Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing

Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual...

Full description

Saved in:
Bibliographic Details
Published inNPJ 2D materials and applications Vol. 5; no. 1; pp. 1 - 10
Main Authors Alimkhanuly, Batyrbek, Sohn, Joon, Chang, Ik-Joon, Lee, Seunghyun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.
AbstractList Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.
Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.
ArticleNumber 55
Author Lee, Seunghyun
Sohn, Joon
Chang, Ik-Joon
Alimkhanuly, Batyrbek
Author_xml – sequence: 1
  givenname: Batyrbek
  surname: Alimkhanuly
  fullname: Alimkhanuly, Batyrbek
  organization: Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University, Department of Electronics and Information Convergence Engineering, College of Electronics and Information, Kyung Hee University
– sequence: 2
  givenname: Joon
  surname: Sohn
  fullname: Sohn, Joon
  organization: Department of Electrical Engineering and Stanford SystemX Alliance, Stanford University
– sequence: 3
  givenname: Ik-Joon
  surname: Chang
  fullname: Chang, Ik-Joon
  organization: Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University
– sequence: 4
  givenname: Seunghyun
  orcidid: 0000-0002-4701-2856
  surname: Lee
  fullname: Lee, Seunghyun
  email: seansl@khu.ac.kr
  organization: Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University, Department of Electronics and Information Convergence Engineering, College of Electronics and Information, Kyung Hee University
BookMark eNp9kV1PHCEYhUljk1rrH-jVJL2mwgvzwaXRVk38SDbVeEcY5mWXze4wAhv135c6mja98AZ4yXlODpzPZG8MIxLylbPvnInuKEneKEUZcMoYiIY-fSD7IFRLWy5g75_zJ3KY0poxxhVvZM33yfVZNNMKR6S9SThU4rS6v75Z0LvF4viqevR5VWWMo4nP1RTR-uTDWLkQqxF3MWxDnFbeVjZsp1324_IL-ejMJuHh635Abn_--HVyTi9vzi5Oji-plaAyHXojnHCtGaAs1jTWdjiUsUcJVjDLeS3ANUY6KSU0ru361ig0fEDouBUH5GL2HYJZ6yn6bUmog_H65SLEpTYxe7tBrSQT2MHA0DnpBte3rQLWKbBSKq664vVt9ppieNhhynodduXJm6ShhlbUquZQVN2ssjGkFNFp67PJ5TtyNH6jOdN_ytBzGbqUoV_K0E8Fhf_Qt8DvQmKGUhGPS4x_U71D_QZ_3p7Y
CitedBy_id crossref_primary_10_1016_j_mejo_2022_105634
crossref_primary_10_3389_fnins_2023_1253075
crossref_primary_10_1002_admi_202200392
crossref_primary_10_1063_5_0108964
crossref_primary_10_1364_OE_482536
crossref_primary_10_1016_j_chip_2024_100086
crossref_primary_10_1063_5_0053478
crossref_primary_10_1038_s41598_024_64662_9
crossref_primary_10_3390_electronics10182291
Cites_doi 10.1039/C9TC04545G
10.1109/JPROC.2008.2004313
10.1088/0957-4484/24/38/382001
10.1039/C5TA10599D
10.1016/j.sse.2016.12.008
10.1109/LED.2017.2731859
10.1088/1361-6528/ab554b
10.1088/0957-4484/24/46/465201
10.1021/nn305510u
10.1109/TVLSI.2016.2553123
10.1109/TED.2017.2697361
10.1109/LED.2012.2210856
10.1063/1.4992089
10.1021/acsami.9b11721
10.1002/admt.201800589
10.1038/nature14441
10.1038/nmat3070
10.1088/1361-6528/aae975
10.1038/srep13785
10.1038/s41598-018-30870-3
10.1063/1.2393042
10.1088/2053-1583/aac12d
10.1109/MNANO.2018.2844902
10.1038/nature14539
10.1109/JPROC.2012.2190369
10.1145/3065386
10.1109/TVLSI.2019.2917764
10.1109/JPROC.2010.2070050
10.1109/MSSC.2016.2546199
10.1038/ncomms9407
10.1109/ISSCC.2018.8310323
10.1109/SISPAD.2014.6931558
10.1109/IITC-AMC.2017.7968949
10.23919/DATE.2018.8342235
10.1109/IEDM.2013.6724693
10.1109/VLSIT.2016.7573388
10.1145/1553374.1553486
10.1109/IEDM.2011.6131653
10.1109/ASPDAC.2017.7858419
10.1109/WACV.2019.00102
10.1007/978-3-319-46493-0_32
10.4231/D37H1DN48
10.1109/IEDM.2014.7046988
10.1109/ASPDAC.2014.6742992
10.1109/IEDM.2018.8614535
10.1109/IEDM.2016.7838429
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1038/s41699-021-00236-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2397-7132
EndPage 10
ExternalDocumentID oai_doaj_org_article_9403e82d0eff4fdfb77920892c449198
10_1038_s41699_021_00236_x
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: 2020M3F3A2A01085755; 2017R1C1B2012227
  funderid: https://doi.org/10.13039/501100003725
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKAB
ABJCF
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
M7S
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PTHSS
RNT
SNYQT
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
8FE
8FG
AARCD
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c429t-dba3f3f7ad2f7aca6cc8ed7adbe42c30c11532f6a4f44426f78b7a9ea1de281c3
IEDL.DBID BENPR
ISSN 2397-7132
IngestDate Wed Aug 27 01:28:57 EDT 2025
Wed Aug 13 04:59:58 EDT 2025
Tue Jul 01 02:21:16 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Fri Feb 21 02:39:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-dba3f3f7ad2f7aca6cc8ed7adbe42c30c11532f6a4f44426f78b7a9ea1de281c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4701-2856
OpenAccessLink https://www.proquest.com/docview/2527359512?pq-origsite=%requestingapplication%
PQID 2527359512
PQPubID 4669722
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9403e82d0eff4fdfb77920892c449198
proquest_journals_2527359512
crossref_citationtrail_10_1038_s41699_021_00236_x
crossref_primary_10_1038_s41699_021_00236_x
springer_journals_10_1038_s41699_021_00236_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-14
PublicationDateYYYYMMDD 2021-05-14
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle NPJ 2D materials and applications
PublicationTitleAbbrev npj 2D Mater Appl
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lecun, Bengio, Hinton (CR1) 2015; 521
Krizhevsky, Hinton (CR2) 2017; 60
CR39
CR38
CR35
CR33
CR32
CR31
Lee (CR17) 2011; 10
Larrieu, Guerfi, Han, Clément (CR44) 2017; 130
Agnoli, Favaro (CR47) 2016; 4
Prezioso (CR9) 2015; 521
Bai (CR36) 2015; 5
Woo (CR43) 2017; 38
CR3
Kuzum, Yu, Wong (CR8) 2013; 24
CR48
Marchena (CR54) 2018; 5
Yu, Chen, Gao, Kang, Wong (CR27) 2013; 7
Zhu (CR12) 2008; 96
CR45
CR41
Chen (CR28) 2013; 24
Upadhyay (CR4) 2019; 4
Ielmini, Ambrogio (CR5) 2019; 31
CR19
Li (CR53) 2019; 7
CR18
CR16
CR15
CR14
CR55
CR52
Woo, Yu (CR56) 2018; 12
CR51
CR50
Wong (CR7) 2012; 100
Li, Chen, Xu, Yu (CR23) 2017; 64
Woo, Yu (CR42) 2019; 27
Bundaleska (CR46) 2018; 8
Kim (CR6) 2018; 30
Dutta (CR49) 2017; 122
Guan, Yu, Wong (CR40) 2012; 33
CR29
Wong (CR11) 2010; 98
CR26
Yu, Chen (CR10) 2016; 8
CR25
CR24
Seo (CR37) 2019; 11
CR22
CR21
CR20
Chen, Li, Yu (CR30) 2016; 24
Lee, Sohn, Jiang, Chen, Wong (CR34) 2015; 6
Setter (CR13) 2006; 100
236_CR21
236_CR22
N Setter (236_CR13) 2006; 100
236_CR24
236_CR25
236_CR26
M Prezioso (236_CR9) 2015; 521
S Yu (236_CR27) 2013; 7
H-SP Wong (236_CR7) 2012; 100
Y Bai (236_CR36) 2015; 5
J Woo (236_CR42) 2019; 27
S Yu (236_CR10) 2016; 8
236_CR20
M Marchena (236_CR54) 2018; 5
S Seo (236_CR37) 2019; 11
H-Y Chen (236_CR28) 2013; 24
236_CR18
D Kuzum (236_CR8) 2013; 24
236_CR19
236_CR32
236_CR33
236_CR35
N Bundaleska (236_CR46) 2018; 8
J Zhu (236_CR12) 2008; 96
236_CR38
236_CR39
P Chen (236_CR30) 2016; 24
S Dutta (236_CR49) 2017; 122
236_CR31
X Guan (236_CR40) 2012; 33
J Woo (236_CR43) 2017; 38
236_CR29
S Lee (236_CR34) 2015; 6
NK Upadhyay (236_CR4) 2019; 4
236_CR45
236_CR48
R Li (236_CR53) 2019; 7
M-J Lee (236_CR17) 2011; 10
S Agnoli (236_CR47) 2016; 4
236_CR41
Z Li (236_CR23) 2017; 64
C-H Kim (236_CR6) 2018; 30
H-SP Wong (236_CR11) 2010; 98
236_CR3
236_CR55
G Larrieu (236_CR44) 2017; 130
236_CR14
236_CR15
236_CR16
Y Lecun (236_CR1) 2015; 521
236_CR50
236_CR51
236_CR52
D Ielmini (236_CR5) 2019; 31
A Krizhevsky (236_CR2) 2017; 60
J Woo (236_CR56) 2018; 12
References_xml – ident: CR45
– ident: CR22
– volume: 7
  start-page: 13032
  year: 2019
  end-page: 13039
  ident: CR53
  article-title: Etching- and intermediate-free graphene dry transfer onto polymeric thin films with high piezoresistive gauge factors
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC04545G
– volume: 96
  start-page: 1786
  year: 2008
  end-page: 1798
  ident: CR12
  article-title: Magnetoresistive random access memory: the path to competitiveness and scalability
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2008.2004313
– volume: 24
  start-page: 382001
  year: 2013
  ident: CR8
  article-title: Synaptic electronics: materials, devices and applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– volume: 4
  start-page: 5002
  year: 2016
  end-page: 5025
  ident: CR47
  article-title: Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging application
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10599D
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR35
– volume: 130
  start-page: 9
  year: 2017
  end-page: 14
  ident: CR44
  article-title: Sub-15nm gate-all-around field effect transistors on vertical silicon nanowires
  publication-title: Solid. State Electron.
  doi: 10.1016/j.sse.2016.12.008
– ident: CR29
– volume: 38
  start-page: 1220
  year: 2017
  end-page: 1223
  ident: CR43
  article-title: Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2731859
– volume: 31
  start-page: 92001
  year: 2019
  ident: CR5
  article-title: Emerging neuromorphic devices
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab554b
– ident: CR25
– volume: 24
  start-page: 465201
  year: 2013
  ident: CR28
  article-title: Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/46/465201
– ident: CR21
– volume: 7
  start-page: 2320
  year: 2013
  end-page: 2325
  ident: CR27
  article-title: HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture
  publication-title: ACS Nano
  doi: 10.1021/nn305510u
– ident: CR19
– volume: 24
  start-page: 3460
  year: 2016
  end-page: 3467
  ident: CR30
  article-title: Design tradeoffs of vertical RRAM-based 3-D cross-point array
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2016.2553123
– volume: 64
  start-page: 2721
  year: 2017
  end-page: 2727
  ident: CR23
  article-title: Design of ternary neural network with 3-D vertical RRAM array
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2697361
– ident: CR15
– ident: CR50
– volume: 33
  start-page: 1405
  year: 2012
  end-page: 1407
  ident: CR40
  article-title: A SPICE compact model of metal oxide resistive switching memory with variations
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2210856
– ident: CR32
– volume: 122
  start-page: 25107
  year: 2017
  ident: CR49
  article-title: Thickness dependence of the resistivity of platinum-group metal thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4992089
– volume: 11
  start-page: 43466
  year: 2019
  end-page: 43472
  ident: CR37
  article-title: Graphene-edge electrode on a Cu-based chalcogenide selector for 3D vertical memristor cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11721
– ident: CR26
– volume: 4
  start-page: 1800589
  year: 2019
  ident: CR4
  article-title: Emerging memory devices for neuromorphic computing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800589
– volume: 521
  start-page: 61
  year: 2015
  end-page: 64
  ident: CR9
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 10
  start-page: 625
  year: 2011
  end-page: 630
  ident: CR17
  article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta O /TaO bilayer structures
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3070
– ident: CR18
– volume: 30
  start-page: 32001
  year: 2018
  ident: CR6
  article-title: Emerging memory technologies for neuromorphic computing
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aae975
– ident: CR14
– volume: 5
  year: 2015
  ident: CR36
  article-title: Stacked 3D RRAM array with graphene/CNT as edge electrodes
  publication-title: Sci. Rep.
  doi: 10.1038/srep13785
– volume: 8
  year: 2018
  ident: CR46
  article-title: Large-scale synthesis of free-standing N-doped graphene using microwave plasma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30870-3
– volume: 100
  start-page: 109901
  year: 2006
  ident: CR13
  article-title: Ferroelectric thin films: review of materials, properties, and applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2393042
– ident: CR33
– volume: 5
  start-page: 35022
  year: 2018
  ident: CR54
  article-title: Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aac12d
– volume: 12
  start-page: 36
  year: 2018
  end-page: 44
  ident: CR56
  article-title: Resistive memory-based analog synapse: the pursuit for linear and symmetric weight update
  publication-title: IEEE Nanotechnol. Mag.
  doi: 10.1109/MNANO.2018.2844902
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR48
– volume: 100
  start-page: 1951
  year: 2012
  end-page: 1970
  ident: CR7
  article-title: Metal–oxide RRAM
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2190369
– ident: CR3
– ident: CR38
– ident: CR52
– ident: CR31
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 27
  start-page: 2205
  year: 2019
  end-page: 2212
  ident: CR42
  article-title: Impact of selector devices in analog RRAM-based crossbar arrays for inference and training of neuromorphic system
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2019.2917764
– volume: 98
  start-page: 2201
  year: 2010
  end-page: 2227
  ident: CR11
  article-title: Phase change memory
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2070050
– volume: 8
  start-page: 43
  year: 2016
  end-page: 56
  ident: CR10
  article-title: Emerging memory technologies: recent trends and prospects
  publication-title: IEEE Solid-State Circuits Mag.
  doi: 10.1109/MSSC.2016.2546199
– ident: CR55
– volume: 6
  year: 2015
  ident: CR34
  article-title: Metal oxide-resistive memory using graphene-edge electrodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9407
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 24
  start-page: 465201
  year: 2013
  ident: 236_CR28
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/46/465201
– volume: 521
  start-page: 61
  year: 2015
  ident: 236_CR9
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 24
  start-page: 3460
  year: 2016
  ident: 236_CR30
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2016.2553123
– ident: 236_CR26
  doi: 10.1109/ISSCC.2018.8310323
– volume: 64
  start-page: 2721
  year: 2017
  ident: 236_CR23
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2697361
– volume: 10
  start-page: 625
  year: 2011
  ident: 236_CR17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3070
– volume: 38
  start-page: 1220
  year: 2017
  ident: 236_CR43
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2731859
– volume: 5
  year: 2015
  ident: 236_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep13785
– ident: 236_CR39
  doi: 10.1109/SISPAD.2014.6931558
– ident: 236_CR33
  doi: 10.1109/IITC-AMC.2017.7968949
– ident: 236_CR55
– ident: 236_CR22
  doi: 10.23919/DATE.2018.8342235
– volume: 4
  start-page: 5002
  year: 2016
  ident: 236_CR47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10599D
– ident: 236_CR51
– ident: 236_CR32
– volume: 521
  start-page: 436
  year: 2015
  ident: 236_CR1
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 122
  start-page: 25107
  year: 2017
  ident: 236_CR49
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4992089
– volume: 24
  start-page: 382001
  year: 2013
  ident: 236_CR8
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– volume: 27
  start-page: 2205
  year: 2019
  ident: 236_CR42
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2019.2917764
– volume: 100
  start-page: 1951
  year: 2012
  ident: 236_CR7
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2190369
– volume: 6
  year: 2015
  ident: 236_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9407
– volume: 31
  start-page: 92001
  year: 2019
  ident: 236_CR5
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab554b
– ident: 236_CR25
  doi: 10.1109/IEDM.2013.6724693
– ident: 236_CR29
  doi: 10.1109/VLSIT.2016.7573388
– ident: 236_CR3
  doi: 10.1145/1553374.1553486
– ident: 236_CR14
  doi: 10.1109/IEDM.2011.6131653
– volume: 130
  start-page: 9
  year: 2017
  ident: 236_CR44
  publication-title: Solid. State Electron.
  doi: 10.1016/j.sse.2016.12.008
– volume: 100
  start-page: 109901
  year: 2006
  ident: 236_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2393042
– ident: 236_CR16
– ident: 236_CR50
– ident: 236_CR15
– ident: 236_CR38
– ident: 236_CR21
  doi: 10.1109/ASPDAC.2017.7858419
– volume: 8
  start-page: 43
  year: 2016
  ident: 236_CR10
  publication-title: IEEE Solid-State Circuits Mag.
  doi: 10.1109/MSSC.2016.2546199
– volume: 7
  start-page: 13032
  year: 2019
  ident: 236_CR53
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC04545G
– volume: 12
  start-page: 36
  year: 2018
  ident: 236_CR56
  publication-title: IEEE Nanotechnol. Mag.
  doi: 10.1109/MNANO.2018.2844902
– ident: 236_CR48
– ident: 236_CR20
  doi: 10.1109/WACV.2019.00102
– volume: 30
  start-page: 32001
  year: 2018
  ident: 236_CR6
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aae975
– ident: 236_CR19
  doi: 10.1007/978-3-319-46493-0_32
– ident: 236_CR41
  doi: 10.4231/D37H1DN48
– volume: 96
  start-page: 1786
  year: 2008
  ident: 236_CR12
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2008.2004313
– ident: 236_CR35
  doi: 10.1109/IEDM.2014.7046988
– volume: 5
  start-page: 35022
  year: 2018
  ident: 236_CR54
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aac12d
– volume: 11
  start-page: 43466
  year: 2019
  ident: 236_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11721
– volume: 4
  start-page: 1800589
  year: 2019
  ident: 236_CR4
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800589
– volume: 8
  year: 2018
  ident: 236_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30870-3
– volume: 33
  start-page: 1405
  year: 2012
  ident: 236_CR40
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2210856
– volume: 60
  start-page: 84
  year: 2017
  ident: 236_CR2
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 98
  start-page: 2201
  year: 2010
  ident: 236_CR11
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2070050
– ident: 236_CR45
  doi: 10.1109/ASPDAC.2014.6742992
– ident: 236_CR52
  doi: 10.1109/IEDM.2018.8614535
– volume: 7
  start-page: 2320
  year: 2013
  ident: 236_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn305510u
– ident: 236_CR18
– ident: 236_CR24
  doi: 10.1109/IEDM.2016.7838429
– ident: 236_CR31
SSID ssj0001916451
Score 2.2193227
Snippet Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing...
Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size....
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301/1005/1007
639/705
639/925/918/1052
639/925/927/1007
Arrays
Chemistry and Materials Science
Circuits
Computation
Design optimization
Energy consumption
Graphene
Materials Science
Materials selection
Nanotechnology
Neural networks
Neuromorphic computing
Surfaces and Interfaces
Thin Films
Two dimensional materials
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJ3pALVCxhSIfuBWL2J6s4yPlU0hspRVUe7PisS1Vahe0LBL8-46dLF2Q2l64REriRKPxxO-NHb9hbN-Dt6gBBUGBF9CCETZVXlRGeYMqSF_lzclXo-HFDVxO6slSqa_8T1gnD9w57tBCpWOjQhVTghSSN8aqqrEKASxlzHn0JcxbSqbK7AqxHqhlv0um0s3hPTGPvOFeUfacVdPF4wskKoL9L1jmq4XRgjdn79l6TxT5UWfgB7YSpxvs3ZJ84CYbnWe1aRqsRMaiwPUJn4y-jcX38fjoiucZVl6m-2ZP_G7W19LhRFJ5EbH8dUsu_oEcS10HeuEWuzk7vT6-EH19BIGEInMRfKuTTqYNig7YDhGbGOjUR1CoKyS2p1UatpAACImTabxpbWxliKqRqD-y1entNG4zjhJSaqIZRulBWusDGDTet3WklCfggMmFrxz24uG5hsVPVxaxdeM6_zryryv-dY8D9uX5mbtOOuOfrb_mLnhumWWvywUKBtcHg_tfMAzY7qIDXf8t3juVNeZqYpJqwA4Wnfrn9t9N-vQWJu2wNVWCrhYSdtnqfPYQPxOPmfu9ErK_ARwW7VM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lfdEH8RNPq-TBNw1uktlL8nj9shz0hNPKvYXNJBGh3pXrCfrfO8nttlZU8GVhd5MlzMxmfplkfsPYqwDBoQYU5AqCgA6McLkJojEqGFRRhqYkJ5_NxqfnMF20ix2mhlyYemi_UlrWaXo4Hfb2ioBDyZdXtPgtpOeCcONeoWon296bTKYfpjeRFUI80Mo-Q6bR9g-db3mhStZ_C2H-tilafc3JfXavB4l8sh3WA7aTlg_Z3V-oAx-x2bvCNE0TlSh-KHJ9xBez93PxaT6fnPESXeU11Lf-wS_XfR0dTgCVVwLLrysS7xfkWGs60Acfs_OT44-Hp6KvjSCQPMhGxNDprLPpoqILdmNEmyLdhgQKdYOE9LTK4w4yAHnhbGwwnUudjElZifoJ212ulukp4yghZ5vMOMkA0rkQwaAJoWsTLXcijpgcZOWxJw4v9SsufN3A1tZv5etJvr7K138fsdfXfS63tBn_bH1QVHDdslBe1wer9Wffm4B30OhkVWxSzpBjDsY41VinEMBJZ0dsf1Cg7__DK68Kv1xLKFKN2JtBqTev_z6kZ__X_Dm7o6p5tULCPtvdrL-lF4RWNuFlb54_AcYF5Ow
  priority: 102
  providerName: Springer Nature
Title Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing
URI https://link.springer.com/article/10.1038/s41699-021-00236-x
https://www.proquest.com/docview/2527359512
https://doaj.org/article/9403e82d0eff4fdfb77920892c449198
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZocoFDxVMESuQDN7C6fuzaPqE0NK0iNaBAUW7W-lUhQZImQSr_nrHjNBSJXlZar9dazdgz34zX3yD01gqrHReOgCuwRLRCEh0rSyrJrHTMU1ulw8kXk-b8Uoxn9awk3Nblt8qdTcyG2i9cypEfs8QUVgMeYB-W1yRVjUq7q6WExgHqgglWqoO6J6eTz9N9lgXQj6hpOS1TcXW8BgSSDt4ziKITezq5ueORMnH_HbT5zwZp9jujx-iwAEY82Gr4CXoQ5k_Ro79oBJ-hyVlinQajRZJP8ph_xLPJpyn5Np0OLnDKtOKc9lv9xstVqamDAaziTGb5cwGi_u6wy_UdYMDn6HJ0-nV4TkqdBOLAm2yIty2PPMrWM7i4tnFOBQ-3NgjmeOUA9XEWm1ZEIcAjR6msbHVoqQ9MUcdfoM58MQ8vEXZUxKiCbAK1gmptvZBOWtvWAUIf73qI7mRlXCERT7Usfpi8mc2V2crXgHxNlq-56aF3t-8stxQa9_Y-SSq47Znor3PDYnVlymoyWlQ8KOarEKOIPlopNauUZk4ITbXqoaOdAk1Zk2uzn0E99H6n1P3j_3_Sq_tHe40esjydakLFEepsVr_CG0AqG9tHB2p01kfdwWD8ZdwvkxNah82wn6P_P9IN6u8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcIFNgDnGBV78NZ7wGhQklT2gQpalFuW-8LIUESkiDaP8VvZHZjNxSJ3nqxZHu9smbGM9_Oer4BeGGl1U5IRzEUWCprqaiOhaWF4lY57pktUnHyYNjtH8uP43K8Ab_bWpj0W2XrE7Oj9lOXcuTbPDGFlYgH-NvZD5q6RqXd1baFxsosDsLZL1yyLd7s76J-X3Le-3D0vk-brgLUoe9dUm9rEUVUted4cHXXuSp4PLVBcicKhxhJ8NitZZQS41dUlVW1DjXzgVfMCZz3GlyXAiN5qkzv7a1zOoi1ZMma2pxCVNsLxDupzJ_jmj1xtdPTC_Evtwm4gG3_2Y7NUa53B2438JTsrOzpLmyEyT249Rdp4X0Y7iWOa3SRNEVAT8QuGQ8_jejn0WhnQFJel-Qk4_yMzOZNBx-C0Jhk6szvU1TsV0dc7iaBEz6A4yuR30PYnEwn4REQx2SMVVDdwKxkWlsvlVPW1mXAhZZ3HWCtrIxrKMtT54xvJm-di8qs5GtQvibL15x24NX5M7MVYcelo98lFZyPTGTb-cJ0_sU0367RshCh4r4IMcroo1VK86LS3Empma46sNUq0DQeYGHW9tqB161S17f__0qPL5_tOdzoHw0OzeH-8OAJ3OTZtErK5BZsLuc_w1PESEv7LBsmgZOr_hL-AAOCJOY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFSgEf4ASG9WPj9YFDIIQ2pQEFinJz1y-EVJIoCaL9Q_xOxs6mpQiQOPSy0q69ljVjez6PPd8APLLSaieko2gKLJW1VFTHwtJCcasc98wWKTh5f9jZOZCDcTnegB_rWJh8aT9TWuZlen077PkCgUOKl-e4-U2k5_T42czH5jLlXjj5jlu1xYvdHur1Mef91x9f7dAmmwB1uOYuqbe1iCKq2nN8uLrjXBU8vtoguROFQ2wkeOzUMkqJdiuqyqpah5r5wCvmBLZ7CTYR3zPZgs1ud_BhcObNQZQlS9ZE5RSi-kOHz1m-nCDgHKr97SA227f-dbjWAFPSXYniBmyEyU24-gtd4S0Yvkns1rg40mT7PBE9Mh6-G9FPo1F3nySPLsnuxfkJmc2b3D0EQTHJpJlfp6jSL464nEcCG7wNBxciwTvQmkwn4S4Qx2SMVVCdwKxkWlsvlVPW1mXALZZ3bWBrWRnXkJWnnBlHJh-ai8qs5GtQvibL1xy34cnpP7MVVcc_a79MKjitmWi284fp_LNphp3RshCh4r4IMcroo1VK86LS3Empma7asL1WoGnm_sLwxGlXInLlbXi6VupZ8d-7tPV_1R_C5fe9vnm7O9y7B1d4HmklZXIbWsv5t3AfwdLSPmhGKoHDi54cPwHSciWx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-based+3D+XNOR-VRRAM+with+ternary+precision+for+neuromorphic+computing&rft.jtitle=NPJ+2D+materials+and+applications&rft.au=Batyrbek%2C+Alimkhanuly&rft.au=Sohn+Joon&rft.au=Chang+Ik-Joon&rft.au=Lee%2C+Seunghyun&rft.date=2021-05-14&rft.pub=Nature+Publishing+Group&rft.eissn=2397-7132&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41699-021-00236-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-7132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-7132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-7132&client=summon