A framework for cardiac arrhythmia detection from IoT-based ECGs
Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12 % of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated...
Saved in:
Published in | World wide web (Bussum) Vol. 23; no. 5; pp. 2835 - 2850 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12
%
of all deaths globally. The development of
Internet-of-Things
has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely
Dynamic Heartbeat Classification with Adjusted Features
(DHCAF) and
Multi-channel Heartbeat Convolution Neural Network
(MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce
dynamic ensemble selection
(DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework. |
---|---|
AbstractList | Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12
%
of all deaths globally. The development of
Internet-of-Things
has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely
Dynamic Heartbeat Classification with Adjusted Features
(DHCAF) and
Multi-channel Heartbeat Convolution Neural Network
(MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce
dynamic ensemble selection
(DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework. Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12% of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely Dynamic Heartbeat Classification with Adjusted Features (DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce dynamic ensemble selection (DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework. |
Author | He, Jinyuan Rong, Jia Ma, Jiangang Wang, Hua Zhang, Yanchun Sun, Le |
Author_xml | – sequence: 1 givenname: Jinyuan surname: He fullname: He, Jinyuan organization: Faculty of Information Technology, Monash University – sequence: 2 givenname: Jia orcidid: 0000-0002-9462-3924 surname: Rong fullname: Rong, Jia email: jackie.rong@monash.edu organization: Faculty of Information Technology, Monash University – sequence: 3 givenname: Le surname: Sun fullname: Sun, Le organization: School of Computer and Software, Nanjing University of Information Science and Technology – sequence: 4 givenname: Hua surname: Wang fullname: Wang, Hua organization: Faculty of Information Technology, Monash University – sequence: 5 givenname: Yanchun surname: Zhang fullname: Zhang, Yanchun organization: Faculty of Information Technology, Monash University – sequence: 6 givenname: Jiangang surname: Ma fullname: Ma, Jiangang organization: College of Science and Engineering, James Cook University |
BookMark | eNp9kE1LwzAYx4NMcJt-AU8Bz9GkSZv05hhzDgZeJngLaV5c59rMpEP27U2tIHjYKU_g93te_hMwan1rAbgl-J5gzB8iIZnACJMSpS8vUHkBxiTnFBFG6CjVVBSpzt-uwCTGHca4oCUZg8cZdEE19suHD-h8gFoFUysNVQjbU7dtagWN7azuat8m1Ddw5TeoUtEauJgv4zW4dGof7c3vOwWvT4vN_BmtX5ar-WyNNMvKDllinCYuY1orynPGVKWNy63lGrMqVzTTecaKHBeGJEBYrXElKuNcyQUWgk7B3dD3EPzn0cZO7vwxtGmkzBjrz8OEJ0oMlA4-xmCd1HWn-t27oOq9JFj2eckhL5nykj95yTKp2T_1EOpGhdN5iQ5STHD7bsPfVmesbwsYfug |
CitedBy_id | crossref_primary_10_1080_10255842_2024_2378105 crossref_primary_10_1007_s11280_021_00973_5 crossref_primary_10_1109_TCSS_2022_3178551 crossref_primary_10_1007_s11042_023_17773_w crossref_primary_10_1007_s13755_023_00220_3 crossref_primary_10_1007_s13755_023_00221_2 crossref_primary_10_1016_j_knosys_2022_108815 crossref_primary_10_1007_s11280_022_01049_8 crossref_primary_10_1111_exsy_12864 crossref_primary_10_1007_s13755_022_00179_7 crossref_primary_10_1109_TNSRE_2020_3022715 crossref_primary_10_1111_exsy_13298 crossref_primary_10_1007_s42979_024_03456_2 crossref_primary_10_3390_s22208073 crossref_primary_10_1016_j_cmpb_2023_107740 crossref_primary_10_4108_eetsis_v10i3_2891 crossref_primary_10_1007_s42979_024_02962_7 crossref_primary_10_1186_s13677_022_00364_9 crossref_primary_10_4108_eetsis_v10i3_3063 crossref_primary_10_4108_eetsis_v10i3_3184 crossref_primary_10_1016_j_bspc_2022_103638 crossref_primary_10_1007_s13755_022_00183_x crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_1007_s11280_022_01008_3 crossref_primary_10_1007_s13755_020_00125_5 crossref_primary_10_1007_s13755_022_00180_0 crossref_primary_10_1007_s11280_021_00873_8 crossref_primary_10_1007_s41019_021_00167_z crossref_primary_10_1007_s42524_025_4109_z crossref_primary_10_1016_j_bspc_2023_104680 crossref_primary_10_1007_s13755_023_00230_1 crossref_primary_10_4108_eetsis_v10i3_3219 crossref_primary_10_3390_app13084964 crossref_primary_10_1109_ACCESS_2023_3312537 crossref_primary_10_1016_j_measen_2023_100866 crossref_primary_10_1007_s13755_022_00176_w crossref_primary_10_1007_s10489_022_04303_8 crossref_primary_10_1007_s11280_022_01131_1 crossref_primary_10_1007_s13755_022_00192_w crossref_primary_10_1016_j_eswa_2022_118933 crossref_primary_10_1007_s11280_023_01188_6 crossref_primary_10_1007_s13755_020_00133_5 crossref_primary_10_1007_s11042_023_17071_5 crossref_primary_10_3390_s23094353 crossref_primary_10_1007_s11280_022_01013_6 crossref_primary_10_1371_journal_pone_0253094 crossref_primary_10_3390_e23010119 crossref_primary_10_1007_s13755_022_00208_5 |
Cites_doi | 10.1016/j.inffus.2017.02.010 10.1016/j.neucom.2013.08.004 10.1016/j.bspc.2011.07.001 10.1007/s10916-016-0644-9 10.1016/j.eswa.2018.12.037 10.1007/s00521-016-2472-8 10.1155/2011/643816 10.1016/j.cmpb.2013.08.002 10.1007/s00521-011-0737-9 10.1109/TSMC.1972.4309137 10.1016/j.patcog.2011.03.020 10.1109/TBME.2015.2468589 10.1016/j.patcog.2008.03.027 10.1016/j.compbiomed.2018.03.016 10.1109/IEMBS.2011.6090487 10.1016/j.patcog.2007.10.015 10.1016/j.measurement.2017.05.022 10.1109/TBME.2011.2171037 10.1016/j.compbiomed.2013.11.019 10.1109/TBME.2010.2068048 10.1016/j.ins.2017.06.027 10.1016/j.eswa.2011.09.059 10.1007/978-3-030-02925-8_6 10.1007/s10462-012-9338-y 10.1109/TNSRE.2017.2721116 10.1016/j.patrec.2015.11.018 10.1613/jair.953 10.1109/TBME.2004.827359 10.1016/j.dsp.2009.10.016 10.1609/aaai.v32i1.11891 10.1016/j.bspc.2016.07.010 10.1016/j.patcog.2004.06.009 10.1109/78.157290 10.1007/978-3-642-13278-0_39 10.1109/TBME.2012.2213253 10.1016/j.compbiomed.2017.08.022 10.1109/51.932724 10.1109/TBME.1985.325532 10.1016/j.cmpb.2015.12.008 10.1186/1475-925X-13-90 10.1109/CVPR.2016.90 10.1016/j.inffus.2011.03.007 10.1109/ICITCS.2016.7740310 10.1016/j.ins.2011.07.024 10.1016/j.inffus.2017.09.010 10.2316/P.2017.852-029 10.1016/j.patrec.2007.01.017 10.1016/j.patcog.2014.05.003 10.1371/journal.pone.0206593 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11280-019-00776-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-1413 |
EndPage | 2850 |
ExternalDocumentID | 10_1007_s11280_019_00776_9 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1SB 203 29R 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LLZTM M0N M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c429t-e1dfc1f24cca37544abcdf5ee7c04b5a32c5246506d1a378ecc0b8bdff9780883 |
IEDL.DBID | BENPR |
ISSN | 1386-145X |
IngestDate | Fri Jul 25 05:43:00 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Tue Jul 01 04:26:44 EDT 2025 Fri Feb 21 02:34:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Internet-of-Things Deep learning ECG Cardiac arrhythmia detection Dynamic ensemble selection ResNet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-e1dfc1f24cca37544abcdf5ee7c04b5a32c5246506d1a378ecc0b8bdff9780883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9462-3924 |
OpenAccessLink | https://vuir.vu.edu.au/41028/1/www.pdf |
PQID | 2441386017 |
PQPubID | 2034525 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2441386017 crossref_citationtrail_10_1007_s11280_019_00776_9 crossref_primary_10_1007_s11280_019_00776_9 springer_journals_10_1007_s11280_019_00776_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Internet and Web Information Systems |
PublicationTitle | World wide web (Bussum) |
PublicationTitleAbbrev | World Wide Web |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Daamouche, Hamami, Alajlan, Melgani (CR14) 2012; 7 Chawla, Bowyer, Hall, Kegelmeyer (CR10) 2002; 16 Ko, Sabourin, Britto (CR27) 2008; 41 Supratak, Dong, Wu, Guo (CR42) 2017; 25 De Chazal, O’Dwyer, Reilly (CR16) 2004; 51 CR32 Luz, Schwartz, Cámara-Chávez, Menotti (CR30) 2016; 127 Masoudnia, Ebrahimpour (CR33) 2014; 42 Sellami, Hwang (CR38) 2019; 122 Britto, Sabourin, Oliveira (CR8) 2014; 47 Abawajy, Kelarev, Chowdhury (CR1) 2013; 112 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (CR3) 2017; 89 Cruz, Sabourin, Cavalcanti (CR13) 2018; 41 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (CR2) 2017; 415 Moody, Mark (CR34) 2001; 20 Sahoo, Kanungo, Behera, Sabut (CR37) 2017; 108 CR6 CR5 Huang, Liu, Zhu, Wang, Hu (CR24) 2014; 13 CR7 Doquire, De Lannoy, François, Verleysen (CR18) 2011; 2011 Woloszynski, Kurzynski, Podsiadlo, Stachowiak (CR45) 2012; 13 Güler, ÜBeylı (CR20) 2005; 38 CR41 Ma, Sun, Wang, Zhang, Aickelin (CR31) 2016; 16 Yu, Chen (CR50) 2007; 28 Afkhami, Azarnia, Tinati (CR4) 2016; 70 Zhang, Dong, Luo, Choi, Wu (CR52) 2014; 46 Kiranyaz, Ince, Gabbouj (CR26) 2016; 63 Pan, Tompkins (CR36) 1985; 32 Cruz, Sabourin, Cavalcanti (CR12) 2017; 38 De Lannoy, François, Delbeke, Verleysen (CR17) 2012; 59 Yildirim (CR49) 2018; 96 Sierra, Lazkano, Irigoien, Jauregi, Mendialdua (CR40) 2011; 181 Wilson (CR43) 1972; SMC-2 CR54 CR53 CR51 Woloszynski, Kurzynski (CR44) 2011; 44 De Albuquerque, Nunes, Pereira, Menotti, Papa, Tavares (CR15) 2018; 29 CR25 Chen, Hua, Li, Li, Gao (CR11) 2017; 31 He, Sun, Rong, Wang, Zhang (CR22) 2018; 13 CR23 Lin, Chen, Qiu, Wu, Krishnan, Zou (CR28) 2014; 123 CR21 Ye, Kumar, Coimbra (CR48) 2012; 59 Dos Santos, Sabourin, Maupin (CR19) 2008; 41 Özbay, Tezel (CR35) 2010; 20 Yang, Zhou, Lei, Zheng, Xiang (CR47) 2016; 40 Cavalin, Sabourin, Suen (CR9) 2013; 22 Llamedo, Martínez (CR29) 2011; 58 Shensa (CR39) 1992; 40 Xiao, Xie, He, Jiang (CR46) 2012; 39 EJDS Luz (776_CR30) 2016; 127 776_CR32 Ö Yildirim (776_CR49) 2018; 96 UR Acharya (776_CR3) 2017; 89 Z Zhang (776_CR52) 2014; 46 P De Chazal (776_CR16) 2004; 51 UR Acharya (776_CR2) 2017; 415 J Xiao (776_CR46) 2012; 39 776_CR41 A Supratak (776_CR42) 2017; 25 Z Yang (776_CR47) 2016; 40 C Ye (776_CR48) 2012; 59 Y Özbay (776_CR35) 2010; 20 S Kiranyaz (776_CR26) 2016; 63 AH Ko (776_CR27) 2008; 41 H Huang (776_CR24) 2014; 13 DL Wilson (776_CR43) 1972; SMC-2 J He (776_CR22) 2018; 13 RG Afkhami (776_CR4) 2016; 70 VHC De Albuquerque (776_CR15) 2018; 29 B Sierra (776_CR40) 2011; 181 J Pan (776_CR36) 1985; 32 J Ma (776_CR31) 2016; 16 T Woloszynski (776_CR45) 2012; 13 776_CR54 776_CR53 RM Cruz (776_CR13) 2018; 41 776_CR51 JH Abawajy (776_CR1) 2013; 112 PR Cavalin (776_CR9) 2013; 22 GB Moody (776_CR34) 2001; 20 A Sellami (776_CR38) 2019; 122 776_CR6 EM Dos Santos (776_CR19) 2008; 41 776_CR7 776_CR5 G De Lannoy (776_CR17) 2012; 59 C Lin (776_CR28) 2014; 123 NV Chawla (776_CR10) 2002; 16 M Llamedo (776_CR29) 2011; 58 ASJr Britto (776_CR8) 2014; 47 A Daamouche (776_CR14) 2012; 7 RM Cruz (776_CR12) 2017; 38 S Sahoo (776_CR37) 2017; 108 776_CR21 G Doquire (776_CR18) 2011; 2011 SN Yu (776_CR50) 2007; 28 776_CR25 MJ Shensa (776_CR39) 1992; 40 776_CR23 İ Güler (776_CR20) 2005; 38 T Woloszynski (776_CR44) 2011; 44 S Chen (776_CR11) 2017; 31 S Masoudnia (776_CR33) 2014; 42 |
