Multirobot Cooperative Learning for Predator Avoidance

Multirobot collaboration has great potentials in tasks, such as reconnaissance and surveillance. In this paper, we propose a multirobot system that integrates reinforcement learning and flocking control to allow robots to learn collaboratively to avoid predator/enemy. Our system can conduct concurre...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 23; no. 1; pp. 52 - 63
Main Authors Hung Manh La, Lim, Ronny, Weihua Sheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2014.2312392

Cover

Loading…
Abstract Multirobot collaboration has great potentials in tasks, such as reconnaissance and surveillance. In this paper, we propose a multirobot system that integrates reinforcement learning and flocking control to allow robots to learn collaboratively to avoid predator/enemy. Our system can conduct concurrent learning in a distributed fashion as well as generate efficient combination of high-level behaviors (discrete states and actions) and low-level behaviors (continuous states and actions) for multirobot cooperation. In addition, the combination of reinforcement learning and flocking control enables multirobot networks to learn how to avoid predators while maintaining network topology and connectivity. The convergence and scalability of the proposed system are investigated. Simulations and experiments are performed to demonstrate the effectiveness of the proposed system.
AbstractList Multirobot collaboration has great potentials in tasks, such as reconnaissance and surveillance. In this paper, we propose a multirobot system that integrates reinforcement learning and flocking control to allow robots to learn collaboratively to avoid predator/enemy. Our system can conduct concurrent learning in a distributed fashion as well as generate efficient combination of high-level behaviors (discrete states and actions) and low-level behaviors (continuous states and actions) for multirobot cooperation. In addition, the combination of reinforcement learning and flocking control enables multirobot networks to learn how to avoid predators while maintaining network topology and connectivity. The convergence and scalability of the proposed system are investigated. Simulations and experiments are performed to demonstrate the effectiveness of the proposed system.
Author Lim, Ronny
Hung Manh La
Weihua Sheng
Author_xml – sequence: 1
  surname: Hung Manh La
  fullname: Hung Manh La
  email: hung.la11@rutgers.edu
  organization: Center for Adv. Infrastruct. & Transp., Rutgers Univ., Piscataway, NJ, USA
– sequence: 2
  givenname: Ronny
  surname: Lim
  fullname: Lim, Ronny
  email: ronny.lim@rutgers.edu
  organization: Center for Adv. Infrastruct. & Transp., Rutgers Univ., Piscataway, NJ, USA
– sequence: 3
  surname: Weihua Sheng
  fullname: Weihua Sheng
  email: weihua.sheng@okstate.edu
  organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
BookMark eNp9kMFKAzEQhoNUsK0-gHhZ8Lw1k-wm2WNZtAoVBes5ZLMTSambmk0Lvr1bWjx48DT_4ftmmH9CRl3okJBroDMAWt2t6rfVjFEoZowD4xU7I2MoS5VTJcrRkKnguSi5uCCTvl_TgSyZHBPxvNskH0MTUlaHsMVokt9jtkQTO999ZC7E7DVia9IQ5vvgW9NZvCTnzmx6vDrNKXl_uF_Vj_nyZfFUz5e5LViV8paKRpbQcIOVYU42jStYwWmhLChlKrSyKp1SbcsUc8KC42icq8ByZNQJPiW3x73bGL522Ce9DrvYDSc1CK4KCYVkAyWPlI2h7yM6bX0a_ghdisZvNFB9KEkfStKHkvSppMGEP-Y2-k8Tv_91bo6OR8RfXkjFpQL-A6medDg
CODEN IETTE2
CitedBy_id crossref_primary_10_1109_TCYB_2019_2944892
crossref_primary_10_1177_1729881420960342
crossref_primary_10_3390_s20164546
crossref_primary_10_1155_2022_4253558
crossref_primary_10_1007_s12555_021_0170_5
crossref_primary_10_1109_TCYB_2021_3119330
crossref_primary_10_1109_ACCESS_2020_2967225
crossref_primary_10_1016_j_sysarc_2023_102870
crossref_primary_10_1126_scirobotics_abd9285
crossref_primary_10_1016_j_arcontrol_2021_03_004
crossref_primary_10_1109_TCE_2023_3332587
crossref_primary_10_1109_TII_2019_2941916
crossref_primary_10_1016_j_neucom_2020_02_109
crossref_primary_10_1049_iet_cta_2017_1021
crossref_primary_10_1088_1674_1056_27_10_108901
crossref_primary_10_1088_2632_2153_ad1c33
crossref_primary_10_1109_TNNLS_2017_2770172
crossref_primary_10_1109_TVT_2024_3409687
crossref_primary_10_1109_TIM_2022_3227558
crossref_primary_10_1007_s11432_019_2735_6
crossref_primary_10_1109_LRA_2020_3013920
crossref_primary_10_1109_TSMC_2017_2789335
crossref_primary_10_1109_TSMC_2019_2931060
crossref_primary_10_1109_TRO_2020_2998766
crossref_primary_10_1109_TSMC_2017_2693400
crossref_primary_10_1109_TSMC_2018_2815988
crossref_primary_10_1016_j_isatra_2021_08_023
crossref_primary_10_1109_ACCESS_2019_2916004
crossref_primary_10_1109_TRO_2024_3359528
crossref_primary_10_1088_2632_2153_aca7b0
crossref_primary_10_1017_S0263574717000601
crossref_primary_10_3390_drones8090475
crossref_primary_10_1109_TNNLS_2021_3106777
crossref_primary_10_1109_JSSC_2019_2935533
crossref_primary_10_1016_j_paerosci_2022_100869
crossref_primary_10_1016_j_robot_2020_103594
crossref_primary_10_1002_rnc_5097
crossref_primary_10_1109_ACCESS_2018_2880485
crossref_primary_10_1142_S230138502050020X
crossref_primary_10_1109_TCSS_2019_2958522
crossref_primary_10_1109_TCYB_2023_3246985
crossref_primary_10_1145_2910584
crossref_primary_10_1016_j_engappai_2018_12_001
crossref_primary_10_1016_j_ifacsc_2020_100096
crossref_primary_10_1016_j_arcontrol_2019_01_003
crossref_primary_10_1109_TCAD_2016_2524653
crossref_primary_10_1177_1729881418773874
crossref_primary_10_1007_s10846_015_0287_y
crossref_primary_10_1145_3625544
crossref_primary_10_1109_TRO_2023_3339989
crossref_primary_10_1109_TCYB_2015_2509646
crossref_primary_10_2478_bipie_2023_0020
crossref_primary_10_1109_TCST_2022_3211130
crossref_primary_10_1016_j_pmcj_2018_10_007
crossref_primary_10_1109_TCST_2021_3109646
crossref_primary_10_1016_j_asoc_2020_106700
crossref_primary_10_1109_TSMC_2017_2702701
crossref_primary_10_1016_j_neucom_2018_02_059
crossref_primary_10_1177_1729881419847897
crossref_primary_10_1109_TCNS_2016_2542978
crossref_primary_10_1109_JSSC_2020_3028298
crossref_primary_10_1109_TCST_2023_3301141
crossref_primary_10_1209_0295_5075_acc270
crossref_primary_10_1016_j_automatica_2018_11_001
crossref_primary_10_1016_j_neucom_2023_126379
crossref_primary_10_1007_s11071_020_06062_y
crossref_primary_10_1098_rsta_2024_0136
crossref_primary_10_1109_TCNS_2017_2754364
crossref_primary_10_1016_j_ins_2023_119074
crossref_primary_10_1109_ACCESS_2018_2827362
crossref_primary_10_3390_drones2040033
Cites_doi 10.1023/A:1022140919877
10.1109/TSMCB.2012.2215919
10.1109/TSMCB.2008.921000
10.1109/ICIEA.2011.5975893
10.1109/TSMCC.2007.913919
10.1515/9781400831470
10.1016/j.robot.2012.03.006
10.1007/978-3-540-85565-1_53
10.1007/s00285-003-0209-7
10.1109/TAC.2005.864190
10.1103/PhysRevLett.75.1226
10.1016/j.automatica.2009.09.025
10.1038/275642a0
10.1117/12.895519
10.1109/MRA.2011.942113
10.1145/37402.37406
10.1109/TSP.2010.2086450
10.1111/j.1095-8649.1998.tb02012.x
10.1016/j.physleta.2006.04.065
10.1016/j.automatica.2012.05.074
10.1006/jtbi.2002.3065
10.1016/B978-1-55860-377-6.50040-2
10.1109/IROS.2009.5354188
10.1103/PhysRevE.63.017101
10.1006/anbe.1996.0109
10.1007/s10846-010-9429-4
10.1109/JPROC.2006.887293
10.1109/TAC.2007.895948
10.1177/105971239700600201
10.1109/TAC.2008.2010897
10.1109/ROBOT.2009.5152747
10.1613/jair.301
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2014.2312392
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 63
ExternalDocumentID 3532201161
10_1109_TCST_2014_2312392
6783781
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Defense through the DoD ARO DURIP
  grantid: 55628-CS-RIP
– fundername: DEPSCoR
  grantid: W911NF-10-1-0015
– fundername: Vietnamese Government through the 322 Project, Ministry of Education and Training
– fundername: NSF
  grantid: CISE/IIS 1231671
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c429t-d06b751b3ae9a2f7bbf4243048c188a9ec795f88dd282f6c1f3eaff91c3e20f63
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Sun Jun 29 16:17:11 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Tue Jul 01 01:28:12 EDT 2025
Wed Aug 27 02:55:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Flocking control
hybrid system
multirobot systems
reinforcement learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-d06b751b3ae9a2f7bbf4243048c188a9ec795f88dd282f6c1f3eaff91c3e20f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1638471472
PQPubID 85425
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCST_2014_2312392
ieee_primary_6783781
crossref_primary_10_1109_TCST_2014_2312392
proquest_journals_1638471472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref37
ref15
la (ref16) 2010
ref36
ref14
ref31
ref11
ref10
ref2
luo (ref12) 2014
ref1
(ref40) 2011
ref17
ref19
ref18
ren (ref8) 2005
sutton (ref13) 1998
ref24
ref23
(ref33) 2011
ref26
ref25
ref20
ref41
ref22
ref21
la (ref42) 2012; 43
coggan (ref39) 2001
ref28
ref27
gaskett (ref29) 1999
kaelbling (ref38) 1996; 4
ref7
smart (ref30) 2000
ref9
ref4
ref3
ref6
ref5
la (ref32) 2010
References_xml – start-page: 903
  year: 2000
  ident: ref30
  article-title: Practical reinforcement learning in continuous spaces
  publication-title: Proc Int Conf Mach Learn
– ident: ref37
  doi: 10.1023/A:1022140919877
– volume: 43
  start-page: 766
  year: 2012
  ident: ref42
  article-title: Distributed sensor fusion for scalar field mapping using mobile sensor networks
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2215919
– start-page: 7
  year: 2010
  ident: ref32
  article-title: Hybrid system of reinforcement learning and flocking control in multi-robot domain
  publication-title: Proc Conf Theoretical Comput Sci
– ident: ref31
  doi: 10.1109/TSMCB.2008.921000
– ident: ref25
  doi: 10.1109/ICIEA.2011.5975893
– ident: ref14
  doi: 10.1109/TSMCC.2007.913919
– ident: ref34
  doi: 10.1515/9781400831470
– ident: ref17
  doi: 10.1016/j.robot.2012.03.006
– ident: ref36
  doi: 10.1007/978-3-540-85565-1_53
– ident: ref21
  doi: 10.1007/s00285-003-0209-7
– ident: ref11
  doi: 10.1109/TAC.2005.864190
– ident: ref19
  doi: 10.1103/PhysRevLett.75.1226
– ident: ref1
  doi: 10.1016/j.automatica.2009.09.025
– start-page: 1
  year: 2001
  ident: ref39
  article-title: Exploration and exploitation in reinforcement learning
  publication-title: Proc 4th Int Conf Comput Intell and Multimedia Appl
– ident: ref5
  doi: 10.1038/275642a0
– ident: ref41
  doi: 10.1117/12.895519
– ident: ref4
  doi: 10.1109/MRA.2011.942113
– ident: ref18
  doi: 10.1145/37402.37406
– ident: ref10
  doi: 10.1109/TSP.2010.2086450
– ident: ref7
  doi: 10.1111/j.1095-8649.1998.tb02012.x
– ident: ref35
  doi: 10.1016/j.physleta.2006.04.065
– start-page: 4964
  year: 2010
  ident: ref16
  article-title: Flocking control of multiple agents in noisy environments
  publication-title: Proc IEEE Int Conf Robotics Autom
– year: 1998
  ident: ref13
  publication-title: Reinforcement Learning An Introduction
– start-page: 417
  year: 1999
  ident: ref29
  publication-title: $Q$-Learning in continuous state and action spaces
– ident: ref2
  doi: 10.1016/j.automatica.2012.05.074
– ident: ref22
  doi: 10.1006/jtbi.2002.3065
– ident: ref28
  doi: 10.1016/B978-1-55860-377-6.50040-2
– ident: ref3
  doi: 10.1109/IROS.2009.5354188
– ident: ref20
  doi: 10.1103/PhysRevE.63.017101
– year: 2011
  ident: ref33
  publication-title: Rovio Robot
– start-page: 1859
  year: 2005
  ident: ref8
  article-title: A survey of consensus problems in multi-agent coordination
  publication-title: Proc Amer Control Conf
– year: 2014
  ident: ref12
  article-title: Off-policy reinforcement learning for H? control design
  publication-title: Preprint arXiv 1311 6107
– ident: ref6
  doi: 10.1006/anbe.1996.0109
– ident: ref26
  doi: 10.1007/s10846-010-9429-4
– ident: ref9
  doi: 10.1109/JPROC.2006.887293
– ident: ref23
  doi: 10.1109/TAC.2007.895948
– ident: ref27
  doi: 10.1177/105971239700600201
– ident: ref24
  doi: 10.1109/TAC.2008.2010897
– ident: ref15
  doi: 10.1109/ROBOT.2009.5152747
– volume: 4
  start-page: 237
  year: 1996
  ident: ref38
  article-title: Reinforcement learning: A survey
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.301
– year: 2011
  ident: ref40
  publication-title: Vicon Motion Capture System
SSID ssj0014527
Score 2.4887118
Snippet Multirobot collaboration has great potentials in tasks, such as reconnaissance and surveillance. In this paper, we propose a multirobot system that integrates...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Aerospace electronics
Collision avoidance
Flocking control
hybrid system
Learning (artificial intelligence)
multirobot systems
Network topology
reinforcement learning
Robot kinematics
Robot sensing systems
Title Multirobot Cooperative Learning for Predator Avoidance
URI https://ieeexplore.ieee.org/document/6783781
https://www.proquest.com/docview/1638471472
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rwVcVolRw8iWmT7GaTHEuxFKEi2EJvIfsSUZpSUw_-emc3afCFeMthNywzs_PamW8ALn2OOo-IxMtDDFcpF8rjGAt5kWZCCkq1bxNukzs2ntHbeTRvwXXTC6OUssVnqmc-7Vu-LMTapMr6qFhJbPqst1DMql6t5sWAVuNZMcIhHrNPkk6Np9mfDh-mpoiL9tCZCUkafrFBdqjKD01szctoDyabg1VVJc-9dcl74v0bZuN_T74Pu7Wf6Q4qwTiAllocws4n9MEOMNt8uyp4UbrDoliqCgTcrSFXH130Z937lZImLncHb8WTNCJyBLPRzXQ49uoxCp5AY1N60mc8jgJOcpXmoY451zSkBK-uCJIkT5WI00gniZQYfiGLAk1UrnUaCKJCXzNyDO1FsVAn4EoS5yzSQuUkMJY_pehAcJJEUjGekMABf0PYTNQY42bUxUtmYw0_zQwvMsOLrOaFA1fNlmUFsPHX4o6hbbOwJqsD3Q33svoKvmbG0UTLS-Pw9PddZ7CN_46qfEoX2uVqrc7Rwyj5hRWtD8g1y6g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6KHtSDrypGq-bgSUybZDevYymWqm0RTKG3JfsSUZpSUw_-enc3afCFeMthlywzs_PamW8ALlyqdB5isZP5KlzFlAmHqljICWTIOMNYuibhNhqHgwm-nQbTBlzVvTBCCFN8Jtr607zl85wtdaqsoxQrinSf9bqy-zgou7XqNwNcDmhVMQ5yQvMoaVWImp2095DqMi7cVu6MjxL_ixUyY1V-6GJjYPo7MFodrawreW4vC9pm799QG_979l3YrjxNu1uKxh40xGwftj7hDzYhNO23i5zmhd3L87koYcDtCnT10VYerX2_EFxH5nb3LX_iWkgOYNK_TnsDpxqk4DBlbgqHuyGNAo-iTCSZLyNKJfYxUpeXeXGcJYJFSSDjmHMVgCkmeRKJTMrEY0j4rgzRIazN8pk4ApujKAsDyUSGPG37E6xcCIrigIuQxsizwF0RlrAKZVwPu3ghJtpwE6J5QTQvSMULCy7rLfMSYuOvxU1N23phRVYLWivukeoSvhLtairbiyP_-Pdd57AxSEdDMrwZ353ApvpPUGZXWrBWLJbiVPkbBT0zYvYBn7zO9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multirobot+Cooperative+Learning+for+Predator+Avoidance&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=La%2C+Hung+Manh&rft.au=Lim%2C+Ronny&rft.au=Sheng%2C+Weihua&rft.date=2015-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=23&rft.issue=1&rft.spage=52&rft_id=info:doi/10.1109%2FTCST.2014.2312392&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3532201161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon