A framework for cardiac arrhythmia detection from IoT-based ECGs

Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12 % of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated...

Full description

Saved in:
Bibliographic Details
Published inWorld wide web (Bussum) Vol. 23; no. 5; pp. 2835 - 2850
Main Authors He, Jinyuan, Rong, Jia, Sun, Le, Wang, Hua, Zhang, Yanchun, Ma, Jiangang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12 % of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely Dynamic Heartbeat Classification with Adjusted Features (DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce dynamic ensemble selection (DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework.
AbstractList Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12 % of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely Dynamic Heartbeat Classification with Adjusted Features (DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce dynamic ensemble selection (DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework.
Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12% of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely Dynamic Heartbeat Classification with Adjusted Features (DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce dynamic ensemble selection (DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework.
Author He, Jinyuan
Rong, Jia
Ma, Jiangang
Wang, Hua
Zhang, Yanchun
Sun, Le
Author_xml – sequence: 1
  givenname: Jinyuan
  surname: He
  fullname: He, Jinyuan
  organization: Faculty of Information Technology, Monash University
– sequence: 2
  givenname: Jia
  orcidid: 0000-0002-9462-3924
  surname: Rong
  fullname: Rong, Jia
  email: jackie.rong@monash.edu
  organization: Faculty of Information Technology, Monash University
– sequence: 3
  givenname: Le
  surname: Sun
  fullname: Sun, Le
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Faculty of Information Technology, Monash University
– sequence: 5
  givenname: Yanchun
  surname: Zhang
  fullname: Zhang, Yanchun
  organization: Faculty of Information Technology, Monash University
– sequence: 6
  givenname: Jiangang
  surname: Ma
  fullname: Ma, Jiangang
  organization: College of Science and Engineering, James Cook University
BookMark eNp9kE1LwzAYx4NMcJt-AU8Bz9GkSZv05hhzDgZeJngLaV5c59rMpEP27U2tIHjYKU_g93te_hMwan1rAbgl-J5gzB8iIZnACJMSpS8vUHkBxiTnFBFG6CjVVBSpzt-uwCTGHca4oCUZg8cZdEE19suHD-h8gFoFUysNVQjbU7dtagWN7azuat8m1Ddw5TeoUtEauJgv4zW4dGof7c3vOwWvT4vN_BmtX5ar-WyNNMvKDllinCYuY1orynPGVKWNy63lGrMqVzTTecaKHBeGJEBYrXElKuNcyQUWgk7B3dD3EPzn0cZO7vwxtGmkzBjrz8OEJ0oMlA4-xmCd1HWn-t27oOq9JFj2eckhL5nykj95yTKp2T_1EOpGhdN5iQ5STHD7bsPfVmesbwsYfug
CitedBy_id crossref_primary_10_1080_10255842_2024_2378105
crossref_primary_10_1007_s11280_021_00973_5
crossref_primary_10_1109_TCSS_2022_3178551
crossref_primary_10_1007_s11042_023_17773_w
crossref_primary_10_1007_s13755_023_00220_3
crossref_primary_10_1007_s13755_023_00221_2
crossref_primary_10_1016_j_knosys_2022_108815
crossref_primary_10_1007_s11280_022_01049_8
crossref_primary_10_1111_exsy_12864
crossref_primary_10_1007_s13755_022_00179_7
crossref_primary_10_1109_TNSRE_2020_3022715
crossref_primary_10_1111_exsy_13298
crossref_primary_10_1007_s42979_024_03456_2
crossref_primary_10_3390_s22208073
crossref_primary_10_1016_j_cmpb_2023_107740
crossref_primary_10_4108_eetsis_v10i3_2891
crossref_primary_10_1007_s42979_024_02962_7
crossref_primary_10_1186_s13677_022_00364_9
crossref_primary_10_4108_eetsis_v10i3_3063
