Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing
Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic dat...
Saved in:
Published in | npj computational materials Vol. 7; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e., thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We systematically compare the developed approach with other machine learning methods. The results demonstrate that the developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies. |
---|---|
AbstractList | Abstract Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e., thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We systematically compare the developed approach with other machine learning methods. The results demonstrate that the developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies. Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e., thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We systematically compare the developed approach with other machine learning methods. The results demonstrate that the developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies. |
ArticleNumber | 86 |
Author | Bennett, Jennifer Xie, Xiaoyu Liu, Wing Kam Gan, Zhengtao Cao, Jian Lu, Ye Saha, Sourav |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Xie fullname: Xie, Xiaoyu organization: Department of Mechanical Engineering, Northwestern University – sequence: 2 givenname: Jennifer surname: Bennett fullname: Bennett, Jennifer organization: Department of Mechanical Engineering, Northwestern University, DMG MORI – sequence: 3 givenname: Sourav surname: Saha fullname: Saha, Sourav organization: Theoretical and Applied Mechanics, Northwestern University – sequence: 4 givenname: Ye surname: Lu fullname: Lu, Ye organization: Department of Mechanical Engineering, Northwestern University – sequence: 5 givenname: Jian orcidid: 0000-0003-1023-5244 surname: Cao fullname: Cao, Jian organization: Department of Mechanical Engineering, Northwestern University – sequence: 6 givenname: Wing Kam orcidid: 0000-0001-7725-8438 surname: Liu fullname: Liu, Wing Kam email: w-liu@northwestern.edu organization: Department of Mechanical Engineering, Northwestern University – sequence: 7 givenname: Zhengtao orcidid: 0000-0002-4309-0929 surname: Gan fullname: Gan, Zhengtao email: zhengtao.gan@northwestern.edu organization: Department of Mechanical Engineering, Northwestern University |
BookMark | eNp9UctuFDEQtFCQCCE_wGkkzoa2Z_w6oohHpKBcwtnq8SN4tetZbA8S-Xq8GZRw4tTuclW52_WanOUlB0LeMnjPYNQf6sQEnyhwRgGEEPThBTnnIBQdjYSzf86vyGWtOwBghms-wTnx34L7gTnVltzgsSH1Jf0KeTiW4JNracnDEgesdF7Tvg2Hje5w3xnLMZSWQh1S7hetY-h9al0_HDCvEV1bS8r3b8jLiPsaLv_WC_L986e7q6_05vbL9dXHG-ombhr1YMwclZrmadbCaITIgDuPcGq8kF6Pui8cIkRplFQxOGZGpiQgd46PF-R68_UL7uyxpAOW33bBZB-Bpdxb7AO7fbAMJUoQIFHNkwA00bmZBz1zNDiquXu927z6mj_XUJvdLWvJfXzLxai1klKLzuIby5Wl1hLi06sM7Ckcu4Vjezj2MRz70EXjJqrH0--E8mz9H9Uf0TeVDg |
CitedBy_id | crossref_primary_10_1007_s00466_022_02251_1 crossref_primary_10_3390_ma16237293 crossref_primary_10_1007_s00366_022_01719_1 crossref_primary_10_1089_3dp_2023_0051 crossref_primary_10_1016_j_cma_2023_116597 crossref_primary_10_1515_nanoph_2022_0815 crossref_primary_10_1016_j_jmsy_2024_04_023 crossref_primary_10_1016_j_jmrt_2023_06_090 crossref_primary_10_1007_s00170_023_11473_3 crossref_primary_10_1016_j_pmatsci_2023_101102 crossref_primary_10_1038_s41524_022_00808_5 crossref_primary_10_1016_j_jmatprotec_2021_117485 crossref_primary_10_1016_j_mfglet_2022_02_003 crossref_primary_10_1016_j_jmatprotec_2023_117908 crossref_primary_10_1016_j_rineng_2023_101141 crossref_primary_10_1007_s40192_022_00261_8 crossref_primary_10_1016_j_jmrt_2023_11_257 crossref_primary_10_1016_j_addma_2023_103500 crossref_primary_10_1016_j_addma_2024_104214 crossref_primary_10_1016_j_addlet_2022_100101 crossref_primary_10_3390_app14020661 crossref_primary_10_3390_thermo2030011 crossref_primary_10_1016_j_jmsy_2021_11_003 crossref_primary_10_3390_recycling9030043 crossref_primary_10_1016_j_mfglet_2021_10_005 crossref_primary_10_1016_j_jmrt_2024_03_024 crossref_primary_10_1115_1_4065416 crossref_primary_10_1007_s00466_023_02288_w crossref_primary_10_1007_s41745_022_00302_3 crossref_primary_10_1016_j_msea_2024_146616 crossref_primary_10_3390_ma15155298 crossref_primary_10_57062_ijpem_st_2022_0017 crossref_primary_10_1016_j_optlastec_2024_111203 crossref_primary_10_1016_j_jmsy_2024_04_013 crossref_primary_10_3390_math10111888 crossref_primary_10_1007_s10845_022_02039_3 crossref_primary_10_2351_7_0001108 crossref_primary_10_1115_1_4064147 crossref_primary_10_1016_j_addma_2024_104187 crossref_primary_10_1016_j_ijmachtools_2023_104077 crossref_primary_10_1016_j_jallcom_2023_170223 crossref_primary_10_1080_0951192X_2022_2048422 crossref_primary_10_1016_j_ijmecsci_2022_107854 crossref_primary_10_1016_j_matdes_2023_112356 crossref_primary_10_1016_j_jmsy_2024_01_005 crossref_primary_10_32604_cmes_2021_017719 |
Cites_doi | 10.1016/j.promfg.2018.07.118 10.1016/j.eng.2019.03.014 10.1038/nature23894 10.1016/j.actamat.2017.06.039 10.1109/T-C.1975.224297 10.1038/s41524-019-0207-y 10.1038/s41586-020-2649-2 10.1016/j.actamat.2017.07.045 10.1063/1.4937809 10.1016/j.ijheatmasstransfer.2019.05.003 10.1038/s41598-017-03761-2 10.1016/j.cma.2020.113452 10.1063/1.1737476 10.1016/j.cma.2018.05.004 10.1038/s41524-020-00444-x 10.1088/0022-3727/36/12/306 10.1109/TSP.2002.804066 10.1145/3065386 10.1007/s40192-017-0088-1 10.1016/j.actamat.2016.02.014 10.1016/j.cma.2020.113312 10.1023/A:1010933404324 10.1016/S0169-7439(97)00061-0 10.1146/annurev-matsci-070115-032158 10.1126/science.aav4687 10.1016/j.aap.2015.12.001 10.1016/j.jmatprotec.2021.117047 10.1016/j.matdes.2017.11.028 10.1038/ncomms4580 10.1016/j.ijheatmasstransfer.2016.08.049 10.1016/j.matdes.2019.107672 10.1016/j.pmatsci.2017.10.001 10.1038/s41524-019-0267-z 10.1007/978-0-387-21606-5_1 10.1016/j.pmatsci.2020.100703 10.1109/CVPR.2016.90 10.1115/1.4033525 10.1016/j.commatsci.2017.03.053 10.2172/4016087 10.1007/s10462-020-09876-9 10.1088/1361-651X/aaf753 10.1016/j.addma.2019.05.030 10.1038/s41578-020-00236-1 10.1002/adem.201900185 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.addma.2020.101641 10.1017/9781108380690 10.1007/978-3-642-00296-0_5 10.1038/s41467-018-07882-8 10.1016/j.mfglet.2020.01.001 10.1016/j.cirp.2021.04.053 10.1007/s40192-019-00130-x |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41524-021-00555-z |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1a6a60506a7b450a9fccb2e8b2a9a37b 10_1038_s41524_021_00555_z |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: CMMI-1934367 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AAYXX CITATION 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c429t-d099bf774b4b8598a0f102cda0598ad56d838038ef0f69767fec1931760a2cc23 |
IEDL.DBID | BENPR |
ISSN | 2057-3960 |
IngestDate | Tue Oct 22 15:12:53 EDT 2024 Thu Oct 10 18:59:34 EDT 2024 Wed Sep 04 12:35:28 EDT 2024 Fri Oct 11 20:45:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-d099bf774b4b8598a0f102cda0598ad56d838038ef0f69767fec1931760a2cc23 |
ORCID | 0000-0003-1023-5244 0000-0001-7725-8438 0000-0002-4309-0929 |
OpenAccessLink | https://www.proquest.com/docview/2538876685?pq-origsite=%requestingapplication% |
PQID | 2538876685 |
PQPubID | 2041924 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a6a60506a7b450a9fccb2e8b2a9a37b proquest_journals_2538876685 crossref_primary_10_1038_s41524_021_00555_z springer_journals_10_1038_s41524_021_00555_z |
PublicationCentury | 2000 |
PublicationDate | 2021-06-08 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li, Jin, Hang (CR24) 2018; 139 CR39 Wang (CR28) 2020; 6 CR35 CR34 CR33 Bennett (CR38) 2018; 26 Markl, Körner (CR15) 2016; 46 CR31 Wei (CR37) 2014; 5 CR30 Krizhevsky, Sutskever, Hinton (CR51) 2017; 60 Gan (CR26) 2019; 5 Harris (CR50) 2020; 585 Zhao (CR6) 2017; 7 Glerum, Bennett, Ehmann, Cao (CR45) 2021; 291 CR4 Thompson, Bian, Shamsaei, Yadollahi (CR14) 2015; 8 Breiman (CR54) 2001; 45 CR48 Scime, Beuth (CR29) 2019; 25 Du, Mukherjee, DebRoy (CR23) 2019; 5 CR44 CR43 CR42 CR40 Olhede, Walden (CR49) 2002; 50 Bayat, Mohanty, Hattel (CR16) 2019; 139 DebRoy (CR1) 2018; 92 Lecun, Bengio (CR62) 1995; 3361 Hojjatzadeh (CR5) 2019; 10 Tibshirani (CR58) 1996; 58 CR19 CR18 CR17 Popova (CR21) 2017; 6 Elmer, Palmer, Babu, Zhang, DebRoy (CR47) 2004; 95 Svozil, Kvasnicka, Pospichal (CR57) 1997; 39 Fukunaga, Narendra (CR60) 1975; 100 CR12 CR56 Wolff (CR32) 2019; 27 CR55 CR10 Lian (CR11) 2019; 169 CR53 CR52 He, Fuerschbach, DebRoy (CR46) 2003; 36 Khairallah, Anderson, Rubenchik, King (CR2) 2016; 108 Saha (CR61) 2020; 373 Gan, Yu, He, Li (CR13) 2017; 104 Martin (CR7) 2017; 549 CR25 Cunningham (CR3) 2019; 363 CR22 Lu, Jones, Gan, Liu (CR27) 2020; 372 CR20 Knapp (CR41) 2017; 135 King (CR9) 2015; 2 Shi, Abdel-Aty, Lee (CR59) 2016; 88 Gray III (CR8) 2017; 138 Yan (CR36) 2018; 339 J Li (555_CR24) 2018; 139 555_CR42 555_CR40 M Bayat (555_CR16) 2019; 139 555_CR44 555_CR43 555_CR48 L Breiman (555_CR54) 2001; 45 Y Lu (555_CR27) 2020; 372 JH Martin (555_CR7) 2017; 549 D Svozil (555_CR57) 1997; 39 JL Bennett (555_CR38) 2018; 26 Y Lian (555_CR11) 2019; 169 M Markl (555_CR15) 2016; 46 Q Shi (555_CR59) 2016; 88 CR Harris (555_CR50) 2020; 585 X He (555_CR46) 2003; 36 555_CR53 555_CR52 S Saha (555_CR61) 2020; 373 R Cunningham (555_CR3) 2019; 363 Z Gan (555_CR26) 2019; 5 SJ Wolff (555_CR32) 2019; 27 555_CR12 W Yan (555_CR36) 2018; 339 555_CR56 K Fukunaga (555_CR60) 1975; 100 555_CR55 555_CR10 555_CR17 C Zhao (555_CR6) 2017; 7 Z Wang (555_CR28) 2020; 6 SMH Hojjatzadeh (555_CR5) 2019; 10 SC Olhede (555_CR49) 2002; 50 GT Gray III (555_CR8) 2017; 138 E Popova (555_CR21) 2017; 6 SM Thompson (555_CR14) 2015; 8 555_CR20 R Tibshirani (555_CR58) 1996; 58 L Scime (555_CR29) 2019; 25 G Knapp (555_CR41) 2017; 135 555_CR4 555_CR22 J Elmer (555_CR47) 2004; 95 555_CR25 555_CR19 555_CR18 Y Wei (555_CR37) 2014; 5 Y Lecun (555_CR62) 1995; 3361 WE King (555_CR9) 2015; 2 A Krizhevsky (555_CR51) 2017; 60 J Glerum (555_CR45) 2021; 291 555_CR31 555_CR30 T DebRoy (555_CR1) 2018; 92 555_CR35 555_CR34 555_CR33 555_CR39 SA Khairallah (555_CR2) 2016; 108 Z Gan (555_CR13) 2017; 104 Y Du (555_CR23) 2019; 5 |
References_xml | – ident: CR22 – volume: 25 start-page: 151 year: 2019 end-page: 165 ident: CR29 article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process publication-title: Addit. Manuf. contributor: fullname: Beuth – ident: CR4 – ident: CR39 – ident: CR12 – volume: 26 start-page: 912 year: 2018 end-page: 919 ident: CR38 article-title: Cooling rate effect on tensile strength of laser deposited inconel 718 publication-title: Proced. Manuf. doi: 10.1016/j.promfg.2018.07.118 contributor: fullname: Bennett – ident: CR35 – volume: 5 start-page: 730 year: 2019 end-page: 735 ident: CR26 article-title: Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map publication-title: Engineering doi: 10.1016/j.eng.2019.03.014 contributor: fullname: Gan – ident: CR25 – volume: 549 start-page: 365 year: 2017 ident: CR7 article-title: 3d printing of high-strength aluminium alloys publication-title: Nature doi: 10.1038/nature23894 contributor: fullname: Martin – ident: CR42 – volume: 27 start-page: 540 year: 2019 end-page: 551 ident: CR32 article-title: Experimentally validated predictions of thermal history and microhardness in laser-deposited inconel 718 on carbon steel publication-title: Addit. Manuf. contributor: fullname: Wolff – ident: CR19 – volume: 135 start-page: 390 year: 2017 end-page: 399 ident: CR41 article-title: Building blocks for a digital twin of additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.039 contributor: fullname: Knapp – volume: 100 start-page: 750 year: 1975 end-page: 753 ident: CR60 article-title: A branch and bound algorithm for computing k-nearest neighbors publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1975.224297 contributor: fullname: Narendra – volume: 5 start-page: 1 year: 2019 end-page: 8 ident: CR23 article-title: Conditions for void formation in friction stir welding from machine learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0207-y contributor: fullname: DebRoy – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: CR50 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 contributor: fullname: Harris – volume: 138 start-page: 140 year: 2017 end-page: 149 ident: CR8 article-title: Structure/property (constitutive and spallation response) of additively manufactured 316l stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.045 contributor: fullname: Gray III – volume: 2 start-page: 041304 year: 2015 ident: CR9 article-title: Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges publication-title: Appl. Phys. Rev. doi: 10.1063/1.4937809 contributor: fullname: King – volume: 3361 start-page: 1995 year: 1995 ident: CR62 article-title: Convolutional networks for images, speech, and time series publication-title: Handb. Brain Theory Neural Netw. contributor: fullname: Bengio – volume: 139 start-page: 95 year: 2019 end-page: 114 ident: CR16 article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in in718 made by multi-track/multi-layer l-pbf publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.05.003 contributor: fullname: Hattel – volume: 8 start-page: 36 year: 2015 end-page: 62 ident: CR14 article-title: An overview of direct laser deposition for additive manufacturing; part i: transport phenomena, modeling and diagnostics publication-title: Addit. Manuf. contributor: fullname: Yadollahi – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: CR58 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. contributor: fullname: Tibshirani – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: CR5 article-title: Pore elimination mechanisms during 3d printing of metals publication-title: Nat. Commun. contributor: fullname: Hojjatzadeh – ident: CR18 – ident: CR43 – volume: 7 year: 2017 ident: CR6 article-title: Real-time monitoring of laser powder bed fusion process using high-speed x-ray imaging and diffraction publication-title: Sci. Rep. doi: 10.1038/s41598-017-03761-2 contributor: fullname: Zhao – volume: 373 start-page: 113452 year: 2020 ident: CR61 article-title: Hierarchical deep learning neural network (hidenn): an artificial intelligence (ai) framework for computational science and engineering publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113452 contributor: fullname: Saha – volume: 95 start-page: 8327 year: 2004 end-page: 8339 ident: CR47 article-title: Phase transformation dynamics during welding of ti–6al–4v publication-title: J. Appl. Phys. doi: 10.1063/1.1737476 contributor: fullname: DebRoy – volume: 339 start-page: 184 year: 2018 end-page: 204 ident: CR36 article-title: An integrated process–structure–property modeling framework for additive manufacturing publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.05.004 contributor: fullname: Yan – ident: CR53 – ident: CR30 – volume: 6 start-page: 1 year: 2020 end-page: 10 ident: CR28 article-title: Uncertainty quantification and reduction in metal additive manufacturing publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00444-x contributor: fullname: Wang – ident: CR10 – ident: CR33 – volume: 36 start-page: 1388 year: 2003 ident: CR46 article-title: Heat transfer and fluid flow during laser spot welding of 304 stainless steel publication-title: J. Phys. D doi: 10.1088/0022-3727/36/12/306 contributor: fullname: DebRoy – ident: CR56 – volume: 50 start-page: 2661 year: 2002 end-page: 2670 ident: CR49 article-title: Generalized morse wavelets publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.804066 contributor: fullname: Walden – ident: CR40 – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR51 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: Hinton – volume: 6 start-page: 54 year: 2017 end-page: 68 ident: CR21 article-title: Process-structure linkages using a data science approach: application to simulated additive manufacturing data publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-017-0088-1 contributor: fullname: Popova – volume: 108 start-page: 36 year: 2016 end-page: 45 ident: CR2 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 contributor: fullname: King – volume: 372 start-page: 113312 year: 2020 ident: CR27 article-title: Adaptive hyper reduction for additive manufacturing thermal fluid analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113312 contributor: fullname: Liu – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR54 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 39 start-page: 43 year: 1997 end-page: 62 ident: CR57 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 contributor: fullname: Pospichal – volume: 46 start-page: 93 year: 2016 end-page: 123 ident: CR15 article-title: Multiscale modeling of powder bed–based additive manufacturing publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032158 contributor: fullname: Körner – volume: 363 start-page: 849 year: 2019 end-page: 852 ident: CR3 article-title: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging publication-title: Science doi: 10.1126/science.aav4687 contributor: fullname: Cunningham – ident: CR44 – volume: 88 start-page: 124 year: 2016 end-page: 137 ident: CR59 article-title: A bayesian ridge regression analysis of congestion’s impact on urban expressway safety publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.12.001 contributor: fullname: Lee – volume: 291 start-page: 117047 year: 2021 ident: CR45 article-title: Mechanical properties of hybrid additively manufactured inconel 718 parts created via thermal control after secondary treatment processes publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117047 contributor: fullname: Cao – ident: CR48 – volume: 139 start-page: 473 year: 2018 end-page: 485 ident: CR24 article-title: Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.028 contributor: fullname: Hang – ident: CR52 – ident: CR17 – ident: CR31 – volume: 5 start-page: 1 year: 2014 end-page: 8 ident: CR37 article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. doi: 10.1038/ncomms4580 contributor: fullname: Wei – volume: 104 start-page: 28 year: 2017 end-page: 38 ident: CR13 article-title: Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.049 contributor: fullname: Li – ident: CR34 – volume: 169 start-page: 107672 year: 2019 ident: CR11 article-title: A cellular automaton finite volume method for microstructure evolution during additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107672 contributor: fullname: Lian – ident: CR55 – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: CR1 article-title: Additive manufacturing of metallic components–process, structure and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 contributor: fullname: DebRoy – ident: CR20 – volume: 36 start-page: 1388 year: 2003 ident: 555_CR46 publication-title: J. Phys. D doi: 10.1088/0022-3727/36/12/306 contributor: fullname: X He – volume: 138 start-page: 140 year: 2017 ident: 555_CR8 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.045 contributor: fullname: GT Gray III – volume: 100 start-page: 750 year: 1975 ident: 555_CR60 publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1975.224297 contributor: fullname: K Fukunaga – volume: 25 start-page: 151 year: 2019 ident: 555_CR29 publication-title: Addit. Manuf. contributor: fullname: L Scime – volume: 6 start-page: 1 year: 2020 ident: 555_CR28 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0267-z contributor: fullname: Z Wang – ident: 555_CR34 doi: 10.1007/978-0-387-21606-5_1 – ident: 555_CR55 – ident: 555_CR17 doi: 10.1016/j.pmatsci.2020.100703 – volume: 46 start-page: 93 year: 2016 ident: 555_CR15 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032158 contributor: fullname: M Markl – volume: 60 start-page: 84 year: 2017 ident: 555_CR51 publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: A Krizhevsky – volume: 291 start-page: 117047 year: 2021 ident: 555_CR45 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117047 contributor: fullname: J Glerum – volume: 27 start-page: 540 year: 2019 ident: 555_CR32 publication-title: Addit. Manuf. contributor: fullname: SJ Wolff – volume: 363 start-page: 849 year: 2019 ident: 555_CR3 publication-title: Science doi: 10.1126/science.aav4687 contributor: fullname: R Cunningham – ident: 555_CR43 – volume: 50 start-page: 2661 year: 2002 ident: 555_CR49 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.804066 contributor: fullname: SC Olhede – volume: 45 start-page: 5 year: 2001 ident: 555_CR54 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 373 start-page: 113452 year: 2020 ident: 555_CR61 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113452 contributor: fullname: S Saha – ident: 555_CR52 doi: 10.1109/CVPR.2016.90 – ident: 555_CR35 doi: 10.1115/1.4033525 – volume: 104 start-page: 28 year: 2017 ident: 555_CR13 publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.049 contributor: fullname: Z Gan – ident: 555_CR22 doi: 10.1016/j.commatsci.2017.03.053 – volume: 339 start-page: 184 year: 2018 ident: 555_CR36 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.05.004 contributor: fullname: W Yan – ident: 555_CR42 doi: 10.2172/4016087 – ident: 555_CR19 doi: 10.1007/s10462-020-09876-9 – volume: 5 start-page: 730 year: 2019 ident: 555_CR26 publication-title: Engineering doi: 10.1016/j.eng.2019.03.014 contributor: fullname: Z Gan – ident: 555_CR12 doi: 10.1088/1361-651X/aaf753 – volume: 8 start-page: 36 year: 2015 ident: 555_CR14 publication-title: Addit. Manuf. contributor: fullname: SM Thompson – volume: 6 start-page: 54 year: 2017 ident: 555_CR21 publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-017-0088-1 contributor: fullname: E Popova – ident: 555_CR33 – volume: 39 start-page: 43 year: 1997 ident: 555_CR57 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 contributor: fullname: D Svozil – volume: 139 start-page: 95 year: 2019 ident: 555_CR16 publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.05.003 contributor: fullname: M Bayat – volume: 26 start-page: 912 year: 2018 ident: 555_CR38 publication-title: Proced. Manuf. doi: 10.1016/j.promfg.2018.07.118 contributor: fullname: JL Bennett – volume: 169 start-page: 107672 year: 2019 ident: 555_CR11 publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107672 contributor: fullname: Y Lian – ident: 555_CR30 doi: 10.1016/j.addma.2019.05.030 – ident: 555_CR18 doi: 10.1038/s41578-020-00236-1 – volume: 585 start-page: 357 year: 2020 ident: 555_CR50 publication-title: Nature doi: 10.1038/s41586-020-2649-2 contributor: fullname: CR Harris – volume: 108 start-page: 36 year: 2016 ident: 555_CR2 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 contributor: fullname: SA Khairallah – volume: 7 year: 2017 ident: 555_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-017-03761-2 contributor: fullname: C Zhao – ident: 555_CR4 doi: 10.1002/adem.201900185 – volume: 88 start-page: 124 year: 2016 ident: 555_CR59 publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.12.001 contributor: fullname: Q Shi – volume: 2 start-page: 041304 year: 2015 ident: 555_CR9 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4937809 contributor: fullname: WE King – ident: 555_CR25 – ident: 555_CR40 – volume: 139 start-page: 473 year: 2018 ident: 555_CR24 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.028 contributor: fullname: J Li – ident: 555_CR53 – volume: 58 start-page: 267 year: 1996 ident: 555_CR58 publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: R Tibshirani – volume: 3361 start-page: 1995 year: 1995 ident: 555_CR62 publication-title: Handb. Brain Theory Neural Netw. contributor: fullname: Y Lecun – ident: 555_CR20 doi: 10.1016/j.addma.2020.101641 – ident: 555_CR48 doi: 10.1017/9781108380690 – ident: 555_CR56 doi: 10.1007/978-3-642-00296-0_5 – volume: 10 start-page: 1 year: 2019 ident: 555_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 contributor: fullname: SMH Hojjatzadeh – volume: 549 start-page: 365 year: 2017 ident: 555_CR7 publication-title: Nature doi: 10.1038/nature23894 contributor: fullname: JH Martin – ident: 555_CR31 doi: 10.1016/j.mfglet.2020.01.001 – ident: 555_CR39 – volume: 5 start-page: 1 year: 2014 ident: 555_CR37 publication-title: Nat. Commun. contributor: fullname: Y Wei – volume: 372 start-page: 113312 year: 2020 ident: 555_CR27 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113312 contributor: fullname: Y Lu – volume: 135 start-page: 390 year: 2017 ident: 555_CR41 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.039 contributor: fullname: G Knapp – volume: 92 start-page: 112 year: 2018 ident: 555_CR1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 contributor: fullname: T DebRoy – ident: 555_CR44 doi: 10.1016/j.cirp.2021.04.053 – ident: 555_CR10 doi: 10.1007/s40192-019-00130-x – volume: 5 start-page: 1 year: 2019 ident: 555_CR23 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0207-y contributor: fullname: Y Du – volume: 95 start-page: 8327 year: 2004 ident: 555_CR47 publication-title: J. Appl. Phys. doi: 10.1063/1.1737476 contributor: fullname: J Elmer |
SSID | ssj0001928240 |
Score | 2.4795616 |
Snippet | Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial... Abstract Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/1023/1026 639/301/1034/1037 Additive manufacturing Artificial neural networks Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Critical temperature Deep learning Heterogeneity Learning algorithms Machine learning Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mechanical properties Multiresolution analysis Neural networks Spatial variations Theoretical Wavelet transforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUhp-YQ2iahbt2iQ26JiCyttNpjWxpMITkl4JvQJyTEa-O1L_n1ndGuE7sQeulxV3MQb6SZJzTzRMi5zMEE7SWr6hhZpZxmjUmBKThNCO9lqCJ2I9_c6ul99XumZjtPfWFNWC8P3AN3NXHaAeXm2tW-Utw1OQQvkvHCNU7WvkRf3uwcph573mIgVw1dMlyaqw4zVcWwIgF1pxR73stERbB_j2X-dTFa8s31e3I8EEX6vZ_gB3KQ2o_kaEc-8ITEm4R9u0VqmWKpJ4srDF50ucLrF4ScLjJ1HfObh6c1nffm4BWwWCyxojp19KGFAaDgFEuLMPjRuWs32PBQOhhPyf31r7ufUza8msAC5JY1i8D5fAZW5ytvVGMcz0AiQnQcP6LS0UgDiKTMswYyUucUgMVNas2dCEHIM3LYLtr0iVARUw48JeXwGBmNaXQVm0bwEKRPdRiRiy2CdtmLY9hyqS2N7fG2gLcteNvnEfmBIL9YorB1-QHutoO77b_cPSLjrYvssNs6KyBqQ1TXRo3I5dZtr8NvT-nz_5jSF_JOlGWlGTdjcrhebdJXYCpr_60syj-WZeaR priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYoXOBQ9QEi5SEfegML49d6jzQqiiqlpyJxs_yUkGAT5XHJr2fG2UCD6KHH3Z2VVjP2zDc7M58J-S5LtNEEyVSTElPaG9baHJmGbEKEIKNKOI08_m1Gd-rXvb7vaXJwFmarfi_t1RwDjGLYSIB0UZqtPpA9jMF4TMPQDF__p7SQPCjez8W8_-pW7KkU_Vu48k0ptEaY20_kYw8N6c3alp_JTu6-kIO_CAO_kjTOOKlbyZUpNneyNEN3RaczLLigkumkUD9nYfnwuKBPa3GwA0hMpthDnef0oYMHALopNhOhu6NPvlviiEOdWTwkd7c__wxHrD8ngUWIJguWAOWFAjguqGB1az0vABti8hwvkjbJSgsayYUXA_CjKTkCbrtuDPciRiGPyG436fIxoSLlEnnO2mPimKxtjUptK3iMMuQmDsjFRoNuuqbDcLWMLa1b69uBvl3Vt1sNyA9U8oskUlnXG2Bh1-8Md-2Nh5yKG98EpblvS4xBZBuEb71swoCcbkzk-v01dwL8NPhxY_WAXG7M9vr435_07f_ET8i-qAvIMG5Pye5itsxngEIW4bwuv2f2x9aw priority: 102 providerName: Springer Nature |
Title | Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing |
URI | https://link.springer.com/article/10.1038/s41524-021-00555-z https://www.proquest.com/docview/2538876685 https://doaj.org/article/1a6a60506a7b450a9fccb2e8b2a9a37b |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeEBsgCqPyw97AmuckjvOEumplqrQJAZP6ZvkraBJLStO-7K_nzk0pQxovkWJbUXTnu_ud78MAJ1nttVcu43kZAs8Lq3ilo-cFehPSuczngaqRr67V5U0-XxSL_sCt69MqdzoxKerQejojP5UomSi5Sheflr843RpF0dX-Co0DGEr0FOQAhucX11--7k9ZKnQpctFXy4hMn3ZksXJOmQnUf6rg9w8sUmrc_wBt_hMgTXZn9gKe94CRTbYcPoQnsTmCZ3-1EXwJ4SpS_W5qucwo5ZOHFSkxtlxRGIZIz9qa2Y67ze3PNbvbLkfu4Ip2SZnVsWO3DU4gFGeUYkRKkN3ZZkOFD6mS8RXczC6-Ty95f3sC92hj1jwg9nM1ojuXO11U2ooawYQPVtBLKFTQmUaKxFrUCkFJWUePaO6sVMJK72X2GgZN28Q3wGSItRcxFpbcyaB1pfJQVVJ4n7lY-hF82FHQLLdNMkwKbmfabOltkN4m0dvcj-CciPxnJTW4TgPt6ofp5cWcWWXR0xLKli4vhK1q752M2klb2ax0Izjescj0UteZ_R4Zwccd2_bTj__S2_9_7R08lWnDKC70MQzWq018j1hk7cZwUC5KfOrZ5zEMJ5P5t_m434Q4OlXTcfLyfwPKk-QE |
link.rule.ids | 315,783,787,867,2109,12070,12779,21402,27938,27939,31733,33387,33758,41134,42203,43324,43614,43819,51590,74081,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHIAD4ilCC_jADay6fq33hABRBWh6aqXcLD9RpXY3ZJNLf31nnA2hSHDctbVazXhmPntmPhPyTpZoowmSqSYlprQ3rLU5Mg27CRGCjCphN_Ls1EzP1fe5no8HbsNYVrn1idVRpz7iGfmhAMsEyzVWf1z8YnhrFGZXxys07pJ7yMOF3PnNvNmdsbSwoVB87JXh0h4OGK8Uw7oEZJ_S7PpWPKq0_bew5l_p0Rp1jh-TRyNcpJ82-n1C7uTuKXn4B4ngM5JmGbt3K-EyxYJPlpbowuhiiUkYFDztC_UDC-uLyxW92kwH3cCMfoF11XmgFx0MABCnWGCELpBe-W6NbQ-1j_E5OT_-evZlysa7E1iECLNiCZBfKIDtggpWt9bzAlAiJs_xIWmTrLQgkVx4MQBJmpIjYLmjxnAvYhTyBdnr-i6_JFSkXCLPWXvcTCZrW6NS2woeowy5iRPyfitBt9hQZLia2pbWbeTtQN6uyttdT8hnFPLvmUhvXV_0y59utBZ35I2HfRY3vglKc9-WGIPINgjfetmECTnYqsiNNje43QqZkA9bte2G__1Lr_7_tbfk_vRsduJOvp3-2CcPRF08hnF7QPZWy3V-DahkFd7UpXcDfBDgZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagSIgeUNnEQAEfuIE1rrc4JwSUoSytOFCpN8srqtQmw2Tm0l_Pe54MQ5HgmNiKord-z28xIS9liTaaIJlqUmJKe8NamyPTEE2IEGRUCbuRj0_M0an6fKbPxvqnYSyr3NjEaqhTH_GMfCpAM0FzjdXTMpZFfDucvZn_ZHiDFGZax-s0bpJb4BUbVFI7-7g9b2khuFB87Jvh0k4H9F2KYY0CTqLS7Oqab6oj_K_hzr9SpdUDzfbI3RE60rdrXt8jN3J3n-z-MVDwAUnHGTt56_BlisWfLC3QnNH5AhMyyATaF-oHFlbnF0t6ud4OfIId_RxrrPNAzztYAFBOsdgIzSG99N0KWyBqT-NDcjr78P39ERvvUWARvM2SJUCBoQDOCypY3VrPC8CKmDzHh6RNstICRXLhxQA8aUqOgOsOGsO9iFHIR2Sn67v8mFCRcok8Z-0xsEzWtkalthU8RhlyEyfk1YaCbr4el-Fqmltat6a3A3q7Sm93NSHvkMi_d-Ko6_qiX_xwo-a4A288xFzc-CYozX1bYgwi2yB862UTJmR_wyI36t_gttIyIa83bNsu__uXnvz_ay_IbZA69_XTyZen5I6osmMYt_tkZ7lY5WcAUJbheZW8X-zr5Jk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+data-driven+prediction+of+as-built+mechanical+properties+in+metal+additive+manufacturing&rft.jtitle=npj+computational+materials&rft.au=Xie%2C+Xiaoyu&rft.au=Bennett%2C+Jennifer&rft.au=Saha%2C+Sourav&rft.au=Lu%2C+Ye&rft.date=2021-06-08&rft.issn=2057-3960&rft.eissn=2057-3960&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-021-00555-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41524_021_00555_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |