyjIJMdFcTVAiFWv7--68wD4APWdxJEAx7D-lzXYyXc_DTYhVULpAWWSLJyp_d061LjJP8GwjtnNHRA3K_R5F0Gh_0IdkL1QG5E3kltwfk7mygcXtEfpwMBLi0iOzzDW2WX3vWLji-DAVd4RKdLqu2pgAIaVFX9YY2YFO62rUU0zExpAgQO61LihTOuN8MV9b1asu6fF3G3-WsAW3ertoODIcNOMiGLs7yxdLS4y-PyfnRh7PZnPX0C8yDk2pZEFw4XpZOaWe593kAeGStFkHqwiuVqmQSCmhTNnBtAbskaQEjg0tC5rxOn5D9qq7CM0JLAad5KVPupQiJdtwneSFLC_hQuDIZkXT46sb3tcmRImNlhiC0KxNlZVBWJspqRNhu1DrW5rihvxoEan7TMQPu44aRb0D-u0mwJPd8-tlgGyb3wiqPf5uMyOtBPQzIGDdebBXq68bAPSaAtHmi_tEHXE-msZrgiDyNurWbDwv2gOlVz__7BV6Qe3gWIxdfkv12cx1eAZpq3WH3uxyS29PjT_PTn1_kHgg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGENouCAZs5dMgjpimjmPHx6li6qDdpR3azbIdRysqSdVkSL1w5s_mvXwUIQGTuCX-iJM8-72f5ffej5C3ysbWZoliPuOKidTFTGunmU_lSMpUpZHEaOTZhZxcio9XydUeGfexMOhW2en-Vqc32rorGXZ_c7heLodzPNQDOJGgF2SkMSfoXQHLF2kM3n__5ecB-CFpjxIEw-Z9_Fzj5OUcrFpMg8oF8iJLZFn5s326c42Okn9DoY01OntA7ncwkp62b_qQ7IXiiNxriSW3R-Rg3PO4PSI_Zj0DLs1a-vmKVsuvHW0XXF-HjK5wj06XRV1SQIQ0K4tyQytQKk3yWorxmOhTBJCdljlFDmc8cIaadbnasiZgl_F3KatgOm9XdYOGwwYsZEXni3S-tPT882NyefZhMZ6wjn-BebBSNQuCC8fz3CntLPc-DYCPrNUiSJ15pWIVjUIGZcoGri2AlyjOoGdwUUic1_ETsl-URTghNBdwm-Yy5l6KEGnHfZRmMrcAEIXLowGJ-79ufJecHDkyVqb3QvtiWlkZlJVpZTUgbNdr3SbnuKW96gVqfptkBuzHLT3fgPx3g2BO7snp1GAZRvfCNo9_Gw3I6356GJAxnrzYIpQ3lYFnjABq80j9ow3YnkRjOsEBOW7n1m48zNgDulc9_e8PeEUOJovZ1EzPLz49I4dY07oxPif79eYmvABoVbuXzdL5CbPsH5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+shed+light+into+the+donor+substrate+specificity+of+vertebrate+poly-alpha-2%2C8-sialyltransferases+ST8Sia+IV&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Teppa%2C+Roxana+Elin&rft.au=Galuska%2C+Sebastian+Peter&rft.au=Harduin-Lepers%2C+Anne&rft.date=2024-08-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1868&rft.issue=8&rft.spage=130647&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130647&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |