Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing

Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic dat...

Full description

Saved in:
Bibliographic Details
Published innpj computational materials Vol. 7; no. 1; pp. 1 - 12
Main Authors Xie, Xiaoyu, Bennett, Jennifer, Saha, Sourav, Lu, Ye, Cao, Jian, Liu, Wing Kam, Gan, Zhengtao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e., thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We systematically compare the developed approach with other machine learning methods. The results demonstrate that the developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies.
AbstractList Abstract Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e., thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We systematically compare the developed approach with other machine learning methods. The results demonstrate that the developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies.
Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e., thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We systematically compare the developed approach with other machine learning methods. The results demonstrate that the developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies.
ArticleNumber 86
Author Bennett, Jennifer
Xie, Xiaoyu
Liu, Wing Kam
Gan, Zhengtao
Cao, Jian
Lu, Ye
Saha, Sourav
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Xie
  fullname: Xie, Xiaoyu
  organization: Department of Mechanical Engineering, Northwestern University
– sequence: 2
  givenname: Jennifer
  surname: Bennett
  fullname: Bennett, Jennifer
  organization: Department of Mechanical Engineering, Northwestern University, DMG MORI
– sequence: 3
  givenname: Sourav
  surname: Saha
  fullname: Saha, Sourav
  organization: Theoretical and Applied Mechanics, Northwestern University
– sequence: 4
  givenname: Ye
  surname: Lu
  fullname: Lu, Ye
  organization: Department of Mechanical Engineering, Northwestern University
– sequence: 5
  givenname: Jian
  orcidid: 0000-0003-1023-5244
  surname: Cao
  fullname: Cao, Jian
  organization: Department of Mechanical Engineering, Northwestern University
– sequence: 6
  givenname: Wing Kam
  orcidid: 0000-0001-7725-8438
  surname: Liu
  fullname: Liu, Wing Kam
  email: w-liu@northwestern.edu
  organization: Department of Mechanical Engineering, Northwestern University
– sequence: 7
  givenname: Zhengtao
  orcidid: 0000-0002-4309-0929
  surname: Gan
  fullname: Gan, Zhengtao
  email: zhengtao.gan@northwestern.edu
  organization: Department of Mechanical Engineering, Northwestern University
BookMark eNp9UctuFDEQtFCQCCE_wGkkzoa2Z_w6oohHpKBcwtnq8SN4tetZbA8S-Xq8GZRw4tTuclW52_WanOUlB0LeMnjPYNQf6sQEnyhwRgGEEPThBTnnIBQdjYSzf86vyGWtOwBghms-wTnx34L7gTnVltzgsSH1Jf0KeTiW4JNracnDEgesdF7Tvg2Hje5w3xnLMZSWQh1S7hetY-h9al0_HDCvEV1bS8r3b8jLiPsaLv_WC_L986e7q6_05vbL9dXHG-ombhr1YMwclZrmadbCaITIgDuPcGq8kF6Pui8cIkRplFQxOGZGpiQgd46PF-R68_UL7uyxpAOW33bBZB-Bpdxb7AO7fbAMJUoQIFHNkwA00bmZBz1zNDiquXu927z6mj_XUJvdLWvJfXzLxai1klKLzuIby5Wl1hLi06sM7Ckcu4Vjezj2MRz70EXjJqrH0--E8mz9H9Uf0TeVDg
CitedBy_id crossref_primary_10_1007_s00466_022_02251_1
crossref_primary_10_3390_ma16237293
crossref_primary_10_1007_s00366_022_01719_1
crossref_primary_10_1089_3dp_2023_0051
crossref_primary_10_1016_j_cma_2023_116597
crossref_primary_10_1515_nanoph_2022_0815
crossref_primary_10_1016_j_jmsy_2024_04_023
crossref_primary_10_1016_j_jmrt_2023_06_090
crossref_primary_10_1007_s00170_023_11473_3
crossref_primary_10_1016_j_pmatsci_2023_101102
crossref_primary_10_1038_s41524_022_00808_5
crossref_primary_10_1016_j_jmatprotec_2021_117485
crossref_primary_10_1016_j_mfglet_2022_02_003
crossref_primary_10_1016_j_jmatprotec_2023_117908
crossref_primary_10_1016_j_rineng_2023_101141
crossref_primary_10_1007_s40192_022_00261_8
crossref_primary_10_1016_j_jmrt_2023_11_257
crossref_primary_10_1016_j_addma_2023_103500
crossref_primary_10_1016_j_addma_2024_104214
crossref_primary_10_1016_j_addlet_2022_100101
crossref_primary_10_3390_app14020661
crossref_primary_10_3390_thermo2030011
crossref_primary_10_1016_j_jmsy_2021_11_003
crossref_primary_10_3390_recycling9030043
crossref_primary_10_1016_j_mfglet_2021_10_005
crossref_primary_10_1016_j_jmrt_2024_03_024
crossref_primary_10_1115_1_4065416
crossref_primary_10_1007_s00466_023_02288_w
crossref_primary_10_1007_s41745_022_00302_3
crossref_primary_10_1016_j_msea_2024_146616
crossref_primary_10_3390_ma15155298
crossref_primary_10_57062_ijpem_st_2022_0017
crossref_primary_10_1016_j_optlastec_2024_111203
crossref_primary_10_1016_j_jmsy_2024_04_013
crossref_primary_10_3390_math10111888
crossref_primary_10_1007_s10845_022_02039_3
crossref_primary_10_2351_7_0001108
crossref_primary_10_1115_1_4064147
crossref_primary_10_1016_j_addma_2024_104187
crossref_primary_10_1016_j_ijmachtools_2023_104077
crossref_primary_10_1016_j_jallcom_2023_170223
crossref_primary_10_1080_0951192X_2022_2048422
crossref_primary_10_1016_j_ijmecsci_2022_107854
crossref_primary_10_1016_j_matdes_2023_112356
crossref_primary_10_1016_j_jmsy_2024_01_005
crossref_primary_10_32604_cmes_2021_017719
Cites_doi 10.1016/j.promfg.2018.07.118
10.1016/j.eng.2019.03.014
10.1038/nature23894
10.1016/j.actamat.2017.06.039
10.1109/T-C.1975.224297
10.1038/s41524-019-0207-y
10.1038/s41586-020-2649-2
10.1016/j.actamat.2017.07.045
10.1063/1.4937809
10.1016/j.ijheatmasstransfer.2019.05.003
10.1038/s41598-017-03761-2
10.1016/j.cma.2020.113452
10.1063/1.1737476
10.1016/j.cma.2018.05.004
10.1038/s41524-020-00444-x
10.1088/0022-3727/36/12/306
10.1109/TSP.2002.804066
10.1145/3065386
10.1007/s40192-017-0088-1
10.1016/j.actamat.2016.02.014
10.1016/j.cma.2020.113312
10.1023/A:1010933404324
10.1016/S0169-7439(97)00061-0
10.1146/annurev-matsci-070115-032158
10.1126/science.aav4687
10.1016/j.aap.2015.12.001
10.1016/j.jmatprotec.2021.117047
10.1016/j.matdes.2017.11.028
10.1038/ncomms4580
10.1016/j.ijheatmasstransfer.2016.08.049
10.1016/j.matdes.2019.107672
10.1016/j.pmatsci.2017.10.001
10.1038/s41524-019-0267-z
10.1007/978-0-387-21606-5_1
10.1016/j.pmatsci.2020.100703
10.1109/CVPR.2016.90
10.1115/1.4033525
10.1016/j.commatsci.2017.03.053
10.2172/4016087
10.1007/s10462-020-09876-9
10.1088/1361-651X/aaf753
10.1016/j.addma.2019.05.030
10.1038/s41578-020-00236-1
10.1002/adem.201900185
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.addma.2020.101641
10.1017/9781108380690
10.1007/978-3-642-00296-0_5
10.1038/s41467-018-07882-8
10.1016/j.mfglet.2020.01.001
10.1016/j.cirp.2021.04.053
10.1007/s40192-019-00130-x
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1038/s41524-021-00555-z
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 12
ExternalDocumentID oai_doaj_org_article_1a6a60506a7b450a9fccb2e8b2a9a37b
10_1038_s41524_021_00555_z
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CMMI-1934367
  funderid: https://doi.org/10.13039/100000001
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-d099bf774b4b8598a0f102cda0598ad56d838038ef0f69767fec1931760a2cc23
IEDL.DBID BENPR
ISSN 2057-3960
IngestDate Tue Oct 22 15:12:53 EDT 2024
Thu Oct 10 18:59:34 EDT 2024
Wed Sep 04 12:35:28 EDT 2024
Fri Oct 11 20:45:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-d099bf774b4b8598a0f102cda0598ad56d838038ef0f69767fec1931760a2cc23
ORCID 0000-0003-1023-5244
0000-0001-7725-8438
0000-0002-4309-0929
OpenAccessLink https://www.proquest.com/docview/2538876685?pq-origsite=%requestingapplication%
PQID 2538876685
PQPubID 2041924
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1a6a60506a7b450a9fccb2e8b2a9a37b
proquest_journals_2538876685
crossref_primary_10_1038_s41524_021_00555_z
springer_journals_10_1038_s41524_021_00555_z
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Jin, Hang (CR24) 2018; 139
CR39
Wang (CR28) 2020; 6
CR35
CR34
CR33
Bennett (CR38) 2018; 26
Markl, Körner (CR15) 2016; 46
CR31
Wei (CR37) 2014; 5
CR30
Krizhevsky, Sutskever, Hinton (CR51) 2017; 60
Gan (CR26) 2019; 5
Harris (CR50) 2020; 585
Zhao (CR6) 2017; 7
Glerum, Bennett, Ehmann, Cao (CR45) 2021; 291
CR4
Thompson, Bian, Shamsaei, Yadollahi (CR14) 2015; 8
Breiman (CR54) 2001; 45
CR48
Scime, Beuth (CR29) 2019; 25
Du, Mukherjee, DebRoy (CR23) 2019; 5
CR44
CR43
CR42
CR40
Olhede, Walden (CR49) 2002; 50
Bayat, Mohanty, Hattel (CR16) 2019; 139
DebRoy (CR1) 2018; 92
Lecun, Bengio (CR62) 1995; 3361
Hojjatzadeh (CR5) 2019; 10
Tibshirani (CR58) 1996; 58
CR19
CR18
CR17
Popova (CR21) 2017; 6
Elmer, Palmer, Babu, Zhang, DebRoy (CR47) 2004; 95
Svozil, Kvasnicka, Pospichal (CR57) 1997; 39
Fukunaga, Narendra (CR60) 1975; 100
CR12
CR56
Wolff (CR32) 2019; 27
CR55
CR10
Lian (CR11) 2019; 169
CR53
CR52
He, Fuerschbach, DebRoy (CR46) 2003; 36
Khairallah, Anderson, Rubenchik, King (CR2) 2016; 108
Saha (CR61) 2020; 373
Gan, Yu, He, Li (CR13) 2017; 104
Martin (CR7) 2017; 549
CR25
Cunningham (CR3) 2019; 363
CR22
Lu, Jones, Gan, Liu (CR27) 2020; 372
CR20
Knapp (CR41) 2017; 135
King (CR9) 2015; 2
Shi, Abdel-Aty, Lee (CR59) 2016; 88
Gray III (CR8) 2017; 138
Yan (CR36) 2018; 339
J Li (555_CR24) 2018; 139
555_CR42
555_CR40
M Bayat (555_CR16) 2019; 139
555_CR44
555_CR43
555_CR48
L Breiman (555_CR54) 2001; 45
Y Lu (555_CR27) 2020; 372
JH Martin (555_CR7) 2017; 549
D Svozil (555_CR57) 1997; 39
JL Bennett (555_CR38) 2018; 26
Y Lian (555_CR11) 2019; 169
M Markl (555_CR15) 2016; 46
Q Shi (555_CR59) 2016; 88
CR Harris (555_CR50) 2020; 585
X He (555_CR46) 2003; 36
555_CR53
555_CR52
S Saha (555_CR61) 2020; 373
R Cunningham (555_CR3) 2019; 363
Z Gan (555_CR26) 2019; 5
SJ Wolff (555_CR32) 2019; 27
555_CR12
W Yan (555_CR36) 2018; 339
555_CR56
K Fukunaga (555_CR60) 1975; 100
555_CR55
555_CR10
555_CR17
C Zhao (555_CR6) 2017; 7
Z Wang (555_CR28) 2020; 6
SMH Hojjatzadeh (555_CR5) 2019; 10
SC Olhede (555_CR49) 2002; 50
GT Gray III (555_CR8) 2017; 138
E Popova (555_CR21) 2017; 6
SM Thompson (555_CR14) 2015; 8
555_CR20
R Tibshirani (555_CR58) 1996; 58
L Scime (555_CR29) 2019; 25
G Knapp (555_CR41) 2017; 135
555_CR4
555_CR22
J Elmer (555_CR47) 2004; 95
555_CR25
555_CR19
555_CR18
Y Wei (555_CR37) 2014; 5
Y Lecun (555_CR62) 1995; 3361
WE King (555_CR9) 2015; 2
A Krizhevsky (555_CR51) 2017; 60
J Glerum (555_CR45) 2021; 291
555_CR31
555_CR30
T DebRoy (555_CR1) 2018; 92
555_CR35
555_CR34
555_CR33
555_CR39
SA Khairallah (555_CR2) 2016; 108
Z Gan (555_CR13) 2017; 104
Y Du (555_CR23) 2019; 5
References_xml – ident: CR22
– volume: 25
  start-page: 151
  year: 2019
  end-page: 165
  ident: CR29
  article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process
  publication-title: Addit. Manuf.
  contributor:
    fullname: Beuth
– ident: CR4
– ident: CR39
– ident: CR12
– volume: 26
  start-page: 912
  year: 2018
  end-page: 919
  ident: CR38
  article-title: Cooling rate effect on tensile strength of laser deposited inconel 718
  publication-title: Proced. Manuf.
  doi: 10.1016/j.promfg.2018.07.118
  contributor:
    fullname: Bennett
– ident: CR35
– volume: 5
  start-page: 730
  year: 2019
  end-page: 735
  ident: CR26
  article-title: Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.03.014
  contributor:
    fullname: Gan
– ident: CR25
– volume: 549
  start-page: 365
  year: 2017
  ident: CR7
  article-title: 3d printing of high-strength aluminium alloys
  publication-title: Nature
  doi: 10.1038/nature23894
  contributor:
    fullname: Martin
– ident: CR42
– volume: 27
  start-page: 540
  year: 2019
  end-page: 551
  ident: CR32
  article-title: Experimentally validated predictions of thermal history and microhardness in laser-deposited inconel 718 on carbon steel
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wolff
– ident: CR19
– volume: 135
  start-page: 390
  year: 2017
  end-page: 399
  ident: CR41
  article-title: Building blocks for a digital twin of additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.039
  contributor:
    fullname: Knapp
– volume: 100
  start-page: 750
  year: 1975
  end-page: 753
  ident: CR60
  article-title: A branch and bound algorithm for computing k-nearest neighbors
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1975.224297
  contributor:
    fullname: Narendra
– volume: 5
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR23
  article-title: Conditions for void formation in friction stir welding from machine learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0207-y
  contributor:
    fullname: DebRoy
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: CR50
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
  contributor:
    fullname: Harris
– volume: 138
  start-page: 140
  year: 2017
  end-page: 149
  ident: CR8
  article-title: Structure/property (constitutive and spallation response) of additively manufactured 316l stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.045
  contributor:
    fullname: Gray III
– volume: 2
  start-page: 041304
  year: 2015
  ident: CR9
  article-title: Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4937809
  contributor:
    fullname: King
– volume: 3361
  start-page: 1995
  year: 1995
  ident: CR62
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb. Brain Theory Neural Netw.
  contributor:
    fullname: Bengio
– volume: 139
  start-page: 95
  year: 2019
  end-page: 114
  ident: CR16
  article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in in718 made by multi-track/multi-layer l-pbf
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.003
  contributor:
    fullname: Hattel
– volume: 8
  start-page: 36
  year: 2015
  end-page: 62
  ident: CR14
  article-title: An overview of direct laser deposition for additive manufacturing; part i: transport phenomena, modeling and diagnostics
  publication-title: Addit. Manuf.
  contributor:
    fullname: Yadollahi
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR58
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.
  contributor:
    fullname: Tibshirani
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR5
  article-title: Pore elimination mechanisms during 3d printing of metals
  publication-title: Nat. Commun.
  contributor:
    fullname: Hojjatzadeh
– ident: CR18
– ident: CR43
– volume: 7
  year: 2017
  ident: CR6
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed x-ray imaging and diffraction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03761-2
  contributor:
    fullname: Zhao
– volume: 373
  start-page: 113452
  year: 2020
  ident: CR61
  article-title: Hierarchical deep learning neural network (hidenn): an artificial intelligence (ai) framework for computational science and engineering
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113452
  contributor:
    fullname: Saha
– volume: 95
  start-page: 8327
  year: 2004
  end-page: 8339
  ident: CR47
  article-title: Phase transformation dynamics during welding of ti–6al–4v
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1737476
  contributor:
    fullname: DebRoy
– volume: 339
  start-page: 184
  year: 2018
  end-page: 204
  ident: CR36
  article-title: An integrated process–structure–property modeling framework for additive manufacturing
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.05.004
  contributor:
    fullname: Yan
– ident: CR53
– ident: CR30
– volume: 6
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR28
  article-title: Uncertainty quantification and reduction in metal additive manufacturing
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00444-x
  contributor:
    fullname: Wang
– ident: CR10
– ident: CR33
– volume: 36
  start-page: 1388
  year: 2003
  ident: CR46
  article-title: Heat transfer and fluid flow during laser spot welding of 304 stainless steel
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/36/12/306
  contributor:
    fullname: DebRoy
– ident: CR56
– volume: 50
  start-page: 2661
  year: 2002
  end-page: 2670
  ident: CR49
  article-title: Generalized morse wavelets
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.804066
  contributor:
    fullname: Walden
– ident: CR40
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR51
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: Hinton
– volume: 6
  start-page: 54
  year: 2017
  end-page: 68
  ident: CR21
  article-title: Process-structure linkages using a data science approach: application to simulated additive manufacturing data
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-017-0088-1
  contributor:
    fullname: Popova
– volume: 108
  start-page: 36
  year: 2016
  end-page: 45
  ident: CR2
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
  contributor:
    fullname: King
– volume: 372
  start-page: 113312
  year: 2020
  ident: CR27
  article-title: Adaptive hyper reduction for additive manufacturing thermal fluid analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113312
  contributor:
    fullname: Liu
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR54
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: CR57
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
  contributor:
    fullname: Pospichal
– volume: 46
  start-page: 93
  year: 2016
  end-page: 123
  ident: CR15
  article-title: Multiscale modeling of powder bed–based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032158
  contributor:
    fullname: Körner
– volume: 363
  start-page: 849
  year: 2019
  end-page: 852
  ident: CR3
  article-title: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging
  publication-title: Science
  doi: 10.1126/science.aav4687
  contributor:
    fullname: Cunningham
– ident: CR44
– volume: 88
  start-page: 124
  year: 2016
  end-page: 137
  ident: CR59
  article-title: A bayesian ridge regression analysis of congestion’s impact on urban expressway safety
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.12.001
  contributor:
    fullname: Lee
– volume: 291
  start-page: 117047
  year: 2021
  ident: CR45
  article-title: Mechanical properties of hybrid additively manufactured inconel 718 parts created via thermal control after secondary treatment processes
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2021.117047
  contributor:
    fullname: Cao
– ident: CR48
– volume: 139
  start-page: 473
  year: 2018
  end-page: 485
  ident: CR24
  article-title: Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.028
  contributor:
    fullname: Hang
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 5
  start-page: 1
  year: 2014
  end-page: 8
  ident: CR37
  article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4580
  contributor:
    fullname: Wei
– volume: 104
  start-page: 28
  year: 2017
  end-page: 38
  ident: CR13
  article-title: Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.049
  contributor:
    fullname: Li
– ident: CR34
– volume: 169
  start-page: 107672
  year: 2019
  ident: CR11
  article-title: A cellular automaton finite volume method for microstructure evolution during additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107672
  contributor:
    fullname: Lian
– ident: CR55
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: CR1
  article-title: Additive manufacturing of metallic components–process, structure and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
  contributor:
    fullname: DebRoy
– ident: CR20
– volume: 36
  start-page: 1388
  year: 2003
  ident: 555_CR46
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/36/12/306
  contributor:
    fullname: X He
– volume: 138
  start-page: 140
  year: 2017
  ident: 555_CR8
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.045
  contributor:
    fullname: GT Gray III
– volume: 100
  start-page: 750
  year: 1975
  ident: 555_CR60
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1975.224297
  contributor:
    fullname: K Fukunaga
– volume: 25
  start-page: 151
  year: 2019
  ident: 555_CR29
  publication-title: Addit. Manuf.
  contributor:
    fullname: L Scime
– volume: 6
  start-page: 1
  year: 2020
  ident: 555_CR28
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0267-z
  contributor:
    fullname: Z Wang
– ident: 555_CR34
  doi: 10.1007/978-0-387-21606-5_1
– ident: 555_CR55
– ident: 555_CR17
  doi: 10.1016/j.pmatsci.2020.100703
– volume: 46
  start-page: 93
  year: 2016
  ident: 555_CR15
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032158
  contributor:
    fullname: M Markl
– volume: 60
  start-page: 84
  year: 2017
  ident: 555_CR51
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: A Krizhevsky
– volume: 291
  start-page: 117047
  year: 2021
  ident: 555_CR45
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2021.117047
  contributor:
    fullname: J Glerum
– volume: 27
  start-page: 540
  year: 2019
  ident: 555_CR32
  publication-title: Addit. Manuf.
  contributor:
    fullname: SJ Wolff
– volume: 363
  start-page: 849
  year: 2019
  ident: 555_CR3
  publication-title: Science
  doi: 10.1126/science.aav4687
  contributor:
    fullname: R Cunningham
– ident: 555_CR43
– volume: 50
  start-page: 2661
  year: 2002
  ident: 555_CR49
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.804066
  contributor:
    fullname: SC Olhede
– volume: 45
  start-page: 5
  year: 2001
  ident: 555_CR54
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume: 373
  start-page: 113452
  year: 2020
  ident: 555_CR61
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113452
  contributor:
    fullname: S Saha
– ident: 555_CR52
  doi: 10.1109/CVPR.2016.90
– ident: 555_CR35
  doi: 10.1115/1.4033525
– volume: 104
  start-page: 28
  year: 2017
  ident: 555_CR13
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.049
  contributor:
    fullname: Z Gan
– ident: 555_CR22
  doi: 10.1016/j.commatsci.2017.03.053
– volume: 339
  start-page: 184
  year: 2018
  ident: 555_CR36
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.05.004
  contributor:
    fullname: W Yan
– ident: 555_CR42
  doi: 10.2172/4016087
– ident: 555_CR19
  doi: 10.1007/s10462-020-09876-9
– volume: 5
  start-page: 730
  year: 2019
  ident: 555_CR26
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.03.014
  contributor:
    fullname: Z Gan
– ident: 555_CR12
  doi: 10.1088/1361-651X/aaf753
– volume: 8
  start-page: 36
  year: 2015
  ident: 555_CR14
  publication-title: Addit. Manuf.
  contributor:
    fullname: SM Thompson
– volume: 6
  start-page: 54
  year: 2017
  ident: 555_CR21
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-017-0088-1
  contributor:
    fullname: E Popova
– ident: 555_CR33
– volume: 39
  start-page: 43
  year: 1997
  ident: 555_CR57
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
  contributor:
    fullname: D Svozil
– volume: 139
  start-page: 95
  year: 2019
  ident: 555_CR16
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.003
  contributor:
    fullname: M Bayat
– volume: 26
  start-page: 912
  year: 2018
  ident: 555_CR38
  publication-title: Proced. Manuf.
  doi: 10.1016/j.promfg.2018.07.118
  contributor:
    fullname: JL Bennett
– volume: 169
  start-page: 107672
  year: 2019
  ident: 555_CR11
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107672
  contributor:
    fullname: Y Lian
– ident: 555_CR30
  doi: 10.1016/j.addma.2019.05.030
– ident: 555_CR18
  doi: 10.1038/s41578-020-00236-1
– volume: 585
  start-page: 357
  year: 2020
  ident: 555_CR50
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
  contributor:
    fullname: CR Harris
– volume: 108
  start-page: 36
  year: 2016
  ident: 555_CR2
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
  contributor:
    fullname: SA Khairallah
– volume: 7
  year: 2017
  ident: 555_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03761-2
  contributor:
    fullname: C Zhao
– ident: 555_CR4
  doi: 10.1002/adem.201900185
– volume: 88
  start-page: 124
  year: 2016
  ident: 555_CR59
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.12.001
  contributor:
    fullname: Q Shi
– volume: 2
  start-page: 041304
  year: 2015
  ident: 555_CR9
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4937809
  contributor:
    fullname: WE King
– ident: 555_CR25
– ident: 555_CR40
– volume: 139
  start-page: 473
  year: 2018
  ident: 555_CR24
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.028
  contributor:
    fullname: J Li
– ident: 555_CR53
– volume: 58
  start-page: 267
  year: 1996
  ident: 555_CR58
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: R Tibshirani
– volume: 3361
  start-page: 1995
  year: 1995
  ident: 555_CR62
  publication-title: Handb. Brain Theory Neural Netw.
  contributor:
    fullname: Y Lecun
– ident: 555_CR20
  doi: 10.1016/j.addma.2020.101641
– ident: 555_CR48
  doi: 10.1017/9781108380690
– ident: 555_CR56
  doi: 10.1007/978-3-642-00296-0_5
– volume: 10
  start-page: 1
  year: 2019
  ident: 555_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
  contributor:
    fullname: SMH Hojjatzadeh
– volume: 549
  start-page: 365
  year: 2017
  ident: 555_CR7
  publication-title: Nature
  doi: 10.1038/nature23894
  contributor:
    fullname: JH Martin
– ident: 555_CR31
  doi: 10.1016/j.mfglet.2020.01.001
– ident: 555_CR39
– volume: 5
  start-page: 1
  year: 2014
  ident: 555_CR37
  publication-title: Nat. Commun.
  contributor:
    fullname: Y Wei
– volume: 372
  start-page: 113312
  year: 2020
  ident: 555_CR27
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113312
  contributor:
    fullname: Y Lu
– volume: 135
  start-page: 390
  year: 2017
  ident: 555_CR41
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.039
  contributor:
    fullname: G Knapp
– volume: 92
  start-page: 112
  year: 2018
  ident: 555_CR1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
  contributor:
    fullname: T DebRoy
– ident: 555_CR44
  doi: 10.1016/j.cirp.2021.04.053
– ident: 555_CR10
  doi: 10.1007/s40192-019-00130-x
– volume: 5
  start-page: 1
  year: 2019
  ident: 555_CR23
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0207-y
  contributor:
    fullname: Y Du
– volume: 95
  start-page: 8327
  year: 2004
  ident: 555_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1737476
  contributor:
    fullname: J Elmer
SSID ssj0001928240
Score 2.4795616
Snippet Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial...
Abstract Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms 639/301/1023/1026
639/301/1034/1037
Additive manufacturing
Artificial neural networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Critical temperature
Deep learning
Heterogeneity
Learning algorithms
Machine learning
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mechanical properties
Multiresolution analysis
Neural networks
Spatial variations
Theoretical
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUhp-YQ2iahbt2iQ26JiCyttNpjWxpMITkl4JvQJyTEa-O1L_n1ndGuE7sQeulxV3MQb6SZJzTzRMi5zMEE7SWr6hhZpZxmjUmBKThNCO9lqCJ2I9_c6ul99XumZjtPfWFNWC8P3AN3NXHaAeXm2tW-Utw1OQQvkvHCNU7WvkRf3uwcph573mIgVw1dMlyaqw4zVcWwIgF1pxR73stERbB_j2X-dTFa8s31e3I8EEX6vZ_gB3KQ2o_kaEc-8ITEm4R9u0VqmWKpJ4srDF50ucLrF4ScLjJ1HfObh6c1nffm4BWwWCyxojp19KGFAaDgFEuLMPjRuWs32PBQOhhPyf31r7ufUza8msAC5JY1i8D5fAZW5ytvVGMcz0AiQnQcP6LS0UgDiKTMswYyUucUgMVNas2dCEHIM3LYLtr0iVARUw48JeXwGBmNaXQVm0bwEKRPdRiRiy2CdtmLY9hyqS2N7fG2gLcteNvnEfmBIL9YorB1-QHutoO77b_cPSLjrYvssNs6KyBqQ1TXRo3I5dZtr8NvT-nz_5jSF_JOlGWlGTdjcrhebdJXYCpr_60syj-WZeaR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYoXOBQ9QEi5SEfegML49d6jzQqiiqlpyJxs_yUkGAT5XHJr2fG2UCD6KHH3Z2VVjP2zDc7M58J-S5LtNEEyVSTElPaG9baHJmGbEKEIKNKOI08_m1Gd-rXvb7vaXJwFmarfi_t1RwDjGLYSIB0UZqtPpA9jMF4TMPQDF__p7SQPCjez8W8_-pW7KkU_Vu48k0ptEaY20_kYw8N6c3alp_JTu6-kIO_CAO_kjTOOKlbyZUpNneyNEN3RaczLLigkumkUD9nYfnwuKBPa3GwA0hMpthDnef0oYMHALopNhOhu6NPvlviiEOdWTwkd7c__wxHrD8ngUWIJguWAOWFAjguqGB1az0vABti8hwvkjbJSgsayYUXA_CjKTkCbrtuDPciRiGPyG436fIxoSLlEnnO2mPimKxtjUptK3iMMuQmDsjFRoNuuqbDcLWMLa1b69uBvl3Vt1sNyA9U8oskUlnXG2Bh1-8Md-2Nh5yKG98EpblvS4xBZBuEb71swoCcbkzk-v01dwL8NPhxY_WAXG7M9vr435_07f_ET8i-qAvIMG5Pye5itsxngEIW4bwuv2f2x9aw
  priority: 102
  providerName: Springer Nature
Title Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing
URI https://link.springer.com/article/10.1038/s41524-021-00555-z
https://www.proquest.com/docview/2538876685
https://doaj.org/article/1a6a60506a7b450a9fccb2e8b2a9a37b
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeEBsgCqPyw97AmuckjvOEumplqrQJAZP6ZvkraBJLStO-7K_nzk0pQxovkWJbUXTnu_ud78MAJ1nttVcu43kZAs8Lq3ilo-cFehPSuczngaqRr67V5U0-XxSL_sCt69MqdzoxKerQejojP5UomSi5Sheflr843RpF0dX-Co0DGEr0FOQAhucX11--7k9ZKnQpctFXy4hMn3ZksXJOmQnUf6rg9w8sUmrc_wBt_hMgTXZn9gKe94CRTbYcPoQnsTmCZ3-1EXwJ4SpS_W5qucwo5ZOHFSkxtlxRGIZIz9qa2Y67ze3PNbvbLkfu4Ip2SZnVsWO3DU4gFGeUYkRKkN3ZZkOFD6mS8RXczC6-Ty95f3sC92hj1jwg9nM1ojuXO11U2ooawYQPVtBLKFTQmUaKxFrUCkFJWUePaO6sVMJK72X2GgZN28Q3wGSItRcxFpbcyaB1pfJQVVJ4n7lY-hF82FHQLLdNMkwKbmfabOltkN4m0dvcj-CciPxnJTW4TgPt6ofp5cWcWWXR0xLKli4vhK1q752M2klb2ax0Izjescj0UteZ_R4Zwccd2_bTj__S2_9_7R08lWnDKC70MQzWq018j1hk7cZwUC5KfOrZ5zEMJ5P5t_m434Q4OlXTcfLyfwPKk-QE
link.rule.ids 315,783,787,867,2109,12070,12779,21402,27938,27939,31733,33387,33758,41134,42203,43324,43614,43819,51590,74081,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHIAD4ilCC_jADay6fq33hABRBWh6aqXcLD9RpXY3ZJNLf31nnA2hSHDctbVazXhmPntmPhPyTpZoowmSqSYlprQ3rLU5Mg27CRGCjCphN_Ls1EzP1fe5no8HbsNYVrn1idVRpz7iGfmhAMsEyzVWf1z8YnhrFGZXxys07pJ7yMOF3PnNvNmdsbSwoVB87JXh0h4OGK8Uw7oEZJ_S7PpWPKq0_bew5l_p0Rp1jh-TRyNcpJ82-n1C7uTuKXn4B4ngM5JmGbt3K-EyxYJPlpbowuhiiUkYFDztC_UDC-uLyxW92kwH3cCMfoF11XmgFx0MABCnWGCELpBe-W6NbQ-1j_E5OT_-evZlysa7E1iECLNiCZBfKIDtggpWt9bzAlAiJs_xIWmTrLQgkVx4MQBJmpIjYLmjxnAvYhTyBdnr-i6_JFSkXCLPWXvcTCZrW6NS2woeowy5iRPyfitBt9hQZLia2pbWbeTtQN6uyttdT8hnFPLvmUhvXV_0y59utBZ35I2HfRY3vglKc9-WGIPINgjfetmECTnYqsiNNje43QqZkA9bte2G__1Lr_7_tbfk_vRsduJOvp3-2CcPRF08hnF7QPZWy3V-DahkFd7UpXcDfBDgZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagSIgeUNnEQAEfuIE1rrc4JwSUoSytOFCpN8srqtQmw2Tm0l_Pe54MQ5HgmNiKord-z28xIS9liTaaIJlqUmJKe8NamyPTEE2IEGRUCbuRj0_M0an6fKbPxvqnYSyr3NjEaqhTH_GMfCpAM0FzjdXTMpZFfDucvZn_ZHiDFGZax-s0bpJb4BUbVFI7-7g9b2khuFB87Jvh0k4H9F2KYY0CTqLS7Oqab6oj_K_hzr9SpdUDzfbI3RE60rdrXt8jN3J3n-z-MVDwAUnHGTt56_BlisWfLC3QnNH5AhMyyATaF-oHFlbnF0t6ud4OfIId_RxrrPNAzztYAFBOsdgIzSG99N0KWyBqT-NDcjr78P39ERvvUWARvM2SJUCBoQDOCypY3VrPC8CKmDzHh6RNstICRXLhxQA8aUqOgOsOGsO9iFHIR2Sn67v8mFCRcok8Z-0xsEzWtkalthU8RhlyEyfk1YaCbr4el-Fqmltat6a3A3q7Sm93NSHvkMi_d-Ko6_qiX_xwo-a4A288xFzc-CYozX1bYgwi2yB862UTJmR_wyI36t_gttIyIa83bNsu__uXnvz_ay_IbZA69_XTyZen5I6osmMYt_tkZ7lY5WcAUJbheZW8X-zr5Jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+data-driven+prediction+of+as-built+mechanical+properties+in+metal+additive+manufacturing&rft.jtitle=npj+computational+materials&rft.au=Xie%2C+Xiaoyu&rft.au=Bennett%2C+Jennifer&rft.au=Saha%2C+Sourav&rft.au=Lu%2C+Ye&rft.date=2021-06-08&rft.issn=2057-3960&rft.eissn=2057-3960&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-021-00555-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41524_021_00555_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon