Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data
Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large...
Saved in:
Published in | Npj Materials degradation Vol. 6; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.10.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction accuracy is improved up to 91%. |
---|---|
AbstractList | Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction accuracy is improved up to 91%. Abstract Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction accuracy is improved up to 91%. |
ArticleNumber | 83 |
Author | Li, Ni Li, Xiaogang Dey, Poulumi Cheng, Zhanming Ao, Min Li, Menglin Sun, Xiaoguang Xiao, Kui Ji, Yucheng Fu, Xiaoqian Zhang, Dawei Chowwanonthapunya, Thee Dong, Chaofang Ren, Jingli |
Author_xml | – sequence: 1 givenname: Yucheng surname: Ji fullname: Ji, Yucheng organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Department of Materials Science and Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Shunde Innovation School, University of Science and Technology Beijing – sequence: 2 givenname: Ni surname: Li fullname: Li, Ni organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 3 givenname: Zhanming surname: Cheng fullname: Cheng, Zhanming organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 4 givenname: Xiaoqian surname: Fu fullname: Fu, Xiaoqian organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 5 givenname: Min surname: Ao fullname: Ao, Min organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 6 givenname: Menglin surname: Li fullname: Li, Menglin organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 7 givenname: Xiaoguang orcidid: 0000-0002-0463-5519 surname: Sun fullname: Sun, Xiaoguang organization: Technical Engineering Department, CRRC Qingdao Sifang Co. Ltd – sequence: 8 givenname: Thee surname: Chowwanonthapunya fullname: Chowwanonthapunya, Thee organization: Faculty of International Maritime Studies, Kasetsart University – sequence: 9 givenname: Dawei orcidid: 0000-0002-6546-6181 surname: Zhang fullname: Zhang, Dawei organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 10 givenname: Kui orcidid: 0000-0002-1172-195X surname: Xiao fullname: Xiao, Kui organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing – sequence: 11 givenname: Jingli orcidid: 0000-0002-5392-291X surname: Ren fullname: Ren, Jingli organization: Henan Academy of Big Data, Zhengzhou University – sequence: 12 givenname: Poulumi surname: Dey fullname: Dey, Poulumi organization: Department of Materials Science and Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology – sequence: 13 givenname: Xiaogang surname: Li fullname: Li, Xiaogang organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing – sequence: 14 givenname: Chaofang surname: Dong fullname: Dong, Chaofang email: cfdong@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Shunde Innovation School, University of Science and Technology Beijing |
BookMark | eNp9kctqHDEQRUWwwY7jH_BKkHUnerRa0tKYJDYYAiFZixo9xhp6pLakIfjvo5lOSMjCK6mqzi2Ke9-is5STR-iGkg-UcPWxjlQwPRDGBkKYFoN4gy4Z13JglExn__wv0HWtO9IpNimq2SV6_gbJ5T0OufjacEw2lyUXaDFtMWyGmGKLGVuY7WHu3ZzqkcUdK7n2EnfW46V4F-1xjH_G9oTrHuYZV9gvs8e3M-5VfqnYQYN36DzAXP317_cK_fj86fvd_fD49cvD3e3jYEem2-CcGoPlQQFo5UUIelIOlHCei4kQTsYxiA1YxSUPUhPqKZejpBsbyMgE41foYd3rMuzMUuIeyovJEM2pkcvWQGnRzt5MnrJResfB0dE6pRWj1CrJqRQ2qNB3vV93LSU_H7pRZpcPJfXzDZPdS6qpop1SK2W7NbX4YGxsJ89agTgbSswxL7PmZXoI5pSXEV3K_pP-OfhVEV9FtcNp68vfq15R_QIhrKrF |
CitedBy_id | crossref_primary_10_1007_s43938_024_00065_6 crossref_primary_10_1016_j_corsci_2023_111790 crossref_primary_10_2355_tetsutohagane_TETSU_2024_056 crossref_primary_10_1016_j_electacta_2023_143722 crossref_primary_10_1016_j_ijrmhm_2024_106878 crossref_primary_10_1016_j_jhazmat_2025_137588 crossref_primary_10_1021_acs_jpclett_4c03357 crossref_primary_10_1016_j_conbuildmat_2023_133029 crossref_primary_10_1016_j_jmst_2024_06_055 crossref_primary_10_1016_j_corsci_2024_112062 crossref_primary_10_1002_mgea_57 crossref_primary_10_1039_D3CP01864D crossref_primary_10_3390_sym16040422 crossref_primary_10_1002_mgea_83 crossref_primary_10_1149_1945_7111_ad1e3c crossref_primary_10_1016_j_jmrt_2023_06_159 crossref_primary_10_1016_j_tafmec_2024_104499 crossref_primary_10_3390_met14040401 |
Cites_doi | 10.1038/s41524-019-0227-7 10.1016/j.actamat.2006.02.034 10.1149/1.1838615 10.1016/j.actamat.2020.10.021 10.1186/2193-9772-3-8 10.1002/sia.740150109 10.1016/j.corsci.2020.108697 10.1103/PhysRevB.73.165402 10.1126/science.1156211 10.1016/j.actamat.2020.10.056 10.1016/j.corsci.2014.02.023 10.1038/s41586-018-0337-2 10.1149/2.0191709jes 10.1016/j.corsci.2009.10.003 10.1103/PhysRevB.54.11169 10.1146/annurev-matsci-070218-010057 10.1016/j.apsusc.2015.05.043 10.1016/0039-6028(94)00710-1 10.1016/j.corsci.2021.109561 10.1038/s41598-019-56452-5 10.1038/527441a 10.1016/j.corsci.2009.01.016 10.1016/j.jmst.2020.01.037 10.1038/s41529-021-00208-y 10.1016/j.corsci.2021.109304 10.1038/s41524-018-0081-z 10.3390/met12020171 10.1016/j.actamat.2019.10.024 10.1038/s42256-021-00368-1 10.5006/1.3577318 10.1016/j.corsci.2019.108274 10.1038/s41586-019-1702-5 10.1103/PhysRevLett.77.3865 10.1126/sciadv.aay1430 10.1016/j.corsci.2020.109174 10.1038/nature04465 10.5006/1.3585090 10.1038/ncomms11241 10.1016/j.electacta.2007.03.016 10.1016/j.corsci.2015.01.037 10.1016/j.scriptamat.2022.114701 10.1103/PhysRevB.59.7413 10.1038/s41467-022-29491-2 10.1016/j.corcom.2021.07.001 10.1109/ACCESS.2022.3161519 10.1016/j.corsci.2018.02.057 10.1038/s41529-021-00211-3 10.1002/0471749214 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1038/s41529-022-00295-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2397-2106 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_6e1247ed3ad14cd898211c873175cf8f 10_1038_s41529_022_00295_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: No.52125102 funderid: https://doi.org/10.13039/501100001809 – fundername: China Scholarship Council #202106460037 – fundername: Fundamental Research Funds for the Central Universities (No. FRF-TP-20-01B2), Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515120093) and Special Fund Support for Taishan Industrial Leading Talents Project. |
GroupedDBID | 0R~ AAJSJ ABJCF ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. M7S M~E NAO NO~ OK1 PDBOC PIMPY PTHSS RNT SNYQT AASML AAYXX CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-dd84fc3f8aa98e5ff968da85de356003044f5bac8373f7901e137471bcf042523 |
IEDL.DBID | BENPR |
ISSN | 2397-2106 |
IngestDate | Wed Aug 27 01:27:38 EDT 2025 Wed Aug 13 02:45:39 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 01:34:15 EDT 2025 Fri Feb 21 02:40:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-dd84fc3f8aa98e5ff968da85de356003044f5bac8373f7901e137471bcf042523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5392-291X 0000-0002-0463-5519 0000-0002-6546-6181 0000-0002-1172-195X |
OpenAccessLink | https://www.proquest.com/docview/2722619181?pq-origsite=%requestingapplication% |
PQID | 2722619181 |
PQPubID | 4669710 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e1247ed3ad14cd898211c873175cf8f proquest_journals_2722619181 crossref_citationtrail_10_1038_s41529_022_00295_5 crossref_primary_10_1038_s41529_022_00295_5 springer_journals_10_1038_s41529_022_00295_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-07 |
PublicationDateYYYYMMDD | 2022-10-07 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Npj Materials degradation |
PublicationTitleAbbrev | npj Mater Degrad |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhao, Zhang, Ji, Hu, Li (CR16) 2014; 83 Pei (CR18) 2020; 170 Li (CR1) 2015; 527 Kresse, Furthmüller (CR46) 1996; 54 Song (CR3) 2010; 52 Skinnider, Stacey, Wishart, Foster (CR32) 2021; 3 Xue (CR37) 2016; 7 Obot, Macdonald, Gasem (CR25) 2015; 99 Zou (CR21) 2021; 202 Schöchlin, Bohnen, Ho (CR26) 1995; 324 Van Huis, Chen, Zandbergen, Sluiter (CR44) 2006; 54 Roy (CR14) 2022; 6 Renner (CR10) 2006; 439 Rohwerder, Turcu (CR38) 2007; 53 Wei (CR41) 2018; 136 Dong (CR15) 2021; 2 Foley, Leff, Lang, Taheri (CR30) 2020; 185 Chen (CR43) 2021; 189 Ao (CR17) 2022; 10 Ding (CR20) 2020; 6 Perdew, Burke, Ernzerhof (CR47) 1996; 77 Butler, Davies, Cartwright, Isayev, Walsh (CR19) 2018; 559 Taylor, Wasileski, Filhol, Neurock (CR27) 2006; 73 Ji, Dong, Kong, Li (CR28) 2020; 46 Evertsson (CR40) 2015; 349 Zhang, Ling (CR35) 2018; 4 Ji, Dong, Chen, Xiao, Li (CR23) 2021; 183 Popova, Prošek (CR7) 2022; 12 Garner (CR22) 2021; 202 Sun, Zheng, Li, Wen (CR9) 2009; 51 Wang, Fu, Jiang, Xue, Xie (CR36) 2019; 5 King, Johnson, Engelberg, Ludwig, Marrow (CR4) 2008; 321 Trink, Weißensteiner, Uggowitzer, Strobel, Pogatscher (CR24) 2022; 215 Dellaferrera, Woźniak, Indiveri, Pantazi, Eleftheriou (CR33) 2022; 13 Jin (CR49) 2017; 164 Man, Dong, Wang, Kong, Li (CR8) 2020; 163 Strohmeier (CR39) 1990; 15 Sheikh, Boah, Hansen (CR11) 1990; 46 CR12 Agrawal (CR34) 2014; 3 Coelho (CR13) 2022; 6 Reuter, van Schaik, Gutzmer, Bartie, Abadías-Llamas (CR6) 2019; 49 Liu (CR31) 2019; 9 Pedregosa (CR45) 2011; 12 Hammer, Hansen, Nørskov (CR48) 1999; 59 Li (CR29) 2021; 180 Raabe, Tasan, Olivetti (CR5) 2019; 575 Olefjord, Elfstrom (CR42) 1982; 38 Frankel (CR2) 1998; 145 I Obot (295_CR25) 2015; 99 Y Zhang (295_CR35) 2018; 4 C Dong (295_CR15) 2021; 2 BR Strohmeier (295_CR39) 1990; 15 S Sun (295_CR9) 2009; 51 KT Butler (295_CR19) 2018; 559 DL Foley (295_CR30) 2020; 185 MA Skinnider (295_CR32) 2021; 3 G Dellaferrera (295_CR33) 2022; 13 F Renner (295_CR10) 2006; 439 R Ding (295_CR20) 2020; 6 Y Ji (295_CR23) 2021; 183 A Garner (295_CR22) 2021; 202 G Frankel (295_CR2) 1998; 145 C Man (295_CR8) 2020; 163 X Li (295_CR1) 2015; 527 295_CR12 N Li (295_CR29) 2021; 180 X Wei (295_CR41) 2018; 136 D Raabe (295_CR5) 2019; 575 LB Coelho (295_CR13) 2022; 6 CD Taylor (295_CR27) 2006; 73 B Hammer (295_CR48) 1999; 59 AK Sheikh (295_CR11) 1990; 46 I Olefjord (295_CR42) 1982; 38 D Chen (295_CR43) 2021; 189 M Rohwerder (295_CR38) 2007; 53 M Van Huis (295_CR44) 2006; 54 Y Liu (295_CR31) 2019; 9 C Wang (295_CR36) 2019; 5 A Agrawal (295_CR34) 2014; 3 B Trink (295_CR24) 2022; 215 D Xue (295_CR37) 2016; 7 K Popova (295_CR7) 2022; 12 H Zhao (295_CR16) 2014; 83 G Kresse (295_CR46) 1996; 54 Y Jin (295_CR49) 2017; 164 A King (295_CR4) 2008; 321 F Pedregosa (295_CR45) 2011; 12 J Evertsson (295_CR40) 2015; 349 Y Ji (295_CR28) 2020; 46 G Song (295_CR3) 2010; 52 JP Perdew (295_CR47) 1996; 77 M Ao (295_CR17) 2022; 10 C Zou (295_CR21) 2021; 202 MA Reuter (295_CR6) 2019; 49 A Roy (295_CR14) 2022; 6 J Schöchlin (295_CR26) 1995; 324 Z Pei (295_CR18) 2020; 170 |
References_xml | – volume: 5 start-page: 1 year: 2019 end-page: 8 ident: CR36 article-title: A property-oriented design strategy for high performance copper alloys via machine learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0227-7 – volume: 54 start-page: 2945 year: 2006 end-page: 2955 ident: CR44 article-title: Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.02.034 – ident: CR12 – volume: 145 start-page: 2186 year: 1998 ident: CR2 article-title: Pitting corrosion of metals: a review of the critical factors publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 202 start-page: 190 year: 2021 end-page: 210 ident: CR22 article-title: Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.021 – volume: 3 start-page: 90 year: 2014 end-page: 108 ident: CR34 article-title: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters publication-title: Integr. Mater. Manuf. I. doi: 10.1186/2193-9772-3-8 – volume: 15 start-page: 51 year: 1990 end-page: 56 ident: CR39 article-title: An ESCA method for determining the oxide thickness on aluminum alloys publication-title: Surf. Interface Anal. doi: 10.1002/sia.740150109 – volume: 170 start-page: 108697 year: 2020 ident: CR18 article-title: Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108697 – volume: 73 start-page: 165402 year: 2006 ident: CR27 article-title: First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.165402 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR45 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 321 start-page: 382 year: 2008 end-page: 385 ident: CR4 article-title: Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal publication-title: Science doi: 10.1126/science.1156211 – volume: 202 start-page: 211 year: 2021 end-page: 221 ident: CR21 article-title: Integrating data mining and machine learning to discover high-strength ductile titanium alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.056 – volume: 6 start-page: 1 year: 2022 end-page: 16 ident: CR13 article-title: Reviewing machine learning of corrosion prediction in a data-oriented perspective publication-title: npj Mater. Degrad. – volume: 83 start-page: 261 year: 2014 end-page: 271 ident: CR16 article-title: Quantitative structure–activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.02.023 – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: CR19 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 164 start-page: C465 year: 2017 ident: CR49 article-title: First-principle calculation of Volta potential of intermetallic particles in aluminum alloys and practical implications publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191709jes – volume: 52 start-page: 455 year: 2010 end-page: 480 ident: CR3 article-title: Potential and current distributions of one-dimensional galvanic corrosion systems publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.10.003 – volume: 54 start-page: 11169 year: 1996 ident: CR46 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 49 start-page: 253 year: 2019 end-page: 274 ident: CR6 article-title: Challenges of the circular economy: a material, metallurgical, and product design perspective publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev-matsci-070218-010057 – volume: 349 start-page: 826 year: 2015 end-page: 832 ident: CR40 article-title: The thickness of native oxides on aluminum alloys and single crystals publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.043 – volume: 324 start-page: 113 year: 1995 end-page: 121 ident: CR26 article-title: Structure and dynamics at the Al(111)-surface publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)00710-1 – volume: 189 start-page: 109561 year: 2021 ident: CR43 article-title: Revealing the inner rules of PREN from electronic aspect by first-principles calculations publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109561 – volume: 9 year: 2019 ident: CR31 article-title: Short-term rainfall forecast model based on the improved BP–NN algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-019-56452-5 – volume: 527 start-page: 441 year: 2015 end-page: 442 ident: CR1 article-title: Materials science: share corrosion data publication-title: Nature doi: 10.1038/527441a – volume: 51 start-page: 719 year: 2009 end-page: 727 ident: CR9 article-title: Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.01.016 – volume: 46 start-page: 145 year: 2020 end-page: 155 ident: CR28 article-title: Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.01.037 – volume: 6 start-page: 1 year: 2022 end-page: 10 ident: CR14 article-title: Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys publication-title: npj Mater. Degrad. doi: 10.1038/s41529-021-00208-y – volume: 183 start-page: 109304 year: 2021 ident: CR23 article-title: High-throughput computing for screening the potential alloying elements of a 7xxx aluminum alloy for increasing the alloy resistance to stress corrosion cracking publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109304 – volume: 4 start-page: 25 year: 2018 ident: CR35 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0081-z – volume: 12 start-page: 171 year: 2022 ident: CR7 article-title: Corrosion monitoring in atmospheric conditions: a review publication-title: Metals doi: 10.3390/met12020171 – volume: 185 start-page: 279 year: 2020 end-page: 286 ident: CR30 article-title: Evolution of β-phase precipitates in an aluminum-magnesium alloy at the nanoscale publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.10.024 – volume: 3 start-page: 759 year: 2021 end-page: 770 ident: CR32 article-title: Chemical language models enable navigation in sparsely populated chemical space publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00368-1 – volume: 38 start-page: 46 year: 1982 end-page: 52 ident: CR42 article-title: The composition of the surface during passivation of stainless steels publication-title: Corrosion doi: 10.5006/1.3577318 – volume: 163 start-page: 108274 year: 2020 ident: CR8 article-title: Long-term corrosion kinetics and mechanism of magnesium alloy AZ31 exposed to a dry tropical desert environment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108274 – volume: 575 start-page: 64 year: 2019 end-page: 74 ident: CR5 article-title: Strategies for improving the sustainability of structural metals publication-title: Nature doi: 10.1038/s41586-019-1702-5 – volume: 77 start-page: 3865 year: 1996 ident: CR47 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 6 start-page: eaay1430 year: 2020 ident: CR20 article-title: Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels publication-title: Sci. Adv. doi: 10.1126/sciadv.aay1430 – volume: 180 start-page: 109174 year: 2021 ident: CR29 article-title: Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.109174 – volume: 439 start-page: 707 year: 2006 end-page: 710 ident: CR10 article-title: Initial corrosion observed on the atomic scale publication-title: Nature doi: 10.1038/nature04465 – volume: 46 start-page: 190 year: 1990 end-page: 197 ident: CR11 article-title: Statistical modeling of pitting corrosion and pipeline reliability publication-title: Corrosion doi: 10.5006/1.3585090 – volume: 7 start-page: 1 year: 2016 end-page: 9 ident: CR37 article-title: Accelerated search for materials with targeted properties by adaptive design publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – volume: 53 start-page: 290 year: 2007 end-page: 299 ident: CR38 article-title: High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP) publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.03.016 – volume: 99 start-page: 1 year: 2015 end-page: 30 ident: CR25 article-title: Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.01.037 – volume: 215 start-page: 114701 year: 2022 ident: CR24 article-title: High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114701 – volume: 59 start-page: 7413 year: 1999 ident: CR48 article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 13 year: 2022 ident: CR33 article-title: Introducing principles of synaptic integration in the optimization of deep neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-022-29491-2 – volume: 2 start-page: 8 year: 2021 end-page: 23 ident: CR15 article-title: Integrated computation of corrosion: modelling, simulation and applications publication-title: Corros. Commun. doi: 10.1016/j.corcom.2021.07.001 – volume: 10 start-page: 35620 year: 2022 end-page: 35631 ident: CR17 article-title: Image deep learning assisted prediction of mechanical and corrosion behavior for Al-Zn-Mg alloys publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3161519 – volume: 136 start-page: 119 year: 2018 end-page: 128 ident: CR41 article-title: Electrochemical measurements and atomistic simulations of Cl-induced passivity breakdown on a Cu2O film publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.02.057 – volume: 73 start-page: 165402 year: 2006 ident: 295_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.165402 – volume: 51 start-page: 719 year: 2009 ident: 295_CR9 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.01.016 – volume: 527 start-page: 441 year: 2015 ident: 295_CR1 publication-title: Nature doi: 10.1038/527441a – volume: 99 start-page: 1 year: 2015 ident: 295_CR25 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.01.037 – volume: 202 start-page: 211 year: 2021 ident: 295_CR21 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.056 – volume: 6 start-page: 1 year: 2022 ident: 295_CR13 publication-title: npj Mater. Degrad. doi: 10.1038/s41529-021-00211-3 – volume: 324 start-page: 113 year: 1995 ident: 295_CR26 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)00710-1 – volume: 59 start-page: 7413 year: 1999 ident: 295_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 164 start-page: C465 year: 2017 ident: 295_CR49 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191709jes – ident: 295_CR12 doi: 10.1002/0471749214 – volume: 46 start-page: 190 year: 1990 ident: 295_CR11 publication-title: Corrosion doi: 10.5006/1.3585090 – volume: 10 start-page: 35620 year: 2022 ident: 295_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3161519 – volume: 575 start-page: 64 year: 2019 ident: 295_CR5 publication-title: Nature doi: 10.1038/s41586-019-1702-5 – volume: 12 start-page: 171 year: 2022 ident: 295_CR7 publication-title: Metals doi: 10.3390/met12020171 – volume: 83 start-page: 261 year: 2014 ident: 295_CR16 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.02.023 – volume: 163 start-page: 108274 year: 2020 ident: 295_CR8 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108274 – volume: 9 year: 2019 ident: 295_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56452-5 – volume: 189 start-page: 109561 year: 2021 ident: 295_CR43 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109561 – volume: 4 start-page: 25 year: 2018 ident: 295_CR35 publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0081-z – volume: 54 start-page: 2945 year: 2006 ident: 295_CR44 publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.02.034 – volume: 185 start-page: 279 year: 2020 ident: 295_CR30 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.10.024 – volume: 3 start-page: 90 year: 2014 ident: 295_CR34 publication-title: Integr. Mater. Manuf. I. doi: 10.1186/2193-9772-3-8 – volume: 46 start-page: 145 year: 2020 ident: 295_CR28 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.01.037 – volume: 349 start-page: 826 year: 2015 ident: 295_CR40 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.043 – volume: 215 start-page: 114701 year: 2022 ident: 295_CR24 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114701 – volume: 439 start-page: 707 year: 2006 ident: 295_CR10 publication-title: Nature doi: 10.1038/nature04465 – volume: 6 start-page: 1 year: 2022 ident: 295_CR14 publication-title: npj Mater. Degrad. doi: 10.1038/s41529-021-00208-y – volume: 7 start-page: 1 year: 2016 ident: 295_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – volume: 77 start-page: 3865 year: 1996 ident: 295_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 52 start-page: 455 year: 2010 ident: 295_CR3 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.10.003 – volume: 180 start-page: 109174 year: 2021 ident: 295_CR29 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.109174 – volume: 145 start-page: 2186 year: 1998 ident: 295_CR2 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 321 start-page: 382 year: 2008 ident: 295_CR4 publication-title: Science doi: 10.1126/science.1156211 – volume: 38 start-page: 46 year: 1982 ident: 295_CR42 publication-title: Corrosion doi: 10.5006/1.3577318 – volume: 49 start-page: 253 year: 2019 ident: 295_CR6 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev-matsci-070218-010057 – volume: 53 start-page: 290 year: 2007 ident: 295_CR38 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.03.016 – volume: 170 start-page: 108697 year: 2020 ident: 295_CR18 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108697 – volume: 12 start-page: 2825 year: 2011 ident: 295_CR45 publication-title: J. Mach. Learn. Res. – volume: 183 start-page: 109304 year: 2021 ident: 295_CR23 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109304 – volume: 5 start-page: 1 year: 2019 ident: 295_CR36 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0227-7 – volume: 15 start-page: 51 year: 1990 ident: 295_CR39 publication-title: Surf. Interface Anal. doi: 10.1002/sia.740150109 – volume: 13 year: 2022 ident: 295_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29491-2 – volume: 6 start-page: eaay1430 year: 2020 ident: 295_CR20 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay1430 – volume: 3 start-page: 759 year: 2021 ident: 295_CR32 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00368-1 – volume: 136 start-page: 119 year: 2018 ident: 295_CR41 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.02.057 – volume: 559 start-page: 547 year: 2018 ident: 295_CR19 publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 202 start-page: 190 year: 2021 ident: 295_CR22 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.021 – volume: 2 start-page: 8 year: 2021 ident: 295_CR15 publication-title: Corros. Commun. doi: 10.1016/j.corcom.2021.07.001 – volume: 54 start-page: 11169 year: 1996 ident: 295_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 |
SSID | ssj0002268192 |
Score | 2.330699 |
Snippet | Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials... Abstract Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to better guide materials... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/1023/1026 639/301/1034/1037 639/705 Accuracy Aluminum base alloys Big Data Chemistry and Materials Science Corrosion Corrosion and Coatings Corrosion rate Datasets Electrochemistry Engineering Experiments Intermetallic compounds Machine learning Materials Science Materials selection Prediction models Sensors Structural Materials Tribology Work functions |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6wvcvCmwW2TNulRRRFBD-KCt5AnKHV33a4H_70zbXddBfXisc20hMyk801n8g0hR7FwXgWRMctNyYQLiqksWsZNnpl-URYm4tnh27vieiBuHvPHhVZfWBPW0gO3C3daBPBAMnhufCrgvaWCkMUpiX7PRRXx6ws-byGYem5IXQpk-upOyfS5Oq3RU5UMi9cxE5Wz_Isnagj7v6DMb4nRxt9crZHVDijSs3aC62QpDDfIygJ94CZ5vTdDP3qhgDvhXRR5FlpaYhilxrInLAwaUdCC65p01ShLQQxmBJcUeSLoeILJGhym-FeW1i-mqmhtkDeYnlUUU_PvNcVa0i0yuLp8uLhmXQsF5sDRTJn3SkTHozKmVCGPsSyUNyr3gSPU4X0hYm6NgzCVRwnYIKQcw1TrIu7mjG-T3nA0DDuEGuk5wKVgnfVCSmkVchEqPGibcqF8QtLZcmrX8Ytjm4tKN3lurnSrAg0q0I0KdJ6Q4_kz45Zd41fpc9TSXBKZsZsbYC-6sxf9l70kZH-mY91t11pnMsNIEtBOQk5mev8c_nlKu_8xpT2ynKFdYlmC3Ce96eQtHADUmdrDxqo_APY5-OA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4FuMABUaBqeFQ-9FYskrV37T1CBEKV4FAViZvlZ1UpJJANB_49M85uIKhF6nHX45XlGe989sx8BviWKh90lAV3wtZc-qi5LpLjwpaFHVR1ZRPVDl_fVFe38sddedeDoquFyUn7mdIy_6a77LDThhxNzSn3nAJJJS_XYIOo28mqR9Voea6CcII4vtr6mIHQf-m64oMyVf8KvnwXEs2e5nIHtluIyM4Wg_oEvTjZha03xIF78PjTTsL0niHixG8xYlhYEBJjK7OO_6GUoCnD-fft9VwNyTIUwxHhIyOGCPYwozANNTM6j2XNvR2PWWOJMZidjRkF5Z8bRlmk-3B7efFrdMXbyxO4Rxcz5yFombxI2tpaxzKlutLB6jJEQSBHDKRMpbMeN6giKUQFcShog-p8onVciM-wPplO4hdgVgWBQCk674JUSjlNLISaSmyHQurQh2E3nca3zOJ0wcXY5Ai30GahAoMqMFkFpuzD92WfhwWvxofS56SlpSRxYucX09lv09qIqSJiFRWDsGEo0QJrGp_XihCSTzr14ajTsWkXamMKVdAeEnFOH046vb82_3tIB_8nfgibBVkgpR6oI1ifz57iMcKZufua7fcFg43uUw priority: 102 providerName: Springer Nature |
Title | Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data |
URI | https://link.springer.com/article/10.1038/s41529-022-00295-5 https://www.proquest.com/docview/2722619181 https://doaj.org/article/6e1247ed3ad14cd898211c873175cf8f |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB6a-NIeSp_USWp06K0VsVfalfYUHBM3GBpK2kBuQs9ScLyO1z3033dmLTsPaI6rF2JH0nyaGX0D8ClVPugoC-6Erbn0UXNdJMeFLQs7rOrKJno7_O2iOr-Ss-vyOhvc2hxWuT0Tu4M6NJ5s5MeFKgjso0I6Wd5yyhpF3tWcQmMPengEa7x89U7PLr5f7qws2IcYv_JrmaHQxy1prJpTEDt5pEpePtBIHXH_A7T5yEHa6Z3pK3iZASMbbyT8Gp7FxRt4cY9G8C3cXtpFaG4Y4k8cixHfwoaeGGuZdfw3BQg1DKXhc7KultoybIYzwk9GfBFsuSKnDVUzss6y9sbO56y1xB_MxnNGLvq_LaOY0ndwNT37OTnnOZUC96hw1jwELZMXSVtb61imVFc6WF2GKAjyiKGUqXTW43VVJIUYIY4EXVedT7SrC_Ee9hfNIn4AZlUQCJui8y5IpZTTxEmo6cHtSEgd-jDa_k7jM884pbuYm87fLbTZiMCgCEwnAlP24fOuz3LDsvFk61OS0q4lMWR3Bc3ql8kbzlQRkYuKQdgwkrgea5qf14rwkk869eFoK2OTt21r7hZZH75s5X5X_f8pHTw92iE8L2jFUeCBOoL99epP_IhgZu0GsKenXwfQG49nP2aDvH6xdFJNBp2B4B-b7vY3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4oJaHWGjBBziB1W7sxM4BVaWwbOnjgFqpN-MnQtputptFqH-K38hMHluKRG89JnaikWc8D8_4G4DXqfBBR5lxJ2zJpY-a6yw5Lmye2Z2iLGyiu8PHJ8X4TH45z89X4Hd_F4bKKnud2CjqUHk6I9_OVEbOPhqk3dklp65RlF3tW2i0YnEYr35hyFa_P_iI_H2TZaNPp_tj3nUV4B5174KHoGXyImlrSx3zlMpCB6vzEAVZfwzvZcqd9Ri5iaTQXMahoMjN-UQCTkAHqPLXpBAl7Sg9-rw800EKCV-su5uzI_R2Tfax5FQyT_mvnOc37F_TJuCGb_tPOraxcqN1eNi5p2yvlacNWInTR_DgL9DCx3D51U5DdcHQ28V_MUJ3aMGQcZRZx39QOVLFkPe-aw1W01yG05AifGSETsFmc0oR0TCjs2BWX9jJhNWW0IrZ3oRRQcBVzaiC9Qmc3ckSP4XVaTWNz4BZFQQ6adF5F6RSymlCQNR0vXcopA4DGPbLaXyHak7NNSamya4LbVoWGGSBaVhg8gG8XX4zazE9bp39gbi0nEl43M2Lav7ddNvbFBH9JBWDsGEoUfpLos9rRd6ZTzoNYLPnsemURG2uRXoA73q-Xw__n6Tnt__tFdwbnx4fmaODk8MXcD8j6aOSB7UJq4v5z7iFbtTCvWxkl8G3u94sfwC8GS0K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlVwqIAWdWkBH7gVw27sxM6xXViVRyuEqNSb5WdVaV9slkP_fWe8yZYiisQx8SSyMuPMN56ZzwBvUuWDjrLgTtiaSx8110VyXNiysP2qrmyi3uHTs-rkXH6-KC82oOp6YXLRfqa0zL_prjrsfUOOpuZUe06JpJKX7-YhPYCHiLf7FHQNq-F6bwUhBfF8tT0yfaH_8vgdP5Tp-u9gzD_SotnbjJ7AdgsT2dFqYk9hI06fwePfyAN34Od3Ow2zCUPUie9ixLKwIiXGUWYdv6KyoBlDHfj2iK6GZBmK4YzwkhFLBJsvKFVDw4z2ZFkzseMxayyxBrOjMaPE_HXDqJJ0F85HH38MT3h7gAL36GaWPAQtkxdJW1vrWKZUVzpYXYYoCOiIvpSpdNZjkCqSQmQQB4KCVOcTreVCPIfN6Wwa94BZFQSCpei8C1Ip5TQxEWpqsx0IqUMPBt3nNL5lF6dDLsYmZ7mFNisVGFSBySowZQ8O18_MV9wa_5Q-Ji2tJYkXO9-YLS5NayemiohXVAzChoFEK6xpfl4rQkk-6dSDg07Hpl2sjSlUQXEkYp0evO30fjt8_5Re_J_4a9j69mFkvn46-7IPjwoyRqpEUAewuVz8ii8R3Szdq2zKN1sq8ks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+incorporating+ab-initio+calculations+for+corrosion+rate+prediction+with+small+sample+Al+alloys+data&rft.jtitle=Npj+Materials+degradation&rft.au=Ji%2C+Yucheng&rft.au=Li%2C+Ni&rft.au=Cheng%2C+Zhanming&rft.au=Fu%2C+Xiaoqian&rft.date=2022-10-07&rft.pub=Nature+Publishing+Group&rft.eissn=2397-2106&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs41529-022-00295-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-2106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-2106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-2106&client=summon |