Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions
The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature...
Saved in:
Published in | Journal of thermal biology Vol. 80; pp. 94 - 105 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0306-4565 1879-0992 |
DOI | 10.1016/j.jtherbio.2019.01.002 |
Cover
Loading…
Abstract | The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes.
•Steady heat conduction problem under Fanger thermal comfort condition is solved.•One-dimensional steady-state Pennes bioheat equation is applied.•Relationship between metabolic rate and blood perfusion determined.•Temperature distribution in the muscle layer is obtained.•Explicit expressions for key relations are determined by asymptotic analysis. |
---|---|
AbstractList | The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes.The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes. The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes. The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger thermal comfort conditions. The bioheat equation was solved subject to two boundary conditions at the skin surface: a prescribed skin temperature satisfying the Fanger comfort criterion, and a prescribed heat flux obtained from the overall energy balance for the system. In addition to a fixed body core temperature, an adiabatic condition was imposed as an auxiliary condition at the core of the body, and a pair of equations were derived, relating the blood perfusion and the volumetric heat generation rate for a given activity level and environmental conditions. By solving the two equations, we determined the functional dependence of blood perfusion and metabolic heat generation on the human activity level. For convenience, we presented simple explicit expressions for the key relations, with the aid of asymptotic analyses. Additional results include the temperature distribution inside the muscle layer, and the effects of muscle and fat layer thickness on the heat transfer processes. •Steady heat conduction problem under Fanger thermal comfort condition is solved.•One-dimensional steady-state Pennes bioheat equation is applied.•Relationship between metabolic rate and blood perfusion determined.•Temperature distribution in the muscle layer is obtained.•Explicit expressions for key relations are determined by asymptotic analysis. |
Author | Iljaž, Jurij Marn, Jure Chung, Mo |
Author_xml | – sequence: 1 givenname: Jure surname: Marn fullname: Marn, Jure organization: Faculty of Mechanical Engineering, University of Maribor, 2000, Slovenia – sequence: 2 givenname: Mo surname: Chung fullname: Chung, Mo email: mchung@yu.ac.kr organization: Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea – sequence: 3 givenname: Jurij surname: Iljaž fullname: Iljaž, Jurij organization: Faculty of Mechanical Engineering, University of Maribor, 2000, Slovenia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30784494$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFr1BF4sIlYfwnyVriAKpoi1QJCcHZcuwJdZTYi-0U8e3xdruXXvb0Lr83M2_eBTnzwSMhVxQaCrT7ODVTfsA4uNAwoLIB2gCwV2RDt72sQUp2RjbAoatF27Xn5CKlCYC2vIU35JxDvxVCig1RP3DW2QWfHtyuGjD_RfTVglkPYXamijpjpb2thjkEW-0wjmsqeLV6i7G60f53kf0pi54rE5YxxFzUW_c09S15Peo54btnvSS_br7-vL6r77_ffrv-cl8bwWSurR2NpLQd-ZYaaRgfKbVtrzkIMJIzW1KALqmQi1YO0LWGG2CD0Lbrxq7jl-TDYe4uhj8rpqwWlwzOs_YY1qQYYxQYF6w_jdKtoKJjIAv6_gU6hTX6EqRQsmWiZ2K_--qZWocFrdpFt-j4Tx2_XIBPB8DEkFLEURmXn76eo3azoqD2papJHUtV-1IVUFVKLfbuhf244aTx88GI5fOPDqNKxqE3aF1Ek5UN7tSI_9UDvy4 |
CitedBy_id | crossref_primary_10_3390_en12050841 crossref_primary_10_3390_su132111855 crossref_primary_10_1016_j_trd_2019_102217 crossref_primary_10_1016_j_jtherbio_2022_103434 crossref_primary_10_1016_j_tsep_2020_100553 crossref_primary_10_1016_j_jtherbio_2022_103276 |
Cites_doi | 10.1016/S0006-3495(68)86527-0 10.1016/j.jtherbio.2014.07.006 10.1016/j.jtherbio.2012.12.003 10.1016/j.buildenv.2010.03.002 10.1016/j.jtherbio.2016.07.005 10.1016/j.jtherbio.2016.11.011 10.1016/j.jtherbio.2014.08.007 10.1016/j.jtherbio.2015.06.008 10.1109/TBME.1974.324342 10.1152/jappl.1948.1.2.93 10.1016/j.jtherbio.2018.04.006 10.1016/j.ijthermalsci.2006.06.017 10.1016/j.jtherbio.2017.08.001 10.1111/j.1749-6632.1980.tb50742.x 10.1115/1.3138533 10.1088/0031-9155/55/19/020 10.1152/jappl.1951.4.2.121 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Feb 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Feb 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QP 7SS 7TK 7TS 7X8 7S9 L.6 |
DOI | 10.1016/j.jtherbio.2019.01.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Physical Education Index MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Animal Behavior Abstracts Physical Education Index MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0992 |
EndPage | 105 |
ExternalDocumentID | 30784494 10_1016_j_jtherbio_2019_01_002 S030645651830192X |
Genre | Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KCYFY KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSA SSJ SSU SSZ T5K UHS UNMZH VH1 WUQ YQT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QG 7QP 7SS 7TK 7TS EFKBS 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c429t-ddfc9115f381c9c23f11d57a3040c932d4560a992e3459b065c3c02b4ad66f663 |
IEDL.DBID | AIKHN |
ISSN | 0306-4565 |
IngestDate | Fri Sep 05 09:27:34 EDT 2025 Fri Sep 05 00:41:22 EDT 2025 Fri Jul 25 03:31:24 EDT 2025 Wed Feb 19 02:36:45 EST 2025 Tue Jul 01 01:01:55 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 23 02:28:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature distribution Pennes bioheat equation Blood perfusion Asymptotic solution Fanger thermal comfort |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-ddfc9115f381c9c23f11d57a3040c932d4560a992e3459b065c3c02b4ad66f663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30784494 |
PQID | 2195247246 |
PQPubID | 2045441 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2221023427 proquest_miscellaneous_2184146209 proquest_journals_2195247246 pubmed_primary_30784494 crossref_citationtrail_10_1016_j_jtherbio_2019_01_002 crossref_primary_10_1016_j_jtherbio_2019_01_002 elsevier_sciencedirect_doi_10_1016_j_jtherbio_2019_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 2019-Feb 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Journal of thermal biology |
PublicationTitleAlternate | J Therm Biol |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mitchell, Myers (bib21) 1968 Weinhaum, Jiji (bib27) 1985; 107 Acharya, Gurung, Saxena (bib1) 2014; 45 Shrivastava, Subhash, Mishra, Christopher, Gordon (bib25) 2016; 62 Kutz (bib17) 2009 McCutchan, Taylor (bib19) 1951; 4 Klinger (bib16) 1974; 36 ANSI/ASHRAE Standard 55, 2004. - Thermal Environmental Conditions for Human Occupancy. Mathematica, 2011. version 8, Wolfram. Frank, S.M., Raja, S.N., Bulcao, C.F., Goldstein, D.S., 1999. Relative contribution of core and cutaneous temperatures, Downloaded from Çetingül, Herman (bib7) 2010; 55 Khiavi, Mehdi Maerefat, Seyed Alireza Zolfaghari (bib15) 2018; 74 Moran, Shapiro (bib22) 2014 Wulff, W., 1974. The Energy Conservation Equation for Living Tissue, IEEE Transactions of Biomedical Engineering, BME-21, 494-495. Mitchell, Braun (bib20) 2012 Jović, Arsić, Vilimonović, Petković (bib14) 2016; 62 Pennes (bib23) 1948; 1 downloaded on 26 April 2018. Zhou, Xionga, Lian (bib29) 2017; 70 ISO 7730, 2005. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Das, Mishra (bib9) 2014; 45 Chen, Holmes (bib8) 1980; 335 Incropera, DeWitt, Bergman, Lavine (bib12) 2012 Wang, Ning, Ji, Hou, He (bib26) 2015; 52 Arkin, Xu, Holmes (bib3) 1994; 41 Salloum, Ghaddar, Ghali (bib24) 2007; 46 Zolfaghari, Maerefat (bib30) 2010; 45 ASHRAE, 2009. ASHRAE Handbook (SI) – Fundamentals, Chapter 6, Psychrometrics. ASHRAE, Atlanta. Bhowmik, Singh, Repaka, Mishra (bib5) 2013; 38 Cengel, Boles (bib6) 2014 Fanger (bib10) 1970 10.1016/j.jtherbio.2019.01.002_bib4 Cengel (10.1016/j.jtherbio.2019.01.002_bib6) 2014 Khiavi (10.1016/j.jtherbio.2019.01.002_bib15) 2018; 74 Arkin (10.1016/j.jtherbio.2019.01.002_bib3) 1994; 41 Incropera (10.1016/j.jtherbio.2019.01.002_bib12) 2012 Mitchell (10.1016/j.jtherbio.2019.01.002_bib21) 1968 10.1016/j.jtherbio.2019.01.002_bib2 Shrivastava (10.1016/j.jtherbio.2019.01.002_bib25) 2016; 62 Zolfaghari (10.1016/j.jtherbio.2019.01.002_bib30) 2010; 45 Bhowmik (10.1016/j.jtherbio.2019.01.002_bib5) 2013; 38 Kutz (10.1016/j.jtherbio.2019.01.002_bib17) 2009 Zhou (10.1016/j.jtherbio.2019.01.002_bib29) 2017; 70 Pennes (10.1016/j.jtherbio.2019.01.002_bib23) 1948; 1 10.1016/j.jtherbio.2019.01.002_bib18 Chen (10.1016/j.jtherbio.2019.01.002_bib8) 1980; 335 Mitchell (10.1016/j.jtherbio.2019.01.002_bib20) 2012 Moran (10.1016/j.jtherbio.2019.01.002_bib22) 2014 10.1016/j.jtherbio.2019.01.002_bib11 10.1016/j.jtherbio.2019.01.002_bib13 Acharya (10.1016/j.jtherbio.2019.01.002_bib1) 2014; 45 Klinger (10.1016/j.jtherbio.2019.01.002_bib16) 1974; 36 Weinhaum (10.1016/j.jtherbio.2019.01.002_bib27) 1985; 107 Salloum (10.1016/j.jtherbio.2019.01.002_bib24) 2007; 46 Jović (10.1016/j.jtherbio.2019.01.002_bib14) 2016; 62 Fanger (10.1016/j.jtherbio.2019.01.002_bib10) 1970 Çetingül (10.1016/j.jtherbio.2019.01.002_bib7) 2010; 55 Das (10.1016/j.jtherbio.2019.01.002_bib9) 2014; 45 McCutchan (10.1016/j.jtherbio.2019.01.002_bib19) 1951; 4 Wang (10.1016/j.jtherbio.2019.01.002_bib26) 2015; 52 10.1016/j.jtherbio.2019.01.002_bib28 |
References_xml | – reference: downloaded on 26 April 2018. – year: 2014 ident: bib6 publication-title: Thermodynamics: An Engineering Approach – reference: Wulff, W., 1974. The Energy Conservation Equation for Living Tissue, IEEE Transactions of Biomedical Engineering, BME-21, 494-495. – volume: 52 start-page: 177 year: 2015 end-page: 186 ident: bib26 article-title: Human thermal physiological and psychological responses under different heating environments publication-title: J. Therm. Biol. – year: 2009 ident: bib17 publication-title: Biomedical Engineering and Design Handbook, Volume I: Biomedical Engineering Fundamentals – volume: 55 start-page: 5933 year: 2010 end-page: 5951 ident: bib7 article-title: A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis publication-title: Phys. Med. Biol. – volume: 62 start-page: 97 year: 2016 ident: bib25 article-title: Modeling bioheat transfer processes and thermoregulatory responses publication-title: J. Therm. Biol. – volume: 107 start-page: 131 year: 1985 end-page: 139 ident: bib27 article-title: A new simplified equation for the effect of blood flow on local average tissue temperature publication-title: ASME J. Biomech. Eng. – volume: 335 start-page: 137 year: 1980 end-page: 150 ident: bib8 article-title: Microvascular contributions in tissue heat transfer publication-title: Ann. N.Y. Acad. Sci. – start-page: 897 year: 1968 end-page: 911 ident: bib21 article-title: An analytical model of the countercurrent heat exchange phenomena publication-title: Biophys. J. – volume: 1 start-page: 93 year: 1948 end-page: 122 ident: bib23 article-title: Analysis of tissue and arterial Blood temperatures in the resting human forearm publication-title: J. Appl. Physiol. – reference: Frank, S.M., Raja, S.N., Bulcao, C.F., Goldstein, D.S., 1999. Relative contribution of core and cutaneous temperatures, Downloaded from – year: 2012 ident: bib12 publication-title: Fundamentals of Heat and Mass Transfer – volume: 70 start-page: 15 year: 2017 end-page: 20 ident: bib29 article-title: Predication of skin temperature and thermal comfort under two-way transient environments publication-title: J. Therm. Biol. – volume: 74 start-page: 290 year: 2018 end-page: 302 ident: bib15 article-title: A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues publication-title: J. Therm. Biol. – volume: 46 start-page: 371 year: 2007 end-page: 384 ident: bib24 article-title: A new transient bioheat model of the human body and its integration to clothing models publication-title: Int. J. Therm. Sci. – volume: 45 start-page: 103 year: 2014 end-page: 109 ident: bib9 article-title: Study of thermal behavior of a biological tissue: an equivalence of Pennes bioheat equation and Wulff continuum model publication-title: J. Therm. Biol. – volume: 45 start-page: 2068 year: 2010 end-page: 2076 ident: bib30 article-title: A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments publication-title: Build. Environ. – reference: ANSI/ASHRAE Standard 55, 2004. - Thermal Environmental Conditions for Human Occupancy. – reference: ISO 7730, 2005. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. – volume: 45 start-page: 30 year: 2014 end-page: 36 ident: bib1 article-title: Human males and females body thermoregulation: perfusion effect analysis publication-title: J. Therm. Biol. – volume: 38 start-page: 107 year: 2013 end-page: 125 ident: bib5 article-title: Conventional and newly developed bioheat transport models in vascularized tissues: a review publication-title: J. Therm. Biol. – reference: Mathematica, 2011. version 8, Wolfram. – volume: 41 start-page: 1994 year: 1994 end-page: 1997 ident: bib3 article-title: Thermal comfort models: a review and numerical investigation publication-title: IEEE Trans. Biomed. – volume: 36 start-page: 403 year: 1974 end-page: 415 ident: bib16 article-title: Heat transfer in perfused biological tissue-I: general theory publication-title: Bull. Math. Biol. – year: 2014 ident: bib22 publication-title: Moran Fundamentals of Thermodynamics – year: 1970 ident: bib10 article-title: Thermal Comfort – Analysis and Applications in Environmental Engineering – volume: 62 start-page: 106 year: 2016 end-page: 108 ident: bib14 article-title: Thermal sensation prediction by soft computing methodology publication-title: J. Therm. Biol. – volume: 4 start-page: 121 year: 1951 end-page: 135 ident: bib19 article-title: Respitory heat exchange with varying temperature and humidity of inspired air publication-title: J., Appl. Physiol. – year: 2012 ident: bib20 publication-title: Principles of Heating, Ventilation, and Air Conditioning in Buildings – reference: ASHRAE, 2009. ASHRAE Handbook (SI) – Fundamentals, Chapter 6, Psychrometrics. ASHRAE, Atlanta. – ident: 10.1016/j.jtherbio.2019.01.002_bib13 – volume: 41 start-page: 1994 issue: 2 year: 1994 ident: 10.1016/j.jtherbio.2019.01.002_bib3 article-title: Thermal comfort models: a review and numerical investigation publication-title: IEEE Trans. Biomed. – year: 2012 ident: 10.1016/j.jtherbio.2019.01.002_bib12 – ident: 10.1016/j.jtherbio.2019.01.002_bib2 – year: 1970 ident: 10.1016/j.jtherbio.2019.01.002_bib10 – start-page: 897 year: 1968 ident: 10.1016/j.jtherbio.2019.01.002_bib21 article-title: An analytical model of the countercurrent heat exchange phenomena publication-title: Biophys. J. doi: 10.1016/S0006-3495(68)86527-0 – volume: 45 start-page: 30 year: 2014 ident: 10.1016/j.jtherbio.2019.01.002_bib1 article-title: Human males and females body thermoregulation: perfusion effect analysis publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2014.07.006 – ident: 10.1016/j.jtherbio.2019.01.002_bib4 – ident: 10.1016/j.jtherbio.2019.01.002_bib11 – year: 2009 ident: 10.1016/j.jtherbio.2019.01.002_bib17 – volume: 38 start-page: 107 year: 2013 ident: 10.1016/j.jtherbio.2019.01.002_bib5 article-title: Conventional and newly developed bioheat transport models in vascularized tissues: a review publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2012.12.003 – year: 2014 ident: 10.1016/j.jtherbio.2019.01.002_bib22 – volume: 45 start-page: 2068 year: 2010 ident: 10.1016/j.jtherbio.2019.01.002_bib30 article-title: A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.03.002 – volume: 62 start-page: 106 year: 2016 ident: 10.1016/j.jtherbio.2019.01.002_bib14 article-title: Thermal sensation prediction by soft computing methodology publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2016.07.005 – volume: 62 start-page: 97 year: 2016 ident: 10.1016/j.jtherbio.2019.01.002_bib25 article-title: Modeling bioheat transfer processes and thermoregulatory responses publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2016.11.011 – volume: 45 start-page: 103 year: 2014 ident: 10.1016/j.jtherbio.2019.01.002_bib9 article-title: Study of thermal behavior of a biological tissue: an equivalence of Pennes bioheat equation and Wulff continuum model publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2014.08.007 – volume: 52 start-page: 177 year: 2015 ident: 10.1016/j.jtherbio.2019.01.002_bib26 article-title: Human thermal physiological and psychological responses under different heating environments publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2015.06.008 – ident: 10.1016/j.jtherbio.2019.01.002_bib28 doi: 10.1109/TBME.1974.324342 – volume: 1 start-page: 93 year: 1948 ident: 10.1016/j.jtherbio.2019.01.002_bib23 article-title: Analysis of tissue and arterial Blood temperatures in the resting human forearm publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1948.1.2.93 – volume: 36 start-page: 403 year: 1974 ident: 10.1016/j.jtherbio.2019.01.002_bib16 article-title: Heat transfer in perfused biological tissue-I: general theory publication-title: Bull. Math. Biol. – volume: 74 start-page: 290 year: 2018 ident: 10.1016/j.jtherbio.2019.01.002_bib15 article-title: A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2018.04.006 – volume: 46 start-page: 371 year: 2007 ident: 10.1016/j.jtherbio.2019.01.002_bib24 article-title: A new transient bioheat model of the human body and its integration to clothing models publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.06.017 – year: 2012 ident: 10.1016/j.jtherbio.2019.01.002_bib20 – volume: 70 start-page: 15 year: 2017 ident: 10.1016/j.jtherbio.2019.01.002_bib29 article-title: Predication of skin temperature and thermal comfort under two-way transient environments publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2017.08.001 – year: 2014 ident: 10.1016/j.jtherbio.2019.01.002_bib6 – volume: 335 start-page: 137 year: 1980 ident: 10.1016/j.jtherbio.2019.01.002_bib8 article-title: Microvascular contributions in tissue heat transfer publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.1980.tb50742.x – volume: 107 start-page: 131 year: 1985 ident: 10.1016/j.jtherbio.2019.01.002_bib27 article-title: A new simplified equation for the effect of blood flow on local average tissue temperature publication-title: ASME J. Biomech. Eng. doi: 10.1115/1.3138533 – volume: 55 start-page: 5933 issue: 19 year: 2010 ident: 10.1016/j.jtherbio.2019.01.002_bib7 article-title: A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/19/020 – ident: 10.1016/j.jtherbio.2019.01.002_bib18 – volume: 4 start-page: 121 year: 1951 ident: 10.1016/j.jtherbio.2019.01.002_bib19 article-title: Respitory heat exchange with varying temperature and humidity of inspired air publication-title: J., Appl. Physiol. doi: 10.1152/jappl.1951.4.2.121 |
SSID | ssj0015350 |
Score | 2.2130253 |
Snippet | The one-dimensional steady Pennes (bioheat) equation was applied to analyze heat conduction inside a combined layer of human muscle and fat, under Fanger... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 94 |
SubjectTerms | Adiabatic Adipose Tissue - blood supply Adipose Tissue - physiology Algorithms Asymptotic solution Blood Blood perfusion Body Temperature Conduction Energy balance Energy Metabolism Environmental conditions environmental factors equations Fanger thermal comfort Heat Heat transfer Humans Metabolic rate Metabolism Models, Biological Muscle, Skeletal - blood supply Muscle, Skeletal - physiology muscles Pennes bioheat equation Perfusion Regional Blood Flow Skin skin temperature Temperature Temperature distribution Temperature effects Thermosensing |
Title | Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions |
URI | https://dx.doi.org/10.1016/j.jtherbio.2019.01.002 https://www.ncbi.nlm.nih.gov/pubmed/30784494 https://www.proquest.com/docview/2195247246 https://www.proquest.com/docview/2184146209 https://www.proquest.com/docview/2221023427 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Bokq9VOXRsi0gV-o1bOLXro8IdbWA4EKR9mYljq0GQVhts4de-ts7kzhRK9Fy6ClK4nGcsT3z2Z4HwGfC5AGXO4nmZUikyFWSz7RPUNsQfBambNO9Xd_oxZ28XKrlFpz3vjBkVhllfyfTW2kdn0wiNyerqprcEtolPIKDknDKcht2uDBajWDn7OJqcTMcJijRJmql8gkR_OYofI_wD3lTVOQHmJk2gmfcYXlGR_0Ng7a6aP4W3kQQyc66du7Clq_34FWXVvLHPtjBwu1btWLREos9-gY7_KFyjKJDsLwuWWu1zlZ-HTa0acbIoWzN5q0rMKMWP-JXkDMIbBu80uk21XoAd_MvX88XSUykkDhUN01SlsGhUFMB1bMzjouQZaWa5gJnsEMAVyJX0twY7oVUpkBU4oRLeSHzUuuAmOQdjOqn2h8C07SAMz5oWcxk4dNiygNCJGkovijWMgbVs866GGWckl082N6c7N72LLfEcptmFlk-hslAt-ribLxIYfqesX-MGIvK4EXao74rbZyz3y3KbsXllEs9hk_Da5xtdISS1_5pQ2VmEnULT80_ynBaRgvJp2N43w2T4ZdQos6kNPLDfzT-I7ymu850_AhGzXrjjxEZNcUJbJ_-zE7i-P8FnfAL3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CIsQuEzBg3WDzpF1DU8dJ6uNUUZUNuFCk3qzEsUWqNq1KeuDC3857iRNt0oADp0jxR5xnv_d-tt8HwE_C5Ba3O17EM-uJIAm9ZBAZD7UNwedAZlW6t-ubaHwnfk_D6RYMG18YMqt0sr-W6ZW0dm96jpq9VZ73bgntEh7BRUk4ZboNOyIMYrLrO39q7TyQo6s0rVTbo-p_uQnPEPwhZdKcvAD7sorf6c5X_qOhXkKglSYa7cNHByHZr3qUB7BlikPYrZNKPn4C1dq33ecr5uyw2MKUON3zXDOKDcGSImOVzTpbmbXd0JEZI3eyNRtVjsCMRrzAryBdENaW-KS7ber1CO5GF5Ph2HNpFDyNyqb0ssxqFGmhReWspeaB7fezME4C5F-N8C1DqviJlNwEIpQpYhIdaJ-nIsmiyCIiOYZOsSzMZ2ARbd-ksZFIByI1fhpziwBJSIouir10IWxIp7SLMU6pLuaqMSabqYbkikiu_L5Ckneh17Zb1VE23mwhm5lR_6wXhargzbanzVQqx7EPCiV3yEXMRdSFH20x8hpdoCSFWW6ozkCgZuG-fKUOp010IHjchZN6mbS_hPJ0IIQUX94x-O-wN55cX6mry5s_X-EDldRG5KfQKdcbc4YYqUy_VTzwDOQHDKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+metabolic+rate+and+blood+perfusion+under+Fanger+thermal+comfort+conditions&rft.jtitle=Journal+of+thermal+biology&rft.au=Marn%2C+Jure&rft.au=Chung%2C+Mo&rft.au=Ilja%C5%BE%2C+Jurij&rft.date=2019-02-01&rft.issn=0306-4565&rft.volume=80&rft.spage=94&rft_id=info:doi/10.1016%2Fj.jtherbio.2019.01.002&rft_id=info%3Apmid%2F30784494&rft.externalDocID=30784494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4565&client=summon |