Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions

The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal biology Vol. 80; pp. 94 - 105
Main Authors Marn, Jure, Chung, Mo, Iljaž, Jurij
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0306-4565
1879-0992
DOI10.1016/j.jtherbio.2019.01.002

Cover

Loading…
Abstract The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes. •Steady heat conduction problem under Fanger thermal comfort condition is solved.•One-dimensional steady-state Pennes bioheat equation is applied.•Relationship between metabolic rate and blood perfusion determined.•Temperature distribution in the muscle layer is obtained.•Explicit expressions for key relations are determined by asymptotic analysis.
AbstractList The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes.The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes.
The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes.
The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes. •Steady heat conduction problem under Fanger thermal comfort condition is solved.•One-dimensional steady-state Pennes bioheat equation is applied.•Relationship between metabolic rate and blood perfusion determined.•Temperature distribution in the muscle layer is obtained.•Explicit expressions for key relations are determined by asymptotic analysis.
Author Iljaž, Jurij
Marn, Jure
Chung, Mo
Author_xml – sequence: 1
  givenname: Jure
  surname: Marn
  fullname: Marn, Jure
  organization: Faculty of Mechanical Engineering, University of Maribor, 2000, Slovenia
– sequence: 2
  givenname: Mo
  surname: Chung
  fullname: Chung, Mo
  email: mchung@yu.ac.kr
  organization: Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
– sequence: 3
  givenname: Jurij
  surname: Iljaž
  fullname: Iljaž, Jurij
  organization: Faculty of Mechanical Engineering, University of Maribor, 2000, Slovenia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30784494$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFr1BF4sIlYfwnyVriAKpoi1QJCcHZcuwJdZTYi-0U8e3xdruXXvb0Lr83M2_eBTnzwSMhVxQaCrT7ODVTfsA4uNAwoLIB2gCwV2RDt72sQUp2RjbAoatF27Xn5CKlCYC2vIU35JxDvxVCig1RP3DW2QWfHtyuGjD_RfTVglkPYXamijpjpb2thjkEW-0wjmsqeLV6i7G60f53kf0pi54rE5YxxFzUW_c09S15Peo54btnvSS_br7-vL6r77_ffrv-cl8bwWSurR2NpLQd-ZYaaRgfKbVtrzkIMJIzW1KALqmQi1YO0LWGG2CD0Lbrxq7jl-TDYe4uhj8rpqwWlwzOs_YY1qQYYxQYF6w_jdKtoKJjIAv6_gU6hTX6EqRQsmWiZ2K_--qZWocFrdpFt-j4Tx2_XIBPB8DEkFLEURmXn76eo3azoqD2papJHUtV-1IVUFVKLfbuhf244aTx88GI5fOPDqNKxqE3aF1Ek5UN7tSI_9UDvy4
CitedBy_id crossref_primary_10_3390_en12050841
crossref_primary_10_3390_su132111855
crossref_primary_10_1016_j_trd_2019_102217
crossref_primary_10_1016_j_jtherbio_2022_103434
crossref_primary_10_1016_j_tsep_2020_100553
crossref_primary_10_1016_j_jtherbio_2022_103276
Cites_doi 10.1016/S0006-3495(68)86527-0
10.1016/j.jtherbio.2014.07.006
10.1016/j.jtherbio.2012.12.003
10.1016/j.buildenv.2010.03.002
10.1016/j.jtherbio.2016.07.005
10.1016/j.jtherbio.2016.11.011
10.1016/j.jtherbio.2014.08.007
10.1016/j.jtherbio.2015.06.008
10.1109/TBME.1974.324342
10.1152/jappl.1948.1.2.93
10.1016/j.jtherbio.2018.04.006
10.1016/j.ijthermalsci.2006.06.017
10.1016/j.jtherbio.2017.08.001
10.1111/j.1749-6632.1980.tb50742.x
10.1115/1.3138533
10.1088/0031-9155/55/19/020
10.1152/jappl.1951.4.2.121
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7SS
7TK
7TS
7X8
7S9
L.6
DOI 10.1016/j.jtherbio.2019.01.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Animal Behavior Abstracts
Physical Education Index
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Entomology Abstracts
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0992
EndPage 105
ExternalDocumentID 30784494
10_1016_j_jtherbio_2019_01_002
S030645651830192X
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSJ
SSU
SSZ
T5K
UHS
UNMZH
VH1
WUQ
YQT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7SS
7TK
7TS
EFKBS
7X8
7S9
L.6
ID FETCH-LOGICAL-c429t-ddfc9115f381c9c23f11d57a3040c932d4560a992e3459b065c3c02b4ad66f663
IEDL.DBID AIKHN
ISSN 0306-4565
IngestDate Fri Sep 05 09:27:34 EDT 2025
Fri Sep 05 00:41:22 EDT 2025
Fri Jul 25 03:31:24 EDT 2025
Wed Feb 19 02:36:45 EST 2025
Tue Jul 01 01:01:55 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 23 02:28:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temperature distribution
Pennes bioheat equation
Blood perfusion
Asymptotic solution
Fanger thermal comfort
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-ddfc9115f381c9c23f11d57a3040c932d4560a992e3459b065c3c02b4ad66f663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30784494
PQID 2195247246
PQPubID 2045441
PageCount 12
ParticipantIDs proquest_miscellaneous_2221023427
proquest_miscellaneous_2184146209
proquest_journals_2195247246
pubmed_primary_30784494
crossref_citationtrail_10_1016_j_jtherbio_2019_01_002
crossref_primary_10_1016_j_jtherbio_2019_01_002
elsevier_sciencedirect_doi_10_1016_j_jtherbio_2019_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
2019-Feb
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of thermal biology
PublicationTitleAlternate J Therm Biol
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mitchell, Myers (bib21) 1968
Weinhaum, Jiji (bib27) 1985; 107
Acharya, Gurung, Saxena (bib1) 2014; 45
Shrivastava, Subhash, Mishra, Christopher, Gordon (bib25) 2016; 62
Kutz (bib17) 2009
McCutchan, Taylor (bib19) 1951; 4
Klinger (bib16) 1974; 36
ANSI/ASHRAE Standard 55, 2004. - Thermal Environmental Conditions for Human Occupancy.
Mathematica, 2011. version 8, Wolfram.
Frank, S.M., Raja, S.N., Bulcao, C.F., Goldstein, D.S., 1999. Relative contribution of core and cutaneous temperatures, Downloaded from
Çetingül, Herman (bib7) 2010; 55
Khiavi, Mehdi Maerefat, Seyed Alireza Zolfaghari (bib15) 2018; 74
Moran, Shapiro (bib22) 2014
Wulff, W., 1974. The Energy Conservation Equation for Living Tissue, IEEE Transactions of Biomedical Engineering, BME-21, 494-495.
Mitchell, Braun (bib20) 2012
Jović, Arsić, Vilimonović, Petković (bib14) 2016; 62
Pennes (bib23) 1948; 1
downloaded on 26 April 2018.
Zhou, Xionga, Lian (bib29) 2017; 70
ISO 7730, 2005. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
Das, Mishra (bib9) 2014; 45
Chen, Holmes (bib8) 1980; 335
Incropera, DeWitt, Bergman, Lavine (bib12) 2012
Wang, Ning, Ji, Hou, He (bib26) 2015; 52
Arkin, Xu, Holmes (bib3) 1994; 41
Salloum, Ghaddar, Ghali (bib24) 2007; 46
Zolfaghari, Maerefat (bib30) 2010; 45
ASHRAE, 2009. ASHRAE Handbook (SI) – Fundamentals, Chapter 6, Psychrometrics. ASHRAE, Atlanta.
Bhowmik, Singh, Repaka, Mishra (bib5) 2013; 38
Cengel, Boles (bib6) 2014
Fanger (bib10) 1970
10.1016/j.jtherbio.2019.01.002_bib4
Cengel (10.1016/j.jtherbio.2019.01.002_bib6) 2014
Khiavi (10.1016/j.jtherbio.2019.01.002_bib15) 2018; 74
Arkin (10.1016/j.jtherbio.2019.01.002_bib3) 1994; 41
Incropera (10.1016/j.jtherbio.2019.01.002_bib12) 2012
Mitchell (10.1016/j.jtherbio.2019.01.002_bib21) 1968
10.1016/j.jtherbio.2019.01.002_bib2
Shrivastava (10.1016/j.jtherbio.2019.01.002_bib25) 2016; 62
Zolfaghari (10.1016/j.jtherbio.2019.01.002_bib30) 2010; 45
Bhowmik (10.1016/j.jtherbio.2019.01.002_bib5) 2013; 38
Kutz (10.1016/j.jtherbio.2019.01.002_bib17) 2009
Zhou (10.1016/j.jtherbio.2019.01.002_bib29) 2017; 70
Pennes (10.1016/j.jtherbio.2019.01.002_bib23) 1948; 1
10.1016/j.jtherbio.2019.01.002_bib18
Chen (10.1016/j.jtherbio.2019.01.002_bib8) 1980; 335
Mitchell (10.1016/j.jtherbio.2019.01.002_bib20) 2012
Moran (10.1016/j.jtherbio.2019.01.002_bib22) 2014
10.1016/j.jtherbio.2019.01.002_bib11
10.1016/j.jtherbio.2019.01.002_bib13
Acharya (10.1016/j.jtherbio.2019.01.002_bib1) 2014; 45
Klinger (10.1016/j.jtherbio.2019.01.002_bib16) 1974; 36
Weinhaum (10.1016/j.jtherbio.2019.01.002_bib27) 1985; 107
Salloum (10.1016/j.jtherbio.2019.01.002_bib24) 2007; 46
Jović (10.1016/j.jtherbio.2019.01.002_bib14) 2016; 62
Fanger (10.1016/j.jtherbio.2019.01.002_bib10) 1970
Çetingül (10.1016/j.jtherbio.2019.01.002_bib7) 2010; 55
Das (10.1016/j.jtherbio.2019.01.002_bib9) 2014; 45
McCutchan (10.1016/j.jtherbio.2019.01.002_bib19) 1951; 4
Wang (10.1016/j.jtherbio.2019.01.002_bib26) 2015; 52
10.1016/j.jtherbio.2019.01.002_bib28
References_xml – reference: downloaded on 26 April 2018.
– year: 2014
  ident: bib6
  publication-title: Thermodynamics: An Engineering Approach
– reference: Wulff, W., 1974. The Energy Conservation Equation for Living Tissue, IEEE Transactions of Biomedical Engineering, BME-21, 494-495.
– volume: 52
  start-page: 177
  year: 2015
  end-page: 186
  ident: bib26
  article-title: Human thermal physiological and psychological responses under different heating environments
  publication-title: J. Therm. Biol.
– year: 2009
  ident: bib17
  publication-title: Biomedical Engineering and Design Handbook, Volume I: Biomedical Engineering Fundamentals
– volume: 55
  start-page: 5933
  year: 2010
  end-page: 5951
  ident: bib7
  article-title: A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: 97
  year: 2016
  ident: bib25
  article-title: Modeling bioheat transfer processes and thermoregulatory responses
  publication-title: J. Therm. Biol.
– volume: 107
  start-page: 131
  year: 1985
  end-page: 139
  ident: bib27
  article-title: A new simplified equation for the effect of blood flow on local average tissue temperature
  publication-title: ASME J. Biomech. Eng.
– volume: 335
  start-page: 137
  year: 1980
  end-page: 150
  ident: bib8
  article-title: Microvascular contributions in tissue heat transfer
  publication-title: Ann. N.Y. Acad. Sci.
– start-page: 897
  year: 1968
  end-page: 911
  ident: bib21
  article-title: An analytical model of the countercurrent heat exchange phenomena
  publication-title: Biophys. J.
– volume: 1
  start-page: 93
  year: 1948
  end-page: 122
  ident: bib23
  article-title: Analysis of tissue and arterial Blood temperatures in the resting human forearm
  publication-title: J. Appl. Physiol.
– reference: Frank, S.M., Raja, S.N., Bulcao, C.F., Goldstein, D.S., 1999. Relative contribution of core and cutaneous temperatures, Downloaded from
– year: 2012
  ident: bib12
  publication-title: Fundamentals of Heat and Mass Transfer
– volume: 70
  start-page: 15
  year: 2017
  end-page: 20
  ident: bib29
  article-title: Predication of skin temperature and thermal comfort under two-way transient environments
  publication-title: J. Therm. Biol.
– volume: 74
  start-page: 290
  year: 2018
  end-page: 302
  ident: bib15
  article-title: A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues
  publication-title: J. Therm. Biol.
– volume: 46
  start-page: 371
  year: 2007
  end-page: 384
  ident: bib24
  article-title: A new transient bioheat model of the human body and its integration to clothing models
  publication-title: Int. J. Therm. Sci.
– volume: 45
  start-page: 103
  year: 2014
  end-page: 109
  ident: bib9
  article-title: Study of thermal behavior of a biological tissue: an equivalence of Pennes bioheat equation and Wulff continuum model
  publication-title: J. Therm. Biol.
– volume: 45
  start-page: 2068
  year: 2010
  end-page: 2076
  ident: bib30
  article-title: A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments
  publication-title: Build. Environ.
– reference: ANSI/ASHRAE Standard 55, 2004. - Thermal Environmental Conditions for Human Occupancy.
– reference: ISO 7730, 2005. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
– volume: 45
  start-page: 30
  year: 2014
  end-page: 36
  ident: bib1
  article-title: Human males and females body thermoregulation: perfusion effect analysis
  publication-title: J. Therm. Biol.
– volume: 38
  start-page: 107
  year: 2013
  end-page: 125
  ident: bib5
  article-title: Conventional and newly developed bioheat transport models in vascularized tissues: a review
  publication-title: J. Therm. Biol.
– reference: Mathematica, 2011. version 8, Wolfram.
– volume: 41
  start-page: 1994
  year: 1994
  end-page: 1997
  ident: bib3
  article-title: Thermal comfort models: a review and numerical investigation
  publication-title: IEEE Trans. Biomed.
– volume: 36
  start-page: 403
  year: 1974
  end-page: 415
  ident: bib16
  article-title: Heat transfer in perfused biological tissue-I: general theory
  publication-title: Bull. Math. Biol.
– year: 2014
  ident: bib22
  publication-title: Moran Fundamentals of Thermodynamics
– year: 1970
  ident: bib10
  article-title: Thermal Comfort – Analysis and Applications in Environmental Engineering
– volume: 62
  start-page: 106
  year: 2016
  end-page: 108
  ident: bib14
  article-title: Thermal sensation prediction by soft computing methodology
  publication-title: J. Therm. Biol.
– volume: 4
  start-page: 121
  year: 1951
  end-page: 135
  ident: bib19
  article-title: Respitory heat exchange with varying temperature and humidity of inspired air
  publication-title: J., Appl. Physiol.
– year: 2012
  ident: bib20
  publication-title: Principles of Heating, Ventilation, and Air Conditioning in Buildings
– reference: ASHRAE, 2009. ASHRAE Handbook (SI) – Fundamentals, Chapter 6, Psychrometrics. ASHRAE, Atlanta.
– ident: 10.1016/j.jtherbio.2019.01.002_bib13
– volume: 41
  start-page: 1994
  issue: 2
  year: 1994
  ident: 10.1016/j.jtherbio.2019.01.002_bib3
  article-title: Thermal comfort models: a review and numerical investigation
  publication-title: IEEE Trans. Biomed.
– year: 2012
  ident: 10.1016/j.jtherbio.2019.01.002_bib12
– ident: 10.1016/j.jtherbio.2019.01.002_bib2
– year: 1970
  ident: 10.1016/j.jtherbio.2019.01.002_bib10
– start-page: 897
  year: 1968
  ident: 10.1016/j.jtherbio.2019.01.002_bib21
  article-title: An analytical model of the countercurrent heat exchange phenomena
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(68)86527-0
– volume: 45
  start-page: 30
  year: 2014
  ident: 10.1016/j.jtherbio.2019.01.002_bib1
  article-title: Human males and females body thermoregulation: perfusion effect analysis
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2014.07.006
– ident: 10.1016/j.jtherbio.2019.01.002_bib4
– ident: 10.1016/j.jtherbio.2019.01.002_bib11
– year: 2009
  ident: 10.1016/j.jtherbio.2019.01.002_bib17
– volume: 38
  start-page: 107
  year: 2013
  ident: 10.1016/j.jtherbio.2019.01.002_bib5
  article-title: Conventional and newly developed bioheat transport models in vascularized tissues: a review
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2012.12.003
– year: 2014
  ident: 10.1016/j.jtherbio.2019.01.002_bib22
– volume: 45
  start-page: 2068
  year: 2010
  ident: 10.1016/j.jtherbio.2019.01.002_bib30
  article-title: A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.03.002
– volume: 62
  start-page: 106
  year: 2016
  ident: 10.1016/j.jtherbio.2019.01.002_bib14
  article-title: Thermal sensation prediction by soft computing methodology
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2016.07.005
– volume: 62
  start-page: 97
  year: 2016
  ident: 10.1016/j.jtherbio.2019.01.002_bib25
  article-title: Modeling bioheat transfer processes and thermoregulatory responses
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2016.11.011
– volume: 45
  start-page: 103
  year: 2014
  ident: 10.1016/j.jtherbio.2019.01.002_bib9
  article-title: Study of thermal behavior of a biological tissue: an equivalence of Pennes bioheat equation and Wulff continuum model
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2014.08.007
– volume: 52
  start-page: 177
  year: 2015
  ident: 10.1016/j.jtherbio.2019.01.002_bib26
  article-title: Human thermal physiological and psychological responses under different heating environments
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2015.06.008
– ident: 10.1016/j.jtherbio.2019.01.002_bib28
  doi: 10.1109/TBME.1974.324342
– volume: 1
  start-page: 93
  year: 1948
  ident: 10.1016/j.jtherbio.2019.01.002_bib23
  article-title: Analysis of tissue and arterial Blood temperatures in the resting human forearm
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1948.1.2.93
– volume: 36
  start-page: 403
  year: 1974
  ident: 10.1016/j.jtherbio.2019.01.002_bib16
  article-title: Heat transfer in perfused biological tissue-I: general theory
  publication-title: Bull. Math. Biol.
– volume: 74
  start-page: 290
  year: 2018
  ident: 10.1016/j.jtherbio.2019.01.002_bib15
  article-title: A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2018.04.006
– volume: 46
  start-page: 371
  year: 2007
  ident: 10.1016/j.jtherbio.2019.01.002_bib24
  article-title: A new transient bioheat model of the human body and its integration to clothing models
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.06.017
– year: 2012
  ident: 10.1016/j.jtherbio.2019.01.002_bib20
– volume: 70
  start-page: 15
  year: 2017
  ident: 10.1016/j.jtherbio.2019.01.002_bib29
  article-title: Predication of skin temperature and thermal comfort under two-way transient environments
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2017.08.001
– year: 2014
  ident: 10.1016/j.jtherbio.2019.01.002_bib6
– volume: 335
  start-page: 137
  year: 1980
  ident: 10.1016/j.jtherbio.2019.01.002_bib8
  article-title: Microvascular contributions in tissue heat transfer
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1980.tb50742.x
– volume: 107
  start-page: 131
  year: 1985
  ident: 10.1016/j.jtherbio.2019.01.002_bib27
  article-title: A new simplified equation for the effect of blood flow on local average tissue temperature
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.3138533
– volume: 55
  start-page: 5933
  issue: 19
  year: 2010
  ident: 10.1016/j.jtherbio.2019.01.002_bib7
  article-title: A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/19/020
– ident: 10.1016/j.jtherbio.2019.01.002_bib18
– volume: 4
  start-page: 121
  year: 1951
  ident: 10.1016/j.jtherbio.2019.01.002_bib19
  article-title: Respitory heat exchange with varying temperature and humidity of inspired air
  publication-title: J., Appl. Physiol.
  doi: 10.1152/jappl.1951.4.2.121
SSID ssj0015350
Score 2.2130253
Snippet The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 94
SubjectTerms Adiabatic
Adipose Tissue - blood supply
Adipose Tissue - physiology
Algorithms
Asymptotic solution
Blood
Blood perfusion
Body Temperature
Conduction
Energy balance
Energy Metabolism
Environmental conditions
environmental factors
equations
Fanger thermal comfort
Heat
Heat transfer
Humans
Metabolic rate
Metabolism
Models, Biological
Muscle, Skeletal - blood supply
Muscle, Skeletal - physiology
muscles
Pennes bioheat equation
Perfusion
Regional Blood Flow
Skin
skin temperature
Temperature
Temperature distribution
Temperature effects
Thermosensing
Title Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions
URI https://dx.doi.org/10.1016/j.jtherbio.2019.01.002
https://www.ncbi.nlm.nih.gov/pubmed/30784494
https://www.proquest.com/docview/2195247246
https://www.proquest.com/docview/2184146209
https://www.proquest.com/docview/2221023427
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Bokq9VOXRsi0gV-o1bOLXro8IdbWA4EKR9mYljq0GQVhts4de-ts7kzhRK9Fy6ClK4nGcsT3z2Z4HwGfC5AGXO4nmZUikyFWSz7RPUNsQfBambNO9Xd_oxZ28XKrlFpz3vjBkVhllfyfTW2kdn0wiNyerqprcEtolPIKDknDKcht2uDBajWDn7OJqcTMcJijRJmql8gkR_OYofI_wD3lTVOQHmJk2gmfcYXlGR_0Ng7a6aP4W3kQQyc66du7Clq_34FWXVvLHPtjBwu1btWLREos9-gY7_KFyjKJDsLwuWWu1zlZ-HTa0acbIoWzN5q0rMKMWP-JXkDMIbBu80uk21XoAd_MvX88XSUykkDhUN01SlsGhUFMB1bMzjouQZaWa5gJnsEMAVyJX0twY7oVUpkBU4oRLeSHzUuuAmOQdjOqn2h8C07SAMz5oWcxk4dNiygNCJGkovijWMgbVs866GGWckl082N6c7N72LLfEcptmFlk-hslAt-ribLxIYfqesX-MGIvK4EXao74rbZyz3y3KbsXllEs9hk_Da5xtdISS1_5pQ2VmEnULT80_ynBaRgvJp2N43w2T4ZdQos6kNPLDfzT-I7ymu850_AhGzXrjjxEZNcUJbJ_-zE7i-P8FnfAL3Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CIsQuEzBg3WDzpF1DU8dJ6uNUUZUNuFCk3qzEsUWqNq1KeuDC3857iRNt0oADp0jxR5xnv_d-tt8HwE_C5Ba3O17EM-uJIAm9ZBAZD7UNwedAZlW6t-ubaHwnfk_D6RYMG18YMqt0sr-W6ZW0dm96jpq9VZ73bgntEh7BRUk4ZboNOyIMYrLrO39q7TyQo6s0rVTbo-p_uQnPEPwhZdKcvAD7sorf6c5X_qOhXkKglSYa7cNHByHZr3qUB7BlikPYrZNKPn4C1dq33ecr5uyw2MKUON3zXDOKDcGSImOVzTpbmbXd0JEZI3eyNRtVjsCMRrzAryBdENaW-KS7ber1CO5GF5Ph2HNpFDyNyqb0ssxqFGmhReWspeaB7fezME4C5F-N8C1DqviJlNwEIpQpYhIdaJ-nIsmiyCIiOYZOsSzMZ2ARbd-ksZFIByI1fhpziwBJSIouir10IWxIp7SLMU6pLuaqMSabqYbkikiu_L5Ckneh17Zb1VE23mwhm5lR_6wXhargzbanzVQqx7EPCiV3yEXMRdSFH20x8hpdoCSFWW6ozkCgZuG-fKUOp010IHjchZN6mbS_hPJ0IIQUX94x-O-wN55cX6mry5s_X-EDldRG5KfQKdcbc4YYqUy_VTzwDOQHDKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+metabolic+rate+and+blood+perfusion+under+Fanger+thermal+comfort+conditions&rft.jtitle=Journal+of+thermal+biology&rft.au=Marn%2C+Jure&rft.au=Chung%2C+Mo&rft.au=Ilja%C5%BE%2C+Jurij&rft.date=2019-02-01&rft.issn=0306-4565&rft.volume=80&rft.spage=94&rft_id=info:doi/10.1016%2Fj.jtherbio.2019.01.002&rft_id=info%3Apmid%2F30784494&rft.externalDocID=30784494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4565&client=summon