crossref_primary_10_4108_eetsis_v10i3_3184
crossref_primary_10_1016_j_bspc_2022_103638
crossref_primary_10_1007_s13755_022_00183_x
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_1007_s11280_022_01008_3
crossref_primary_10_1007_s13755_020_00125_5
crossref_primary_10_1007_s13755_022_00180_0
crossref_primary_10_1007_s11280_021_00873_8
crossref_primary_10_1007_s41019_021_00167_z
crossref_primary_10_1007_s42524_025_4109_z
crossref_primary_10_1016_j_bspc_2023_104680
crossref_primary_10_1007_s13755_023_00230_1
crossref_primary_10_4108_eetsis_v10i3_3219
crossref_primary_10_3390_app13084964
crossref_primary_10_1109_ACCESS_2023_3312537
crossref_primary_10_1016_j_measen_2023_100866
crossref_primary_10_1007_s13755_022_00176_w
crossref_primary_10_1007_s10489_022_04303_8
crossref_primary_10_1007_s11280_022_01131_1
crossref_primary_10_1007_s13755_022_00192_w
crossref_primary_10_1016_j_eswa_2022_118933
crossref_primary_10_1007_s11280_023_01188_6
crossref_primary_10_1007_s13755_020_00133_5
crossref_primary_10_1007_s11042_023_17071_5
crossref_primary_10_3390_s23094353
crossref_primary_10_1007_s11280_022_01013_6
crossref_primary_10_1371_journal_pone_0253094
crossref_primary_10_3390_e23010119
crossref_primary_10_1007_s13755_022_00208_5
Cites_doi 10.1016/j.inffus.2017.02.010
10.1016/j.neucom.2013.08.004
10.1016/j.bspc.2011.07.001
10.1007/s10916-016-0644-9
10.1016/j.eswa.2018.12.037
10.1007/s00521-016-2472-8
10.1155/2011/643816
10.1016/j.cmpb.2013.08.002
10.1007/s00521-011-0737-9
10.1109/TSMC.1972.4309137
10.1016/j.patcog.2011.03.020
10.1109/TBME.2015.2468589
10.1016/j.patcog.2008.03.027
10.1016/j.compbiomed.2018.03.016
10.1109/IEMBS.2011.6090487
10.1016/j.patcog.2007.10.015
10.1016/j.measurement.2017.05.022
10.1109/TBME.2011.2171037
10.1016/j.compbiomed.2013.11.019
10.1109/TBME.2010.2068048
10.1016/j.ins.2017.06.027
10.1016/j.eswa.2011.09.059
10.1007/978-3-030-02925-8_6
10.1007/s10462-012-9338-y
10.1109/TNSRE.2017.2721116
10.1016/j.patrec.2015.11.018
10.1613/jair.953
10.1109/TBME.2004.827359
10.1016/j.dsp.2009.10.016
10.1609/aaai.v32i1.11891
10.1016/j.bspc.2016.07.010
10.1016/j.patcog.2004.06.009
10.1109/78.157290
10.1007/978-3-642-13278-0_39
10.1109/TBME.2012.2213253
10.1016/j.compbiomed.2017.08.022
10.1109/51.932724
10.1109/TBME.1985.325532
10.1016/j.cmpb.2015.12.008
10.1186/1475-925X-13-90
10.1109/CVPR.2016.90
10.1016/j.inffus.2011.03.007
10.1109/ICITCS.2016.7740310
10.1016/j.ins.2011.07.024
10.1016/j.inffus.2017.09.010
10.2316/P.2017.852-029
10.1016/j.patrec.2007.01.017
10.1016/j.patcog.2014.05.003
10.1371/journal.pone.0206593
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11280-019-00776-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-1413
EndPage 2850
ExternalDocumentID 10_1007_s11280_019_00776_9
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1SB
203
29R
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-e1dfc1f24cca37544abcdf5ee7c04b5a32c5246506d1a378ecc0b8bdff9780883
IEDL.DBID BENPR
ISSN 1386-145X
IngestDate Fri Jul 25 05:43:00 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Tue Jul 01 04:26:44 EDT 2025
Fri Feb 21 02:34:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Internet-of-Things
Deep learning
ECG
Cardiac arrhythmia detection
Dynamic ensemble selection
ResNet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-e1dfc1f24cca37544abcdf5ee7c04b5a32c5246506d1a378ecc0b8bdff9780883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9462-3924
OpenAccessLink https://vuir.vu.edu.au/41028/1/www.pdf
