Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing
Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual...
Saved in:
Published in | NPJ 2D materials and applications Vol. 5; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing. |
---|---|
AbstractList | Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing. Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing. |
ArticleNumber | 55 |
Author | Lee, Seunghyun Sohn, Joon Chang, Ik-Joon Alimkhanuly, Batyrbek |
Author_xml | – sequence: 1 givenname: Batyrbek surname: Alimkhanuly fullname: Alimkhanuly, Batyrbek organization: Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University, Department of Electronics and Information Convergence Engineering, College of Electronics and Information, Kyung Hee University – sequence: 2 givenname: Joon surname: Sohn fullname: Sohn, Joon organization: Department of Electrical Engineering and Stanford SystemX Alliance, Stanford University – sequence: 3 givenname: Ik-Joon surname: Chang fullname: Chang, Ik-Joon organization: Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University – sequence: 4 givenname: Seunghyun orcidid: 0000-0002-4701-2856 surname: Lee fullname: Lee, Seunghyun email: seansl@khu.ac.kr organization: Department of Electronic Engineering, College of Electronics and Information, Kyung Hee University, Department of Electronics and Information Convergence Engineering, College of Electronics and Information, Kyung Hee University |
BookMark | eNp9kV1PHCEYhUljk1rrH-jVJL2mwgvzwaXRVk38SDbVeEcY5mWXze4wAhv135c6mja98AZ4yXlODpzPZG8MIxLylbPvnInuKEneKEUZcMoYiIY-fSD7IFRLWy5g75_zJ3KY0poxxhVvZM33yfVZNNMKR6S9SThU4rS6v75Z0LvF4viqevR5VWWMo4nP1RTR-uTDWLkQqxF3MWxDnFbeVjZsp1324_IL-ejMJuHh635Abn_--HVyTi9vzi5Oji-plaAyHXojnHCtGaAs1jTWdjiUsUcJVjDLeS3ANUY6KSU0ru361ig0fEDouBUH5GL2HYJZ6yn6bUmog_H65SLEpTYxe7tBrSQT2MHA0DnpBte3rQLWKbBSKq664vVt9ppieNhhynodduXJm6ShhlbUquZQVN2ssjGkFNFp67PJ5TtyNH6jOdN_ytBzGbqUoV_K0E8Fhf_Qt8DvQmKGUhGPS4x_U71D_QZ_3p7Y |
CitedBy_id | crossref_primary_10_1016_j_mejo_2022_105634 crossref_primary_10_3389_fnins_2023_1253075 crossref_primary_10_1002_admi_202200392 crossref_primary_10_1063_5_0108964 crossref_primary_10_1364_OE_482536 crossref_primary_10_1016_j_chip_2024_100086 crossref_primary_10_1063_5_0053478 crossref_primary_10_1038_s41598_024_64662_9 crossref_primary_10_3390_electronics10182291 |
Cites_doi | 10.1039/C9TC04545G 10.1109/JPROC.2008.2004313 10.1088/0957-4484/24/38/382001 10.1039/C5TA10599D 10.1016/j.sse.2016.12.008 10.1109/LED.2017.2731859 10.1088/1361-6528/ab554b 10.1088/0957-4484/24/46/465201 10.1021/nn305510u 10.1109/TVLSI.2016.2553123 10.1109/TED.2017.2697361 10.1109/LED.2012.2210856 10.1063/1.4992089 10.1021/acsami.9b11721 10.1002/admt.201800589 10.1038/nature14441 10.1038/nmat3070 10.1088/1361-6528/aae975 10.1038/srep13785 10.1038/s41598-018-30870-3 10.1063/1.2393042 10.1088/2053-1583/aac12d 10.1109/MNANO.2018.2844902 10.1038/nature14539 10.1109/JPROC.2012.2190369 10.1145/3065386 10.1109/TVLSI.2019.2917764 10.1109/JPROC.2010.2070050 10.1109/MSSC.2016.2546199 10.1038/ncomms9407 10.1109/ISSCC.2018.8310323 10.1109/SISPAD.2014.6931558 10.1109/IITC-AMC.2017.7968949 10.23919/DATE.2018.8342235 10.1109/IEDM.2013.6724693 10.1109/VLSIT.2016.7573388 10.1145/1553374.1553486 10.1109/IEDM.2011.6131653 10.1109/ASPDAC.2017.7858419 10.1109/WACV.2019.00102 10.1007/978-3-319-46493-0_32 10.4231/D37H1DN48 10.1109/IEDM.2014.7046988 10.1109/ASPDAC.2014.6742992 10.1109/IEDM.2018.8614535 10.1109/IEDM.2016.7838429 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1038/s41699-021-00236-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2397-7132 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_9403e82d0eff4fdfb77920892c449198 10_1038_s41699_021_00236_x |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2020M3F3A2A01085755; 2017R1C1B2012227 funderid: https://doi.org/10.13039/501100003725 |
GroupedDBID | 0R~ AAFWJ AAJSJ AAKAB ABJCF ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. M7S M~E NAO NO~ OK1 PDBOC PIMPY PTHSS RNT SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-dba3f3f7ad2f7aca6cc8ed7adbe42c30c11532f6a4f44426f78b7a9ea1de281c3 |
IEDL.DBID | BENPR |
ISSN | 2397-7132 |
IngestDate | Wed Aug 27 01:28:57 EDT 2025 Wed Aug 13 04:59:58 EDT 2025 Tue Jul 01 02:21:16 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Fri Feb 21 02:39:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-dba3f3f7ad2f7aca6cc8ed7adbe42c30c11532f6a4f44426f78b7a9ea1de281c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4701-2856 |
OpenAccessLink | https://www.proquest.com/docview/2527359512?pq-origsite=%requestingapplication% |
PQID | 2527359512 |
PQPubID | 4669722 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9403e82d0eff4fdfb77920892c449198 proquest_journals_2527359512 crossref_citationtrail_10_1038_s41699_021_00236_x crossref_primary_10_1038_s41699_021_00236_x springer_journals_10_1038_s41699_021_00236_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-14 |
PublicationDateYYYYMMDD | 2021-05-14 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ 2D materials and applications |
PublicationTitleAbbrev | npj 2D Mater Appl |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lecun, Bengio, Hinton (CR1) 2015; 521 Krizhevsky, Hinton (CR2) 2017; 60 CR39 CR38 CR35 CR33 CR32 CR31 Lee (CR17) 2011; 10 Larrieu, Guerfi, Han, Clément (CR44) 2017; 130 Agnoli, Favaro (CR47) 2016; 4 Prezioso (CR9) 2015; 521 Bai (CR36) 2015; 5 Woo (CR43) 2017; 38 CR3 Kuzum, Yu, Wong (CR8) 2013; 24 CR48 Marchena (CR54) 2018; 5 Yu, Chen, Gao, Kang, Wong (CR27) 2013; 7 Zhu (CR12) 2008; 96 CR45 CR41 Chen (CR28) 2013; 24 Upadhyay (CR4) 2019; 4 Ielmini, Ambrogio (CR5) 2019; 31 CR19 Li (CR53) 2019; 7 CR18 CR16 CR15 CR14 CR55 CR52 Woo, Yu (CR56) 2018; 12 CR51 CR50 Wong (CR7) 2012; 100 Li, Chen, Xu, Yu (CR23) 2017; 64 Woo, Yu (CR42) 2019; 27 Bundaleska (CR46) 2018; 8 Kim (CR6) 2018; 30 Dutta (CR49) 2017; 122 Guan, Yu, Wong (CR40) 2012; 33 CR29 Wong (CR11) 2010; 98 CR26 Yu, Chen (CR10) 2016; 8 CR25 CR24 Seo (CR37) 2019; 11 CR22 CR21 CR20 Chen, Li, Yu (CR30) 2016; 24 Lee, Sohn, Jiang, Chen, Wong (CR34) 2015; 6 Setter (CR13) 2006; 100 236_CR21 236_CR22 N Setter (236_CR13) 2006; 100 236_CR24 236_CR25 236_CR26 M Prezioso (236_CR9) 2015; 521 S Yu (236_CR27) 2013; 7 H-SP Wong (236_CR7) 2012; 100 Y Bai (236_CR36) 2015; 5 J Woo (236_CR42) 2019; 27 S Yu (236_CR10) 2016; 8 236_CR20 M Marchena (236_CR54) 2018; 5 S Seo (236_CR37) 2019; 11 H-Y Chen (236_CR28) 2013; 24 236_CR18 D Kuzum (236_CR8) 2013; 24 236_CR19 236_CR32 236_CR33 236_CR35 N Bundaleska (236_CR46) 2018; 8 J Zhu (236_CR12) 2008; 96 236_CR38 236_CR39 P Chen (236_CR30) 2016; 24 S Dutta (236_CR49) 2017; 122 236_CR31 X Guan (236_CR40) 2012; 33 J Woo (236_CR43) 2017; 38 236_CR29 S Lee (236_CR34) 2015; 6 NK Upadhyay (236_CR4) 2019; 4 236_CR45 236_CR48 R Li (236_CR53) 2019; 7 M-J Lee (236_CR17) 2011; 10 S Agnoli (236_CR47) 2016; 4 236_CR41 Z Li (236_CR23) 2017; 64 C-H Kim (236_CR6) 2018; 30 H-SP Wong (236_CR11) 2010; 98 236_CR3 236_CR55 G Larrieu (236_CR44) 2017; 130 236_CR14 236_CR15 236_CR16 Y Lecun (236_CR1) 2015; 521 236_CR50 236_CR51 236_CR52 D Ielmini (236_CR5) 2019; 31 A Krizhevsky (236_CR2) 2017; 60 J Woo (236_CR56) 2018; 12 |
References_xml | – ident: CR45 – ident: CR22 – volume: 7 start-page: 13032 year: 2019 end-page: 13039 ident: CR53 article-title: Etching- and intermediate-free graphene dry transfer onto polymeric thin films with high piezoresistive gauge factors publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04545G – volume: 96 start-page: 1786 year: 2008 end-page: 1798 ident: CR12 article-title: Magnetoresistive random access memory: the path to competitiveness and scalability publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.2004313 – volume: 24 start-page: 382001 year: 2013 ident: CR8 article-title: Synaptic electronics: materials, devices and applications publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/382001 – volume: 4 start-page: 5002 year: 2016 end-page: 5025 ident: CR47 article-title: Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging application publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10599D – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR35 – volume: 130 start-page: 9 year: 2017 end-page: 14 ident: CR44 article-title: Sub-15nm gate-all-around field effect transistors on vertical silicon nanowires publication-title: Solid. State Electron. doi: 10.1016/j.sse.2016.12.008 – ident: CR29 – volume: 38 start-page: 1220 year: 2017 end-page: 1223 ident: CR43 article-title: Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2731859 – volume: 31 start-page: 92001 year: 2019 ident: CR5 article-title: Emerging neuromorphic devices publication-title: Nanotechnology doi: 10.1088/1361-6528/ab554b – ident: CR25 – volume: 24 start-page: 465201 year: 2013 ident: CR28 article-title: Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory publication-title: Nanotechnology doi: 10.1088/0957-4484/24/46/465201 – ident: CR21 – volume: 7 start-page: 2320 year: 2013 end-page: 2325 ident: CR27 article-title: HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture publication-title: ACS Nano doi: 10.1021/nn305510u – ident: CR19 – volume: 24 start-page: 3460 year: 2016 end-page: 3467 ident: CR30 article-title: Design tradeoffs of vertical RRAM-based 3-D cross-point array publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2016.2553123 – volume: 64 start-page: 2721 year: 2017 end-page: 2727 ident: CR23 article-title: Design of ternary neural network with 3-D vertical RRAM array publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2697361 – ident: CR15 – ident: CR50 – volume: 33 start-page: 1405 year: 2012 end-page: 1407 ident: CR40 article-title: A SPICE compact model of metal oxide resistive switching memory with variations publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2210856 – ident: CR32 – volume: 122 start-page: 25107 year: 2017 ident: CR49 article-title: Thickness dependence of the resistivity of platinum-group metal thin films publication-title: J. Appl. Phys. doi: 10.1063/1.4992089 – volume: 11 start-page: 43466 year: 2019 end-page: 43472 ident: CR37 article-title: Graphene-edge electrode on a Cu-based chalcogenide selector for 3D vertical memristor cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11721 – ident: CR26 – volume: 4 start-page: 1800589 year: 2019 ident: CR4 article-title: Emerging memory devices for neuromorphic computing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800589 – volume: 521 start-page: 61 year: 2015 end-page: 64 ident: CR9 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – volume: 10 start-page: 625 year: 2011 end-page: 630 ident: CR17 article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta O /TaO bilayer structures publication-title: Nat. Mater. doi: 10.1038/nmat3070 – ident: CR18 – volume: 30 start-page: 32001 year: 2018 ident: CR6 article-title: Emerging memory technologies for neuromorphic computing publication-title: Nanotechnology doi: 10.1088/1361-6528/aae975 – ident: CR14 – volume: 5 year: 2015 ident: CR36 article-title: Stacked 3D RRAM array with graphene/CNT as edge electrodes publication-title: Sci. Rep. doi: 10.1038/srep13785 – volume: 8 year: 2018 ident: CR46 article-title: Large-scale synthesis of free-standing N-doped graphene using microwave plasma publication-title: Sci. Rep. doi: 10.1038/s41598-018-30870-3 – volume: 100 start-page: 109901 year: 2006 ident: CR13 article-title: Ferroelectric thin films: review of materials, properties, and applications publication-title: J. Appl. Phys. doi: 10.1063/1.2393042 – ident: CR33 – volume: 5 start-page: 35022 year: 2018 ident: CR54 article-title: Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer publication-title: 2D Mater. doi: 10.1088/2053-1583/aac12d – volume: 12 start-page: 36 year: 2018 end-page: 44 ident: CR56 article-title: Resistive memory-based analog synapse: the pursuit for linear and symmetric weight update publication-title: IEEE Nanotechnol. Mag. doi: 10.1109/MNANO.2018.2844902 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR48 – volume: 100 start-page: 1951 year: 2012 end-page: 1970 ident: CR7 article-title: Metal–oxide RRAM publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2190369 – ident: CR3 – ident: CR38 – ident: CR52 – ident: CR31 – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR2 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 27 start-page: 2205 year: 2019 end-page: 2212 ident: CR42 article-title: Impact of selector devices in analog RRAM-based crossbar arrays for inference and training of neuromorphic system publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2019.2917764 – volume: 98 start-page: 2201 year: 2010 end-page: 2227 ident: CR11 article-title: Phase change memory publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2070050 – volume: 8 start-page: 43 year: 2016 end-page: 56 ident: CR10 article-title: Emerging memory technologies: recent trends and prospects publication-title: IEEE Solid-State Circuits Mag. doi: 10.1109/MSSC.2016.2546199 – ident: CR55 – volume: 6 year: 2015 ident: CR34 article-title: Metal oxide-resistive memory using graphene-edge electrodes publication-title: Nat. Commun. doi: 10.1038/ncomms9407 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 24 start-page: 465201 year: 2013 ident: 236_CR28 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/46/465201 – volume: 521 start-page: 61 year: 2015 ident: 236_CR9 publication-title: Nature doi: 10.1038/nature14441 – volume: 24 start-page: 3460 year: 2016 ident: 236_CR30 publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2016.2553123 – ident: 236_CR26 doi: 10.1109/ISSCC.2018.8310323 – volume: 64 start-page: 2721 year: 2017 ident: 236_CR23 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2697361 – volume: 10 start-page: 625 year: 2011 ident: 236_CR17 publication-title: Nat. Mater. doi: 10.1038/nmat3070 – volume: 38 start-page: 1220 year: 2017 ident: 236_CR43 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2731859 – volume: 5 year: 2015 ident: 236_CR36 publication-title: Sci. Rep. doi: 10.1038/srep13785 – ident: 236_CR39 doi: 10.1109/SISPAD.2014.6931558 – ident: 236_CR33 doi: 10.1109/IITC-AMC.2017.7968949 – ident: 236_CR55 – ident: 236_CR22 doi: 10.23919/DATE.2018.8342235 – volume: 4 start-page: 5002 year: 2016 ident: 236_CR47 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10599D – ident: 236_CR51 – ident: 236_CR32 – volume: 521 start-page: 436 year: 2015 ident: 236_CR1 publication-title: Nature doi: 10.1038/nature14539 – volume: 122 start-page: 25107 year: 2017 ident: 236_CR49 publication-title: J. Appl. Phys. doi: 10.1063/1.4992089 – volume: 24 start-page: 382001 year: 2013 ident: 236_CR8 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/382001 – volume: 27 start-page: 2205 year: 2019 ident: 236_CR42 publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2019.2917764 – volume: 100 start-page: 1951 year: 2012 ident: 236_CR7 publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2190369 – volume: 6 year: 2015 ident: 236_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms9407 – volume: 31 start-page: 92001 year: 2019 ident: 236_CR5 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab554b – ident: 236_CR25 doi: 10.1109/IEDM.2013.6724693 – ident: 236_CR29 doi: 10.1109/VLSIT.2016.7573388 – ident: 236_CR3 doi: 10.1145/1553374.1553486 – ident: 236_CR14 doi: 10.1109/IEDM.2011.6131653 – volume: 130 start-page: 9 year: 2017 ident: 236_CR44 publication-title: Solid. State Electron. doi: 10.1016/j.sse.2016.12.008 – volume: 100 start-page: 109901 year: 2006 ident: 236_CR13 publication-title: J. Appl. Phys. doi: 10.1063/1.2393042 – ident: 236_CR16 – ident: 236_CR50 – ident: 236_CR15 – ident: 236_CR38 – ident: 236_CR21 doi: 10.1109/ASPDAC.2017.7858419 – volume: 8 start-page: 43 year: 2016 ident: 236_CR10 publication-title: IEEE Solid-State Circuits Mag. doi: 10.1109/MSSC.2016.2546199 – volume: 7 start-page: 13032 year: 2019 ident: 236_CR53 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04545G – volume: 12 start-page: 36 year: 2018 ident: 236_CR56 publication-title: IEEE Nanotechnol. Mag. doi: 10.1109/MNANO.2018.2844902 – ident: 236_CR48 – ident: 236_CR20 doi: 10.1109/WACV.2019.00102 – volume: 30 start-page: 32001 year: 2018 ident: 236_CR6 publication-title: Nanotechnology doi: 10.1088/1361-6528/aae975 – ident: 236_CR19 doi: 10.1007/978-3-319-46493-0_32 – ident: 236_CR41 doi: 10.4231/D37H1DN48 – volume: 96 start-page: 1786 year: 2008 ident: 236_CR12 publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.2004313 – ident: 236_CR35 doi: 10.1109/IEDM.2014.7046988 – volume: 5 start-page: 35022 year: 2018 ident: 236_CR54 publication-title: 2D Mater. doi: 10.1088/2053-1583/aac12d – volume: 11 start-page: 43466 year: 2019 ident: 236_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11721 – volume: 4 start-page: 1800589 year: 2019 ident: 236_CR4 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800589 – volume: 8 year: 2018 ident: 236_CR46 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30870-3 – volume: 33 start-page: 1405 year: 2012 ident: 236_CR40 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2210856 – volume: 60 start-page: 84 year: 2017 ident: 236_CR2 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 98 start-page: 2201 year: 2010 ident: 236_CR11 publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2070050 – ident: 236_CR45 doi: 10.1109/ASPDAC.2014.6742992 – ident: 236_CR52 doi: 10.1109/IEDM.2018.8614535 – volume: 7 start-page: 2320 year: 2013 ident: 236_CR27 publication-title: ACS Nano doi: 10.1021/nn305510u – ident: 236_CR18 – ident: 236_CR24 doi: 10.1109/IEDM.2016.7838429 – ident: 236_CR31 |
SSID | ssj0001916451 |
Score | 2.2193227 |
Snippet | Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing... Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size.... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/1005/1007 639/705 639/925/918/1052 639/925/927/1007 Arrays Chemistry and Materials Science Circuits Computation Design optimization Energy consumption Graphene Materials Science Materials selection Nanotechnology Neural networks Neuromorphic computing Surfaces and Interfaces Thin Films Two dimensional materials |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJ3pALVCxhSIfuBWL2J6s4yPlU0hspRVUe7PisS1Vahe0LBL8-46dLF2Q2l64REriRKPxxO-NHb9hbN-Dt6gBBUGBF9CCETZVXlRGeYMqSF_lzclXo-HFDVxO6slSqa_8T1gnD9w57tBCpWOjQhVTghSSN8aqqrEKASxlzHn0JcxbSqbK7AqxHqhlv0um0s3hPTGPvOFeUfacVdPF4wskKoL9L1jmq4XRgjdn79l6TxT5UWfgB7YSpxvs3ZJ84CYbnWe1aRqsRMaiwPUJn4y-jcX38fjoiucZVl6m-2ZP_G7W19LhRFJ5EbH8dUsu_oEcS10HeuEWuzk7vT6-EH19BIGEInMRfKuTTqYNig7YDhGbGOjUR1CoKyS2p1UatpAACImTabxpbWxliKqRqD-y1entNG4zjhJSaqIZRulBWusDGDTet3WklCfggMmFrxz24uG5hsVPVxaxdeM6_zryryv-dY8D9uX5mbtOOuOfrb_mLnhumWWvywUKBtcHg_tfMAzY7qIDXf8t3juVNeZqYpJqwA4Wnfrn9t9N-vQWJu2wNVWCrhYSdtnqfPYQPxOPmfu9ErK_ARwW7VM priority: 102 providerName: Directory of Open Access Journals – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lfdEH8RNPq-TBNw1uktlL8nj9shz0hNPKvYXNJBGh3pXrCfrfO8nttlZU8GVhd5MlzMxmfplkfsPYqwDBoQYU5AqCgA6McLkJojEqGFRRhqYkJ5_NxqfnMF20ix2mhlyYemi_UlrWaXo4Hfb2ioBDyZdXtPgtpOeCcONeoWon296bTKYfpjeRFUI80Mo-Q6bR9g-db3mhStZ_C2H-tilafc3JfXavB4l8sh3WA7aTlg_Z3V-oAx-x2bvCNE0TlSh-KHJ9xBez93PxaT6fnPESXeU11Lf-wS_XfR0dTgCVVwLLrysS7xfkWGs60Acfs_OT44-Hp6KvjSCQPMhGxNDprLPpoqILdmNEmyLdhgQKdYOE9LTK4w4yAHnhbGwwnUudjElZifoJ212ulukp4yghZ5vMOMkA0rkQwaAJoWsTLXcijpgcZOWxJw4v9SsufN3A1tZv5etJvr7K138fsdfXfS63tBn_bH1QVHDdslBe1wer9Wffm4B30OhkVWxSzpBjDsY41VinEMBJZ0dsf1Cg7__DK68Kv1xLKFKN2JtBqTev_z6kZ__X_Dm7o6p5tULCPtvdrL-lF4RWNuFlb54_AcYF5Ow priority: 102 providerName: Springer Nature |
Title | Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing |
URI | https://link.springer.com/article/10.1038/s41699-021-00236-x https://www.proquest.com/docview/2527359512 https://doaj.org/article/9403e82d0eff4fdfb77920892c449198 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZocoFDxVMESuQDN7C6fuzaPqE0NK0iNaBAUW7W-lUhQZImQSr_nrHjNBSJXlZar9dazdgz34zX3yD01gqrHReOgCuwRLRCEh0rSyrJrHTMU1ulw8kXk-b8Uoxn9awk3Nblt8qdTcyG2i9cypEfs8QUVgMeYB-W1yRVjUq7q6WExgHqgglWqoO6J6eTz9N9lgXQj6hpOS1TcXW8BgSSDt4ziKITezq5ueORMnH_HbT5zwZp9jujx-iwAEY82Gr4CXoQ5k_Ro79oBJ-hyVlinQajRZJP8ph_xLPJpyn5Np0OLnDKtOKc9lv9xstVqamDAaziTGb5cwGi_u6wy_UdYMDn6HJ0-nV4TkqdBOLAm2yIty2PPMrWM7i4tnFOBQ-3NgjmeOUA9XEWm1ZEIcAjR6msbHVoqQ9MUcdfoM58MQ8vEXZUxKiCbAK1gmptvZBOWtvWAUIf73qI7mRlXCERT7Usfpi8mc2V2crXgHxNlq-56aF3t-8stxQa9_Y-SSq47Znor3PDYnVlymoyWlQ8KOarEKOIPlopNauUZk4ITbXqoaOdAk1Zk2uzn0E99H6n1P3j_3_Sq_tHe40esjydakLFEepsVr_CG0AqG9tHB2p01kfdwWD8ZdwvkxNah82wn6P_P9IN6u8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcIFNgDnGBV78NZ7wGhQklT2gQpalFuW-8LIUESkiDaP8VvZHZjNxSJ3nqxZHu9smbGM9_Oer4BeGGl1U5IRzEUWCprqaiOhaWF4lY57pktUnHyYNjtH8uP43K8Ab_bWpj0W2XrE7Oj9lOXcuTbPDGFlYgH-NvZD5q6RqXd1baFxsosDsLZL1yyLd7s76J-X3Le-3D0vk-brgLUoe9dUm9rEUVUted4cHXXuSp4PLVBcicKhxhJ8NitZZQS41dUlVW1DjXzgVfMCZz3GlyXAiN5qkzv7a1zOoi1ZMma2pxCVNsLxDupzJ_jmj1xtdPTC_Evtwm4gG3_2Y7NUa53B2438JTsrOzpLmyEyT249Rdp4X0Y7iWOa3SRNEVAT8QuGQ8_jejn0WhnQFJel-Qk4_yMzOZNBx-C0Jhk6szvU1TsV0dc7iaBEz6A4yuR30PYnEwn4REQx2SMVVDdwKxkWlsvlVPW1mXAhZZ3HWCtrIxrKMtT54xvJm-di8qs5GtQvibL15x24NX5M7MVYcelo98lFZyPTGTb-cJ0_sU0367RshCh4r4IMcroo1VK86LS3Empma46sNUq0DQeYGHW9tqB161S17f__0qPL5_tOdzoHw0OzeH-8OAJ3OTZtErK5BZsLuc_w1PESEv7LBsmgZOr_hL-AAOCJOY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFSgEf4ASG9WPj9YFDIIQ2pQEFinJz1y-EVJIoCaL9Q_xOxs6mpQiQOPSy0q69ljVjez6PPd8APLLSaieko2gKLJW1VFTHwtJCcasc98wWKTh5f9jZOZCDcTnegB_rWJh8aT9TWuZlen077PkCgUOKl-e4-U2k5_T42czH5jLlXjj5jlu1xYvdHur1Mef91x9f7dAmmwB1uOYuqbe1iCKq2nN8uLrjXBU8vtoguROFQ2wkeOzUMkqJdiuqyqpah5r5wCvmBLZ7CTYR3zPZgs1ud_BhcObNQZQlS9ZE5RSi-kOHz1m-nCDgHKr97SA227f-dbjWAFPSXYniBmyEyU24-gtd4S0Yvkns1rg40mT7PBE9Mh6-G9FPo1F3nySPLsnuxfkJmc2b3D0EQTHJpJlfp6jSL464nEcCG7wNBxciwTvQmkwn4S4Qx2SMVVCdwKxkWlsvlVPW1mXALZZ3bWBrWRnXkJWnnBlHJh-ai8qs5GtQvibL1xy34cnpP7MVVcc_a79MKjitmWi284fp_LNphp3RshCh4r4IMcroo1VK86LS3Empma7asL1WoGnm_sLwxGlXInLlbXi6VupZ8d-7tPV_1R_C5fe9vnm7O9y7B1d4HmklZXIbWsv5t3AfwdLSPmhGKoHDi54cPwHSciWx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-based+3D+XNOR-VRRAM+with+ternary+precision+for+neuromorphic+computing&rft.jtitle=NPJ+2D+materials+and+applications&rft.au=Batyrbek%2C+Alimkhanuly&rft.au=Sohn+Joon&rft.au=Chang+Ik-Joon&rft.au=Lee%2C+Seunghyun&rft.date=2021-05-14&rft.pub=Nature+Publishing+Group&rft.eissn=2397-7132&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41699-021-00236-x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-7132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-7132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-7132&client=summon |