MultiRocket: multiple pooling operators and transformations for fast and effective time series classification
We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to d...
Saved in:
Published in | Data mining and knowledge discovery Vol. 36; no. 5; pp. 1623 - 1646 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to date, by adding multiple pooling operators and transformations to improve the diversity of the features generated. In addition to processing the raw input series, MultiRocket also applies first order differences to transform the original series. Convolutions are applied to both representations, and four pooling operators are applied to the convolution outputs. When benchmarked using the University of California Riverside TSC benchmark datasets, MultiRocket is significantly more accurate than MiniRocket, and competitive with the best ranked current method in terms of accuracy, HIVE-COTE 2.0, while being orders of magnitude faster. |
---|---|
AbstractList | We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to date, by adding multiple pooling operators and transformations to improve the diversity of the features generated. In addition to processing the raw input series, MultiRocket also applies first order differences to transform the original series. Convolutions are applied to both representations, and four pooling operators are applied to the convolution outputs. When benchmarked using the University of California Riverside TSC benchmark datasets, MultiRocket is significantly more accurate than MiniRocket, and competitive with the best ranked current method in terms of accuracy, HIVE-COTE 2.0, while being orders of magnitude faster. |
Author | Bergmeir, Christoph Webb, Geoffrey I. Dempster, Angus Tan, Chang Wei |
Author_xml | – sequence: 1 givenname: Chang Wei orcidid: 0000-0001-8377-3241 surname: Tan fullname: Tan, Chang Wei email: chang.tan@monash.edu organization: Department of Data Science and AI, Faculty of Information Technology, Monash University – sequence: 2 givenname: Angus surname: Dempster fullname: Dempster, Angus organization: Department of Data Science and AI, Faculty of Information Technology, Monash University – sequence: 3 givenname: Christoph surname: Bergmeir fullname: Bergmeir, Christoph organization: Department of Data Science and AI, Faculty of Information Technology, Monash University – sequence: 4 givenname: Geoffrey I. surname: Webb fullname: Webb, Geoffrey I. organization: Department of Data Science and AI, Faculty of Information Technology, Monash University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTbPYj3qT4BRVBFLyFbDYpqbubNUkF_71pKwgeepoZ5n3m452hyeAGjdA5gUsCUF0FAiWpM6A0A6gZy8gRmpKiyrOqKN8nKc9rlhU1gRM0C2ENAAXNYYr6p00X7YtTHzpe435bjJ3Go3OdHVbYjdrL6HzAcmhx9HIIxvleRuuGgFOKjQxx19TGaBXtl8bR9hoH7a0OWHUyBGus2iGn6NjILuiz3zhHb3e3r4uHbPl8_7i4WWaKUR6zVkkoWsZaXhJZGK5o2TQ5A8hZUyijeEWJURR0LUsGTavSLyXVjCcNL3LI5-hiP3f07nOjQxRrt_FDWiloYjnnJZRJVe9VyrsQvDZC2bi7Mz1qO0FAbM0Ve3NFMlfszBUkofQfOnrbS_99GMr3UEjiYaX931UHqB_vdpA2 |
CitedBy_id | crossref_primary_10_1016_j_rcim_2025_103011 crossref_primary_10_1109_JIOT_2023_3305585 crossref_primary_10_1016_j_ensm_2024_103730 crossref_primary_10_1145_3694788 crossref_primary_10_1016_j_engappai_2023_107259 crossref_primary_10_3390_electronics11172706 crossref_primary_10_1007_s41060_024_00708_5 crossref_primary_10_1007_s10618_024_01048_5 crossref_primary_10_1109_TIM_2024_3470051 crossref_primary_10_1109_TNSM_2024_3350080 crossref_primary_10_1007_s00778_024_00865_w crossref_primary_10_1007_s10618_023_00926_8 crossref_primary_10_14778_3681954_3681957 crossref_primary_10_1016_j_csbj_2024_12_005 crossref_primary_10_1016_j_patcog_2023_109333 crossref_primary_10_1016_j_inffus_2025_103079 crossref_primary_10_3390_electronics12204360 crossref_primary_10_1016_j_eswa_2024_125109 crossref_primary_10_1142_S0129065724500606 crossref_primary_10_1088_1742_6596_2600_8_082026 crossref_primary_10_1016_j_bspc_2024_106788 crossref_primary_10_1017_dce_2024_22 crossref_primary_10_1007_s10618_023_00978_w crossref_primary_10_1007_s10618_023_00939_3 crossref_primary_10_3390_electronics13142727 crossref_primary_10_38016_jista_1427938 crossref_primary_10_1109_ACCESS_2023_3340698 crossref_primary_10_3390_s24041113 crossref_primary_10_1016_j_jksuci_2024_102227 crossref_primary_10_1016_j_ymssp_2024_112057 crossref_primary_10_1016_j_knosys_2024_112253 crossref_primary_10_1109_OJSP_2024_3435673 crossref_primary_10_1016_j_ins_2023_119147 crossref_primary_10_1109_JSEN_2024_3493960 crossref_primary_10_1016_j_neunet_2023_06_033 crossref_primary_10_3390_bdcc7040173 crossref_primary_10_1016_j_aei_2024_102976 crossref_primary_10_1109_TCYB_2024_3498100 crossref_primary_10_1109_TPAMI_2024_3443141 crossref_primary_10_17531_ein_2022_4_16 crossref_primary_10_3390_electronics12051188 crossref_primary_10_1007_s10618_024_01027_w crossref_primary_10_3390_app14020689 crossref_primary_10_1007_s10994_025_06741_0 crossref_primary_10_1007_s10618_024_01022_1 crossref_primary_10_1007_s10618_024_01062_7 crossref_primary_10_1007_s10618_024_01068_1 crossref_primary_10_1016_j_knosys_2024_112864 crossref_primary_10_1007_s10032_022_00415_6 crossref_primary_10_1016_j_neucom_2025_129772 crossref_primary_10_1016_j_engappai_2023_106152 crossref_primary_10_1109_TFUZZ_2024_3364585 crossref_primary_10_1186_s40359_024_01576_1 crossref_primary_10_1007_s10618_024_01085_0 crossref_primary_10_1109_ACCESS_2024_3397783 crossref_primary_10_58567_eal03020002 crossref_primary_10_1016_j_ipm_2022_103044 crossref_primary_10_1109_ACCESS_2023_3347586 crossref_primary_10_1109_ACCESS_2023_3270493 crossref_primary_10_1016_j_jocs_2024_102235 crossref_primary_10_1109_ACCESS_2024_3464743 crossref_primary_10_1007_s10618_024_01036_9 crossref_primary_10_1016_j_eswa_2023_119942 crossref_primary_10_1007_s10994_023_06395_w crossref_primary_10_1016_j_eswa_2024_124591 crossref_primary_10_1088_1361_6501_ad457d crossref_primary_10_1109_ACCESS_2024_3492348 crossref_primary_10_1145_3649448 |
Cites_doi | 10.1007/s10618-019-00663-x 10.1007/s10618-021-00745-9 10.1007/s10618-019-00647-x 10.1007/s10618-020-00701-z 10.1016/j.knosys.2018.10.041 10.1016/j.ins.2013.02.030 10.1007/s10618-020-00710-y 10.1007/s10618-014-0361-2 10.1007/s10618-015-0441-y 10.1007/s10618-019-00617-3 10.1007/s10618-016-0483-9 10.1007/s10618-021-00782-4 10.1007/s10618-020-00679-8 10.1007/s10618-013-0322-1 10.1007/s10618-012-0251-4 10.1145/3447548.3467231 10.1007/978-3-030-67658-2_38 10.1007/978-3-030-65742-0_1 10.1109/JAS.2019.1911747 10.1145/2833157.2833162 10.1109/BigData50022.2020.9378424 10.1137/1.9781611974973.32 10.1109/ICDM.2016.0133 10.1007/s10994-021-06057-9 |
ContentType | Journal Article |
Copyright | Crown 2022 Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Crown 2022 – notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-022-00844-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1646 |
ExternalDocumentID | 10_1007_s10618_022_00844_1 |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP210100072 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c429t-dca05d44d961a5f9c26bb340034b5cfc9721fc20e8a640bdc52362e4934095303 |
IEDL.DBID | C6C |
ISSN | 1384-5810 |
IngestDate | Sat Aug 23 14:14:41 EDT 2025 Thu Apr 24 22:55:52 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Fri Feb 21 02:45:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Rocket Time series classification MiniRocket |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-dca05d44d961a5f9c26bb340034b5cfc9721fc20e8a640bdc52362e4934095303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8377-3241 |
OpenAccessLink | https://doi.org/10.1007/s10618-022-00844-1 |
PQID | 2721999606 |
PQPubID | 43030 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2721999606 crossref_citationtrail_10_1007_s10618_022_00844_1 crossref_primary_10_1007_s10618_022_00844_1 springer_journals_10_1007_s10618_022_00844_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Salles, Belloze, Porto, Gonzalez, Ogasawara (CR24) 2019; 164 Vidakovic (CR30) 2009 CR17 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR23) 2011; 12 CR15 Górecki, Łuczak (CR11) 2013; 26 Tan, Petitjean, Webb (CR28) 2020; 34 Herrmann, Webb (CR13) 2021; 35 Dempster, Petitjean, Webb (CR6) 2020; 34 Lucas, Shifaz, Pelletier, O’Neill, Zaidi, Goethals, Petitjean, Webb (CR19) 2019; 33 Schäfer (CR25) 2016; 30 Hannan (CR12) 2009 CR2 CR3 CR5 Deng, Runger, Tuv, Vladimir (CR9) 2013; 239 Shifaz, Pelletier, Petitjean, Webb (CR26) 2020; 34 CR7 Lines, Bagnall (CR16) 2015; 29 Bracewell, Bracewell (CR4) 1986 CR27 Hills, Lines, Baranauskas, Mapp, Bagnall (CR14) 2014; 28 CR22 CR21 CR20 Fawaz, Lucas, Forestier, Pelletier, Schmidt, Weber, Webb, Idoumghar, Muller, Petitjean (CR10) 2020; 34 Tan, Bergmeir, Petitjean, Webb (CR29) 2021; 35 Lubba, Sethi, Knaute, Schultz, Fulcher, Jones (CR18) 2019; 33 Demšar (CR8) 2006; 7 Bagnall, Lines, Bostrom, Large, Keogh (CR1) 2017; 31 844_CR7 M Herrmann (844_CR13) 2021; 35 H Deng (844_CR9) 2013; 239 R Salles (844_CR24) 2019; 164 CW Tan (844_CR29) 2021; 35 844_CR27 CH Lubba (844_CR18) 2019; 33 844_CR20 844_CR21 844_CR22 RN Bracewell (844_CR4) 1986 P Schäfer (844_CR25) 2016; 30 A Dempster (844_CR6) 2020; 34 B Lucas (844_CR19) 2019; 33 A Bagnall (844_CR1) 2017; 31 J Hills (844_CR14) 2014; 28 J Lines (844_CR16) 2015; 29 EJ Hannan (844_CR12) 2009 844_CR17 J Demšar (844_CR8) 2006; 7 844_CR15 B Vidakovic (844_CR30) 2009 HI Fawaz (844_CR10) 2020; 34 CW Tan (844_CR28) 2020; 34 A Shifaz (844_CR26) 2020; 34 F Pedregosa (844_CR23) 2011; 12 844_CR3 T Górecki (844_CR11) 2013; 26 844_CR2 844_CR5 |
References_xml | – volume: 34 start-page: 231 issue: 1 year: 2020 end-page: 272 ident: CR28 article-title: FastEE: fast ensembles of elastic distances for time series classification publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00663-x – volume: 35 start-page: 1032 issue: 3 year: 2021 end-page: 1060 ident: CR29 article-title: Time series extrinsic regression publication-title: Data Min Knowl Disc doi: 10.1007/s10618-021-00745-9 – ident: CR22 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR8 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 33 start-page: 1821 issue: 6 year: 2019 end-page: 1852 ident: CR18 article-title: catch22: Canonical time-series characteristics publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00647-x – year: 1986 ident: CR4 publication-title: The Fourier transform and its applications – ident: CR2 – year: 2009 ident: CR30 publication-title: Statistical modeling by wavelets – volume: 34 start-page: 1454 issue: 5 year: 2020 end-page: 1495 ident: CR6 article-title: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00701-z – volume: 164 start-page: 274 year: 2019 end-page: 291 ident: CR24 article-title: Nonstationary time series transformation methods: an experimental review publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.041 – ident: CR27 – ident: CR21 – volume: 239 start-page: 142 year: 2013 end-page: 153 ident: CR9 article-title: A time series forest for classification and feature extraction publication-title: Inf Sci doi: 10.1016/j.ins.2013.02.030 – volume: 34 start-page: 1936 issue: 6 year: 2020 end-page: 1962 ident: CR10 article-title: InceptionTime: finding AlexNet for time series classification publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00710-y – ident: CR3 – ident: CR15 – volume: 29 start-page: 565 issue: 3 year: 2015 end-page: 592 ident: CR16 article-title: Time series classification with ensembles of elastic distance measures publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0361-2 – ident: CR17 – volume: 30 start-page: 1273 issue: 5 year: 2016 end-page: 1298 ident: CR25 article-title: Scalable time series classification publication-title: Data Min Knowl Disc doi: 10.1007/s10618-015-0441-y – volume: 33 start-page: 607 issue: 3 year: 2019 end-page: 635 ident: CR19 article-title: Proximity forest: an effective and scalable distance-based classifier for time series publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00617-3 – volume: 31 start-page: 606 issue: 3 year: 2017 end-page: 660 ident: CR1 article-title: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances publication-title: Data Min Knowl Disc doi: 10.1007/s10618-016-0483-9 – volume: 35 start-page: 2577 issue: 6 year: 2021 end-page: 2601 ident: CR13 article-title: Early abandoning and pruning for elastic distances including dynamic time warping publication-title: Data Min Knowl Disc doi: 10.1007/s10618-021-00782-4 – ident: CR5 – ident: CR7 – volume: 34 start-page: 742 issue: 3 year: 2020 end-page: 775 ident: CR26 article-title: TS-CHIEF: a scalable and accurate forest algorithm for time series classification publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00679-8 – start-page: 38 year: 2009 ident: CR12 publication-title: Multiple time series – volume: 28 start-page: 851 issue: 4 year: 2014 end-page: 881 ident: CR14 article-title: Classification of time series by shapelet transformation publication-title: Data Min Knowl Disc doi: 10.1007/s10618-013-0322-1 – volume: 26 start-page: 310 issue: 2 year: 2013 end-page: 331 ident: CR11 article-title: Using derivatives in time series classification publication-title: Data Min Knowl Disc doi: 10.1007/s10618-012-0251-4 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR23 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – ident: CR20 – volume: 164 start-page: 274 year: 2019 ident: 844_CR24 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.041 – volume: 33 start-page: 1821 issue: 6 year: 2019 ident: 844_CR18 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00647-x – ident: 844_CR7 doi: 10.1145/3447548.3467231 – volume: 29 start-page: 565 issue: 3 year: 2015 ident: 844_CR16 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0361-2 – ident: 844_CR21 doi: 10.1007/978-3-030-67658-2_38 – volume: 239 start-page: 142 year: 2013 ident: 844_CR9 publication-title: Inf Sci doi: 10.1016/j.ins.2013.02.030 – ident: 844_CR3 doi: 10.1007/978-3-030-65742-0_1 – volume: 34 start-page: 1454 issue: 5 year: 2020 ident: 844_CR6 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00701-z – volume: 35 start-page: 2577 issue: 6 year: 2021 ident: 844_CR13 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-021-00782-4 – ident: 844_CR5 doi: 10.1109/JAS.2019.1911747 – volume: 34 start-page: 231 issue: 1 year: 2020 ident: 844_CR28 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00663-x – volume: 31 start-page: 606 issue: 3 year: 2017 ident: 844_CR1 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-016-0483-9 – volume: 33 start-page: 607 issue: 3 year: 2019 ident: 844_CR19 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-019-00617-3 – volume-title: The Fourier transform and its applications year: 1986 ident: 844_CR4 – ident: 844_CR15 doi: 10.1145/2833157.2833162 – volume: 12 start-page: 2825 year: 2011 ident: 844_CR23 publication-title: J Mach Learn Res – ident: 844_CR2 – volume-title: Statistical modeling by wavelets year: 2009 ident: 844_CR30 – start-page: 38 volume-title: Multiple time series year: 2009 ident: 844_CR12 – volume: 28 start-page: 851 issue: 4 year: 2014 ident: 844_CR14 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-013-0322-1 – ident: 844_CR20 doi: 10.1109/BigData50022.2020.9378424 – volume: 26 start-page: 310 issue: 2 year: 2013 ident: 844_CR11 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-012-0251-4 – volume: 7 start-page: 1 year: 2006 ident: 844_CR8 publication-title: J Mach Learn Res – ident: 844_CR27 doi: 10.1137/1.9781611974973.32 – volume: 34 start-page: 742 issue: 3 year: 2020 ident: 844_CR26 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00679-8 – volume: 35 start-page: 1032 issue: 3 year: 2021 ident: 844_CR29 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-021-00745-9 – ident: 844_CR17 doi: 10.1109/ICDM.2016.0133 – volume: 34 start-page: 1936 issue: 6 year: 2020 ident: 844_CR10 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-020-00710-y – ident: 844_CR22 doi: 10.1007/s10994-021-06057-9 – volume: 30 start-page: 1273 issue: 5 year: 2016 ident: 844_CR25 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-015-0441-y |
SSID | ssj0005230 |
Score | 2.6530087 |
Snippet | We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1623 |
SubjectTerms | Accuracy Algorithms Archives & records Artificial Intelligence Chemistry and Earth Sciences Classification Computer Science Data Mining and Knowledge Discovery Datasets Deep learning Information Storage and Retrieval Methods Operators Physics Statistics for Engineering Time series |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrz4FqtVcvCmwU02iVkvotJSBIsUBW_L5nXStrrr_zeTZq0KeltIMofJZGY2-WY-hE6MzbzPc02kKIDCjCuilJHEUBMzZKYt3EPej-Xoid89i-d04VYnWGXrE6OjtjMDd-TnLPyqQHKeyav5GwHWKHhdTRQaq6gbXLBSHdS9GYwfJt9AHvmiTlhxIhTNUtlMKp6TVBFAs0NTeU7oz9C0zDd_PZHGyDPcROspZcTXiz3eQituuo02WjoGnE7nDnqNxbST4OBcc4lbpCAGEq0gF8_mLj6p17iaWtx8S1iD4eHwiX1VN3FwAfIIfhAD9TwGK3U1NpBoA7IoLtlFT8PB4-2IJDYFYkLMaYg1VSYs57aQtBK-MExqnXNoUKOF8Qba-HjDMqcqyTNtTdCdZI4XYU4hQqTbQ53pbOr2EQ4R7cIWTDAX9Go5047qPNPU-4pyL3wP0VaRpUmtxoHx4qVcNkkG5ZdB-WVUfkl76PRrzXzRaOPf2f12f8p06OpyaSI9dNbu2XL4b2kH_0s7RGssmgkgy_qo07x_uKOQijT6ONnbJ9aE2p0 priority: 102 providerName: ProQuest |
Title | MultiRocket: multiple pooling operators and transformations for fast and effective time series classification |
URI | https://link.springer.com/article/10.1007/s10618-022-00844-1 https://www.proquest.com/docview/2721999606 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5REFIv5VEQy2PlA7fWUuzYJultWe2CWoEq1JXoKYpfJ9hFJP3_zHiTLiCK1EsSyY8onrFnHM98H8Cp81mMeW650SVRmKmCF4Uz3AmXPGRpPf2HvLo2lzP1_VbfdjA5lAvz6vyeUtyMKDjFnBP0u-K409nQIj8jmoaxGT8L58iXGcGF4roQWZcg83YfL43QyrN8dRiabMx0Gz51ziEbLaW5A2thvgtbPfEC6-bhLmymuE3XfIb7lEB7g4taaL-xPjqQEXEWvoEtHkI6Rm9YPfesfeakorIxfGSxbtpUuAzswLWPEd08I80MDXPkXFM0UWqyB7Pp5Nf4kncMCtyhnWm5d3WmvVK-NKLWsXTSWJsrAqWx2kVH0D3RySwUtVGZ9Q5H0cigSqxTarRu-7A-X8zDATC0Yme-lFoGHGGvpA3C5pkVMdZCRR0HIPohrVwHL04sF3fVChiZxFChGKokhkoM4MvfNg9LcI13ax_3kqq6idZUEr-A9myZGcDXXnqr4n_3dvh_1Y_go0wKRNFlx7DePv4JJ-iOtHYIH4rpxRA2Rhe_f0zwfj65_nkzTNqJ15kcPQHp19nW |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXXqVioRQf6Km1iB3bJEgIVS3L9nmoWqm3NH6dYHchQYg_xW9kxkm6bSV66y2S4zmMxzOf7Zn5AN45n8WY55YbXRKFmSp4UTjDnXAJIUvr6R7y-MRMztXBhb5Ygr9DLQylVQ4-MTlqP3N0R_5e4lGFwHlmPs9_cGKNotfVgUKjM4vD8Oc3HtmaT_t7uL6bUo6_nO1OeM8qwB363pZ7V2faK-VLI2odSyeNtbmiRi1Wu-ionU10MgtFbVRmvcOjmpFBlfhPqdHjo9wH8FDlGMmpMn389VpKSd5VJReK60JkfZFOX6pnRMEpd55a2CsubgbCBbq99SCb4tz4KTzuASrb6SzqGSyF6XN4MpA_sN4XrML3VLp7iu40tB_ZkJfIiLIL5bLZPKQH_IbVU8_aa_AYzZzhJ4t106bBLqUEvS4jontGeyI0zBGspzymNOUFnN-LltdgeTqbhpfAMH5-8KXUMqBevZI2CJtnVsRYCxV1HIEYFFm5vrE58Wt8qxYtmUn5FSq_SsqvxAi2rubMu7Yed_69PqxP1W_xploY5Ai2hzVbDP9f2qu7pb2FlcnZ8VF1tH9y-BoeyWQylNO2Dsvtz1_hDYKg1m4ky2Nwed-m_g9KWBUI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS48EZdKOADnMBq7NhugoQQ0K5aCquqolJvIX6dYHchQYi_xq9jxnHYgkRvvUVyPIfxeDxjfzMfwBPnixjL0nKja6IwUxWvKme4Ey5FyNJ6uof8MDcHp-rdmT7bgF9jLQzBKkefmBy1Xzq6I9-RmKpQcF6YnZhhEcd7s1err5wYpOildaTTGEzkKPz8gelb9_JwD9f6qZSz_Y9vD3hmGOAO_XDPvWsL7ZXytRGtjrWTxtpSUdMWq1101NomOlmEqjWqsN5h2mZkUDX-U2v0_ij3CmzuUlY0gc03-_Pjk3MAk3KoUa4U15UocslOLtwzouKEpKeG9oqLv4_Fdaz7z_NsOvVmN-F6DlfZ68G-bsFGWNyGGyMVBMue4Q58SYW8J-hcQ_-CjShFRgReKJctVyE953esXXjWnwuW0egZfrLYdn0aHAAm6IMZ0d4z2iGhY46CfEI1pSl34fRS9HwPJovlImwBw9N019dSy4B69UraIGxZWBFjK1TUcQpiVGTjcptzYtv43KwbNJPyG1R-k5TfiCk8-zNnNTT5uPDv7XF9mrzhu2ZtnlN4Pq7Zevj_0u5fLO0xXEUzb94fzo8ewDWZLIYAbtsw6b99Dw8xIurto2x6DD5dtrX_BvD6Gpo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiRocket%3A+multiple+pooling+operators+and+transformations+for+fast+and+effective+time+series+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Tan%2C+Chang+Wei&rft.au=Dempster%2C+Angus&rft.au=Bergmeir%2C+Christoph&rft.au=Webb%2C+Geoffrey+I.&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=5&rft.spage=1623&rft.epage=1646&rft_id=info:doi/10.1007%2Fs10618-022-00844-1&rft.externalDocID=10_1007_s10618_022_00844_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |