Modular invariance faces precision neutrino data

We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagr...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 5; no. 5; p. 042
Main Author Juan Carlos Criado, Ferruccio Feruglio
Format Journal Article
LanguageEnglish
Published SciPost 01.11.2018
Online AccessGet full text

Cover

Loading…
Abstract We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagrangian parameter. They only depend on the vacuum of the theory, parametrized in terms of a complex modulus and a real field. Thus eight measurable quantities are described by the three vacuum parameters, whose optimization provides an excellent fit to data for the Weinberg operator and a good fit for the seesaw case. Neutrino masses from the Weinberg operator (seesaw) have inverted (normal) ordering. Several sources of potential corrections, such as higher dimensional operators, renormalization group evolution and supersymmetry breaking effects, are carefully discussed and shown not to affect the predictions under reasonable conditions.
AbstractList We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagrangian parameter. They only depend on the vacuum of the theory, parametrized in terms of a complex modulus and a real field. Thus eight measurable quantities are described by the three vacuum parameters, whose optimization provides an excellent fit to data for the Weinberg operator and a good fit for the seesaw case. Neutrino masses from the Weinberg operator (seesaw) have inverted (normal) ordering. Several sources of potential corrections, such as higher dimensional operators, renormalization group evolution and supersymmetry breaking effects, are carefully discussed and shown not to affect the predictions under reasonable conditions.
Author Juan Carlos Criado, Ferruccio Feruglio
Author_xml – sequence: 1
  fullname: Juan Carlos Criado, Ferruccio Feruglio
BookMark eNotjctKAzEYRoMoWGvfwMW8wNQ_yZ9MspTipVCxoK6HTC6aMiYlmQp9e4vKtzhwFue7IucpJ0_IDYUloyjV7auN21yn7eexLsVpgOyMzJhA1qIU_JIsat0BAKNUUylmBJ6zO4ymNDF9mxJNsr4Jxvra7Iu3scacmuQPU4kpN85M5ppcBDNWv_jnnLw_3L-tntrNy-N6dbdpLTI9tXYAzlFoJyRDKgztpAHXSdAULEIICsHCYDsQ3nulUIcBwKmguRio7vicrP-6Lptdvy_xy5Rjn03sf0UuH70pU7Sj71Ex67xHPCVQUFAdDy4wwWQAfvrgP4ynVRI
CitedBy_id crossref_primary_10_1016_j_ppnp_2022_103947
crossref_primary_10_1016_j_physletb_2019_135153
crossref_primary_10_1140_epjc_s10052_024_13666_w
crossref_primary_10_1007_JHEP11_2018_196
crossref_primary_10_1016_j_nuclphysb_2020_115301
crossref_primary_10_1103_PhysRevD_102_026004
crossref_primary_10_1016_j_physletb_2019_03_066
crossref_primary_10_1016_j_dark_2023_101204
crossref_primary_10_1103_RevModPhys_93_015007
crossref_primary_10_1103_PhysRevD_106_035001
crossref_primary_10_1103_PhysRevD_106_115003
crossref_primary_10_1016_j_dark_2024_101440
crossref_primary_10_1007_JHEP07_2023_134
crossref_primary_10_1007_JHEP01_2023_125
crossref_primary_10_3390_universe9120512
crossref_primary_10_1007_JHEP02_2020_045
crossref_primary_10_1007_JHEP06_2021_110
crossref_primary_10_1103_PhysRevD_107_055014
crossref_primary_10_1103_PhysRevD_105_055018
crossref_primary_10_1007_JHEP07_2022_050
crossref_primary_10_1007_JHEP11_2021_007
crossref_primary_10_1093_ptep_ptac141
crossref_primary_10_1103_PhysRevD_111_015010
crossref_primary_10_1007_JHEP09_2023_043
crossref_primary_10_1016_j_physletb_2024_138600
crossref_primary_10_1007_JHEP10_2021_238
crossref_primary_10_1103_PhysRevD_104_123545
crossref_primary_10_1140_epjc_s10052_023_11727_0
crossref_primary_10_1140_epjc_s10052_025_13864_0
crossref_primary_10_1016_j_nuclphysb_2020_115098
crossref_primary_10_1007_JHEP01_2020_144
crossref_primary_10_1007_JHEP04_2021_291
crossref_primary_10_1007_JHEP12_2024_091
crossref_primary_10_1103_PhysRevD_110_035012
crossref_primary_10_1007_JHEP04_2021_206
crossref_primary_10_1007_JHEP05_2020_017
crossref_primary_10_1007_JHEP08_2020_164
crossref_primary_10_1007_JHEP03_2021_161
crossref_primary_10_1007_JHEP09_2019_074
crossref_primary_10_1103_PhysRevD_99_095028
crossref_primary_10_1103_PhysRevD_101_106017
crossref_primary_10_1007_JHEP05_2021_078
crossref_primary_10_1103_PhysRevD_102_105010
crossref_primary_10_1007_JHEP12_2019_030
crossref_primary_10_1007_JHEP11_2023_083
crossref_primary_10_1103_PhysRevD_110_076026
crossref_primary_10_1016_j_nuclphysb_2020_115247
crossref_primary_10_1016_j_nuclphysb_2022_115841
crossref_primary_10_1103_PhysRevX_13_041055
crossref_primary_10_1088_1742_6596_1586_1_012020
crossref_primary_10_1103_PhysRevD_104_115015
crossref_primary_10_1016_j_physletb_2023_137977
crossref_primary_10_1142_S0217751X24500271
crossref_primary_10_1093_ptep_ptab152
crossref_primary_10_1139_cjp_2022_0009
crossref_primary_10_1103_PhysRevD_102_085008
crossref_primary_10_1007_JHEP03_2022_123
crossref_primary_10_1016_j_nuclphysb_2019_114737
crossref_primary_10_1016_j_nuclphysb_2024_116579
crossref_primary_10_1007_JHEP10_2022_071
crossref_primary_10_1016_j_physletb_2021_136843
crossref_primary_10_1007_JHEP04_2019_005
crossref_primary_10_1007_JHEP05_2021_102
crossref_primary_10_1142_S0217751X24410124
crossref_primary_10_1103_PhysRevD_99_046001
crossref_primary_10_1007_JHEP05_2021_242
crossref_primary_10_1016_j_nuclphysb_2021_115534
crossref_primary_10_2139_ssrn_4087088
crossref_primary_10_1007_JHEP07_2021_093
crossref_primary_10_1103_PhysRevD_101_055033
crossref_primary_10_1016_j_nuclphysb_2022_115793
crossref_primary_10_1103_PhysRevD_100_115005
crossref_primary_10_1007_JHEP09_2022_224
crossref_primary_10_1103_PhysRevD_109_115018
crossref_primary_10_1093_ptep_ptab024
crossref_primary_10_1103_PhysRevD_105_055022
crossref_primary_10_1007_JHEP01_2023_036
crossref_primary_10_1007_JHEP08_2022_013
crossref_primary_10_1103_PhysRevD_103_015005
crossref_primary_10_1007_JHEP05_2024_020
crossref_primary_10_1093_ptep_ptaa055
crossref_primary_10_1103_PhysRevD_101_115020
crossref_primary_10_1007_JHEP10_2024_172
crossref_primary_10_1016_j_nuclphysb_2020_115105
crossref_primary_10_1103_PhysRevD_102_045005
crossref_primary_10_1007_JHEP02_2020_097
crossref_primary_10_1093_ptep_ptz137
crossref_primary_10_1103_PhysRevD_101_055046
crossref_primary_10_1103_PhysRevD_102_115035
crossref_primary_10_1103_PhysRevD_100_115037
crossref_primary_10_1007_JHEP03_2023_236
crossref_primary_10_1007_JHEP04_2023_003
crossref_primary_10_1007_JHEP04_2021_239
crossref_primary_10_1103_PhysRevD_105_116002
crossref_primary_10_1007_JHEP02_2020_001
crossref_primary_10_1140_epjc_s10052_021_09667_8
crossref_primary_10_1103_PhysRevD_109_065011
crossref_primary_10_1016_j_nuclphysb_2020_114935
crossref_primary_10_1007_JHEP01_2021_037
crossref_primary_10_1007_JHEP03_2022_149
crossref_primary_10_1016_j_dark_2022_101080
crossref_primary_10_1140_epjc_s10052_021_08845_y
crossref_primary_10_1007_JHEP02_2021_221
crossref_primary_10_1016_j_nuclphysb_2021_115598
crossref_primary_10_1016_j_nuclphysb_2022_115974
crossref_primary_10_1007_JHEP01_2024_121
crossref_primary_10_1007_JHEP11_2022_002
crossref_primary_10_1007_JHEP02_2024_099
crossref_primary_10_1140_epjc_s10052_024_13272_w
crossref_primary_10_1103_PhysRevD_101_015028
crossref_primary_10_1103_PhysRevD_103_056013
crossref_primary_10_1007_JHEP09_2023_196
crossref_primary_10_1142_S0217732324300088
crossref_primary_10_1088_1361_6633_ad52a3
crossref_primary_10_1007_JHEP09_2020_043
crossref_primary_10_1140_epjc_s10052_023_12303_2
crossref_primary_10_1007_JHEP08_2023_081
crossref_primary_10_1088_1674_1137_ac4975
crossref_primary_10_1016_j_physletb_2024_138540
crossref_primary_10_1103_PhysRevD_103_076005
crossref_primary_10_1140_epjc_s10052_023_11718_1
crossref_primary_10_1007_JHEP01_2022_020
crossref_primary_10_1088_1674_1137_ac92d8
crossref_primary_10_1103_PhysRevD_106_095002
crossref_primary_10_1007_JHEP07_2019_165
crossref_primary_10_1007_JHEP07_2021_184
crossref_primary_10_1016_j_cpc_2021_107899
crossref_primary_10_1088_1475_7516_2022_09_049
crossref_primary_10_1007_JHEP10_2021_183
crossref_primary_10_1007_JHEP11_2018_173
crossref_primary_10_1007_JHEP11_2022_074
crossref_primary_10_1007_JHEP03_2021_002
crossref_primary_10_1007_JHEP08_2023_086
crossref_primary_10_1103_PhysRevD_104_076001
crossref_primary_10_1007_JHEP07_2021_068
crossref_primary_10_1007_JHEP09_2024_024
crossref_primary_10_1007_JHEP03_2021_010
crossref_primary_10_1007_JHEP08_2019_134
crossref_primary_10_1007_JHEP11_2020_101
crossref_primary_10_1016_j_physletb_2023_138106
crossref_primary_10_1103_PhysRevD_104_055034
crossref_primary_10_1007_JHEP05_2024_052
crossref_primary_10_1093_ptep_ptad011
crossref_primary_10_1007_JHEP03_2023_141
crossref_primary_10_1093_ptep_ptaf032
crossref_primary_10_1016_j_physletb_2020_135956
crossref_primary_10_1103_PhysRevD_103_095013
crossref_primary_10_1103_PhysRevLett_130_101801
crossref_primary_10_1103_PhysRevD_100_115045
crossref_primary_10_1103_PhysRevD_110_115025
crossref_primary_10_1007_JHEP08_2023_097
crossref_primary_10_1016_j_dark_2023_101333
crossref_primary_10_1007_JHEP11_2020_085
crossref_primary_10_1016_j_dark_2022_101039
crossref_primary_10_1007_JHEP01_2025_191
crossref_primary_10_1103_PhysRevD_108_115038
crossref_primary_10_1007_JHEP04_2019_174
crossref_primary_10_1103_PhysRevD_101_015001
crossref_primary_10_1103_PhysRevD_104_065008
crossref_primary_10_1093_ptep_ptac035
crossref_primary_10_1103_PhysRevD_100_045014
crossref_primary_10_1093_ptep_ptac152
crossref_primary_10_1103_PhysRevD_102_035019
crossref_primary_10_21468_SciPostPhysProc_2_001
ContentType Journal Article
DBID DOA
DOI 10.21468/SciPostPhys.5.5.042
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_482cdee44fb04510873fdf2526f030bc
GroupedDBID 5VS
AAFWJ
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c429t-cb033459d562415a176a0d760910c40ff840c0bc705eee8849fb00d8f935b1973
IEDL.DBID DOA
IngestDate Wed Aug 27 01:23:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-cb033459d562415a176a0d760910c40ff840c0bc705eee8849fb00d8f935b1973
OpenAccessLink https://doaj.org/article/482cdee44fb04510873fdf2526f030bc
ParticipantIDs doaj_primary_oai_doaj_org_article_482cdee44fb04510873fdf2526f030bc
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle SciPost physics
PublicationYear 2018
Publisher SciPost
Publisher_xml – name: SciPost
SSID ssj0002119165
Score 2.5487008
Snippet We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint...
SourceID doaj
SourceType Open Website
StartPage 042
Title Modular invariance faces precision neutrino data
URI https://doaj.org/article/482cdee44fb04510873fdf2526f030bc
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRP1FXJQevddPmo-lRxWUR1pMLeyvNJAEv7bJWf78zaQ-9eZHeeijNSzpvhs68x9hD-neUg80wPEKmGqxZK4A8y6HwmM6H0iWXiPW7WW3U21ZvJ1Zf1BM2yAMPwC2ULcCHoFR0JIUibCmjj4UuTMTz6YCiL3LepJiiGJx0y4weZuXIu9ou8Fsh_1tqrHzUeAlyZ5_o9CdCWZ6w4zET5E_DG5yyg9CescPUkQlf50ysO08tovyz_cF6ljaHR-qf4rv96IvD20Ba-m3Hqc_zgm2Wrx8vq2y0N8gASaDPwAkpla48piBIo01emkb40hCDgxIxYu0FuMJS6BCCtapCCIS3sZLa5VUpL9ms7dpwxXiUHjFvDEiaba9UkxceMIoZqZxHwr5mz7TQejcoWNSkKZ1uINL1iHT9F9I3__GQOTvClMMO03y3bNbvv8Md0nrv7tMO_gKznZ7T
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+invariance+faces+precision+neutrino+data&rft.jtitle=SciPost+physics&rft.au=Juan+Carlos+Criado%2C+Ferruccio+Feruglio&rft.date=2018-11-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=5&rft.issue=5&rft.spage=042&rft_id=info:doi/10.21468%2FSciPostPhys.5.5.042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_482cdee44fb04510873fdf2526f030bc