PQID 2441386017
PQPubID 2034525
PageCount 16
ParticipantIDs proquest_journals_2441386017
crossref_citationtrail_10_1007_s11280_019_00776_9
crossref_primary_10_1007_s11280_019_00776_9
springer_journals_10_1007_s11280_019_00776_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Internet and Web Information Systems
PublicationTitle World wide web (Bussum)
PublicationTitleAbbrev World Wide Web
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Daamouche, Hamami, Alajlan, Melgani (CR14) 2012; 7
Chawla, Bowyer, Hall, Kegelmeyer (CR10) 2002; 16
Ko, Sabourin, Britto (CR27) 2008; 41
Supratak, Dong, Wu, Guo (CR42) 2017; 25
De Chazal, O’Dwyer, Reilly (CR16) 2004; 51
CR32
Luz, Schwartz, Cámara-Chávez, Menotti (CR30) 2016; 127
Masoudnia, Ebrahimpour (CR33) 2014; 42
Sellami, Hwang (CR38) 2019; 122
Britto, Sabourin, Oliveira (CR8) 2014; 47
Abawajy, Kelarev, Chowdhury (CR1) 2013; 112
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (CR3) 2017; 89
Cruz, Sabourin, Cavalcanti (CR13) 2018; 41
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (CR2) 2017; 415
Moody, Mark (CR34) 2001; 20
Sahoo, Kanungo, Behera, Sabut (CR37) 2017; 108
CR6
CR5
Huang, Liu, Zhu, Wang, Hu (CR24) 2014; 13
CR7
Doquire, De Lannoy, François, Verleysen (CR18) 2011; 2011
Woloszynski, Kurzynski, Podsiadlo, Stachowiak (CR45) 2012; 13
Güler, ÜBeylı (CR20) 2005; 38
CR41
Ma, Sun, Wang, Zhang, Aickelin (CR31) 2016; 16
Yu, Chen (CR50) 2007; 28
Afkhami, Azarnia, Tinati (CR4) 2016; 70
Zhang, Dong, Luo, Choi, Wu (CR52) 2014; 46
Kiranyaz, Ince, Gabbouj (CR26) 2016; 63
Pan, Tompkins (CR36) 1985; 32
Cruz, Sabourin, Cavalcanti (CR12) 2017; 38
De Lannoy, François, Delbeke, Verleysen (CR17) 2012; 59
Yildirim (CR49) 2018; 96
Sierra, Lazkano, Irigoien, Jauregi, Mendialdua (CR40) 2011; 181
Wilson (CR43) 1972; SMC-2
CR54
CR53
CR51
Woloszynski, Kurzynski (CR44) 2011; 44
De Albuquerque, Nunes, Pereira, Menotti, Papa, Tavares (CR15) 2018; 29
CR25
Chen, Hua, Li, Li, Gao (CR11) 2017; 31
He, Sun, Rong, Wang, Zhang (CR22) 2018; 13
CR23
Lin, Chen, Qiu, Wu, Krishnan, Zou (CR28) 2014; 123
CR21
Ye, Kumar, Coimbra (CR48) 2012; 59
Dos Santos, Sabourin, Maupin (CR19) 2008; 41
Özbay, Tezel (CR35) 2010; 20
Yang, Zhou, Lei, Zheng, Xiang (CR47) 2016; 40
Cavalin, Sabourin, Suen (CR9) 2013; 22
Llamedo, Martínez (CR29) 2011; 58
Shensa (CR39) 1992; 40
Xiao, Xie, He, Jiang (CR46) 2012; 39
EJDS Luz (776_CR30) 2016; 127
776_CR32
Ö Yildirim (776_CR49) 2018; 96
UR Acharya (776_CR3) 2017; 89
Z Zhang (776_CR52) 2014; 46
P De Chazal (776_CR16) 2004; 51
UR Acharya (776_CR2) 2017; 415
J Xiao (776_CR46) 2012; 39
776_CR41
A Supratak (776_CR42) 2017; 25
Z Yang (776_CR47) 2016; 40
C Ye (776_CR48) 2012; 59
Y Özbay (776_CR35) 2010; 20
S Kiranyaz (776_CR26) 2016; 63
AH Ko (776_CR27) 2008; 41
H Huang (776_CR24) 2014; 13
DL Wilson (776_CR43) 1972; SMC-2
J He (776_CR22) 2018; 13
RG Afkhami (776_CR4) 2016; 70
VHC De Albuquerque (776_CR15) 2018; 29
B Sierra (776_CR40) 2011; 181
J Pan (776_CR36) 1985; 32
J Ma (776_CR31) 2016; 16
T Woloszynski (776_CR45) 2012; 13
776_CR54
776_CR53
RM Cruz (776_CR13) 2018; 41
776_CR51
JH Abawajy (776_CR1) 2013; 112
PR Cavalin (776_CR9) 2013; 22
GB Moody (776_CR34) 2001; 20
A Sellami (776_CR38) 2019; 122
776_CR6
EM Dos Santos (776_CR19) 2008; 41
776_CR7
776_CR5
G De Lannoy (776_CR17) 2012; 59
C Lin (776_CR28) 2014; 123
NV Chawla (776_CR10) 2002; 16
M Llamedo (776_CR29) 2011; 58
ASJr Britto (776_CR8) 2014; 47
A Daamouche (776_CR14) 2012; 7
RM Cruz (776_CR12) 2017; 38
S Sahoo (776_CR37) 2017; 108
776_CR21
G Doquire (776_CR18) 2011; 2011
SN Yu (776_CR50) 2007; 28
776_CR25
MJ Shensa (776_CR39) 1992; 40
776_CR23
İ Güler (776_CR20) 2005; 38
T Woloszynski (776_CR44) 2011; 44
S Chen (776_CR11) 2017; 31
S Masoudnia (776_CR33) 2014; 42
References_xml – volume: 20
  start-page: 45
  issue: 3
  year: 2001
  end-page: 50
  ident: CR34
  article-title: The impact of the mit-bih arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 28
  start-page: 1142
  issue: 10
  year: 2007
  end-page: 1150
  ident: CR50
  article-title: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network
  publication-title: Pattern Recogn. Lett.
– volume: 16
  start-page: 4
  issue: 1
  year: 2016
  ident: CR31
  article-title: Supervised anomaly detection in uncertain pseudoperiodic data streams
  publication-title: ACM Trans. Internet Technol. (TOIT)
– volume: 44
  start-page: 2656
  issue: 10-11
  year: 2011
  end-page: 2668
  ident: CR44
  article-title: A probabilistic model of classifier competence for dynamic ensemble selection
  publication-title: Pattern Recogn.
– volume: 40
  start-page: 2464
  issue: 10
  year: 1992
  end-page: 2482
  ident: CR39
  article-title: The discrete wavelet transform: wedding the a trous and mallat algorithms
  publication-title: IEEE Trans. Signal Process.
– ident: CR51
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: CR3
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 31
  start-page: 165
  year: 2017
  end-page: 173
  ident: CR11
  article-title: Heartbeat classification using projected and dynamic features of ecg signal
  publication-title: Biomed. Signal Process. Control
– volume: 38
  start-page: 199
  issue: 2
  year: 2005
  end-page: 208
  ident: CR20
  article-title: Ecg beat classifier designed by combined neural network model
  publication-title: Pattern Recogn.
– volume: 112
  start-page: 720
  issue: 3
  year: 2013
  end-page: 730
  ident: CR1
  article-title: Multistage approach for clustering and classification of ecg data
  publication-title: Comput. Meth. Program. Biomed.
– volume: 123
  start-page: 424
  year: 2014
  end-page: 435
  ident: CR28
  article-title: Libd3c: ensemble classifiers with a clustering and dynamic selection strategy
  publication-title: Neurocomputing
– ident: CR54
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: CR2
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals
  publication-title: Inform. Sci.
– ident: CR25
– volume: 181
  start-page: 5158
  issue: 23
  year: 2011
  end-page: 5168
  ident: CR40
  article-title: K nearest neighbor equality: giving equal chance to all existing classes
  publication-title: Inform. Sci.
– volume: 122
  start-page: 75
  year: 2019
  end-page: 84
  ident: CR38
  article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR10
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J. Artificial Intell. Res.
– ident: CR21
– volume: 47
  start-page: 3665
  issue: 11
  year: 2014
  end-page: 3680
  ident: CR8
  article-title: Dynamic selection of classifiers—a comprehensive review
  publication-title: Pattern Recogn.
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: CR49
  article-title: A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification
  publication-title: Comput. Biol. Med.
– volume: 29
  start-page: 679
  issue: 3
  year: 2018
  end-page: 693
  ident: CR15
  article-title: Robust automated cardiac arrhythmia detection in ecg beat signals
  publication-title: Neural Comput. Appl.
– volume: 13
  start-page: 207
  issue: 3
  year: 2012
  end-page: 213
  ident: CR45
  article-title: A measure of competence based on random classification for dynamic ensemble selection
  publication-title: Information Fusion
– volume: 41
  start-page: 195
  year: 2018
  end-page: 216
  ident: CR13
  article-title: Dynamic classifier selection: recent advances and perspectives
  publication-title: Information Fusion
– volume: 58
  start-page: 616
  issue: 3
  year: 2011
  end-page: 625
  ident: CR29
  article-title: Heartbeat classification using feature selection driven by database generalization criteria
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 39
  start-page: 3668
  issue: 3
  year: 2012
  end-page: 3675
  ident: CR46
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Syst. Appl.
– ident: CR32
– ident: CR5
– volume: 22
  start-page: 673
  issue: 3-4
  year: 2013
  end-page: 688
  ident: CR9
  article-title: Dynamic selection approaches for multiple classifier systems
  publication-title: Neural Comput. Appl.
– volume: 59
  start-page: 241
  issue: 1
  year: 2012
  end-page: 247
  ident: CR17
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 59
  start-page: 2930
  issue: 10
  year: 2012
  end-page: 2941
  ident: CR48
  article-title: Heartbeat classification using morphological and dynamic features of ecg signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 127
  start-page: 144
  year: 2016
  end-page: 164
  ident: CR30
  article-title: Ecg-based heartbeat classification for arrhythmia detection: a survey
  publication-title: Comput. Meth. Programs Biomed.
– volume: 70
  start-page: 45
  year: 2016
  end-page: 51
  ident: CR4
  article-title: Cardiac arrhythmia classification using statistical and mixture modeling features of ecg signals
  publication-title: Pattern Recogn. Lett.
– volume: 38
  start-page: 84
  year: 2017
  end-page: 103
  ident: CR12
  article-title: Meta-des. oracle: meta-learning and feature selection for dynamic ensemble selection
  publication-title: Information Fusion
– volume: 108
  start-page: 55
  year: 2017
  end-page: 66
  ident: CR37
  article-title: Multiresolution wavelet transform based feature extraction and ecg classification to detect cardiac abnormalities
  publication-title: Measurement
– volume: 2011
  start-page: 1
  year: 2011
  ident: CR18
  article-title: Feature selection for interpatient supervised heart beat classification
  publication-title: Comput. Intell. Neurosci.
– volume: 41
  start-page: 1718
  issue: 5
  year: 2008
  end-page: 1731
  ident: CR27
  article-title: From dynamic classifier selection to dynamic ensemble selection
  publication-title: Pattern Recogn.
– ident: CR53
– volume: 13
  start-page: e0206593
  issue: 11
  year: 2018
  ident: CR22
  article-title: A pyramid-like model for heartbeat classification from ecg recordings
  publication-title: Plos one
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  end-page: 675
  ident: CR26
  article-title: Real-time patient-specific ecg classification by 1-d convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 286
  issue: 12
  year: 2016
  ident: CR47
  article-title: An iot-cloud based wearable ecg monitoring system for smart healthcare
  publication-title: J. Med. Sys.
– volume: 41
  start-page: 2993
  issue: 10
  year: 2008
  end-page: 3009
  ident: CR19
  article-title: A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
  publication-title: Pattern Recogn.
– ident: CR6
– volume: 42
  start-page: 275
  issue: 2
  year: 2014
  end-page: 293
  ident: CR33
  article-title: Mixture of experts: a literature survey
  publication-title: Artif. Intell. Rev.
– ident: CR23
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  end-page: 236
  ident: CR36
  article-title: A real-time qrs detection algorithm
  publication-title: IEEE Trans. Biomed. Eng
– volume: 51
  start-page: 1196
  issue: 7
  year: 2004
  end-page: 1206
  ident: CR16
  article-title: Automatic classification of heartbeats using ecg morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: SMC-2
  start-page: 408
  issue: 3
  year: 1972
  end-page: 421
  ident: CR43
  article-title: Asymptotic properties of nearest neighbor rules using edited data.
  publication-title: IEEE Trans. Sys. Man Cyber.
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  end-page: 2008
  ident: CR42
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 1040
  issue: 4
  year: 2010
  end-page: 1049
  ident: CR35
  article-title: A new method for classification of ecg arrhythmias using neural network with adaptive activation function
  publication-title: Digital Signal Processing
– ident: CR7
– volume: 46
  start-page: 79
  year: 2014
  end-page: 89
  ident: CR52
  article-title: Heartbeat classification using disease-specific feature selection
  publication-title: Comput. Biol. Med.
– ident: CR41
– volume: 7
  start-page: 342
  issue: 4
  year: 2012
  end-page: 349
  ident: CR14
  article-title: A wavelet optimization approach for ecg signal classification
  publication-title: Biomed. Signal Process. Control
– volume: 13
  start-page: 90
  issue: 1
  year: 2014
  ident: CR24
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and rr intervals
  publication-title: Biomed. Eng. Online
– volume: 38
  start-page: 84
  year: 2017
  ident: 776_CR12
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.02.010
– volume: 123
  start-page: 424
  year: 2014
  ident: 776_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.004
– volume: 7
  start-page: 342
  issue: 4
  year: 2012
  ident: 776_CR14
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.001
– volume: 40
  start-page: 286
  issue: 12
  year: 2016
  ident: 776_CR47
  publication-title: J. Med. Sys.
  doi: 10.1007/s10916-016-0644-9
– volume: 122
  start-page: 75
  year: 2019
  ident: 776_CR38
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.037
– volume: 29
  start-page: 679
  issue: 3
  year: 2018
  ident: 776_CR15
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2472-8
– volume: 2011
  start-page: 1
  year: 2011
  ident: 776_CR18
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/643816
– volume: 112
  start-page: 720
  issue: 3
  year: 2013
  ident: 776_CR1
  publication-title: Comput. Meth. Program. Biomed.
  doi: 10.1016/j.cmpb.2013.08.002
– volume: 22
  start-page: 673
  issue: 3-4
  year: 2013
  ident: 776_CR9
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0737-9
– volume: SMC-2
  start-page: 408
  issue: 3
  year: 1972
  ident: 776_CR43
  publication-title: IEEE Trans. Sys. Man Cyber.
  doi: 10.1109/TSMC.1972.4309137
– volume: 44
  start-page: 2656
  issue: 10-11
  year: 2011
  ident: 776_CR44
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.03.020
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 776_CR26
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 41
  start-page: 2993
  issue: 10
  year: 2008
  ident: 776_CR19
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.03.027
– volume: 96
  start-page: 189
  year: 2018
  ident: 776_CR49
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: 776_CR32
  doi: 10.1109/IEMBS.2011.6090487
– volume: 41
  start-page: 1718
  issue: 5
  year: 2008
  ident: 776_CR27
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2007.10.015
– volume: 108
  start-page: 55
  year: 2017
  ident: 776_CR37
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.022
– volume: 59
  start-page: 241
  issue: 1
  year: 2012
  ident: 776_CR17
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2171037
– volume: 46
  start-page: 79
  year: 2014
  ident: 776_CR52
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.11.019
– ident: 776_CR25
– volume: 58
  start-page: 616
  issue: 3
  year: 2011
  ident: 776_CR29
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2068048
– ident: 776_CR53
– ident: 776_CR6
– volume: 415
  start-page: 190
  year: 2017
  ident: 776_CR2
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 39
  start-page: 3668
  issue: 3
  year: 2012
  ident: 776_CR46
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.059
– ident: 776_CR21
  doi: 10.1007/978-3-030-02925-8_6
– volume: 42
  start-page: 275
  issue: 2
  year: 2014
  ident: 776_CR33
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9338-y
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 776_CR42
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 70
  start-page: 45
  year: 2016
  ident: 776_CR4
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2015.11.018
– volume: 16
  start-page: 321
  year: 2002
  ident: 776_CR10
  publication-title: J. Artificial Intell. Res.
  doi: 10.1613/jair.953
– volume: 51
  start-page: 1196
  issue: 7
  year: 2004
  ident: 776_CR16
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– ident: 776_CR41
– volume: 16
  start-page: 4
  issue: 1
  year: 2016
  ident: 776_CR31
  publication-title: ACM Trans. Internet Technol. (TOIT)
– volume: 20
  start-page: 1040
  issue: 4
  year: 2010
  ident: 776_CR35
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2009.10.016
– ident: 776_CR7
  doi: 10.1609/aaai.v32i1.11891
– volume: 31
  start-page: 165
  year: 2017
  ident: 776_CR11
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.010
– volume: 38
  start-page: 199
  issue: 2
  year: 2005
  ident: 776_CR20
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2004.06.009
– volume: 40
  start-page: 2464
  issue: 10
  year: 1992
  ident: 776_CR39
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.157290
– ident: 776_CR5
  doi: 10.1007/978-3-642-13278-0_39
– volume: 59
  start-page: 2930
  issue: 10
  year: 2012
  ident: 776_CR48
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213253
– volume: 89
  start-page: 389
  year: 2017
  ident: 776_CR3
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 776_CR34
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 776_CR36
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.1985.325532
– volume: 127
  start-page: 144
  year: 2016
  ident: 776_CR30
  publication-title: Comput. Meth. Programs Biomed.
  doi: 10.1016/j.cmpb.2015.12.008
– volume: 13
  start-page: 90
  issue: 1
  year: 2014
  ident: 776_CR24
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-13-90
– ident: 776_CR23
  doi: 10.1109/CVPR.2016.90
– volume: 13
  start-page: 207
  issue: 3
  year: 2012
  ident: 776_CR45
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2011.03.007
– ident: 776_CR54
  doi: 10.1109/ICITCS.2016.7740310
– volume: 181
  start-page: 5158
  issue: 23
  year: 2011
  ident: 776_CR40
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.07.024
– volume: 41
  start-page: 195
  year: 2018
  ident: 776_CR13
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.09.010
– ident: 776_CR51
  doi: 10.2316/P.2017.852-029
– volume: 28
  start-page: 1142
  issue: 10
  year: 2007
  ident: 776_CR50
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2007.01.017
– volume: 47
  start-page: 3665
  issue: 11
  year: 2014
  ident: 776_CR8
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2014.05.003
– volume: 13
  start-page: e0206593
  issue: 11
  year: 2018
  ident: 776_CR22
  publication-title: Plos one
  doi: 10.1371/journal.pone.0206593
SSID ssj0006391
Score 2.4705286
Snippet Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12 % of all deaths globally. The development of...
Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12% of all deaths globally. The development of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2835
SubjectTerms Arrhythmia
Artificial neural networks
Cardiac arrhythmia
Classification
Computer Science
Convolution
Database Management
Engineering education
Information Systems Applications (incl.Internet)
Internet of Things
Learning
Modules
Operating Systems
Physicians
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYDJQDN4jUR1LSG9PEGEhw2qTdqiRNNCTo0FYO_HucrF0BARLnuq5kN_5sxf4McB4pG5jYSGpTgQUKgixFGLY01tYyznLFPGX-w2MyHLP7CZ9UQ2GLutu9vpL0kboZdsNQ6pqoUuo5aGi6Dhsca3fXyDWOeqv4i5i7LLNEQkPGJ9WozM86vsJRk2N-uxb1aDPYhe0qTSS9pV_3YM0UbdipVzCQ6kS2YesTn-A-XPeIrZutCGajRHv_ayLn8-l7OX15kiQ3pe--KoibLCF3sxF1SJaTm_7t4gDGg5tRf0irFQlUI5CU1IS51aGNGDrCLbNlUunccmOudMAUl3GkecQwC0vyEAUEOixQQuXWOuYhIeJDaBWzwhwBfl6JME50FHDt1IkAdRhH-RbEqUxlB8LaUpmu-MPdGovnrGE-dtbN0LqZt26WduBi9c7rkj3jT-lu7YCsOkmLDNMP50kMHB24rJ3SPP5d2_H_xE9gM3KltG8f60KrnL-ZU8w3SnXmf68PKjTJxg
  priority: 102
  providerName: Springer Nature
Title A framework for cardiac arrhythmia detection from IoT-based ECGs
URI https://link.springer.com/article/10.1007/s11280-019-00776-9
https://www.proquest.com/docview/2441386017
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RSDMeXADSL6SLv0BGPaAxATQps0TlWbJhoSbGMrB_49TpuugMSubeJKdurPTpzPAOdOrCzpyoiqgGOCgiBLEYYVdYVSzGNJzDLK_MeB3x-x-7E3NhtuS1NWWfjEzFEnM6H3yK8QhmyXY_rQvJ5_UN01Sp-umhYam1BFF8x5Baq3ncHT88oXI_7mKRf3qc28sbk2k1-ewxm6KCugGacNDX5DUxlv_jkizZCnuws7JmQkrdzGe7Ahp_uw_YNI8ABuWkQVVVYEw1AiMsMLEi0Wk6908v4akUSmWdnVlOgrJeRuNqQawhLSafeWhzDqdobtPjW9EahABEmptBMlbOUwtIDuYsuiWCTKk7IpLBZ7kesIz2EYfvmJjQM4WsqKeZwopSmHOHePoDKdTeUx4Odjbru-cCxPaHHcQhlSc71ZbhAFUQ3sQi2hMMThun_FW1hSHmtVhqjKMFNlGNTgYjVnntNmrB1dL7Qdml9oGZYGr8FlYYHy9f_STtZLO4UtR-fMWZ1YHSrp4lOeYWCRxg3Y5N1eA6qt3stDp2HWEj4dOa1vHoTLQA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ikGA3KAE0T0kW7pAcE02AO2nYa0W2nTRCDBBlsR2p_iN-KkLQMkdtu5rds6rj-7sT8DHDuRsqQrQ6p8jgkKgixFGFbUFUoxj8URM5T5nW65ec9u-15_AT7zXhhdVpn7ROOo46HQ_8jPEYZsl2P6ULl8faN6apTeXc1HaKRmcScnH5iyjS9a17i-J45Tv-nVmjSbKkAF-t6ESjtWwlYOw2fX819ZGIlYeVJWhMUiL3Qd4TkMA5dybOMJHN_RingUK6XJejh3Ue4iLDEXkVx3ptcb354f0T5N8HiZ2szrZ006aaseAoEuAfOpYdCh_m8gnEa3fzZkDc7V12EtC1BJNbWoDViQg01Y_UFbuAVXVaLymi6CQS8RxswECUejx0ny-PIUklgmpshrQHQDC2kNe1QDZkxuao3xNtzPRWc7UBgMB3IX8PYRt92ycCxPaHHcQhlSM8tZrh_6YRHsXC2ByGjK9bSM52BKsKxVGaAqA6PKwC_C6fc1rylJx8yzS7m2g-yDHQdT8yrCWb4C08P_S9ubLe0Ilpu9Tjtot7p3-7Di6GzdVKiVoJCM3uUBhjRJdGjsiMDDvA33Cwy9BQo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGkBAcEE8xnjnACSL6SEt6QDBgY-MxTWiTdittmggk2GArQvtr_DqcPjZAYredm7qK4-SzG_szwL4VKkPaMqDK4xigIMhShGFFbaEUc1gUsoQy_77h1trspuN0CvCV18LotMr8TEwO6qgn9D_yY4Qh0-aupntWWVpE86p69vZOdQcpfdOat9NITeRWDj8xfBuc1q9wrQ8sq1ppXdZo1mGACjyHYyrNSAlTWQznoXvBsiAUkXKkPBEGC53AtoRjMXRi3MjEARzna4Q8jJTSxD2c2yh3BmZPdFRUhNmLSqP5MMIBxP403OMuNZnTyUp20sI9hAWdEObRhE-Her9hcezr_rmeTVCvugSLmbtKyql9LUNBdldg4QeJ4Sqcl4nKM7wIusBEJEYnSNDvPw3jp9fngEQyTlK-ukSXs5B6r0U1fEakcnk9WIP2VLS2DsVurys3AD8fctN2hWU4QovjBsqQmmfOsL3AC0pg5mrxRUZarntnvPhjumWtSh9V6Seq9L0SHI7eeUspOyaO3s617Wfbd-CPja0ER_kKjB__L21zsrQ9mEOj9e_qjdstmLd06J6kq21DMe5_yB30b-JwNzMkAo_Ttt1vo3cKnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+cardiac+arrhythmia+detection+from+IoT-based+ECGs&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=He+Jinyuan&rft.au=Jia%2C+Rong&rft.au=Sun%2C+Le&rft.au=Wang%2C+Hua&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=23&rft.issue=5&rft.spage=2835&rft.epage=2850&rft_id=info:doi/10.1007%2Fs11280-019-00776-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon