Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data

Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large...

Full description

Saved in:
Bibliographic Details
Published inNpj Materials degradation Vol. 6; no. 1; pp. 1 - 10
Main Authors Ji, Yucheng, Li, Ni, Cheng, Zhanming, Fu, Xiaoqian, Ao, Min, Li, Menglin, Sun, Xiaoguang, Chowwanonthapunya, Thee, Zhang, Dawei, Xiao, Kui, Ren, Jingli, Dey, Poulumi, Li, Xiaogang, Dong, Chaofang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction accuracy is improved up to 91%.
AbstractList Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction accuracy is improved up to 91%.
Abstract Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction accuracy is improved up to 91%.
ArticleNumber 83
Author Li, Ni
Li, Xiaogang
Dey, Poulumi
Cheng, Zhanming
Ao, Min
Li, Menglin
Sun, Xiaoguang
Xiao, Kui
Ji, Yucheng
Fu, Xiaoqian
Zhang, Dawei
Chowwanonthapunya, Thee
Dong, Chaofang
Ren, Jingli
Author_xml – sequence: 1
  givenname: Yucheng
  surname: Ji
  fullname: Ji, Yucheng
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Department of Materials Science and Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 2
  givenname: Ni
  surname: Li
  fullname: Li, Ni
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 3
  givenname: Zhanming
  surname: Cheng
  fullname: Cheng, Zhanming
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 4
  givenname: Xiaoqian
  surname: Fu
  fullname: Fu, Xiaoqian
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 5
  givenname: Min
  surname: Ao
  fullname: Ao, Min
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 6
  givenname: Menglin
  surname: Li
  fullname: Li, Menglin
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 7
  givenname: Xiaoguang
  orcidid: 0000-0002-0463-5519
  surname: Sun
  fullname: Sun, Xiaoguang
  organization: Technical Engineering Department, CRRC Qingdao Sifang Co. Ltd
– sequence: 8
  givenname: Thee
  surname: Chowwanonthapunya
  fullname: Chowwanonthapunya, Thee
  organization: Faculty of International Maritime Studies, Kasetsart University
– sequence: 9
  givenname: Dawei
  orcidid: 0000-0002-6546-6181
  surname: Zhang
  fullname: Zhang, Dawei
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 10
  givenname: Kui
  orcidid: 0000-0002-1172-195X
  surname: Xiao
  fullname: Xiao, Kui
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing
– sequence: 11
  givenname: Jingli
  orcidid: 0000-0002-5392-291X
  surname: Ren
  fullname: Ren, Jingli
  organization: Henan Academy of Big Data, Zhengzhou University
– sequence: 12
  givenname: Poulumi
  surname: Dey
  fullname: Dey, Poulumi
  organization: Department of Materials Science and Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology
– sequence: 13
  givenname: Xiaogang
  surname: Li
  fullname: Li, Xiaogang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
– sequence: 14
  givenname: Chaofang
  surname: Dong
  fullname: Dong, Chaofang
  email: cfdong@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing
BookMark eNp9kctqHDEQRUWwwY7jH_BKkHUnerRa0tKYJDYYAiFZixo9xhp6pLakIfjvo5lOSMjCK6mqzi2Ke9-is5STR-iGkg-UcPWxjlQwPRDGBkKYFoN4gy4Z13JglExn__wv0HWtO9IpNimq2SV6_gbJ5T0OufjacEw2lyUXaDFtMWyGmGKLGVuY7WHu3ZzqkcUdK7n2EnfW46V4F-1xjH_G9oTrHuYZV9gvs8e3M-5VfqnYQYN36DzAXP317_cK_fj86fvd_fD49cvD3e3jYEem2-CcGoPlQQFo5UUIelIOlHCei4kQTsYxiA1YxSUPUhPqKZejpBsbyMgE41foYd3rMuzMUuIeyovJEM2pkcvWQGnRzt5MnrJResfB0dE6pRWj1CrJqRQ2qNB3vV93LSU_H7pRZpcPJfXzDZPdS6qpop1SK2W7NbX4YGxsJ89agTgbSswxL7PmZXoI5pSXEV3K_pP-OfhVEV9FtcNp68vfq15R_QIhrKrF
CitedBy_id crossref_primary_10_1007_s43938_024_00065_6
crossref_primary_10_1016_j_corsci_2023_111790
crossref_primary_10_2355_tetsutohagane_TETSU_2024_056
crossref_primary_10_1016_j_electacta_2023_143722
crossref_primary_10_1016_j_ijrmhm_2024_106878
crossref_primary_10_1016_j_jhazmat_2025_137588
crossref_primary_10_1021_acs_jpclett_4c03357
crossref_primary_10_1016_j_conbuildmat_2023_133029
crossref_primary_10_1016_j_jmst_2024_06_055
crossref_primary_10_1016_j_corsci_2024_112062
crossref_primary_10_1002_mgea_57
crossref_primary_10_1039_D3CP01864D
crossref_primary_10_3390_sym16040422
crossref_primary_10_1002_mgea_83
crossref_primary_10_1149_1945_7111_ad1e3c
crossref_primary_10_1016_j_jmrt_2023_06_159
crossref_primary_10_1016_j_tafmec_2024_104499
crossref_primary_10_3390_met14040401
Cites_doi 10.1038/s41524-019-0227-7
10.1016/j.actamat.2006.02.034
10.1149/1.1838615
10.1016/j.actamat.2020.10.021
10.1186/2193-9772-3-8
10.1002/sia.740150109
10.1016/j.corsci.2020.108697
10.1103/PhysRevB.73.165402
10.1126/science.1156211
10.1016/j.actamat.2020.10.056
10.1016/j.corsci.2014.02.023
10.1038/s41586-018-0337-2
10.1149/2.0191709jes
10.1016/j.corsci.2009.10.003
10.1103/PhysRevB.54.11169
10.1146/annurev-matsci-070218-010057
10.1016/j.apsusc.2015.05.043
10.1016/0039-6028(94)00710-1
10.1016/j.corsci.2021.109561
10.1038/s41598-019-56452-5
10.1038/527441a
10.1016/j.corsci.2009.01.016
10.1016/j.jmst.2020.01.037
10.1038/s41529-021-00208-y
10.1016/j.corsci.2021.109304
10.1038/s41524-018-0081-z
10.3390/met12020171
10.1016/j.actamat.2019.10.024
10.1038/s42256-021-00368-1
10.5006/1.3577318
10.1016/j.corsci.2019.108274
10.1038/s41586-019-1702-5
10.1103/PhysRevLett.77.3865
10.1126/sciadv.aay1430
10.1016/j.corsci.2020.109174
10.1038/nature04465
10.5006/1.3585090
10.1038/ncomms11241
10.1016/j.electacta.2007.03.016
10.1016/j.corsci.2015.01.037
10.1016/j.scriptamat.2022.114701
10.1103/PhysRevB.59.7413
10.1038/s41467-022-29491-2
10.1016/j.corcom.2021.07.001
10.1109/ACCESS.2022.3161519
10.1016/j.corsci.2018.02.057
10.1038/s41529-021-00211-3
10.1002/0471749214
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1038/s41529-022-00295-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2397-2106
EndPage 10
ExternalDocumentID oai_doaj_org_article_6e1247ed3ad14cd898211c873175cf8f
10_1038_s41529_022_00295_5
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: No.52125102
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Scholarship Council #202106460037
– fundername: Fundamental Research Funds for the Central Universities (No. FRF-TP-20-01B2), Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515120093) and Special Fund Support for Taishan Industrial Leading Talents Project.
GroupedDBID 0R~
AAJSJ
ABJCF
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
M7S
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PTHSS
RNT
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
AARCD
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c429t-dd84fc3f8aa98e5ff968da85de356003044f5bac8373f7901e137471bcf042523
IEDL.DBID BENPR
ISSN 2397-2106
IngestDate Wed Aug 27 01:27:38 EDT 2025
Wed Aug 13 02:45:39 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Tue Jul 01 01:34:15 EDT 2025
Fri Feb 21 02:40:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-dd84fc3f8aa98e5ff968da85de356003044f5bac8373f7901e137471bcf042523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5392-291X
0000-0002-0463-5519
0000-0002-6546-6181
0000-0002-1172-195X
OpenAccessLink https://www.proquest.com/docview/2722619181?pq-origsite=%requestingapplication%
PQID 2722619181
PQPubID 4669710
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6e1247ed3ad14cd898211c873175cf8f
proquest_journals_2722619181
crossref_citationtrail_10_1038_s41529_022_00295_5
crossref_primary_10_1038_s41529_022_00295_5
springer_journals_10_1038_s41529_022_00295_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-07
PublicationDateYYYYMMDD 2022-10-07
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Npj Materials degradation
PublicationTitleAbbrev npj Mater Degrad
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhao, Zhang, Ji, Hu, Li (CR16) 2014; 83
Pei (CR18) 2020; 170
Li (CR1) 2015; 527
Kresse, Furthmüller (CR46) 1996; 54
Song (CR3) 2010; 52
Skinnider, Stacey, Wishart, Foster (CR32) 2021; 3
Xue (CR37) 2016; 7
Obot, Macdonald, Gasem (CR25) 2015; 99
Zou (CR21) 2021; 202
Schöchlin, Bohnen, Ho (CR26) 1995; 324
Van Huis, Chen, Zandbergen, Sluiter (CR44) 2006; 54
Roy (CR14) 2022; 6
Renner (CR10) 2006; 439
Rohwerder, Turcu (CR38) 2007; 53
Wei (CR41) 2018; 136
Dong (CR15) 2021; 2
Foley, Leff, Lang, Taheri (CR30) 2020; 185
Chen (CR43) 2021; 189
Ao (CR17) 2022; 10
Ding (CR20) 2020; 6
Perdew, Burke, Ernzerhof (CR47) 1996; 77
Butler, Davies, Cartwright, Isayev, Walsh (CR19) 2018; 559
Taylor, Wasileski, Filhol, Neurock (CR27) 2006; 73
Ji, Dong, Kong, Li (CR28) 2020; 46
Evertsson (CR40) 2015; 349
Zhang, Ling (CR35) 2018; 4
Ji, Dong, Chen, Xiao, Li (CR23) 2021; 183
Popova, Prošek (CR7) 2022; 12
Garner (CR22) 2021; 202
Sun, Zheng, Li, Wen (CR9) 2009; 51
Wang, Fu, Jiang, Xue, Xie (CR36) 2019; 5
King, Johnson, Engelberg, Ludwig, Marrow (CR4) 2008; 321
Trink, Weißensteiner, Uggowitzer, Strobel, Pogatscher (CR24) 2022; 215
Dellaferrera, Woźniak, Indiveri, Pantazi, Eleftheriou (CR33) 2022; 13
Jin (CR49) 2017; 164
Man, Dong, Wang, Kong, Li (CR8) 2020; 163
Strohmeier (CR39) 1990; 15
Sheikh, Boah, Hansen (CR11) 1990; 46
CR12
Agrawal (CR34) 2014; 3
Coelho (CR13) 2022; 6
Reuter, van Schaik, Gutzmer, Bartie, Abadías-Llamas (CR6) 2019; 49
Liu (CR31) 2019; 9
Pedregosa (CR45) 2011; 12
Hammer, Hansen, Nørskov (CR48) 1999; 59
Li (CR29) 2021; 180
Raabe, Tasan, Olivetti (CR5) 2019; 575
Olefjord, Elfstrom (CR42) 1982; 38
Frankel (CR2) 1998; 145
I Obot (295_CR25) 2015; 99
Y Zhang (295_CR35) 2018; 4
C Dong (295_CR15) 2021; 2
BR Strohmeier (295_CR39) 1990; 15
S Sun (295_CR9) 2009; 51
KT Butler (295_CR19) 2018; 559
DL Foley (295_CR30) 2020; 185
MA Skinnider (295_CR32) 2021; 3
G Dellaferrera (295_CR33) 2022; 13
F Renner (295_CR10) 2006; 439
R Ding (295_CR20) 2020; 6
Y Ji (295_CR23) 2021; 183
A Garner (295_CR22) 2021; 202
G Frankel (295_CR2) 1998; 145
C Man (295_CR8) 2020; 163
X Li (295_CR1) 2015; 527
295_CR12
N Li (295_CR29) 2021; 180
X Wei (295_CR41) 2018; 136
D Raabe (295_CR5) 2019; 575
LB Coelho (295_CR13) 2022; 6
CD Taylor (295_CR27) 2006; 73
B Hammer (295_CR48) 1999; 59
AK Sheikh (295_CR11) 1990; 46
I Olefjord (295_CR42) 1982; 38
D Chen (295_CR43) 2021; 189
M Rohwerder (295_CR38) 2007; 53
M Van Huis (295_CR44) 2006; 54
Y Liu (295_CR31) 2019; 9
C Wang (295_CR36) 2019; 5
A Agrawal (295_CR34) 2014; 3
B Trink (295_CR24) 2022; 215
D Xue (295_CR37) 2016; 7
K Popova (295_CR7) 2022; 12
H Zhao (295_CR16) 2014; 83
G Kresse (295_CR46) 1996; 54
Y Jin (295_CR49) 2017; 164
A King (295_CR4) 2008; 321
F Pedregosa (295_CR45) 2011; 12
J Evertsson (295_CR40) 2015; 349
Y Ji (295_CR28) 2020; 46
G Song (295_CR3) 2010; 52
JP Perdew (295_CR47) 1996; 77
M Ao (295_CR17) 2022; 10
C Zou (295_CR21) 2021; 202
MA Reuter (295_CR6) 2019; 49
A Roy (295_CR14) 2022; 6
J Schöchlin (295_CR26) 1995; 324
Z Pei (295_CR18) 2020; 170
References_xml – volume: 5
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR36
  article-title: A property-oriented design strategy for high performance copper alloys via machine learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0227-7
– volume: 54
  start-page: 2945
  year: 2006
  end-page: 2955
  ident: CR44
  article-title: Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.02.034
– ident: CR12
– volume: 145
  start-page: 2186
  year: 1998
  ident: CR2
  article-title: Pitting corrosion of metals: a review of the critical factors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838615
– volume: 202
  start-page: 190
  year: 2021
  end-page: 210
  ident: CR22
  article-title: Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.021
– volume: 3
  start-page: 90
  year: 2014
  end-page: 108
  ident: CR34
  article-title: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters
  publication-title: Integr. Mater. Manuf. I.
  doi: 10.1186/2193-9772-3-8
– volume: 15
  start-page: 51
  year: 1990
  end-page: 56
  ident: CR39
  article-title: An ESCA method for determining the oxide thickness on aluminum alloys
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740150109
– volume: 170
  start-page: 108697
  year: 2020
  ident: CR18
  article-title: Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108697
– volume: 73
  start-page: 165402
  year: 2006
  ident: CR27
  article-title: First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.165402
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR45
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 321
  start-page: 382
  year: 2008
  end-page: 385
  ident: CR4
  article-title: Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal
  publication-title: Science
  doi: 10.1126/science.1156211
– volume: 202
  start-page: 211
  year: 2021
  end-page: 221
  ident: CR21
  article-title: Integrating data mining and machine learning to discover high-strength ductile titanium alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.056
– volume: 6
  start-page: 1
  year: 2022
  end-page: 16
  ident: CR13
  article-title: Reviewing machine learning of corrosion prediction in a data-oriented perspective
  publication-title: npj Mater. Degrad.
– volume: 83
  start-page: 261
  year: 2014
  end-page: 271
  ident: CR16
  article-title: Quantitative structure–activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.02.023
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: CR19
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 164
  start-page: C465
  year: 2017
  ident: CR49
  article-title: First-principle calculation of Volta potential of intermetallic particles in aluminum alloys and practical implications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191709jes
– volume: 52
  start-page: 455
  year: 2010
  end-page: 480
  ident: CR3
  article-title: Potential and current distributions of one-dimensional galvanic corrosion systems
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.10.003
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR46
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 49
  start-page: 253
  year: 2019
  end-page: 274
  ident: CR6
  article-title: Challenges of the circular economy: a material, metallurgical, and product design perspective
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev-matsci-070218-010057
– volume: 349
  start-page: 826
  year: 2015
  end-page: 832
  ident: CR40
  article-title: The thickness of native oxides on aluminum alloys and single crystals
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.043
– volume: 324
  start-page: 113
  year: 1995
  end-page: 121
  ident: CR26
  article-title: Structure and dynamics at the Al(111)-surface
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)00710-1
– volume: 189
  start-page: 109561
  year: 2021
  ident: CR43
  article-title: Revealing the inner rules of PREN from electronic aspect by first-principles calculations
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109561
– volume: 9
  year: 2019
  ident: CR31
  article-title: Short-term rainfall forecast model based on the improved BP–NN algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56452-5
– volume: 527
  start-page: 441
  year: 2015
  end-page: 442
  ident: CR1
  article-title: Materials science: share corrosion data
  publication-title: Nature
  doi: 10.1038/527441a
– volume: 51
  start-page: 719
  year: 2009
  end-page: 727
  ident: CR9
  article-title: Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.01.016
– volume: 46
  start-page: 145
  year: 2020
  end-page: 155
  ident: CR28
  article-title: Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.01.037
– volume: 6
  start-page: 1
  year: 2022
  end-page: 10
  ident: CR14
  article-title: Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-021-00208-y
– volume: 183
  start-page: 109304
  year: 2021
  ident: CR23
  article-title: High-throughput computing for screening the potential alloying elements of a 7xxx aluminum alloy for increasing the alloy resistance to stress corrosion cracking
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109304
– volume: 4
  start-page: 25
  year: 2018
  ident: CR35
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0081-z
– volume: 12
  start-page: 171
  year: 2022
  ident: CR7
  article-title: Corrosion monitoring in atmospheric conditions: a review
  publication-title: Metals
  doi: 10.3390/met12020171
– volume: 185
  start-page: 279
  year: 2020
  end-page: 286
  ident: CR30
  article-title: Evolution of β-phase precipitates in an aluminum-magnesium alloy at the nanoscale
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.10.024
– volume: 3
  start-page: 759
  year: 2021
  end-page: 770
  ident: CR32
  article-title: Chemical language models enable navigation in sparsely populated chemical space
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00368-1
– volume: 38
  start-page: 46
  year: 1982
  end-page: 52
  ident: CR42
  article-title: The composition of the surface during passivation of stainless steels
  publication-title: Corrosion
  doi: 10.5006/1.3577318
– volume: 163
  start-page: 108274
  year: 2020
  ident: CR8
  article-title: Long-term corrosion kinetics and mechanism of magnesium alloy AZ31 exposed to a dry tropical desert environment
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.108274
– volume: 575
  start-page: 64
  year: 2019
  end-page: 74
  ident: CR5
  article-title: Strategies for improving the sustainability of structural metals
  publication-title: Nature
  doi: 10.1038/s41586-019-1702-5
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR47
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 6
  start-page: eaay1430
  year: 2020
  ident: CR20
  article-title: Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay1430
– volume: 180
  start-page: 109174
  year: 2021
  ident: CR29
  article-title: Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.109174
– volume: 439
  start-page: 707
  year: 2006
  end-page: 710
  ident: CR10
  article-title: Initial corrosion observed on the atomic scale
  publication-title: Nature
  doi: 10.1038/nature04465
– volume: 46
  start-page: 190
  year: 1990
  end-page: 197
  ident: CR11
  article-title: Statistical modeling of pitting corrosion and pipeline reliability
  publication-title: Corrosion
  doi: 10.5006/1.3585090
– volume: 7
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR37
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 53
  start-page: 290
  year: 2007
  end-page: 299
  ident: CR38
  article-title: High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.03.016
– volume: 99
  start-page: 1
  year: 2015
  end-page: 30
  ident: CR25
  article-title: Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.01.037
– volume: 215
  start-page: 114701
  year: 2022
  ident: CR24
  article-title: High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114701
– volume: 59
  start-page: 7413
  year: 1999
  ident: CR48
  article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 13
  year: 2022
  ident: CR33
  article-title: Introducing principles of synaptic integration in the optimization of deep neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29491-2
– volume: 2
  start-page: 8
  year: 2021
  end-page: 23
  ident: CR15
  article-title: Integrated computation of corrosion: modelling, simulation and applications
  publication-title: Corros. Commun.
  doi: 10.1016/j.corcom.2021.07.001
– volume: 10
  start-page: 35620
  year: 2022
  end-page: 35631
  ident: CR17
  article-title: Image deep learning assisted prediction of mechanical and corrosion behavior for Al-Zn-Mg alloys
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3161519
– volume: 136
  start-page: 119
  year: 2018
  end-page: 128
  ident: CR41
  article-title: Electrochemical measurements and atomistic simulations of Cl-induced passivity breakdown on a Cu2O film
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.02.057
– volume: 73
  start-page: 165402
  year: 2006
  ident: 295_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.165402
– volume: 51
  start-page: 719
  year: 2009
  ident: 295_CR9
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.01.016
– volume: 527
  start-page: 441
  year: 2015
  ident: 295_CR1
  publication-title: Nature
  doi: 10.1038/527441a
– volume: 99
  start-page: 1
  year: 2015
  ident: 295_CR25
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.01.037
– volume: 202
  start-page: 211
  year: 2021
  ident: 295_CR21
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.056
– volume: 6
  start-page: 1
  year: 2022
  ident: 295_CR13
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-021-00211-3
– volume: 324
  start-page: 113
  year: 1995
  ident: 295_CR26
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)00710-1
– volume: 59
  start-page: 7413
  year: 1999
  ident: 295_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 164
  start-page: C465
  year: 2017
  ident: 295_CR49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191709jes
– ident: 295_CR12
  doi: 10.1002/0471749214
– volume: 46
  start-page: 190
  year: 1990
  ident: 295_CR11
  publication-title: Corrosion
  doi: 10.5006/1.3585090
– volume: 10
  start-page: 35620
  year: 2022
  ident: 295_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3161519
– volume: 575
  start-page: 64
  year: 2019
  ident: 295_CR5
  publication-title: Nature
  doi: 10.1038/s41586-019-1702-5
– volume: 12
  start-page: 171
  year: 2022
  ident: 295_CR7
  publication-title: Metals
  doi: 10.3390/met12020171
– volume: 83
  start-page: 261
  year: 2014
  ident: 295_CR16
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.02.023
– volume: 163
  start-page: 108274
  year: 2020
  ident: 295_CR8
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.108274
– volume: 9
  year: 2019
  ident: 295_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56452-5
– volume: 189
  start-page: 109561
  year: 2021
  ident: 295_CR43
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109561
– volume: 4
  start-page: 25
  year: 2018
  ident: 295_CR35
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0081-z
– volume: 54
  start-page: 2945
  year: 2006
  ident: 295_CR44
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.02.034
– volume: 185
  start-page: 279
  year: 2020
  ident: 295_CR30
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.10.024
– volume: 3
  start-page: 90
  year: 2014
  ident: 295_CR34
  publication-title: Integr. Mater. Manuf. I.
  doi: 10.1186/2193-9772-3-8
– volume: 46
  start-page: 145
  year: 2020
  ident: 295_CR28
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.01.037
– volume: 349
  start-page: 826
  year: 2015
  ident: 295_CR40
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.043
– volume: 215
  start-page: 114701
  year: 2022
  ident: 295_CR24
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114701
– volume: 439
  start-page: 707
  year: 2006
  ident: 295_CR10
  publication-title: Nature
  doi: 10.1038/nature04465
– volume: 6
  start-page: 1
  year: 2022
  ident: 295_CR14
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-021-00208-y
– volume: 7
  start-page: 1
  year: 2016
  ident: 295_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 77
  start-page: 3865
  year: 1996
  ident: 295_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 52
  start-page: 455
  year: 2010
  ident: 295_CR3
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.10.003
– volume: 180
  start-page: 109174
  year: 2021
  ident: 295_CR29
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.109174
– volume: 145
  start-page: 2186
  year: 1998
  ident: 295_CR2
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838615
– volume: 321
  start-page: 382
  year: 2008
  ident: 295_CR4
  publication-title: Science
  doi: 10.1126/science.1156211
– volume: 38
  start-page: 46
  year: 1982
  ident: 295_CR42
  publication-title: Corrosion
  doi: 10.5006/1.3577318
– volume: 49
  start-page: 253
  year: 2019
  ident: 295_CR6
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev-matsci-070218-010057
– volume: 53
  start-page: 290
  year: 2007
  ident: 295_CR38
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.03.016
– volume: 170
  start-page: 108697
  year: 2020
  ident: 295_CR18
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108697
– volume: 12
  start-page: 2825
  year: 2011
  ident: 295_CR45
  publication-title: J. Mach. Learn. Res.
– volume: 183
  start-page: 109304
  year: 2021
  ident: 295_CR23
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109304
– volume: 5
  start-page: 1
  year: 2019
  ident: 295_CR36
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0227-7
– volume: 15
  start-page: 51
  year: 1990
  ident: 295_CR39
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740150109
– volume: 13
  year: 2022
  ident: 295_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29491-2
– volume: 6
  start-page: eaay1430
  year: 2020
  ident: 295_CR20
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay1430
– volume: 3
  start-page: 759
  year: 2021
  ident: 295_CR32
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00368-1
– volume: 136
  start-page: 119
  year: 2018
  ident: 295_CR41
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.02.057
– volume: 559
  start-page: 547
  year: 2018
  ident: 295_CR19
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 202
  start-page: 190
  year: 2021
  ident: 295_CR22
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.021
– volume: 2
  start-page: 8
  year: 2021
  ident: 295_CR15
  publication-title: Corros. Commun.
  doi: 10.1016/j.corcom.2021.07.001
– volume: 54
  start-page: 11169
  year: 1996
  ident: 295_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0002268192
Score 2.330699
Snippet Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials...
Abstract Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301/1023/1026
639/301/1034/1037
639/705
Accuracy
Aluminum base alloys
Big Data
Chemistry and Materials Science
Corrosion
Corrosion and Coatings
Corrosion rate
Datasets
Electrochemistry
Engineering
Experiments
Intermetallic compounds
Machine learning
Materials Science
Materials selection
Prediction models
Sensors
Structural Materials
Tribology
Work functions
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6wvcvCmwW2TNulRRRFBD-KCt5AnKHV33a4H_70zbXddBfXisc20hMyk801n8g0hR7FwXgWRMctNyYQLiqksWsZNnpl-URYm4tnh27vieiBuHvPHhVZfWBPW0gO3C3daBPBAMnhufCrgvaWCkMUpiX7PRRXx6ws-byGYem5IXQpk-upOyfS5Oq3RU5UMi9cxE5Wz_Isnagj7v6DMb4nRxt9crZHVDijSs3aC62QpDDfIygJ94CZ5vTdDP3qhgDvhXRR5FlpaYhilxrInLAwaUdCC65p01ShLQQxmBJcUeSLoeILJGhym-FeW1i-mqmhtkDeYnlUUU_PvNcVa0i0yuLp8uLhmXQsF5sDRTJn3SkTHozKmVCGPsSyUNyr3gSPU4X0hYm6NgzCVRwnYIKQcw1TrIu7mjG-T3nA0DDuEGuk5wKVgnfVCSmkVchEqPGibcqF8QtLZcmrX8Ytjm4tKN3lurnSrAg0q0I0KdJ6Q4_kz45Zd41fpc9TSXBKZsZsbYC-6sxf9l70kZH-mY91t11pnMsNIEtBOQk5mev8c_nlKu_8xpT2ynKFdYlmC3Ce96eQtHADUmdrDxqo_APY5-OA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4FuMABUaBqeFQ-9FYskrV37T1CBEKV4FAViZvlZ1UpJJANB_49M85uIKhF6nHX45XlGe989sx8BviWKh90lAV3wtZc-qi5LpLjwpaFHVR1ZRPVDl_fVFe38sddedeDoquFyUn7mdIy_6a77LDThhxNzSn3nAJJJS_XYIOo28mqR9Voea6CcII4vtr6mIHQf-m64oMyVf8KvnwXEs2e5nIHtluIyM4Wg_oEvTjZha03xIF78PjTTsL0niHixG8xYlhYEBJjK7OO_6GUoCnD-fft9VwNyTIUwxHhIyOGCPYwozANNTM6j2XNvR2PWWOJMZidjRkF5Z8bRlmk-3B7efFrdMXbyxO4Rxcz5yFombxI2tpaxzKlutLB6jJEQSBHDKRMpbMeN6giKUQFcShog-p8onVciM-wPplO4hdgVgWBQCk674JUSjlNLISaSmyHQurQh2E3nca3zOJ0wcXY5Ai30GahAoMqMFkFpuzD92WfhwWvxofS56SlpSRxYucX09lv09qIqSJiFRWDsGEo0QJrGp_XihCSTzr14ajTsWkXamMKVdAeEnFOH046vb82_3tIB_8nfgibBVkgpR6oI1ifz57iMcKZufua7fcFg43uUw
  priority: 102
  providerName: Springer Nature
Title Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data
URI https://link.springer.com/article/10.1038/s41529-022-00295-5
https://www.proquest.com/docview/2722619181
https://doaj.org/article/6e1247ed3ad14cd898211c873175cf8f
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB6a-NIeSp_USWp06K0VsVfalfYUHBM3GBpK2kBuQs9ScLyO1z3033dmLTsPaI6rF2JH0nyaGX0D8ClVPugoC-6Erbn0UXNdJMeFLQs7rOrKJno7_O2iOr-Ss-vyOhvc2hxWuT0Tu4M6NJ5s5MeFKgjso0I6Wd5yyhpF3tWcQmMPengEa7x89U7PLr5f7qws2IcYv_JrmaHQxy1prJpTEDt5pEpePtBIHXH_A7T5yEHa6Z3pK3iZASMbbyT8Gp7FxRt4cY9G8C3cXtpFaG4Y4k8cixHfwoaeGGuZdfw3BQg1DKXhc7KultoybIYzwk9GfBFsuSKnDVUzss6y9sbO56y1xB_MxnNGLvq_LaOY0ndwNT37OTnnOZUC96hw1jwELZMXSVtb61imVFc6WF2GKAjyiKGUqXTW43VVJIUYIY4EXVedT7SrC_Ee9hfNIn4AZlUQCJui8y5IpZTTxEmo6cHtSEgd-jDa_k7jM884pbuYm87fLbTZiMCgCEwnAlP24fOuz3LDsvFk61OS0q4lMWR3Bc3ql8kbzlQRkYuKQdgwkrgea5qf14rwkk869eFoK2OTt21r7hZZH75s5X5X_f8pHTw92iE8L2jFUeCBOoL99epP_IhgZu0GsKenXwfQG49nP2aDvH6xdFJNBp2B4B-b7vY3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4oJaHWGjBBziB1W7sxM4BVaWwbOnjgFqpN-MnQtputptFqH-K38hMHluKRG89JnaikWc8D8_4G4DXqfBBR5lxJ2zJpY-a6yw5Lmye2Z2iLGyiu8PHJ8X4TH45z89X4Hd_F4bKKnud2CjqUHk6I9_OVEbOPhqk3dklp65RlF3tW2i0YnEYr35hyFa_P_iI_H2TZaNPp_tj3nUV4B5174KHoGXyImlrSx3zlMpCB6vzEAVZfwzvZcqd9Ri5iaTQXMahoMjN-UQCTkAHqPLXpBAl7Sg9-rw800EKCV-su5uzI_R2Tfax5FQyT_mvnOc37F_TJuCGb_tPOraxcqN1eNi5p2yvlacNWInTR_DgL9DCx3D51U5DdcHQ28V_MUJ3aMGQcZRZx39QOVLFkPe-aw1W01yG05AifGSETsFmc0oR0TCjs2BWX9jJhNWW0IrZ3oRRQcBVzaiC9Qmc3ckSP4XVaTWNz4BZFQQ6adF5F6RSymlCQNR0vXcopA4DGPbLaXyHak7NNSamya4LbVoWGGSBaVhg8gG8XX4zazE9bp39gbi0nEl43M2Lav7ddNvbFBH9JBWDsGEoUfpLos9rRd6ZTzoNYLPnsemURG2uRXoA73q-Xw__n6Tnt__tFdwbnx4fmaODk8MXcD8j6aOSB7UJq4v5z7iFbtTCvWxkl8G3u94sfwC8GS0K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlVwqIAWdWkBH7gVw27sxM6xXViVRyuEqNSb5WdVaV9slkP_fWe8yZYiisQx8SSyMuPMN56ZzwBvUuWDjrLgTtiaSx8110VyXNiysP2qrmyi3uHTs-rkXH6-KC82oOp6YXLRfqa0zL_prjrsfUOOpuZUe06JpJKX7-YhPYCHiLf7FHQNq-F6bwUhBfF8tT0yfaH_8vgdP5Tp-u9gzD_SotnbjJ7AdgsT2dFqYk9hI06fwePfyAN34Od3Ow2zCUPUie9ixLKwIiXGUWYdv6KyoBlDHfj2iK6GZBmK4YzwkhFLBJsvKFVDw4z2ZFkzseMxayyxBrOjMaPE_HXDqJJ0F85HH38MT3h7gAL36GaWPAQtkxdJW1vrWKZUVzpYXYYoCOiIvpSpdNZjkCqSQmQQB4KCVOcTreVCPIfN6Wwa94BZFQSCpei8C1Ip5TQxEWpqsx0IqUMPBt3nNL5lF6dDLsYmZ7mFNisVGFSBySowZQ8O18_MV9wa_5Q-Ji2tJYkXO9-YLS5NayemiohXVAzChoFEK6xpfl4rQkk-6dSDg07Hpl2sjSlUQXEkYp0evO30fjt8_5Re_J_4a9j69mFkvn46-7IPjwoyRqpEUAewuVz8ii8R3Szdq2zKN1sq8ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+incorporating+ab-initio+calculations+for+corrosion+rate+prediction+with+small+sample+Al+alloys+data&rft.jtitle=Npj+Materials+degradation&rft.au=Ji%2C+Yucheng&rft.au=Li%2C+Ni&rft.au=Cheng%2C+Zhanming&rft.au=Fu%2C+Xiaoqian&rft.date=2022-10-07&rft.pub=Nature+Publishing+Group&rft.eissn=2397-2106&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs41529-022-00295-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-2106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-2106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-2106&client=summon