References_xml | – volume: 20 start-page: 45 issue: 3 year: 2001 end-page: 50 ident: CR34 article-title: The impact of the mit-bih arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 28 start-page: 1142 issue: 10 year: 2007 end-page: 1150 ident: CR50 article-title: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network publication-title: Pattern Recogn. Lett. – volume: 16 start-page: 4 issue: 1 year: 2016 ident: CR31 article-title: Supervised anomaly detection in uncertain pseudoperiodic data streams publication-title: ACM Trans. Internet Technol. (TOIT) – volume: 44 start-page: 2656 issue: 10-11 year: 2011 end-page: 2668 ident: CR44 article-title: A probabilistic model of classifier competence for dynamic ensemble selection publication-title: Pattern Recogn. – volume: 40 start-page: 2464 issue: 10 year: 1992 end-page: 2482 ident: CR39 article-title: The discrete wavelet transform: wedding the a trous and mallat algorithms publication-title: IEEE Trans. Signal Process. – ident: CR51 – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: CR3 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 31 start-page: 165 year: 2017 end-page: 173 ident: CR11 article-title: Heartbeat classification using projected and dynamic features of ecg signal publication-title: Biomed. Signal Process. Control – volume: 38 start-page: 199 issue: 2 year: 2005 end-page: 208 ident: CR20 article-title: Ecg beat classifier designed by combined neural network model publication-title: Pattern Recogn. – volume: 112 start-page: 720 issue: 3 year: 2013 end-page: 730 ident: CR1 article-title: Multistage approach for clustering and classification of ecg data publication-title: Comput. Meth. Program. Biomed. – volume: 123 start-page: 424 year: 2014 end-page: 435 ident: CR28 article-title: Libd3c: ensemble classifiers with a clustering and dynamic selection strategy publication-title: Neurocomputing – ident: CR54 – volume: 415 start-page: 190 year: 2017 end-page: 198 ident: CR2 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals publication-title: Inform. Sci. – ident: CR25 – volume: 181 start-page: 5158 issue: 23 year: 2011 end-page: 5168 ident: CR40 article-title: K nearest neighbor equality: giving equal chance to all existing classes publication-title: Inform. Sci. – volume: 122 start-page: 75 year: 2019 end-page: 84 ident: CR38 article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification publication-title: Expert Syst. Appl. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR10 article-title: Smote: synthetic minority over-sampling technique publication-title: J. Artificial Intell. Res. – ident: CR21 – volume: 47 start-page: 3665 issue: 11 year: 2014 end-page: 3680 ident: CR8 article-title: Dynamic selection of classifiers—a comprehensive review publication-title: Pattern Recogn. – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: CR49 article-title: A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification publication-title: Comput. Biol. Med. – volume: 29 start-page: 679 issue: 3 year: 2018 end-page: 693 ident: CR15 article-title: Robust automated cardiac arrhythmia detection in ecg beat signals publication-title: Neural Comput. Appl. – volume: 13 start-page: 207 issue: 3 year: 2012 end-page: 213 ident: CR45 article-title: A measure of competence based on random classification for dynamic ensemble selection publication-title: Information Fusion – volume: 41 start-page: 195 year: 2018 end-page: 216 ident: CR13 article-title: Dynamic classifier selection: recent advances and perspectives publication-title: Information Fusion – volume: 58 start-page: 616 issue: 3 year: 2011 end-page: 625 ident: CR29 article-title: Heartbeat classification using feature selection driven by database generalization criteria publication-title: IEEE Trans. Biomed. Eng. – volume: 39 start-page: 3668 issue: 3 year: 2012 end-page: 3675 ident: CR46 article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution publication-title: Expert Syst. Appl. – ident: CR32 – ident: CR5 – volume: 22 start-page: 673 issue: 3-4 year: 2013 end-page: 688 ident: CR9 article-title: Dynamic selection approaches for multiple classifier systems publication-title: Neural Comput. Appl. – volume: 59 start-page: 241 issue: 1 year: 2012 end-page: 247 ident: CR17 article-title: Weighted conditional random fields for supervised interpatient heartbeat classification publication-title: IEEE Trans. Biomed. Eng. – volume: 59 start-page: 2930 issue: 10 year: 2012 end-page: 2941 ident: CR48 article-title: Heartbeat classification using morphological and dynamic features of ecg signals publication-title: IEEE Trans. Biomed. Eng. – volume: 127 start-page: 144 year: 2016 end-page: 164 ident: CR30 article-title: Ecg-based heartbeat classification for arrhythmia detection: a survey publication-title: Comput. Meth. Programs Biomed. – volume: 70 start-page: 45 year: 2016 end-page: 51 ident: CR4 article-title: Cardiac arrhythmia classification using statistical and mixture modeling features of ecg signals publication-title: Pattern Recogn. Lett. – volume: 38 start-page: 84 year: 2017 end-page: 103 ident: CR12 article-title: Meta-des. oracle: meta-learning and feature selection for dynamic ensemble selection publication-title: Information Fusion – volume: 108 start-page: 55 year: 2017 end-page: 66 ident: CR37 article-title: Multiresolution wavelet transform based feature extraction and ecg classification to detect cardiac abnormalities publication-title: Measurement – volume: 2011 start-page: 1 year: 2011 ident: CR18 article-title: Feature selection for interpatient supervised heart beat classification publication-title: Comput. Intell. Neurosci. – volume: 41 start-page: 1718 issue: 5 year: 2008 end-page: 1731 ident: CR27 article-title: From dynamic classifier selection to dynamic ensemble selection publication-title: Pattern Recogn. – ident: CR53 – volume: 13 start-page: e0206593 issue: 11 year: 2018 ident: CR22 article-title: A pyramid-like model for heartbeat classification from ecg recordings publication-title: Plos one – volume: 63 start-page: 664 issue: 3 year: 2016 end-page: 675 ident: CR26 article-title: Real-time patient-specific ecg classification by 1-d convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 286 issue: 12 year: 2016 ident: CR47 article-title: An iot-cloud based wearable ecg monitoring system for smart healthcare publication-title: J. Med. Sys. – volume: 41 start-page: 2993 issue: 10 year: 2008 end-page: 3009 ident: CR19 article-title: A dynamic overproduce-and-choose strategy for the selection of classifier ensembles publication-title: Pattern Recogn. – ident: CR6 – volume: 42 start-page: 275 issue: 2 year: 2014 end-page: 293 ident: CR33 article-title: Mixture of experts: a literature survey publication-title: Artif. Intell. Rev. – ident: CR23 – volume: 32 start-page: 230 issue: 3 year: 1985 end-page: 236 ident: CR36 article-title: A real-time qrs detection algorithm publication-title: IEEE Trans. Biomed. Eng – volume: 51 start-page: 1196 issue: 7 year: 2004 end-page: 1206 ident: CR16 article-title: Automatic classification of heartbeats using ecg morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. – volume: SMC-2 start-page: 408 issue: 3 year: 1972 end-page: 421 ident: CR43 article-title: Asymptotic properties of nearest neighbor rules using edited data. publication-title: IEEE Trans. Sys. Man Cyber. – volume: 25 start-page: 1998 issue: 11 year: 2017 end-page: 2008 ident: CR42 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 20 start-page: 1040 issue: 4 year: 2010 end-page: 1049 ident: CR35 article-title: A new method for classification of ecg arrhythmias using neural network with adaptive activation function publication-title: Digital Signal Processing – ident: CR7 – volume: 46 start-page: 79 year: 2014 end-page: 89 ident: CR52 article-title: Heartbeat classification using disease-specific feature selection publication-title: Comput. Biol. Med. – ident: CR41 – volume: 7 start-page: 342 issue: 4 year: 2012 end-page: 349 ident: CR14 article-title: A wavelet optimization approach for ecg signal classification publication-title: Biomed. Signal Process. Control – volume: 13 start-page: 90 issue: 1 year: 2014 ident: CR24 article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and rr intervals publication-title: Biomed. Eng. Online – volume: 38 start-page: 84 year: 2017 ident: 776_CR12 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.010 – volume: 123 start-page: 424 year: 2014 ident: 776_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.004 – volume: 7 start-page: 342 issue: 4 year: 2012 ident: 776_CR14 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.001 – volume: 40 start-page: 286 issue: 12 year: 2016 ident: 776_CR47 publication-title: J. Med. Sys. doi: 10.1007/s10916-016-0644-9 – volume: 122 start-page: 75 year: 2019 ident: 776_CR38 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.037 – volume: 29 start-page: 679 issue: 3 year: 2018 ident: 776_CR15 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2472-8 – volume: 2011 start-page: 1 year: 2011 ident: 776_CR18 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/643816 – volume: 112 start-page: 720 issue: 3 year: 2013 ident: 776_CR1 publication-title: Comput. Meth. Program. Biomed. doi: 10.1016/j.cmpb.2013.08.002 – volume: 22 start-page: 673 issue: 3-4 year: 2013 ident: 776_CR9 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0737-9 – volume: SMC-2 start-page: 408 issue: 3 year: 1972 ident: 776_CR43 publication-title: IEEE Trans. Sys. Man Cyber. doi: 10.1109/TSMC.1972.4309137 – volume: 44 start-page: 2656 issue: 10-11 year: 2011 ident: 776_CR44 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.03.020 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 776_CR26 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 41 start-page: 2993 issue: 10 year: 2008 ident: 776_CR19 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.03.027 – volume: 96 start-page: 189 year: 2018 ident: 776_CR49 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – ident: 776_CR32 doi: 10.1109/IEMBS.2011.6090487 – volume: 41 start-page: 1718 issue: 5 year: 2008 ident: 776_CR27 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2007.10.015 – volume: 108 start-page: 55 year: 2017 ident: 776_CR37 publication-title: Measurement doi: 10.1016/j.measurement.2017.05.022 – volume: 59 start-page: 241 issue: 1 year: 2012 ident: 776_CR17 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2171037 – volume: 46 start-page: 79 year: 2014 ident: 776_CR52 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.11.019 – ident: 776_CR25 – volume: 58 start-page: 616 issue: 3 year: 2011 ident: 776_CR29 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068048 – ident: 776_CR53 – ident: 776_CR6 – volume: 415 start-page: 190 year: 2017 ident: 776_CR2 publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 39 start-page: 3668 issue: 3 year: 2012 ident: 776_CR46 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.059 – ident: 776_CR21 doi: 10.1007/978-3-030-02925-8_6 – volume: 42 start-page: 275 issue: 2 year: 2014 ident: 776_CR33 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9338-y – volume: 25 start-page: 1998 issue: 11 year: 2017 ident: 776_CR42 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – volume: 70 start-page: 45 year: 2016 ident: 776_CR4 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2015.11.018 – volume: 16 start-page: 321 year: 2002 ident: 776_CR10 publication-title: J. Artificial Intell. Res. doi: 10.1613/jair.953 – volume: 51 start-page: 1196 issue: 7 year: 2004 ident: 776_CR16 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – ident: 776_CR41 – volume: 16 start-page: 4 issue: 1 year: 2016 ident: 776_CR31 publication-title: ACM Trans. Internet Technol. (TOIT) – volume: 20 start-page: 1040 issue: 4 year: 2010 ident: 776_CR35 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2009.10.016 – ident: 776_CR7 doi: 10.1609/aaai.v32i1.11891 – volume: 31 start-page: 165 year: 2017 ident: 776_CR11 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.07.010 – volume: 38 start-page: 199 issue: 2 year: 2005 ident: 776_CR20 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2004.06.009 – volume: 40 start-page: 2464 issue: 10 year: 1992 ident: 776_CR39 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.157290 – ident: 776_CR5 doi: 10.1007/978-3-642-13278-0_39 – volume: 59 start-page: 2930 issue: 10 year: 2012 ident: 776_CR48 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2213253 – volume: 89 start-page: 389 year: 2017 ident: 776_CR3 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 776_CR34 publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 776_CR36 publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.1985.325532 – volume: 127 start-page: 144 year: 2016 ident: 776_CR30 publication-title: Comput. Meth. Programs Biomed. doi: 10.1016/j.cmpb.2015.12.008 – volume: 13 start-page: 90 issue: 1 year: 2014 ident: 776_CR24 publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-13-90 – ident: 776_CR23 doi: 10.1109/CVPR.2016.90 – volume: 13 start-page: 207 issue: 3 year: 2012 ident: 776_CR45 publication-title: Information Fusion doi: 10.1016/j.inffus.2011.03.007 – ident: 776_CR54 doi: 10.1109/ICITCS.2016.7740310 – volume: 181 start-page: 5158 issue: 23 year: 2011 ident: 776_CR40 publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.07.024 – volume: 41 start-page: 195 year: 2018 ident: 776_CR13 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.09.010 – ident: 776_CR51 doi: 10.2316/P.2017.852-029 – volume: 28 start-page: 1142 issue: 10 year: 2007 ident: 776_CR50 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2007.01.017 – volume: 47 start-page: 3665 issue: 11 year: 2014 ident: 776_CR8 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2014.05.003 – volume: 13 start-page: e0206593 issue: 11 year: 2018 ident: 776_CR22 publication-title: Plos one doi: 10.1371/journal.pone.0206593 |
SSID | ssj0006391 |
Score | 2.4705286 |
Snippet | Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12
%
of all deaths globally. The development of... Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12% of all deaths globally. The development of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2835 |
SubjectTerms | Arrhythmia Artificial neural networks Cardiac arrhythmia Classification Computer Science Convolution Database Management Engineering education Information Systems Applications (incl.Internet) Internet of Things Learning Modules Operating Systems Physicians |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYDJQDN4jUR1LSG9PEGEhw2qTdqiRNNCTo0FYO_HucrF0BARLnuq5kN_5sxf4McB4pG5jYSGpTgQUKgixFGLY01tYyznLFPGX-w2MyHLP7CZ9UQ2GLutu9vpL0kboZdsNQ6pqoUuo5aGi6Dhsca3fXyDWOeqv4i5i7LLNEQkPGJ9WozM86vsJRk2N-uxb1aDPYhe0qTSS9pV_3YM0UbdipVzCQ6kS2YesTn-A-XPeIrZutCGajRHv_ayLn8-l7OX15kiQ3pe--KoibLCF3sxF1SJaTm_7t4gDGg5tRf0irFQlUI5CU1IS51aGNGDrCLbNlUunccmOudMAUl3GkecQwC0vyEAUEOixQQuXWOuYhIeJDaBWzwhwBfl6JME50FHDt1IkAdRhH-RbEqUxlB8LaUpmu-MPdGovnrGE-dtbN0LqZt26WduBi9c7rkj3jT-lu7YCsOkmLDNMP50kMHB24rJ3SPP5d2_H_xE9gM3KltG8f60KrnL-ZU8w3SnXmf68PKjTJxg priority: 102 providerName: Springer Nature |
Title | A framework for cardiac arrhythmia detection from IoT-based ECGs |
URI | https://link.springer.com/article/10.1007/s11280-019-00776-9 https://www.proquest.com/docview/2441386017 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RSDMeXADSL6SLv0BGPaAxATQps0TlWbJhoSbGMrB_49TpuugMSubeJKdurPTpzPAOdOrCzpyoiqgGOCgiBLEYYVdYVSzGNJzDLK_MeB3x-x-7E3NhtuS1NWWfjEzFEnM6H3yK8QhmyXY_rQvJ5_UN01Sp-umhYam1BFF8x5Baq3ncHT88oXI_7mKRf3qc28sbk2k1-ewxm6KCugGacNDX5DUxlv_jkizZCnuws7JmQkrdzGe7Ahp_uw_YNI8ABuWkQVVVYEw1AiMsMLEi0Wk6908v4akUSmWdnVlOgrJeRuNqQawhLSafeWhzDqdobtPjW9EahABEmptBMlbOUwtIDuYsuiWCTKk7IpLBZ7kesIz2EYfvmJjQM4WsqKeZwopSmHOHePoDKdTeUx4Odjbru-cCxPaHHcQhlSc71ZbhAFUQ3sQi2hMMThun_FW1hSHmtVhqjKMFNlGNTgYjVnntNmrB1dL7Qdml9oGZYGr8FlYYHy9f_STtZLO4UtR-fMWZ1YHSrp4lOeYWCRxg3Y5N1eA6qt3stDp2HWEj4dOa1vHoTLQA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ikGA3KAE0T0kW7pAcE02AO2nYa0W2nTRCDBBlsR2p_iN-KkLQMkdtu5rds6rj-7sT8DHDuRsqQrQ6p8jgkKgixFGFbUFUoxj8URM5T5nW65ec9u-15_AT7zXhhdVpn7ROOo46HQ_8jPEYZsl2P6ULl8faN6apTeXc1HaKRmcScnH5iyjS9a17i-J45Tv-nVmjSbKkAF-t6ESjtWwlYOw2fX819ZGIlYeVJWhMUiL3Qd4TkMA5dybOMJHN_RingUK6XJejh3Ue4iLDEXkVx3ptcb354f0T5N8HiZ2szrZ006aaseAoEuAfOpYdCh_m8gnEa3fzZkDc7V12EtC1BJNbWoDViQg01Y_UFbuAVXVaLymi6CQS8RxswECUejx0ny-PIUklgmpshrQHQDC2kNe1QDZkxuao3xNtzPRWc7UBgMB3IX8PYRt92ycCxPaHHcQhlSM8tZrh_6YRHsXC2ByGjK9bSM52BKsKxVGaAqA6PKwC_C6fc1rylJx8yzS7m2g-yDHQdT8yrCWb4C08P_S9ubLe0Ilpu9Tjtot7p3-7Di6GzdVKiVoJCM3uUBhjRJdGjsiMDDvA33Cwy9BQo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGkBAcEE8xnjnACSL6SEt6QDBgY-MxTWiTdittmggk2GArQvtr_DqcPjZAYredm7qK4-SzG_szwL4VKkPaMqDK4xigIMhShGFFbaEUc1gUsoQy_77h1trspuN0CvCV18LotMr8TEwO6qgn9D_yY4Qh0-aupntWWVpE86p69vZOdQcpfdOat9NITeRWDj8xfBuc1q9wrQ8sq1ppXdZo1mGACjyHYyrNSAlTWQznoXvBsiAUkXKkPBEGC53AtoRjMXRi3MjEARzna4Q8jJTSxD2c2yh3BmZPdFRUhNmLSqP5MMIBxP403OMuNZnTyUp20sI9hAWdEObRhE-Her9hcezr_rmeTVCvugSLmbtKyql9LUNBdldg4QeJ4Sqcl4nKM7wIusBEJEYnSNDvPw3jp9fngEQyTlK-ukSXs5B6r0U1fEakcnk9WIP2VLS2DsVurys3AD8fctN2hWU4QovjBsqQmmfOsL3AC0pg5mrxRUZarntnvPhjumWtSh9V6Seq9L0SHI7eeUspOyaO3s617Wfbd-CPja0ER_kKjB__L21zsrQ9mEOj9e_qjdstmLd06J6kq21DMe5_yB30b-JwNzMkAo_Ttt1vo3cKnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+cardiac+arrhythmia+detection+from+IoT-based+ECGs&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=He+Jinyuan&rft.au=Jia%2C+Rong&rft.au=Sun%2C+Le&rft.au=Wang%2C+Hua&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=23&rft.issue=5&rft.spage=2835&rft.epage=2850&rft_id=info:doi/10.1007%2Fs11280-019-00776-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon |