An efficient optimization approach for designing machine learning models based on genetic algorithm

Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML models remains a challenge and requires further research as most procedures adopt a trial and error strategy. In this study, we present a methodology to optimize the architecture and the...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 6; pp. 1923 - 1933
Main Authors Hamdia, Khader M., Zhuang, Xiaoying, Rabczuk, Timon
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML models remains a challenge and requires further research as most procedures adopt a trial and error strategy. In this study, we present a methodology to optimize the architecture and the feature configurations of ML models considering a supervised learning process. The proposed approach employs genetic algorithm (GA)-based integer-valued optimization for two ML models, namely deep neural networks (DNN) and adaptive neuro-fuzzy inference system (ANFIS). The selected variables in the DNN optimization problems are the number of hidden layers, their number of neurons and their activation function, while the type and the number of membership functions are the design variables in the ANFIS optimization problem. The mean squared error (MSE) between the predictions and the target outputs is minimized as the optimization fitness function. The proposed scheme is validated through a case study of computational material design. We apply the method to predict the fracture energy of polymer/nanoparticles composites (PNCs) with a database gathered from the literature. The optimized DNN model shows superior prediction accuracy compared to the classical one-hidden layer network. Also, it outperforms ANFIS with significantly lower number of generations in GA. The proposed method can be easily extended to optimize similar architecture properties of ML models in various complex systems.
AbstractList Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML models remains a challenge and requires further research as most procedures adopt a trial and error strategy. In this study, we present a methodology to optimize the architecture and the feature configurations of ML models considering a supervised learning process. The proposed approach employs genetic algorithm (GA)-based integer-valued optimization for two ML models, namely deep neural networks (DNN) and adaptive neuro-fuzzy inference system (ANFIS). The selected variables in the DNN optimization problems are the number of hidden layers, their number of neurons and their activation function, while the type and the number of membership functions are the design variables in the ANFIS optimization problem. The mean squared error (MSE) between the predictions and the target outputs is minimized as the optimization fitness function. The proposed scheme is validated through a case study of computational material design. We apply the method to predict the fracture energy of polymer/nanoparticles composites (PNCs) with a database gathered from the literature. The optimized DNN model shows superior prediction accuracy compared to the classical one-hidden layer network. Also, it outperforms ANFIS with significantly lower number of generations in GA. The proposed method can be easily extended to optimize similar architecture properties of ML models in various complex systems.
Abstract Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML models remains a challenge and requires further research as most procedures adopt a trial and error strategy. In this study, we present a methodology to optimize the architecture and the feature configurations of ML models considering a supervised learning process. The proposed approach employs genetic algorithm (GA)-based integer-valued optimization for two ML models, namely deep neural networks (DNN) and adaptive neuro-fuzzy inference system (ANFIS). The selected variables in the DNN optimization problems are the number of hidden layers, their number of neurons and their activation function, while the type and the number of membership functions are the design variables in the ANFIS optimization problem. The mean squared error (MSE) between the predictions and the target outputs is minimized as the optimization fitness function. The proposed scheme is validated through a case study of computational material design. We apply the method to predict the fracture energy of polymer/nanoparticles composites (PNCs) with a database gathered from the literature. The optimized DNN model shows superior prediction accuracy compared to the classical one-hidden layer network. Also, it outperforms ANFIS with significantly lower number of generations in GA. The proposed method can be easily extended to optimize similar architecture properties of ML models in various complex systems.
Author Hamdia, Khader M.
Rabczuk, Timon
Zhuang, Xiaoying
Author_xml – sequence: 1
  givenname: Khader M.
  orcidid: 0000-0001-9898-8421
  surname: Hamdia
  fullname: Hamdia, Khader M.
  organization: Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover
– sequence: 2
  givenname: Xiaoying
  orcidid: 0000-0001-6562-2618
  surname: Zhuang
  fullname: Zhuang, Xiaoying
  email: xiaoying.zhuang@tdtu.edu.vn
  organization: Division of Computational Mechanics, Ton Duc Thang University, Faculty of Civil Engineering, Ton Duc Thang University
– sequence: 3
  givenname: Timon
  surname: Rabczuk
  fullname: Rabczuk, Timon
  organization: Institute of Structural Mechanics, Bauhaus-Universität Weimar
BookMark eNp9kEtLQzEQhYMoWKt_wFXA9dXJ4z6yLMUXCG66D2nu5DalTWpyC-qvN3oFd64GzpxzZvguyGmIAQm5ZnDLANq7DFBzVgGHCmoQdfV-QmZMClEJqLtTMgMly7qR4pxc5LwFANl09YzYRaDonLcew0jjYfR7_2lGHwM1h0OKxm6oi4n2mP0QfBjovkg-IN2hSZMQe9xlujYZe1pyAwYcvaVmN8Tkx83-kpw5s8t49TvnZPVwv1o-VS-vj8_LxUtlJVdjZbExXa14b4Ab4dataNbYqtow3tRKWMea3rZMMXDSGtfzTipmGXOiF6ZFMSc3U215--2IedTbeEyhXNRcqoYr2QleXHxy2RRzTuj0Ifm9SR-agf5mqSeWurDUPyz1ewmJKZSLOQyY_qr_SX0B0WN6yw
CitedBy_id crossref_primary_10_3390_app122311997
crossref_primary_10_1007_s44291_024_00007_0
crossref_primary_10_1021_acsmaterialslett_2c00734
crossref_primary_10_3390_app11178258
crossref_primary_10_3390_app14114426
crossref_primary_10_1007_s11042_023_15467_x
crossref_primary_10_1016_j_asoc_2020_106734
crossref_primary_10_1016_j_envres_2023_116290
crossref_primary_10_3390_sym13030428
crossref_primary_10_1002_nme_6828
crossref_primary_10_1007_s10668_023_04257_y
crossref_primary_10_1016_j_comnet_2023_110085
crossref_primary_10_3390_computers11050070
crossref_primary_10_1007_s00707_023_03691_3
crossref_primary_10_1080_01496395_2024_2330677
crossref_primary_10_1080_08956308_2023_2236475
crossref_primary_10_1002_er_7879
crossref_primary_10_1007_s00158_022_03415_6
crossref_primary_10_1016_j_cjche_2024_03_021
crossref_primary_10_3390_biomimetics8080574
crossref_primary_10_1155_2022_3106672
crossref_primary_10_12677_CSA_2023_135096
crossref_primary_10_3846_jcem_2024_21356
crossref_primary_10_1007_s11709_023_0940_7
crossref_primary_10_1007_s10660_023_09753_x
crossref_primary_10_1016_j_crgsc_2022_100325
crossref_primary_10_1007_s11709_024_1039_5
crossref_primary_10_1080_21655979_2023_2244232
crossref_primary_10_20964_2021_11_10
crossref_primary_10_3934_mbe_2023512
crossref_primary_10_1016_j_tust_2023_105319
crossref_primary_10_1039_D3YA00104K
crossref_primary_10_1007_s10489_022_03799_4
crossref_primary_10_3390_s20164449
crossref_primary_10_1007_s11709_024_1041_y
crossref_primary_10_32604_iasc_2022_021461
crossref_primary_10_1016_j_scitotenv_2022_154124
crossref_primary_10_1007_s00466_023_02276_0
crossref_primary_10_1088_1402_4896_ad05ae
crossref_primary_10_1088_2631_8695_ad2ab7
crossref_primary_10_1007_s11227_023_05775_2
crossref_primary_10_1016_j_aej_2021_04_098
crossref_primary_10_1007_s11709_021_0719_7
crossref_primary_10_1155_2021_2115653
crossref_primary_10_1016_j_istruc_2023_105173
crossref_primary_10_1007_s40722_023_00282_1
crossref_primary_10_3390_logistics5030061
crossref_primary_10_1016_j_triboint_2023_108411
crossref_primary_10_3233_AIC_230063
crossref_primary_10_1080_01691864_2024_2370507
crossref_primary_10_61186_ist_202401_01_03
crossref_primary_10_1038_s41598_023_39790_3
crossref_primary_10_1002_htj_22568
crossref_primary_10_1016_j_rinp_2023_106408
crossref_primary_10_1002_smsc_202300185
crossref_primary_10_1007_s41870_023_01725_6
crossref_primary_10_1016_j_oceaneng_2022_112839
crossref_primary_10_1007_s00521_021_06288_w
crossref_primary_10_1007_s11042_023_16788_7
crossref_primary_10_3390_app122312487
crossref_primary_10_1007_s11709_022_0878_1
crossref_primary_10_3390_math12081199
crossref_primary_10_1016_j_asoc_2022_109371
crossref_primary_10_1007_s11709_020_0712_6
crossref_primary_10_23919_JSEE_2022_000031
crossref_primary_10_1002_pc_27969
crossref_primary_10_3390_ma17092074
crossref_primary_10_1007_s00466_024_02475_3
crossref_primary_10_1007_s11760_021_01990_7
crossref_primary_10_1016_j_envres_2023_118047
crossref_primary_10_1021_acs_iecr_2c04239
crossref_primary_10_1186_s40537_021_00485_z
crossref_primary_10_3390_pr9101784
crossref_primary_10_3390_app13106069
crossref_primary_10_1155_2024_8316781
crossref_primary_10_1007_s12633_021_01349_0
crossref_primary_10_1063_5_0214940
crossref_primary_10_1007_s11227_022_04801_z
crossref_primary_10_32604_cmc_2023_031194
crossref_primary_10_1109_TVCG_2022_3209469
crossref_primary_10_7717_peerj_cs_1860
crossref_primary_10_1007_s11709_021_0727_7
crossref_primary_10_32604_csse_2023_035149
crossref_primary_10_3390_electronics11213591
crossref_primary_10_3390_foods12030619
crossref_primary_10_3390_app11146483
crossref_primary_10_1007_s40430_023_04525_y
crossref_primary_10_1016_j_cma_2024_117122
crossref_primary_10_1080_09243046_2024_2355414
crossref_primary_10_1088_2631_8695_ac7a0b
crossref_primary_10_1007_s11051_022_05499_z
crossref_primary_10_32604_cmc_2023_036148
crossref_primary_10_1016_j_apsadv_2023_100523
crossref_primary_10_1007_s12205_021_0378_1
crossref_primary_10_3390_s22020482
crossref_primary_10_1142_S0218348X23401485
crossref_primary_10_1016_j_fuel_2023_130457
crossref_primary_10_1080_15397734_2022_2094407
crossref_primary_10_1007_s11709_021_0717_9
crossref_primary_10_1016_j_asoc_2022_109556
crossref_primary_10_1007_s11831_021_09700_9
crossref_primary_10_1007_s11042_023_17273_x
crossref_primary_10_1007_s11269_024_03879_9
crossref_primary_10_1007_s11709_024_1077_z
crossref_primary_10_1098_rsta_2022_0397
crossref_primary_10_1016_j_engappai_2023_106711
crossref_primary_10_32933_ActaInnovations_43_5
crossref_primary_10_1007_s11709_024_1015_0
crossref_primary_10_1007_s40031_023_00876_1
crossref_primary_10_3390_app12199892
crossref_primary_10_1016_j_eswa_2021_115153
crossref_primary_10_12677_mos_2024_133267
crossref_primary_10_1155_2022_7792958
crossref_primary_10_32604_cmc_2023_038564
crossref_primary_10_1016_j_ijleo_2022_170470
crossref_primary_10_1016_j_geoen_2023_212618
crossref_primary_10_1061__ASCE_PS_1949_1204_0000596
crossref_primary_10_1002_cpe_6988
crossref_primary_10_1002_nme_7176
crossref_primary_10_1016_j_eswa_2023_120373
Cites_doi 10.1080/19942060.2018.1482476
10.1080/19942060.2018.1502688
10.1109/TSMC.1985.6313399
10.1016/j.neucom.2017.07.028
10.1016/j.engfracmech.2012.10.027
10.1016/j.neunet.2014.09.003
10.1109/72.329697
10.1007/978-981-13-0411-8_4
10.28991/esj-2019-01197
10.1016/S0032-3861(03)00546-9
10.1016/j.compscitech.2013.11.015
10.1016/j.finel.2019.07.001
10.1007/s10853-016-0468-5
10.1007/s11831-019-09382-4
10.1155/2013/305713
10.1038/nature14539
10.1016/j.compositesb.2011.11.026
10.1016/j.amc.2009.02.044
10.1080/19942060.2018.1448896
10.1016/j.disopt.2016.01.005
10.1109/TSMCB.2003.818557
10.28991/cej-03091149
10.7551/mitpress/1090.001.0001
10.1016/j.measurement.2014.08.007
10.1016/j.commatsci.2015.02.045
10.1016/j.compositesa.2015.01.027
10.3390/w9030186
10.28991/cej-2019-03091344
10.1016/j.compscitech.2004.11.003
10.5281/zenodo.1333881
10.1080/19942060.2018.1452296
10.1016/j.jhydrol.2018.11.069
10.1016/j.commatsci.2012.01.012
10.3144/expresspolymlett.2017.52
10.28991/esj-2020-01205
10.1016/j.compstruct.2012.04.033
10.1016/j.compscitech.2016.02.012
10.1016/j.engfracmech.2017.08.002
10.1533/9780857099440
10.1007/BF00540703
10.1016/j.compscitech.2009.12.024
10.1109/21.256541
10.1016/S0045-7949(01)00039-6
10.1016/j.compscitech.2015.02.014
10.1016/j.neucom.2015.03.060
10.1002/9781119994374
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05035-x
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1933
ExternalDocumentID 10_1007_s00521_020_05035_x
GrantInformation_xml – fundername: Alexander von Humboldt-Stiftung
  grantid: Sofja Kovalevskaja 2015
  funderid: http://dx.doi.org/10.13039/100005156
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-ce6a8592da02a3fb736be795a126593cf16dc71910f4cafd28491c11f3d3a7e3
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Thu Oct 10 18:02:40 EDT 2024
Thu Sep 12 19:02:00 EDT 2024
Sat Dec 16 12:10:05 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep neural networks
Genetic algorithm
Fracture energy
Optimization
Polymer nanocomposites
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-ce6a8592da02a3fb736be795a126593cf16dc71910f4cafd28491c11f3d3a7e3
ORCID 0000-0001-6562-2618
0000-0001-9898-8421
OpenAccessLink https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s00521-020-05035-x
PQID 2496294832
PQPubID 2043988
PageCount 11
ParticipantIDs proquest_journals_2496294832
crossref_primary_10_1007_s00521_020_05035_x
springer_journals_10_1007_s00521_020_05035_x
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Thostenson, Li, Chou (CR37) 2005; 65
Sarkheyli, Zain, Sharif (CR10) 2015; 166
Shabanzadeh, Senu, Shameli, Tabar (CR13) 2013
Fotovatikhah, Herrera, Shamshirband, Kw, Faizollahzadeh Ardabili, Piran (CR16) 2018; 12
Takagi, Sugeno (CR27) 1985; 1
Zuo, Blackman, Williams, Steininger (CR48) 2015; 113
Ross (CR25) 2010
Hashemi, Rahmani (CR29) 2018; 4
Morrison, Jacobson, Sauppe, Sewell (CR28) 2016; 19
Huang, Kinloch (CR39) 1992; 27
Sharafati, Haghbin, Motta, Yaseen (CR11) 2019
Jang (CR26) 1993; 23
Zamanian, Mortezaei, Salehnia, Jam (CR46) 2013; 97
Hamdia, Rabczuk, Wahab (CR44) 2018
LeCun, Bengio, Hinton (CR6) 2015; 521
Michalski, Carbonell, Mitchell (CR5) 2013
Silani, Ziaei-Rad, Esfahanian, Tan (CR43) 2012; 94
Juang (CR7) 2004; 34
Argon, Cohen (CR36) 2003; 44
Rafiq, Bugmann, Easterbrook (CR22) 2001; 79
Hamdia, Ghasemi, Bazi, AlHichri, Alajlan, Rabczuk (CR21) 2019; 165
Faizollahzadeh Ardabili, Najafi, Shamshirband, Minaei Bidgoli, Deo, Kw (CR17) 2018; 12
Cui, Guo, Wang (CR34) 2019; 5
Carolan, Ivankovic, Kinloch, Sprenger, Taylor (CR49) 2017; 52
Fazilat, Ghatarband, Mazinani, Asadi, Shiri, Kalaee (CR12) 2012; 58
Scharnberg, de Loreto, Alves (CR35) 2020; 4
Moazenzadeh, Mohammadi, Shamshirband, Kw (CR2) 2018; 12
Deep, Singh, Kansal, Mohan (CR32) 2009; 212
Hamdia, Zhuang, He, Rabczuk (CR38) 2016; 126
Karavasilis, Tsakiroglou (CR30) 2019; 3
Yaseen, Sulaiman, Deo, Chau (CR18) 2019; 569
Suratgar, Tavakoli, Hoseinabadi (CR24) 2005; 6
Haykin (CR19) 1994
Kononenko, Kukar (CR4) 2007
Zappalorto, Pontefisso, Fabrizi, Quaresimin (CR47) 2015; 72
Najafi, Faizollahzadeh Ardabili, Shamshirband, Kw, Rabczuk (CR3) 2018; 12
Goldberg (CR33) 1989
Kw (CR1) 2017; 9
Hagan, Menhaj (CR23) 1994; 5
Holland (CR31) 1992
Msekh, Cuong, Zi, Areias, Zhuang, Rabczuk (CR45) 2018; 188
Manngård, Kronqvist, Böling (CR9) 2018; 272
Schmidhuber (CR20) 2015; 61
Williams (CR40) 2010; 70
Momeni, Nazir, Armaghani, Maizir (CR8) 2014; 57
Mesbahi, Semnani, Khorasani (CR14) 2012; 43
Quaresimin, Salviato, Zappalorto (CR41) 2014; 91
Lauke (CR42) 2017; 11
Hamdia, Lahmer, Nguyen-Thoi, Rabczuk (CR15) 2015; 102
MA Msekh (5035_CR45) 2018; 188
DE Goldberg (5035_CR33) 1989
S Faizollahzadeh Ardabili (5035_CR17) 2018; 12
RS Michalski (5035_CR5) 2013
M Zappalorto (5035_CR47) 2015; 72
D Carolan (5035_CR49) 2017; 52
K Zuo (5035_CR48) 2015; 113
S Haykin (5035_CR19) 1994
A Argon (5035_CR36) 2003; 44
AH Mesbahi (5035_CR14) 2012; 43
KM Hamdia (5035_CR44) 2018
CF Juang (5035_CR7) 2004; 34
R Moazenzadeh (5035_CR2) 2018; 12
I Kononenko (5035_CR4) 2007
P Shabanzadeh (5035_CR13) 2013
TJ Ross (5035_CR25) 2010
M Rafiq (5035_CR22) 2001; 79
T Takagi (5035_CR27) 1985; 1
KM Hamdia (5035_CR38) 2016; 126
ZM Yaseen (5035_CR18) 2019; 569
KM Hamdia (5035_CR21) 2019; 165
AA Suratgar (5035_CR24) 2005; 6
DR Morrison (5035_CR28) 2016; 19
Y Huang (5035_CR39) 1992; 27
B Najafi (5035_CR3) 2018; 12
J Schmidhuber (5035_CR20) 2015; 61
K Deep (5035_CR32) 2009; 212
M Silani (5035_CR43) 2012; 94
ET Thostenson (5035_CR37) 2005; 65
B Lauke (5035_CR42) 2017; 11
Y LeCun (5035_CR6) 2015; 521
F Fotovatikhah (5035_CR16) 2018; 12
M Karavasilis (5035_CR30) 2019; 3
JH Holland (5035_CR31) 1992
M Quaresimin (5035_CR41) 2014; 91
A Sharafati (5035_CR11) 2019
KM Hamdia (5035_CR15) 2015; 102
Chau Kw (5035_CR1) 2017; 9
MT Hagan (5035_CR23) 1994; 5
C Cui (5035_CR34) 2019; 5
E Momeni (5035_CR8) 2014; 57
H Fazilat (5035_CR12) 2012; 58
M Zamanian (5035_CR46) 2013; 97
ARA Scharnberg (5035_CR35) 2020; 4
A Sarkheyli (5035_CR10) 2015; 166
J Williams (5035_CR40) 2010; 70
JSR Jang (5035_CR26) 1993; 23
M Manngård (5035_CR9) 2018; 272
SM Hashemi (5035_CR29) 2018; 4
References_xml – volume: 12
  start-page: 584
  issue: 1
  year: 2018
  end-page: 597
  ident: CR2
  article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern iran
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1482476
  contributor:
    fullname: Kw
– volume: 12
  start-page: 611
  issue: 1
  year: 2018
  end-page: 624
  ident: CR3
  article-title: Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1502688
  contributor:
    fullname: Rabczuk
– volume: 1
  start-page: 116
  year: 1985
  end-page: 132
  ident: CR27
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
  contributor:
    fullname: Sugeno
– volume: 272
  start-page: 660
  year: 2018
  end-page: 667
  ident: CR9
  article-title: Structural learning in artificial neural networks using sparse optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.028
  contributor:
    fullname: Böling
– volume: 97
  start-page: 193
  year: 2013
  end-page: 206
  ident: CR46
  article-title: Fracture toughness of epoxy polymer modified with nanosilica particles: particle size effect
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.10.027
  contributor:
    fullname: Jam
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR20
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
  contributor:
    fullname: Schmidhuber
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  end-page: 993
  ident: CR23
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.329697
  contributor:
    fullname: Menhaj
– start-page: 41
  year: 2018
  end-page: 51
  ident: CR44
  article-title: Key parameters for fracture toughness of particle/polymer nanocomposites; sensitivity analysis via xfem modeling approach
  publication-title: Proceedings of the 7th International Conference on fracture, fatigue and wear
  doi: 10.1007/978-981-13-0411-8_4
  contributor:
    fullname: Wahab
– volume: 3
  start-page: 344
  issue: 6
  year: 2019
  end-page: 360
  ident: CR30
  article-title: Synthesis of aqueous suspensions of zero-valent iron nanoparticles (nZVI) from plant extracts: experimental study and numerical modeling
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2019-01197
  contributor:
    fullname: Tsakiroglou
– volume: 44
  start-page: 6013
  issue: 19
  year: 2003
  end-page: 6032
  ident: CR36
  article-title: Toughenability of polymers
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00546-9
  contributor:
    fullname: Cohen
– volume: 91
  start-page: 16
  year: 2014
  end-page: 21
  ident: CR41
  article-title: A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2013.11.015
  contributor:
    fullname: Zappalorto
– volume: 165
  start-page: 21
  year: 2019
  end-page: 30
  ident: CR21
  article-title: A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2019.07.001
  contributor:
    fullname: Rabczuk
– year: 1989
  ident: CR33
  publication-title: Genetic algorithms in search. Optimization and machine learning
  contributor:
    fullname: Goldberg
– volume: 52
  start-page: 1767
  issue: 3
  year: 2017
  end-page: 1788
  ident: CR49
  article-title: Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices
  publication-title: J Mater Sci
  doi: 10.1007/s10853-016-0468-5
  contributor:
    fullname: Taylor
– year: 2019
  ident: CR11
  article-title: The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: a comprehensive review, assessment and possible future research direction
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09382-4
  contributor:
    fullname: Yaseen
– year: 2013
  ident: CR13
  article-title: Artificial intelligence in numerical modeling of silver nanoparticles prepared in montmorillonite interlayer space
  publication-title: J Chem
  doi: 10.1155/2013/305713
  contributor:
    fullname: Tabar
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: CR6
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Hinton
– volume: 43
  start-page: 549
  issue: 2
  year: 2012
  end-page: 558
  ident: CR14
  article-title: Performance prediction of a specific wear rate in epoxy nanocomposites with various composition content of polytetrafluoroethylen (PTFE), graphite, short carbon fibers (CF) and nano-tio2 using adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2011.11.026
  contributor:
    fullname: Khorasani
– volume: 212
  start-page: 505
  issue: 2
  year: 2009
  end-page: 518
  ident: CR32
  article-title: A real coded genetic algorithm for solving integer and mixed integer optimization problems
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.02.044
  contributor:
    fullname: Mohan
– volume: 12
  start-page: 411
  issue: 1
  year: 2018
  end-page: 437
  ident: CR16
  article-title: Survey of computational intelligence as basis to big flood management: challenges, research directions and future work
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1448896
  contributor:
    fullname: Piran
– year: 1994
  ident: CR19
  publication-title: Neural networks: a comprehensive foundation
  contributor:
    fullname: Haykin
– volume: 19
  start-page: 79
  year: 2016
  end-page: 102
  ident: CR28
  article-title: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning
  publication-title: Discrete Optim
  doi: 10.1016/j.disopt.2016.01.005
  contributor:
    fullname: Sewell
– volume: 34
  start-page: 997
  issue: 2
  year: 2004
  end-page: 1006
  ident: CR7
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2003.818557
  contributor:
    fullname: Juang
– volume: 4
  start-page: 2186
  issue: 9
  year: 2018
  end-page: 2196
  ident: CR29
  article-title: Numerical comparison of the performance of genetic algorithm and particle swarm optimization in excavations
  publication-title: Civil Eng J
  doi: 10.28991/cej-03091149
  contributor:
    fullname: Rahmani
– year: 1992
  ident: CR31
  publication-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  doi: 10.7551/mitpress/1090.001.0001
  contributor:
    fullname: Holland
– volume: 57
  start-page: 122
  year: 2014
  end-page: 131
  ident: CR8
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
  contributor:
    fullname: Maizir
– volume: 102
  start-page: 304
  year: 2015
  end-page: 313
  ident: CR15
  article-title: Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2015.02.045
  contributor:
    fullname: Rabczuk
– volume: 72
  start-page: 58
  year: 2015
  end-page: 64
  ident: CR47
  article-title: Mechanical behaviour of epoxy/silica nanocomposites: experiments and modelling
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2015.01.027
  contributor:
    fullname: Quaresimin
– volume: 9
  start-page: 186
  issue: 3
  year: 2017
  ident: CR1
  article-title: Use of meta-heuristic techniques in rainfall-runoff modelling
  publication-title: Water
  doi: 10.3390/w9030186
  contributor:
    fullname: Kw
– volume: 5
  start-page: 1452
  issue: 7
  year: 2019
  end-page: 1464
  ident: CR34
  article-title: Fatigue analysis for void repair of cement concrete pavement with under slab by polymer grouting
  publication-title: Civil Eng J
  doi: 10.28991/cej-2019-03091344
  contributor:
    fullname: Wang
– volume: 65
  start-page: 491
  issue: 3
  year: 2005
  end-page: 516
  ident: CR37
  article-title: Nanocomposites in context
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2004.11.003
  contributor:
    fullname: Chou
– volume: 6
  start-page: 46
  issue: 1
  year: 2005
  end-page: 48
  ident: CR24
  article-title: Modified levenberg-marquardt method for neural networks training
  publication-title: World Acad Sci Eng Technol
  doi: 10.5281/zenodo.1333881
  contributor:
    fullname: Hoseinabadi
– volume: 12
  start-page: 438
  issue: 1
  year: 2018
  end-page: 458
  ident: CR17
  article-title: Computational intelligence approach for modeling hydrogen production: a review
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1452296
  contributor:
    fullname: Kw
– year: 2013
  ident: CR5
  publication-title: Machine learning: an artificial intelligence approach
  contributor:
    fullname: Mitchell
– volume: 569
  start-page: 387
  year: 2019
  end-page: 408
  ident: CR18
  article-title: An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.069
  contributor:
    fullname: Chau
– volume: 58
  start-page: 31
  year: 2012
  end-page: 37
  ident: CR12
  article-title: Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.01.012
  contributor:
    fullname: Kalaee
– volume: 11
  start-page: 545
  issue: 7
  year: 2017
  ident: CR42
  article-title: Fracture toughness modelling of polymers filled with inhomogeneously distributed rigid spherical particles
  publication-title: Express Polym Lett
  doi: 10.3144/expresspolymlett.2017.52
  contributor:
    fullname: Lauke
– volume: 4
  start-page: 11
  issue: 1
  year: 2020
  end-page: 17
  ident: CR35
  article-title: Optical and structural characterization of Bi2FexNbO7 nanoparticles for environmental applications
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2020-01205
  contributor:
    fullname: Alves
– volume: 94
  start-page: 3142
  issue: 11
  year: 2012
  end-page: 3148
  ident: CR43
  article-title: On the experimental and numerical investigation of clay/epoxy nanocomposites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.04.033
  contributor:
    fullname: Tan
– volume: 126
  start-page: 122
  year: 2016
  end-page: 129
  ident: CR38
  article-title: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2016.02.012
  contributor:
    fullname: Rabczuk
– volume: 188
  start-page: 287
  year: 2018
  end-page: 299
  ident: CR45
  article-title: Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.08.002
  contributor:
    fullname: Rabczuk
– year: 2007
  ident: CR4
  publication-title: Machine learning and data mining: introduction to principles and algorithms
  doi: 10.1533/9780857099440
  contributor:
    fullname: Kukar
– volume: 27
  start-page: 2763
  issue: 10
  year: 1992
  end-page: 2769
  ident: CR39
  article-title: Modelling of the toughening mechanisms in rubber-modified epoxy polymers. part II a quantitative description of the microstructure-fracture property relationships
  publication-title: J Mater Sci
  doi: 10.1007/BF00540703
  contributor:
    fullname: Kinloch
– volume: 70
  start-page: 885
  issue: 6
  year: 2010
  end-page: 891
  ident: CR40
  article-title: Particle toughening of polymers by plastic void growth
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2009.12.024
  contributor:
    fullname: Williams
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  end-page: 685
  ident: CR26
  article-title: Anfis: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
  contributor:
    fullname: Jang
– volume: 79
  start-page: 1541
  issue: 17
  year: 2001
  end-page: 1552
  ident: CR22
  article-title: Neural network design for engineering applications
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(01)00039-6
  contributor:
    fullname: Easterbrook
– volume: 113
  start-page: 9
  year: 2015
  end-page: 18
  ident: CR48
  article-title: The mechanical behaviour of ZnO nano-particle modified styrene acrylonitrile copolymers
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2015.02.014
  contributor:
    fullname: Steininger
– volume: 166
  start-page: 357
  year: 2015
  end-page: 366
  ident: CR10
  article-title: Robust optimization of ANFIS based on a new modified GA
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.060
  contributor:
    fullname: Sharif
– year: 2010
  ident: CR25
  publication-title: Fuzzy logic with engineering applications
  doi: 10.1002/9781119994374
  contributor:
    fullname: Ross
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 5035_CR6
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Y LeCun
– volume: 61
  start-page: 85
  year: 2015
  ident: 5035_CR20
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
  contributor:
    fullname: J Schmidhuber
– volume: 12
  start-page: 584
  issue: 1
  year: 2018
  ident: 5035_CR2
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1482476
  contributor:
    fullname: R Moazenzadeh
– volume: 27
  start-page: 2763
  issue: 10
  year: 1992
  ident: 5035_CR39
  publication-title: J Mater Sci
  doi: 10.1007/BF00540703
  contributor:
    fullname: Y Huang
– volume: 43
  start-page: 549
  issue: 2
  year: 2012
  ident: 5035_CR14
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2011.11.026
  contributor:
    fullname: AH Mesbahi
– volume: 212
  start-page: 505
  issue: 2
  year: 2009
  ident: 5035_CR32
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.02.044
  contributor:
    fullname: K Deep
– volume: 12
  start-page: 411
  issue: 1
  year: 2018
  ident: 5035_CR16
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1448896
  contributor:
    fullname: F Fotovatikhah
– volume: 58
  start-page: 31
  year: 2012
  ident: 5035_CR12
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.01.012
  contributor:
    fullname: H Fazilat
– volume: 3
  start-page: 344
  issue: 6
  year: 2019
  ident: 5035_CR30
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2019-01197
  contributor:
    fullname: M Karavasilis
– volume: 4
  start-page: 2186
  issue: 9
  year: 2018
  ident: 5035_CR29
  publication-title: Civil Eng J
  doi: 10.28991/cej-03091149
  contributor:
    fullname: SM Hashemi
– volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1992
  ident: 5035_CR31
  doi: 10.7551/mitpress/1090.001.0001
  contributor:
    fullname: JH Holland
– volume: 4
  start-page: 11
  issue: 1
  year: 2020
  ident: 5035_CR35
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2020-01205
  contributor:
    fullname: ARA Scharnberg
– volume: 126
  start-page: 122
  year: 2016
  ident: 5035_CR38
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2016.02.012
  contributor:
    fullname: KM Hamdia
– volume: 113
  start-page: 9
  year: 2015
  ident: 5035_CR48
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2015.02.014
  contributor:
    fullname: K Zuo
– volume: 72
  start-page: 58
  year: 2015
  ident: 5035_CR47
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2015.01.027
  contributor:
    fullname: M Zappalorto
– volume-title: Machine learning: an artificial intelligence approach
  year: 2013
  ident: 5035_CR5
  contributor:
    fullname: RS Michalski
– volume: 57
  start-page: 122
  year: 2014
  ident: 5035_CR8
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
  contributor:
    fullname: E Momeni
– volume: 6
  start-page: 46
  issue: 1
  year: 2005
  ident: 5035_CR24
  publication-title: World Acad Sci Eng Technol
  doi: 10.5281/zenodo.1333881
  contributor:
    fullname: AA Suratgar
– volume: 70
  start-page: 885
  issue: 6
  year: 2010
  ident: 5035_CR40
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2009.12.024
  contributor:
    fullname: J Williams
– volume: 188
  start-page: 287
  year: 2018
  ident: 5035_CR45
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.08.002
  contributor:
    fullname: MA Msekh
– volume-title: Neural networks: a comprehensive foundation
  year: 1994
  ident: 5035_CR19
  contributor:
    fullname: S Haykin
– volume: 34
  start-page: 997
  issue: 2
  year: 2004
  ident: 5035_CR7
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2003.818557
  contributor:
    fullname: CF Juang
– volume: 12
  start-page: 611
  issue: 1
  year: 2018
  ident: 5035_CR3
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1502688
  contributor:
    fullname: B Najafi
– volume: 102
  start-page: 304
  year: 2015
  ident: 5035_CR15
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2015.02.045
  contributor:
    fullname: KM Hamdia
– year: 2013
  ident: 5035_CR13
  publication-title: J Chem
  doi: 10.1155/2013/305713
  contributor:
    fullname: P Shabanzadeh
– volume: 12
  start-page: 438
  issue: 1
  year: 2018
  ident: 5035_CR17
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1452296
  contributor:
    fullname: S Faizollahzadeh Ardabili
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 5035_CR23
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.329697
  contributor:
    fullname: MT Hagan
– volume: 569
  start-page: 387
  year: 2019
  ident: 5035_CR18
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.069
  contributor:
    fullname: ZM Yaseen
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 5035_CR26
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
  contributor:
    fullname: JSR Jang
– volume: 44
  start-page: 6013
  issue: 19
  year: 2003
  ident: 5035_CR36
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00546-9
  contributor:
    fullname: A Argon
– volume-title: Machine learning and data mining: introduction to principles and algorithms
  year: 2007
  ident: 5035_CR4
  doi: 10.1533/9780857099440
  contributor:
    fullname: I Kononenko
– start-page: 41
  volume-title: Proceedings of the 7th International Conference on fracture, fatigue and wear
  year: 2018
  ident: 5035_CR44
  doi: 10.1007/978-981-13-0411-8_4
  contributor:
    fullname: KM Hamdia
– volume: 79
  start-page: 1541
  issue: 17
  year: 2001
  ident: 5035_CR22
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(01)00039-6
  contributor:
    fullname: M Rafiq
– volume: 94
  start-page: 3142
  issue: 11
  year: 2012
  ident: 5035_CR43
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.04.033
  contributor:
    fullname: M Silani
– volume: 5
  start-page: 1452
  issue: 7
  year: 2019
  ident: 5035_CR34
  publication-title: Civil Eng J
  doi: 10.28991/cej-2019-03091344
  contributor:
    fullname: C Cui
– volume: 1
  start-page: 116
  year: 1985
  ident: 5035_CR27
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
  contributor:
    fullname: T Takagi
– volume: 11
  start-page: 545
  issue: 7
  year: 2017
  ident: 5035_CR42
  publication-title: Express Polym Lett
  doi: 10.3144/expresspolymlett.2017.52
  contributor:
    fullname: B Lauke
– year: 2019
  ident: 5035_CR11
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09382-4
  contributor:
    fullname: A Sharafati
– volume: 65
  start-page: 491
  issue: 3
  year: 2005
  ident: 5035_CR37
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2004.11.003
  contributor:
    fullname: ET Thostenson
– volume-title: Fuzzy logic with engineering applications
  year: 2010
  ident: 5035_CR25
  doi: 10.1002/9781119994374
  contributor:
    fullname: TJ Ross
– volume: 91
  start-page: 16
  year: 2014
  ident: 5035_CR41
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2013.11.015
  contributor:
    fullname: M Quaresimin
– volume: 97
  start-page: 193
  year: 2013
  ident: 5035_CR46
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.10.027
  contributor:
    fullname: M Zamanian
– volume: 9
  start-page: 186
  issue: 3
  year: 2017
  ident: 5035_CR1
  publication-title: Water
  doi: 10.3390/w9030186
  contributor:
    fullname: Chau Kw
– volume: 165
  start-page: 21
  year: 2019
  ident: 5035_CR21
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2019.07.001
  contributor:
    fullname: KM Hamdia
– volume: 166
  start-page: 357
  year: 2015
  ident: 5035_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.060
  contributor:
    fullname: A Sarkheyli
– volume-title: Genetic algorithms in search. Optimization and machine learning
  year: 1989
  ident: 5035_CR33
  contributor:
    fullname: DE Goldberg
– volume: 19
  start-page: 79
  year: 2016
  ident: 5035_CR28
  publication-title: Discrete Optim
  doi: 10.1016/j.disopt.2016.01.005
  contributor:
    fullname: DR Morrison
– volume: 272
  start-page: 660
  year: 2018
  ident: 5035_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.028
  contributor:
    fullname: M Manngård
– volume: 52
  start-page: 1767
  issue: 3
  year: 2017
  ident: 5035_CR49
  publication-title: J Mater Sci
  doi: 10.1007/s10853-016-0468-5
  contributor:
    fullname: D Carolan
SSID ssj0004685
Score 2.628553
Snippet Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML models remains a challenge and requires...
Abstract Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML models remains a challenge and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1923
SubjectTerms Adaptive systems
Artificial Intelligence
Artificial neural networks
Complex systems
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Design optimization
Error analysis
Fuzzy logic
Genetic algorithms
Image Processing and Computer Vision
Machine learning
Model accuracy
Nanoparticles
Optimization
Original Article
Polymer matrix composites
Probability and Statistics in Computer Science
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB20vXjxW6xWycGbBneT_cpJqrQUD0WkQm9LNsnqwW6rXaE_30matSroNUuy8JLMTJI38wAuClGmUhhJJReSRkzFVIrQ0FRaASQuWaYdQXaUDJ-i-0k88RduC0-rbGyiM9R6puwd-TUeExImIlyAN_M3alWj7Ouql9DYhDazlZta0L7tjx4ev2VGOlFOPMNYfk_EfdqMS56zN6LYyuxjsC3cuPzpmtbx5q8nUud5Bruw7UNG0lvN8R5smGofdho5BuJ35wGoXkWMqwiBjoTM0BZMfZIlaSqHEwxRiXakDfwVmTompSFeOgIbrC7OgljXpgn2w9VlkxyJfH1GLOqX6SGMB_3x3ZB6DQWq0NPUVJlEZrFgWgZM8rJIeVKYVMQyZEksuCrDRKsUD21BGSlZavRWIlRhWHLNZWr4EbSqWWWOgYgYYymFEUpogqgsygK7ZEkWaAzhCrQEHbhs0Mvnq0oZ-VdNZId1jljnDut82YFuA3Dud80iX89xB64a0Nef_x7t5P_RTmGLWSqKo451oVW_f5gzjCXq4twvmE93accI
  priority: 102
  providerName: ProQuest
Title An efficient optimization approach for designing machine learning models based on genetic algorithm
URI https://link.springer.com/article/10.1007/s00521-020-05035-x
https://www.proquest.com/docview/2496294832
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuHgRPyOKpAdvOsLaffUIyEc0IcZAgqel6zo1ChgYifGv97Vs4OeBy5a0a5e1r32_t_7eewAXEU98wZWwBOPCcqh0LcFtZflCJ0BiggaxIcj2vd7QuRm5o7UftyG75yeSZqNe-brpH5ho-VJ9dqvjLCJwLGIJcwtQbHQfbttf3CFNJk40XDSpx2GZr8zfvXzXR2uQ-eNc1KibTgkGudPOkmXyUlukUU1-_I7huMmX7MFuBj9JYykv-7ClJgdQylM7kGylH4JsTIgy0SVQKZEp7ivjzGGT5FHICcJdEhsCCL6djA0rU5EsDQUW6Bw7c6LVZEywHUqqdpgk4vVxOntOn8ZHMOi0B62eleVjsCRqrdSSyhOBy2ks6lSwJPKZFymfu8KmnsuZTGwvlj4agPXEkSKJUfNxW9p2wmImfMWOoTCZTtQJEO4iLpOIdmxVd5IoibBJ4AX1GOFghLtKGS7zSQnfllE3wlV8ZTN8IQ5faIYvfC9DJZ-3MFuB8xDNSo9yBzesMlzl87Cu_r-3080eP4MdqmkuhpZWgUI6W6hzxClpVIXtoNOtonQ2r5udaialeG-2-3f3WNvyWngd0sYnylPk3w
link.rule.ids 315,786,790,12786,21409,27946,27947,33397,33768,41105,41144,41547,42174,42213,42616,43624,43829,51600,52135,52258
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwMhECZaD3rxbaxW5eBNiV3YFyfTGGvV2lNNeiMsDz3YbbVr0p_vgKxVE72ygU0-YGaAb-ZD6LTgNpPcSCIZlySmKiGSR4Zk0gkgMUlz7Qmyg7T3GN-NklG4cJsFWmVtE72h1hPl7sgv4JiQUh7DArycvhKnGuVeV4OExjJaicESu9r5effmW16kl-SEE4xj98QsJM341Dl3Hwqt1D0Fu7KN85-OaRFt_nog9X6nu4nWQ8CIO58zvIWWTLmNNmoxBhz25g5SnRIbXw8C3AiegCUYhxRLXNcNxxCgYu0pG_ArPPY8SoODcAQ0OFWcGXaOTWPoB2vLpThi-fIESFTP41007F4Pr3okKCgQBX6mIsqkMk841bJNJbNFxtLCZDyREU0TzpSNUq0yOLK1bayk1eCreKSiyDLNZGbYHmqUk9LsI8wTiKQUxCeRace2sAV0ydO8rSGAK8AONNFZjZ6YftbJEF8VkT3WArAWHmsxb6JWDbAIe2YmFjPcROc16IvPf4928P9oJ2i1N3zoi_7t4P4QrVFHSvEkshZqVG_v5giiiqo49kvnA4IlyI0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSIiFN6JQwAMbRE3sxInHqlCVhyqGInWzHD8AiaZVGyR-Pmc3aQuCgTWJHeVi-76zv-8Oocuc21RyIwNJuQxiopJA8sgEqXQFkKgkmfYE2T7rPcf3w2S4ouL3bPf6SHKuaXBZmoqyNdG2tRC-ud1MCIOJO8h1SRcBRW7EAO1d9vwO66woI31RTohhHL8nppVs5vc-vrumJd78cUTqPU93F21XkBG35_94D62ZYh_t1OUYcDU7D5BqF9j4jBDwIXgMa8GoElniOnM4BoiKtSdtwKvwyDMpDa5KR8AFVxdnhp1r0xjawehyIkcs31_G07fydXSIBt3bQacXVDUUAgWepgyUYTJLONEyJJLaPKUsNylPZERYwqmyEdMqhaAttLGSVoO34pGKIks1lamhR2i9GBfmGGGeAJZSgFAiE8Y2tzk0yVgWaoBwOawEDXRVW09M5pkyxCInsre1AFsLb2vx2UDN2sCimjUzAaEgIzyGRaaBrmujL2__3dvJ_x6_QJtPN13xeNd_OEVbxLFUPKusidbL6Yc5A5hR5ud-JH0BxgbJ-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+optimization+approach+for+designing+machine+learning+models+based+on+genetic+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Hamdia%2C+Khader+M.&rft.au=Zhuang%2C+Xiaoying&rft.au=Rabczuk%2C+Timon&rft.date=2021-03-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=6&rft.spage=1923&rft.epage=1933&rft_id=info:doi/10.1007%2Fs00521-020-05035-x&rft.externalDocID=10_1007_s00521_020_05035_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon