Modular invariance faces precision neutrino data
We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagr...
Saved in:
Published in | SciPost physics Vol. 5; no. 5; p. 042 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
SciPost
01.11.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagrangian parameter. They only depend on the vacuum of the theory, parametrized in terms of a complex modulus and a real field. Thus eight measurable quantities are described by the three vacuum parameters, whose optimization provides an excellent fit to data for the Weinberg operator and a good fit for the seesaw case. Neutrino masses from the Weinberg operator (seesaw) have inverted (normal) ordering. Several sources of potential corrections, such as higher dimensional operators, renormalization group evolution and supersymmetry breaking effects, are carefully discussed and shown not to affect the predictions under reasonable conditions. |
---|---|
AbstractList | We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagrangian parameter. They only depend on the vacuum of the theory, parametrized in terms of a complex modulus and a real field. Thus eight measurable quantities are described by the three vacuum parameters, whose optimization provides an excellent fit to data for the Weinberg operator and a good fit for the seesaw case. Neutrino masses from the Weinberg operator (seesaw) have inverted (normal) ordering. Several sources of potential corrections, such as higher dimensional operators, renormalization group evolution and supersymmetry breaking effects, are carefully discussed and shown not to affect the predictions under reasonable conditions. |
Author | Juan Carlos Criado, Ferruccio Feruglio |
Author_xml | – sequence: 1 fullname: Juan Carlos Criado, Ferruccio Feruglio |
BookMark | eNotjctKAzEYRoMoWGvfwMW8wNQ_yZ9MspTipVCxoK6HTC6aMiYlmQp9e4vKtzhwFue7IucpJ0_IDYUloyjV7auN21yn7eexLsVpgOyMzJhA1qIU_JIsat0BAKNUUylmBJ6zO4ymNDF9mxJNsr4Jxvra7Iu3scacmuQPU4kpN85M5ppcBDNWv_jnnLw_3L-tntrNy-N6dbdpLTI9tXYAzlFoJyRDKgztpAHXSdAULEIICsHCYDsQ3nulUIcBwKmguRio7vicrP-6Lptdvy_xy5Rjn03sf0UuH70pU7Sj71Ex67xHPCVQUFAdDy4wwWQAfvrgP4ynVRI |
CitedBy_id | crossref_primary_10_1016_j_ppnp_2022_103947 crossref_primary_10_1016_j_physletb_2019_135153 crossref_primary_10_1140_epjc_s10052_024_13666_w crossref_primary_10_1007_JHEP11_2018_196 crossref_primary_10_1016_j_nuclphysb_2020_115301 crossref_primary_10_1103_PhysRevD_102_026004 crossref_primary_10_1016_j_physletb_2019_03_066 crossref_primary_10_1016_j_dark_2023_101204 crossref_primary_10_1103_RevModPhys_93_015007 crossref_primary_10_1103_PhysRevD_106_035001 crossref_primary_10_1103_PhysRevD_106_115003 crossref_primary_10_1016_j_dark_2024_101440 crossref_primary_10_1007_JHEP07_2023_134 crossref_primary_10_1007_JHEP01_2023_125 crossref_primary_10_3390_universe9120512 crossref_primary_10_1007_JHEP02_2020_045 crossref_primary_10_1007_JHEP06_2021_110 crossref_primary_10_1103_PhysRevD_107_055014 crossref_primary_10_1103_PhysRevD_105_055018 crossref_primary_10_1007_JHEP07_2022_050 crossref_primary_10_1007_JHEP11_2021_007 crossref_primary_10_1093_ptep_ptac141 crossref_primary_10_1103_PhysRevD_111_015010 crossref_primary_10_1007_JHEP09_2023_043 crossref_primary_10_1016_j_physletb_2024_138600 crossref_primary_10_1007_JHEP10_2021_238 crossref_primary_10_1103_PhysRevD_104_123545 crossref_primary_10_1140_epjc_s10052_023_11727_0 crossref_primary_10_1140_epjc_s10052_025_13864_0 crossref_primary_10_1016_j_nuclphysb_2020_115098 crossref_primary_10_1007_JHEP01_2020_144 crossref_primary_10_1007_JHEP04_2021_291 crossref_primary_10_1007_JHEP12_2024_091 crossref_primary_10_1103_PhysRevD_110_035012 crossref_primary_10_1007_JHEP04_2021_206 crossref_primary_10_1007_JHEP05_2020_017 crossref_primary_10_1007_JHEP08_2020_164 crossref_primary_10_1007_JHEP03_2021_161 crossref_primary_10_1007_JHEP09_2019_074 crossref_primary_10_1103_PhysRevD_99_095028 crossref_primary_10_1103_PhysRevD_101_106017 crossref_primary_10_1007_JHEP05_2021_078 crossref_primary_10_1103_PhysRevD_102_105010 crossref_primary_10_1007_JHEP12_2019_030 crossref_primary_10_1007_JHEP11_2023_083 crossref_primary_10_1103_PhysRevD_110_076026 crossref_primary_10_1016_j_nuclphysb_2020_115247 crossref_primary_10_1016_j_nuclphysb_2022_115841 crossref_primary_10_1103_PhysRevX_13_041055 crossref_primary_10_1088_1742_6596_1586_1_012020 crossref_primary_10_1103_PhysRevD_104_115015 crossref_primary_10_1016_j_physletb_2023_137977 crossref_primary_10_1142_S0217751X24500271 crossref_primary_10_1093_ptep_ptab152 crossref_primary_10_1139_cjp_2022_0009 crossref_primary_10_1103_PhysRevD_102_085008 crossref_primary_10_1007_JHEP03_2022_123 crossref_primary_10_1016_j_nuclphysb_2019_114737 crossref_primary_10_1016_j_nuclphysb_2024_116579 crossref_primary_10_1007_JHEP10_2022_071 crossref_primary_10_1016_j_physletb_2021_136843 crossref_primary_10_1007_JHEP04_2019_005 crossref_primary_10_1007_JHEP05_2021_102 crossref_primary_10_1142_S0217751X24410124 crossref_primary_10_1103_PhysRevD_99_046001 crossref_primary_10_1007_JHEP05_2021_242 crossref_primary_10_1016_j_nuclphysb_2021_115534 crossref_primary_10_2139_ssrn_4087088 crossref_primary_10_1007_JHEP07_2021_093 crossref_primary_10_1103_PhysRevD_101_055033 crossref_primary_10_1016_j_nuclphysb_2022_115793 crossref_primary_10_1103_PhysRevD_100_115005 crossref_primary_10_1007_JHEP09_2022_224 crossref_primary_10_1103_PhysRevD_109_115018 crossref_primary_10_1093_ptep_ptab024 crossref_primary_10_1103_PhysRevD_105_055022 crossref_primary_10_1007_JHEP01_2023_036 crossref_primary_10_1007_JHEP08_2022_013 crossref_primary_10_1103_PhysRevD_103_015005 crossref_primary_10_1007_JHEP05_2024_020 crossref_primary_10_1093_ptep_ptaa055 crossref_primary_10_1103_PhysRevD_101_115020 crossref_primary_10_1007_JHEP10_2024_172 crossref_primary_10_1016_j_nuclphysb_2020_115105 crossref_primary_10_1103_PhysRevD_102_045005 crossref_primary_10_1007_JHEP02_2020_097 crossref_primary_10_1093_ptep_ptz137 crossref_primary_10_1103_PhysRevD_101_055046 crossref_primary_10_1103_PhysRevD_102_115035 crossref_primary_10_1103_PhysRevD_100_115037 crossref_primary_10_1007_JHEP03_2023_236 crossref_primary_10_1007_JHEP04_2023_003 crossref_primary_10_1007_JHEP04_2021_239 crossref_primary_10_1103_PhysRevD_105_116002 crossref_primary_10_1007_JHEP02_2020_001 crossref_primary_10_1140_epjc_s10052_021_09667_8 crossref_primary_10_1103_PhysRevD_109_065011 crossref_primary_10_1016_j_nuclphysb_2020_114935 crossref_primary_10_1007_JHEP01_2021_037 crossref_primary_10_1007_JHEP03_2022_149 crossref_primary_10_1016_j_dark_2022_101080 crossref_primary_10_1140_epjc_s10052_021_08845_y crossref_primary_10_1007_JHEP02_2021_221 crossref_primary_10_1016_j_nuclphysb_2021_115598 crossref_primary_10_1016_j_nuclphysb_2022_115974 crossref_primary_10_1007_JHEP01_2024_121 crossref_primary_10_1007_JHEP11_2022_002 crossref_primary_10_1007_JHEP02_2024_099 crossref_primary_10_1140_epjc_s10052_024_13272_w crossref_primary_10_1103_PhysRevD_101_015028 crossref_primary_10_1103_PhysRevD_103_056013 crossref_primary_10_1007_JHEP09_2023_196 crossref_primary_10_1142_S0217732324300088 crossref_primary_10_1088_1361_6633_ad52a3 crossref_primary_10_1007_JHEP09_2020_043 crossref_primary_10_1140_epjc_s10052_023_12303_2 crossref_primary_10_1007_JHEP08_2023_081 crossref_primary_10_1088_1674_1137_ac4975 crossref_primary_10_1016_j_physletb_2024_138540 crossref_primary_10_1103_PhysRevD_103_076005 crossref_primary_10_1140_epjc_s10052_023_11718_1 crossref_primary_10_1007_JHEP01_2022_020 crossref_primary_10_1088_1674_1137_ac92d8 crossref_primary_10_1103_PhysRevD_106_095002 crossref_primary_10_1007_JHEP07_2019_165 crossref_primary_10_1007_JHEP07_2021_184 crossref_primary_10_1016_j_cpc_2021_107899 crossref_primary_10_1088_1475_7516_2022_09_049 crossref_primary_10_1007_JHEP10_2021_183 crossref_primary_10_1007_JHEP11_2018_173 crossref_primary_10_1007_JHEP11_2022_074 crossref_primary_10_1007_JHEP03_2021_002 crossref_primary_10_1007_JHEP08_2023_086 crossref_primary_10_1103_PhysRevD_104_076001 crossref_primary_10_1007_JHEP07_2021_068 crossref_primary_10_1007_JHEP09_2024_024 crossref_primary_10_1007_JHEP03_2021_010 crossref_primary_10_1007_JHEP08_2019_134 crossref_primary_10_1007_JHEP11_2020_101 crossref_primary_10_1016_j_physletb_2023_138106 crossref_primary_10_1103_PhysRevD_104_055034 crossref_primary_10_1007_JHEP05_2024_052 crossref_primary_10_1093_ptep_ptad011 crossref_primary_10_1007_JHEP03_2023_141 crossref_primary_10_1093_ptep_ptaf032 crossref_primary_10_1016_j_physletb_2020_135956 crossref_primary_10_1103_PhysRevD_103_095013 crossref_primary_10_1103_PhysRevLett_130_101801 crossref_primary_10_1103_PhysRevD_100_115045 crossref_primary_10_1103_PhysRevD_110_115025 crossref_primary_10_1007_JHEP08_2023_097 crossref_primary_10_1016_j_dark_2023_101333 crossref_primary_10_1007_JHEP11_2020_085 crossref_primary_10_1016_j_dark_2022_101039 crossref_primary_10_1007_JHEP01_2025_191 crossref_primary_10_1103_PhysRevD_108_115038 crossref_primary_10_1007_JHEP04_2019_174 crossref_primary_10_1103_PhysRevD_101_015001 crossref_primary_10_1103_PhysRevD_104_065008 crossref_primary_10_1093_ptep_ptac035 crossref_primary_10_1103_PhysRevD_100_045014 crossref_primary_10_1093_ptep_ptac152 crossref_primary_10_1103_PhysRevD_102_035019 crossref_primary_10_21468_SciPostPhysProc_2_001 |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.21468/SciPostPhys.5.5.042 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_482cdee44fb04510873fdf2526f030bc |
GroupedDBID | 5VS AAFWJ ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c429t-cb033459d562415a176a0d760910c40ff840c0bc705eee8849fb00d8f935b1973 |
IEDL.DBID | DOA |
IngestDate | Wed Aug 27 01:23:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-cb033459d562415a176a0d760910c40ff840c0bc705eee8849fb00d8f935b1973 |
OpenAccessLink | https://doaj.org/article/482cdee44fb04510873fdf2526f030bc |
ParticipantIDs | doaj_primary_oai_doaj_org_article_482cdee44fb04510873fdf2526f030bc |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | SciPost physics |
PublicationYear | 2018 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
SSID | ssj0002119165 |
Score | 2.5487008 |
Snippet | We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 042 |
Title | Modular invariance faces precision neutrino data |
URI | https://doaj.org/article/482cdee44fb04510873fdf2526f030bc |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRP1FXJQevddPmo-lRxWUR1pMLeyvNJAEv7bJWf78zaQ-9eZHeeijNSzpvhs68x9hD-neUg80wPEKmGqxZK4A8y6HwmM6H0iWXiPW7WW3U21ZvJ1Zf1BM2yAMPwC2ULcCHoFR0JIUibCmjj4UuTMTz6YCiL3LepJiiGJx0y4weZuXIu9ou8Fsh_1tqrHzUeAlyZ5_o9CdCWZ6w4zET5E_DG5yyg9CescPUkQlf50ysO08tovyz_cF6ljaHR-qf4rv96IvD20Ba-m3Hqc_zgm2Wrx8vq2y0N8gASaDPwAkpla48piBIo01emkb40hCDgxIxYu0FuMJS6BCCtapCCIS3sZLa5VUpL9ms7dpwxXiUHjFvDEiaba9UkxceMIoZqZxHwr5mz7TQejcoWNSkKZ1uINL1iHT9F9I3__GQOTvClMMO03y3bNbvv8Md0nrv7tMO_gKznZ7T |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+invariance+faces+precision+neutrino+data&rft.jtitle=SciPost+physics&rft.au=Juan+Carlos+Criado%2C+Ferruccio+Feruglio&rft.date=2018-11-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=5&rft.issue=5&rft.spage=042&rft_id=info:doi/10.21468%2FSciPostPhys.5.5.042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_482cdee44fb04510873fdf2526f030bc |