MultiRocket: multiple pooling operators and transformations for fast and effective time series classification

We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to d...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 36; no. 5; pp. 1623 - 1646
Main Authors Tan, Chang Wei, Dempster, Angus, Bergmeir, Christoph, Webb, Geoffrey I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to date, by adding multiple pooling operators and transformations to improve the diversity of the features generated. In addition to processing the raw input series, MultiRocket also applies first order differences to transform the original series. Convolutions are applied to both representations, and four pooling operators are applied to the convolution outputs. When benchmarked using the University of California Riverside TSC benchmark datasets, MultiRocket is significantly more accurate than MiniRocket, and competitive with the best ranked current method in terms of accuracy, HIVE-COTE 2.0, while being orders of magnitude faster.
AbstractList We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to date, by adding multiple pooling operators and transformations to improve the diversity of the features generated. In addition to processing the raw input series, MultiRocket also applies first order differences to transform the original series. Convolutions are applied to both representations, and four pooling operators are applied to the convolution outputs. When benchmarked using the University of California Riverside TSC benchmark datasets, MultiRocket is significantly more accurate than MiniRocket, and competitive with the best ranked current method in terms of accuracy, HIVE-COTE 2.0, while being orders of magnitude faster.
Author Bergmeir, Christoph
Webb, Geoffrey I.
Dempster, Angus
Tan, Chang Wei
Author_xml – sequence: 1
  givenname: Chang Wei
  orcidid: 0000-0001-8377-3241
  surname: Tan
  fullname: Tan, Chang Wei
  email: chang.tan@monash.edu
  organization: Department of Data Science and AI, Faculty of Information Technology, Monash University
– sequence: 2
  givenname: Angus
  surname: Dempster
  fullname: Dempster, Angus
  organization: Department of Data Science and AI, Faculty of Information Technology, Monash University
– sequence: 3
  givenname: Christoph
  surname: Bergmeir
  fullname: Bergmeir, Christoph
  organization: Department of Data Science and AI, Faculty of Information Technology, Monash University
– sequence: 4
  givenname: Geoffrey I.
  surname: Webb
  fullname: Webb, Geoffrey I.
  organization: Department of Data Science and AI, Faculty of Information Technology, Monash University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTbPYj3qT4BRVBFLyFbDYpqbubNUkF_71pKwgeepoZ5n3m452hyeAGjdA5gUsCUF0FAiWpM6A0A6gZy8gRmpKiyrOqKN8nKc9rlhU1gRM0C2ENAAXNYYr6p00X7YtTHzpe435bjJ3Go3OdHVbYjdrL6HzAcmhx9HIIxvleRuuGgFOKjQxx19TGaBXtl8bR9hoH7a0OWHUyBGus2iGn6NjILuiz3zhHb3e3r4uHbPl8_7i4WWaKUR6zVkkoWsZaXhJZGK5o2TQ5A8hZUyijeEWJURR0LUsGTavSLyXVjCcNL3LI5-hiP3f07nOjQxRrt_FDWiloYjnnJZRJVe9VyrsQvDZC2bi7Mz1qO0FAbM0Ve3NFMlfszBUkofQfOnrbS_99GMr3UEjiYaX931UHqB_vdpA2
CitedBy_id crossref_primary_10_1016_j_rcim_2025_103011
crossref_primary_10_1109_JIOT_2023_3305585
crossref_primary_10_1016_j_ensm_2024_103730
crossref_primary_10_1145_3694788
crossref_primary_10_1016_j_engappai_2023_107259
crossref_primary_10_3390_electronics11172706
crossref_primary_10_1007_s41060_024_00708_5
crossref_primary_10_1007_s10618_024_01048_5
crossref_primary_10_1109_TIM_2024_3470051
crossref_primary_10_1109_TNSM_2024_3350080
crossref_primary_10_1007_s00778_024_00865_w
crossref_primary_10_1007_s10618_023_00926_8
crossref_primary_10_14778_3681954_3681957
crossref_primary_10_1016_j_csbj_2024_12_005
crossref_primary_10_1016_j_patcog_2023_109333
crossref_primary_10_1016_j_inffus_2025_103079
crossref_primary_10_3390_electronics12204360
crossref_primary_10_1016_j_eswa_2024_125109
crossref_primary_10_1142_S0129065724500606
crossref_primary_10_1088_1742_6596_2600_8_082026
crossref_primary_10_1016_j_bspc_2024_106788
crossref_primary_10_1017_dce_2024_22
crossref_primary_10_1007_s10618_023_00978_w
crossref_primary_10_1007_s10618_023_00939_3
crossref_primary_10_3390_electronics13142727
crossref_primary_10_38016_jista_1427938
crossref_primary_10_1109_ACCESS_2023_3340698
crossref_primary_10_3390_s24041113
crossref_primary_10_1016_j_jksuci_2024_102227
crossref_primary_10_1016_j_ymssp_2024_112057
crossref_primary_10_1016_j_knosys_2024_112253
crossref_primary_10_1109_OJSP_2024_3435673
crossref_primary_10_1016_j_ins_2023_119147
crossref_primary_10_1109_JSEN_2024_3493960
crossref_primary_10_1016_j_neunet_2023_06_033
crossref_primary_10_3390_bdcc7040173
crossref_primary_10_1016_j_aei_2024_102976
crossref_primary_10_1109_TCYB_2024_3498100
crossref_primary_10_1109_TPAMI_2024_3443141
crossref_primary_10_17531_ein_2022_4_16
crossref_primary_10_3390_electronics12051188
crossref_primary_10_1007_s10618_024_01027_w
crossref_primary_10_3390_app14020689
crossref_primary_10_1007_s10994_025_06741_0
crossref_primary_10_1007_s10618_024_01022_1
crossref_primary_10_1007_s10618_024_01062_7
crossref_primary_10_1007_s10618_024_01068_1
crossref_primary_10_1016_j_knosys_2024_112864
crossref_primary_10_1007_s10032_022_00415_6
crossref_primary_10_1016_j_neucom_2025_129772
crossref_primary_10_1016_j_engappai_2023_106152
crossref_primary_10_1109_TFUZZ_2024_3364585
crossref_primary_10_1186_s40359_024_01576_1
crossref_primary_10_1007_s10618_024_01085_0
crossref_primary_10_1109_ACCESS_2024_3397783
crossref_primary_10_58567_eal03020002
crossref_primary_10_1016_j_ipm_2022_103044
crossref_primary_10_1109_ACCESS_2023_3347586
crossref_primary_10_1109_ACCESS_2023_3270493
crossref_primary_10_1016_j_jocs_2024_102235
crossref_primary_10_1109_ACCESS_2024_3464743
crossref_primary_10_1007_s10618_024_01036_9
crossref_primary_10_1016_j_eswa_2023_119942
crossref_primary_10_1007_s10994_023_06395_w
crossref_primary_10_1016_j_eswa_2024_124591
crossref_primary_10_1088_1361_6501_ad457d
crossref_primary_10_1109_ACCESS_2024_3492348
crossref_primary_10_1145_3649448
Cites_doi 10.1007/s10618-019-00663-x
10.1007/s10618-021-00745-9
10.1007/s10618-019-00647-x
10.1007/s10618-020-00701-z
10.1016/j.knosys.2018.10.041
10.1016/j.ins.2013.02.030
10.1007/s10618-020-00710-y
10.1007/s10618-014-0361-2
10.1007/s10618-015-0441-y
10.1007/s10618-019-00617-3
10.1007/s10618-016-0483-9
10.1007/s10618-021-00782-4
10.1007/s10618-020-00679-8
10.1007/s10618-013-0322-1
10.1007/s10618-012-0251-4
10.1145/3447548.3467231
10.1007/978-3-030-67658-2_38
10.1007/978-3-030-65742-0_1
10.1109/JAS.2019.1911747
10.1145/2833157.2833162
10.1109/BigData50022.2020.9378424
10.1137/1.9781611974973.32
10.1109/ICDM.2016.0133
10.1007/s10994-021-06057-9
ContentType Journal Article
Copyright Crown 2022
Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Crown 2022
– notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-022-00844-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1646
ExternalDocumentID 10_1007_s10618_022_00844_1
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP210100072
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c429t-dca05d44d961a5f9c26bb340034b5cfc9721fc20e8a640bdc52362e4934095303
IEDL.DBID C6C
ISSN 1384-5810
IngestDate Sat Aug 23 14:14:41 EDT 2025
Thu Apr 24 22:55:52 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Fri Feb 21 02:45:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Rocket
Time series classification
MiniRocket
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-dca05d44d961a5f9c26bb340034b5cfc9721fc20e8a640bdc52362e4934095303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8377-3241
OpenAccessLink https://doi.org/10.1007/s10618-022-00844-1
PQID 2721999606
PQPubID 43030
PageCount 24
ParticipantIDs proquest_journals_2721999606
crossref_citationtrail_10_1007_s10618_022_00844_1
crossref_primary_10_1007_s10618_022_00844_1
springer_journals_10_1007_s10618_022_00844_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Salles, Belloze, Porto, Gonzalez, Ogasawara (CR24) 2019; 164
Vidakovic (CR30) 2009
CR17
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR23) 2011; 12
CR15
Górecki, Łuczak (CR11) 2013; 26
Tan, Petitjean, Webb (CR28) 2020; 34
Herrmann, Webb (CR13) 2021; 35
Dempster, Petitjean, Webb (CR6) 2020; 34
Lucas, Shifaz, Pelletier, O’Neill, Zaidi, Goethals, Petitjean, Webb (CR19) 2019; 33
Schäfer (CR25) 2016; 30
Hannan (CR12) 2009
CR2
CR3
CR5
Deng, Runger, Tuv, Vladimir (CR9) 2013; 239
Shifaz, Pelletier, Petitjean, Webb (CR26) 2020; 34
CR7
Lines, Bagnall (CR16) 2015; 29
Bracewell, Bracewell (CR4) 1986
CR27
Hills, Lines, Baranauskas, Mapp, Bagnall (CR14) 2014; 28
CR22
CR21
CR20
Fawaz, Lucas, Forestier, Pelletier, Schmidt, Weber, Webb, Idoumghar, Muller, Petitjean (CR10) 2020; 34
Tan, Bergmeir, Petitjean, Webb (CR29) 2021; 35
Lubba, Sethi, Knaute, Schultz, Fulcher, Jones (CR18) 2019; 33
Demšar (CR8) 2006; 7
Bagnall, Lines, Bostrom, Large, Keogh (CR1) 2017; 31
844_CR7
M Herrmann (844_CR13) 2021; 35
H Deng (844_CR9) 2013; 239
R Salles (844_CR24) 2019; 164
CW Tan (844_CR29) 2021; 35
844_CR27
CH Lubba (844_CR18) 2019; 33
844_CR20
844_CR21
844_CR22
RN Bracewell (844_CR4) 1986
P Schäfer (844_CR25) 2016; 30
A Dempster (844_CR6) 2020; 34
B Lucas (844_CR19) 2019; 33
A Bagnall (844_CR1) 2017; 31
J Hills (844_CR14) 2014; 28
J Lines (844_CR16) 2015; 29
EJ Hannan (844_CR12) 2009
844_CR17
J Demšar (844_CR8) 2006; 7
844_CR15
B Vidakovic (844_CR30) 2009
HI Fawaz (844_CR10) 2020; 34
CW Tan (844_CR28) 2020; 34
A Shifaz (844_CR26) 2020; 34
F Pedregosa (844_CR23) 2011; 12
844_CR3
T Górecki (844_CR11) 2013; 26
844_CR2
844_CR5
References_xml – volume: 34
  start-page: 231
  issue: 1
  year: 2020
  end-page: 272
  ident: CR28
  article-title: FastEE: fast ensembles of elastic distances for time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00663-x
– volume: 35
  start-page: 1032
  issue: 3
  year: 2021
  end-page: 1060
  ident: CR29
  article-title: Time series extrinsic regression
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-021-00745-9
– ident: CR22
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR8
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 1821
  issue: 6
  year: 2019
  end-page: 1852
  ident: CR18
  article-title: catch22: Canonical time-series characteristics
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00647-x
– year: 1986
  ident: CR4
  publication-title: The Fourier transform and its applications
– ident: CR2
– year: 2009
  ident: CR30
  publication-title: Statistical modeling by wavelets
– volume: 34
  start-page: 1454
  issue: 5
  year: 2020
  end-page: 1495
  ident: CR6
  article-title: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00701-z
– volume: 164
  start-page: 274
  year: 2019
  end-page: 291
  ident: CR24
  article-title: Nonstationary time series transformation methods: an experimental review
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.041
– ident: CR27
– ident: CR21
– volume: 239
  start-page: 142
  year: 2013
  end-page: 153
  ident: CR9
  article-title: A time series forest for classification and feature extraction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  end-page: 1962
  ident: CR10
  article-title: InceptionTime: finding AlexNet for time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00710-y
– ident: CR3
– ident: CR15
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  end-page: 592
  ident: CR16
  article-title: Time series classification with ensembles of elastic distance measures
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0361-2
– ident: CR17
– volume: 30
  start-page: 1273
  issue: 5
  year: 2016
  end-page: 1298
  ident: CR25
  article-title: Scalable time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0441-y
– volume: 33
  start-page: 607
  issue: 3
  year: 2019
  end-page: 635
  ident: CR19
  article-title: Proximity forest: an effective and scalable distance-based classifier for time series
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00617-3
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  end-page: 660
  ident: CR1
  article-title: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-016-0483-9
– volume: 35
  start-page: 2577
  issue: 6
  year: 2021
  end-page: 2601
  ident: CR13
  article-title: Early abandoning and pruning for elastic distances including dynamic time warping
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-021-00782-4
– ident: CR5
– ident: CR7
– volume: 34
  start-page: 742
  issue: 3
  year: 2020
  end-page: 775
  ident: CR26
  article-title: TS-CHIEF: a scalable and accurate forest algorithm for time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00679-8
– start-page: 38
  year: 2009
  ident: CR12
  publication-title: Multiple time series
– volume: 28
  start-page: 851
  issue: 4
  year: 2014
  end-page: 881
  ident: CR14
  article-title: Classification of time series by shapelet transformation
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-013-0322-1
– volume: 26
  start-page: 310
  issue: 2
  year: 2013
  end-page: 331
  ident: CR11
  article-title: Using derivatives in time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-012-0251-4
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR23
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– ident: CR20
– volume: 164
  start-page: 274
  year: 2019
  ident: 844_CR24
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.041
– volume: 33
  start-page: 1821
  issue: 6
  year: 2019
  ident: 844_CR18
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00647-x
– ident: 844_CR7
  doi: 10.1145/3447548.3467231
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: 844_CR16
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0361-2
– ident: 844_CR21
  doi: 10.1007/978-3-030-67658-2_38
– volume: 239
  start-page: 142
  year: 2013
  ident: 844_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– ident: 844_CR3
  doi: 10.1007/978-3-030-65742-0_1
– volume: 34
  start-page: 1454
  issue: 5
  year: 2020
  ident: 844_CR6
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00701-z
– volume: 35
  start-page: 2577
  issue: 6
  year: 2021
  ident: 844_CR13
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-021-00782-4
– ident: 844_CR5
  doi: 10.1109/JAS.2019.1911747
– volume: 34
  start-page: 231
  issue: 1
  year: 2020
  ident: 844_CR28
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00663-x
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 844_CR1
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-016-0483-9
– volume: 33
  start-page: 607
  issue: 3
  year: 2019
  ident: 844_CR19
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00617-3
– volume-title: The Fourier transform and its applications
  year: 1986
  ident: 844_CR4
– ident: 844_CR15
  doi: 10.1145/2833157.2833162
– volume: 12
  start-page: 2825
  year: 2011
  ident: 844_CR23
  publication-title: J Mach Learn Res
– ident: 844_CR2
– volume-title: Statistical modeling by wavelets
  year: 2009
  ident: 844_CR30
– start-page: 38
  volume-title: Multiple time series
  year: 2009
  ident: 844_CR12
– volume: 28
  start-page: 851
  issue: 4
  year: 2014
  ident: 844_CR14
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-013-0322-1
– ident: 844_CR20
  doi: 10.1109/BigData50022.2020.9378424
– volume: 26
  start-page: 310
  issue: 2
  year: 2013
  ident: 844_CR11
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-012-0251-4
– volume: 7
  start-page: 1
  year: 2006
  ident: 844_CR8
  publication-title: J Mach Learn Res
– ident: 844_CR27
  doi: 10.1137/1.9781611974973.32
– volume: 34
  start-page: 742
  issue: 3
  year: 2020
  ident: 844_CR26
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00679-8
– volume: 35
  start-page: 1032
  issue: 3
  year: 2021
  ident: 844_CR29
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-021-00745-9
– ident: 844_CR17
  doi: 10.1109/ICDM.2016.0133
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  ident: 844_CR10
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00710-y
– ident: 844_CR22
  doi: 10.1007/s10994-021-06057-9
– volume: 30
  start-page: 1273
  issue: 5
  year: 2016
  ident: 844_CR25
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0441-y
SSID ssj0005230
Score 2.6530087
Snippet We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1623
SubjectTerms Accuracy
Algorithms
Archives & records
Artificial Intelligence
Chemistry and Earth Sciences
Classification
Computer Science
Data Mining and Knowledge Discovery
Datasets
Deep learning
Information Storage and Retrieval
Methods
Operators
Physics
Statistics for Engineering
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrz4FqtVcvCmwU02iVkvotJSBIsUBW_L5nXStrrr_zeTZq0KeltIMofJZGY2-WY-hE6MzbzPc02kKIDCjCuilJHEUBMzZKYt3EPej-Xoid89i-d04VYnWGXrE6OjtjMDd-TnLPyqQHKeyav5GwHWKHhdTRQaq6gbXLBSHdS9GYwfJt9AHvmiTlhxIhTNUtlMKp6TVBFAs0NTeU7oz9C0zDd_PZHGyDPcROspZcTXiz3eQituuo02WjoGnE7nDnqNxbST4OBcc4lbpCAGEq0gF8_mLj6p17iaWtx8S1iD4eHwiX1VN3FwAfIIfhAD9TwGK3U1NpBoA7IoLtlFT8PB4-2IJDYFYkLMaYg1VSYs57aQtBK-MExqnXNoUKOF8Qba-HjDMqcqyTNtTdCdZI4XYU4hQqTbQ53pbOr2EQ4R7cIWTDAX9Go5047qPNPU-4pyL3wP0VaRpUmtxoHx4qVcNkkG5ZdB-WVUfkl76PRrzXzRaOPf2f12f8p06OpyaSI9dNbu2XL4b2kH_0s7RGssmgkgy_qo07x_uKOQijT6ONnbJ9aE2p0
  priority: 102
  providerName: ProQuest
Title MultiRocket: multiple pooling operators and transformations for fast and effective time series classification
URI https://link.springer.com/article/10.1007/s10618-022-00844-1
https://www.proquest.com/docview/2721999606
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5REFIv5VEQy2PlA7fWUuzYJultWe2CWoEq1JXoKYpfJ9hFJP3_zHiTLiCK1EsSyY8onrFnHM98H8Cp81mMeW650SVRmKmCF4Uz3AmXPGRpPf2HvLo2lzP1_VbfdjA5lAvz6vyeUtyMKDjFnBP0u-K409nQIj8jmoaxGT8L58iXGcGF4roQWZcg83YfL43QyrN8dRiabMx0Gz51ziEbLaW5A2thvgtbPfEC6-bhLmymuE3XfIb7lEB7g4taaL-xPjqQEXEWvoEtHkI6Rm9YPfesfeakorIxfGSxbtpUuAzswLWPEd08I80MDXPkXFM0UWqyB7Pp5Nf4kncMCtyhnWm5d3WmvVK-NKLWsXTSWJsrAqWx2kVH0D3RySwUtVGZ9Q5H0cigSqxTarRu-7A-X8zDATC0Yme-lFoGHGGvpA3C5pkVMdZCRR0HIPohrVwHL04sF3fVChiZxFChGKokhkoM4MvfNg9LcI13ax_3kqq6idZUEr-A9myZGcDXXnqr4n_3dvh_1Y_go0wKRNFlx7DePv4JJ-iOtHYIH4rpxRA2Rhe_f0zwfj65_nkzTNqJ15kcPQHp19nW
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXXqVioRQf6Km1iB3bJEgIVS3L9nmoWqm3NH6dYHchQYg_xW9kxkm6bSV66y2S4zmMxzOf7Zn5AN45n8WY55YbXRKFmSp4UTjDnXAJIUvr6R7y-MRMztXBhb5Ygr9DLQylVQ4-MTlqP3N0R_5e4lGFwHlmPs9_cGKNotfVgUKjM4vD8Oc3HtmaT_t7uL6bUo6_nO1OeM8qwB363pZ7V2faK-VLI2odSyeNtbmiRi1Wu-ionU10MgtFbVRmvcOjmpFBlfhPqdHjo9wH8FDlGMmpMn389VpKSd5VJReK60JkfZFOX6pnRMEpd55a2CsubgbCBbq99SCb4tz4KTzuASrb6SzqGSyF6XN4MpA_sN4XrML3VLp7iu40tB_ZkJfIiLIL5bLZPKQH_IbVU8_aa_AYzZzhJ4t106bBLqUEvS4jontGeyI0zBGspzymNOUFnN-LltdgeTqbhpfAMH5-8KXUMqBevZI2CJtnVsRYCxV1HIEYFFm5vrE58Wt8qxYtmUn5FSq_SsqvxAi2rubMu7Yed_69PqxP1W_xploY5Ai2hzVbDP9f2qu7pb2FlcnZ8VF1tH9y-BoeyWQylNO2Dsvtz1_hDYKg1m4ky2Nwed-m_g9KWBUI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS48EZdKOADnMBq7NhugoQQ0K5aCquqolJvIX6dYHchQYi_xq9jxnHYgkRvvUVyPIfxeDxjfzMfwBPnixjL0nKja6IwUxWvKme4Ey5FyNJ6uof8MDcHp-rdmT7bgF9jLQzBKkefmBy1Xzq6I9-RmKpQcF6YnZhhEcd7s1err5wYpOildaTTGEzkKPz8gelb9_JwD9f6qZSz_Y9vD3hmGOAO_XDPvWsL7ZXytRGtjrWTxtpSUdMWq1101NomOlmEqjWqsN5h2mZkUDX-U2v0_ij3CmzuUlY0gc03-_Pjk3MAk3KoUa4U15UocslOLtwzouKEpKeG9oqLv4_Fdaz7z_NsOvVmN-F6DlfZ68G-bsFGWNyGGyMVBMue4Q58SYW8J-hcQ_-CjShFRgReKJctVyE953esXXjWnwuW0egZfrLYdn0aHAAm6IMZ0d4z2iGhY46CfEI1pSl34fRS9HwPJovlImwBw9N019dSy4B69UraIGxZWBFjK1TUcQpiVGTjcptzYtv43KwbNJPyG1R-k5TfiCk8-zNnNTT5uPDv7XF9mrzhu2ZtnlN4Pq7Zevj_0u5fLO0xXEUzb94fzo8ewDWZLIYAbtsw6b99Dw8xIurto2x6DD5dtrX_BvD6Gpo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiRocket%3A+multiple+pooling+operators+and+transformations+for+fast+and+effective+time+series+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Tan%2C+Chang+Wei&rft.au=Dempster%2C+Angus&rft.au=Bergmeir%2C+Christoph&rft.au=Webb%2C+Geoffrey+I.&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=5&rft.spage=1623&rft.epage=1646&rft_id=info:doi/10.1007%2Fs10618-022-00844-1&rft.externalDocID=10_1007_s10618_022_00844_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon