Importance of Hydration and Surface Structure for Friction of Acrylamide Hydrogels

To understand the dissipative mechanisms in soft hydrogel lubrication, polyacrylamide (PAAm) hydrogels with two distinct surface structures were examined under various contact conditions. The characteristic speed-dependent friction of the self-mated, crosslinked hydrogel surfaces could be explained...

Full description

Saved in:
Bibliographic Details
Published inTribology letters Vol. 68; no. 2
Main Authors Simič, Rok, Yetkin, Melis, Zhang, Kaihuan, Spencer, Nicholas D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To understand the dissipative mechanisms in soft hydrogel lubrication, polyacrylamide (PAAm) hydrogels with two distinct surface structures were examined under various contact conditions. The characteristic speed-dependent friction of the self-mated, crosslinked hydrogel surfaces could be explained by hydrodynamic shearing of a thin water layer between two rather impermeable bodies. On the other hand, the frictional response of brushy hydrogel surfaces is dependent on the contact conditions and the level of surface hydration. In a migrating contact, brushy hydrogels showed low, speed-independent friction ( µ  ~ 0.01) likely due to a thick layer of shearing liquid trapped within the sparse surface network. In stationary contact, however, brushy hydrogel surfaces can partially exude water from the near-surface region over time, as shown by time-resolved Fourier-transform infrared (FTIR) spectroscopy. This is assumed to be reflected in a friction increase over time. Interfacial shearing appears to shorten the characteristic exudation times compared to those observed under static loading. Once fluid has been exuded, brushy surfaces were shown to reach similar friction values as their crosslinked analogs. The results thus indicate that the dominating dissipation mechanism during sliding at low contact pressures is shearing of the interfacial liquid film, rather than poro-elastic dissipation within the bulk. Maintenance of surface hydration is therefore crucial, in order to take advantage of the low friction of such systems.
AbstractList To understand the dissipative mechanisms in soft hydrogel lubrication, polyacrylamide (PAAm) hydrogels with two distinct surface structures were examined under various contact conditions. The characteristic speed-dependent friction of the self-mated, crosslinked hydrogel surfaces could be explained by hydrodynamic shearing of a thin water layer between two rather impermeable bodies. On the other hand, the frictional response of brushy hydrogel surfaces is dependent on the contact conditions and the level of surface hydration. In a migrating contact, brushy hydrogels showed low, speed-independent friction ( µ  ~ 0.01) likely due to a thick layer of shearing liquid trapped within the sparse surface network. In stationary contact, however, brushy hydrogel surfaces can partially exude water from the near-surface region over time, as shown by time-resolved Fourier-transform infrared (FTIR) spectroscopy. This is assumed to be reflected in a friction increase over time. Interfacial shearing appears to shorten the characteristic exudation times compared to those observed under static loading. Once fluid has been exuded, brushy surfaces were shown to reach similar friction values as their crosslinked analogs. The results thus indicate that the dominating dissipation mechanism during sliding at low contact pressures is shearing of the interfacial liquid film, rather than poro-elastic dissipation within the bulk. Maintenance of surface hydration is therefore crucial, in order to take advantage of the low friction of such systems.
To understand the dissipative mechanisms in soft hydrogel lubrication, polyacrylamide (PAAm) hydrogels with two distinct surface structures were examined under various contact conditions. The characteristic speed-dependent friction of the self-mated, crosslinked hydrogel surfaces could be explained by hydrodynamic shearing of a thin water layer between two rather impermeable bodies. On the other hand, the frictional response of brushy hydrogel surfaces is dependent on the contact conditions and the level of surface hydration. In a migrating contact, brushy hydrogels showed low, speed-independent friction (µ ~ 0.01) likely due to a thick layer of shearing liquid trapped within the sparse surface network. In stationary contact, however, brushy hydrogel surfaces can partially exude water from the near-surface region over time, as shown by time-resolved Fourier-transform infrared (FTIR) spectroscopy. This is assumed to be reflected in a friction increase over time. Interfacial shearing appears to shorten the characteristic exudation times compared to those observed under static loading. Once fluid has been exuded, brushy surfaces were shown to reach similar friction values as their crosslinked analogs. The results thus indicate that the dominating dissipation mechanism during sliding at low contact pressures is shearing of the interfacial liquid film, rather than poro-elastic dissipation within the bulk. Maintenance of surface hydration is therefore crucial, in order to take advantage of the low friction of such systems.
ArticleNumber 64
Author Yetkin, Melis
Zhang, Kaihuan
Spencer, Nicholas D.
Simič, Rok
Author_xml – sequence: 1
  givenname: Rok
  surname: Simič
  fullname: Simič, Rok
  organization: Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich
– sequence: 2
  givenname: Melis
  surname: Yetkin
  fullname: Yetkin, Melis
  organization: Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich
– sequence: 3
  givenname: Kaihuan
  surname: Zhang
  fullname: Zhang, Kaihuan
  organization: Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich
– sequence: 4
  givenname: Nicholas D.
  surname: Spencer
  fullname: Spencer, Nicholas D.
  email: nspencer@ethz.ch
  organization: Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19FcO5llKdYWCoLVdUhzKVOmk5pkwL69cUYQXHR1wsn35Zz8EzBqfWsBuMfoESNUPkWMCasgIggiTBGDX1dgjHlJISkxHuUzIhQKIegNmMR4QChrgo_B2_p48iGpVtvCu2J1NkGl2reFak2x7YJT-WKbQqdTF2zhfCiWodY9kvm5DudGHWtje9XvbRNvwbVTTbR3v3UKPpbP74sV3Ly-rBfzDdSMVAlqgRGjyhnFd8gpoWfccEK0rURVIsO4YMbyUhNqDTEK0dzcsRl2nDnHqKFT8DC8ewr-s7MxyYPvQptHSkIrWs0EwyhTYqB08DEG66SuU__FFFTdSIzkT4JySFDmBGWfoPzKKvmnnkJ9VOF8WaKDFDPc7m342-qC9Q2ovYZ4
CitedBy_id crossref_primary_10_1021_acs_langmuir_3c03190
crossref_primary_10_1007_s11340_021_00699_5
crossref_primary_10_1039_D4SM00313F
crossref_primary_10_2474_trol_16_170
crossref_primary_10_1063_5_0158245
crossref_primary_10_1021_acs_langmuir_4c04995
crossref_primary_10_1063_5_0174530
crossref_primary_10_1093_nsr_nwad334
crossref_primary_10_3390_ma17122966
crossref_primary_10_1002_cjoc_202300406
crossref_primary_10_1080_25740881_2022_2039190
crossref_primary_10_1007_s11340_021_00748_z
crossref_primary_10_1021_acs_langmuir_2c03109
crossref_primary_10_1007_s11249_021_01430_0
crossref_primary_10_1007_s12195_021_00671_2
crossref_primary_10_1016_j_colsurfb_2021_112314
crossref_primary_10_1039_D1SM00395J
crossref_primary_10_3390_su142012986
crossref_primary_10_1016_j_mseb_2024_117951
crossref_primary_10_1126_scirobotics_add2903
crossref_primary_10_2474_trol_18_424
crossref_primary_10_1073_pnas_2320068121
crossref_primary_10_1021_acsami_3c04636
crossref_primary_10_1007_s11249_021_01459_1
crossref_primary_10_1007_s40544_020_0458_0
crossref_primary_10_1016_j_matdes_2020_109069
crossref_primary_10_1116_6_0002047
crossref_primary_10_1016_j_jece_2022_107832
crossref_primary_10_1016_j_biotri_2021_100161
crossref_primary_10_1007_s11249_023_01746_z
crossref_primary_10_1021_acs_langmuir_3c03686
crossref_primary_10_1016_j_mtcomm_2024_108387
crossref_primary_10_1126_sciadv_abd2711
Cites_doi 10.1039/C4SM01728E
10.1021/jp012380w
10.1007/s11249-018-1063-5
10.1021/jp992277v
10.1021/acs.langmuir.8b01466
10.1007/s11249-018-1056-4
10.1002/jbm.a.31248
10.1021/acsami.9b07387
10.1021/ja003794q
10.1039/C6SM01448H
10.1115/1.3453152
10.1002/admi.201901320
10.1016/j.biotri.2017.03.004
10.1126/science.1153273
10.1021/jp9713118
10.1016/j.joca.2016.09.018
10.1016/j.biotri.2015.03.001
10.1063/1.477453
10.1039/C6SM00623J
10.1021/jp9902553
10.1063/1.1150021
10.1146/annurev.ph.57.030195.003223
10.1021/jp990256v
10.1021/acs.langmuir.9b01636
10.1021/jp022463s
10.1021/ma0486896
10.1038/35092523
10.1021/jp003242u
10.1063/1.2198768
10.1016/0043-1648(71)90033-0
10.1103/PhysRevE.65.031605
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11249-020-01304-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
ProQuest Materials Science Collection
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2711
ExternalDocumentID 10_1007_s11249_020_01304_x
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 669562
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MQGED
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-c81043afda5b0fa8c65d522ce98970d4584de57c23ed2da0370db461f54ff43d3
IEDL.DBID BENPR
ISSN 1023-8883
IngestDate Fri Jul 25 09:36:21 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Tue Jul 01 02:23:30 EDT 2025
Fri Feb 21 02:35:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Aqueous lubrication
Exudation
Hydrogels
Friction
Hydration
Biotribology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c81043afda5b0fa8c65d522ce98970d4584de57c23ed2da0370db461f54ff43d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11249-020-01304-x
PQID 2393968410
PQPubID 2043827
ParticipantIDs proquest_journals_2393968410
crossref_citationtrail_10_1007_s11249_020_01304_x
crossref_primary_10_1007_s11249_020_01304_x
springer_journals_10_1007_s11249_020_01304_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Tribology letters
PublicationTitleAbbrev Tribol Lett
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kagata, Gong, Osada (CR13) 2003; 107
de Gennes, Brochard-Wyart, Quéré (CR31) 2013
Delavoipière, Tran, Verneuil, Heurtefeu, Hui, Chateauminois (CR15) 2018; 34
Lu, Mi (CR27) 2005; 38
Raviv, Laurat, Klein (CR28) 2001; 413
Bansil, Stanley, LaMont (CR1) 1995; 57
Kii, Xu, Gong, Osada, Zhang (CR23) 2001; 105
de Gennes (CR8) 1979
Pitenis, Urueña, Schulze, Nixon, Dunn, Krick, Sawyer, Angelini (CR14) 2014; 10
Zhang, Simic, Yan, Spencer (CR22) 2019; 11
Crockett, Grubelnik, Roos, Dora, Born, Troxler (CR3) 2007; 82
Schallamach (CR33) 1971; 17
Sader, Chon, Mulvaney (CR25) 1999; 70
Gong, Higa, Iwasaki, Katsuyama, Osada (CR5) 1997; 101
Urueña, Pitenis, Nixon, Schulze, Angelini, Sawyer (CR9) 2015; 1
Delavoipière, Tran, Verneuil, Chateauminois (CR16) 2016; 12
Pitenis, Sawyer (CR4) 2018; 66
Moore, Burris (CR21) 2017; 25
Kim, Dunn (CR29) 2016; 12
Kagata, Gong, Osada (CR12) 2002; 106
Cameron (CR32) 1981
Gong, Kagata, Osada (CR10) 1999; 103
Martin, Clain, Buguin, Brochard-Wyart (CR19) 2002; 65
Meier, Zhang, Spencer, Simic (CR18) 2019; 35
Schulze, Hart, Marshall, O'Bryan, Urueña, Pitenis, Sawyer, Angelini (CR34) 2017; 11
Gong, Osada (CR6) 1998; 109
Gong, Iwasaki, Osada (CR11) 2000; 104
Kim, Dunn (CR30) 2018; 66
Cannara, Eglin, Carpick (CR26) 2006; 77
Lee, Spencer (CR2) 2008; 319
Gong, Kurokawa, Narita, Kagata, Osada, Nishimura, Kinjo (CR17) 2001; 123
Gombert, Simič, Roncoroni, Dübner, Geue, Spencer (CR24) 2019; 6
Gong, Iwasaki, Osada, Kurihara, Hamai (CR7) 1999; 103
Hamrock, Dowson (CR20) 1978; 100
S Lee (1304_CR2) 2008; 319
G Kagata (1304_CR13) 2003; 107
A Cameron (1304_CR32) 1981
J Gong (1304_CR6) 1998; 109
R Crockett (1304_CR3) 2007; 82
X Lu (1304_CR27) 2005; 38
JP Gong (1304_CR11) 2000; 104
JP Gong (1304_CR17) 2001; 123
A Kii (1304_CR23) 2001; 105
J Kim (1304_CR29) 2016; 12
A Pitenis (1304_CR14) 2014; 10
A Martin (1304_CR19) 2002; 65
J Delavoipière (1304_CR15) 2018; 34
J Delavoipière (1304_CR16) 2016; 12
BJ Hamrock (1304_CR20) 1978; 100
A Schallamach (1304_CR33) 1971; 17
YA Meier (1304_CR18) 2019; 35
K Zhang (1304_CR22) 2019; 11
J Kim (1304_CR30) 2018; 66
JE Sader (1304_CR25) 1999; 70
JP Gong (1304_CR10) 1999; 103
Y Gombert (1304_CR24) 2019; 6
KD Schulze (1304_CR34) 2017; 11
J Gong (1304_CR5) 1997; 101
R Bansil (1304_CR1) 1995; 57
JM Urueña (1304_CR9) 2015; 1
PG de Gennes (1304_CR31) 2013
U Raviv (1304_CR28) 2001; 413
J Gong (1304_CR7) 1999; 103
G Kagata (1304_CR12) 2002; 106
AA Pitenis (1304_CR4) 2018; 66
A Moore (1304_CR21) 2017; 25
RJ Cannara (1304_CR26) 2006; 77
PG de Gennes (1304_CR8) 1979
References_xml – volume: 10
  start-page: 8955
  year: 2014
  end-page: 8962
  ident: CR14
  article-title: Polymer fluctuation lubrication in hydrogel gemini interfaces
  publication-title: Soft Matter
  doi: 10.1039/C4SM01728E
– year: 1979
  ident: CR8
  publication-title: Scaling Concepts in Polymer Physics
– volume: 106
  start-page: 4596
  year: 2002
  end-page: 4601
  ident: CR12
  article-title: Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012380w
– volume: 66
  start-page: 113
  year: 2018
  ident: CR4
  article-title: Lubricity of high water content aqueous gels
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-018-1063-5
– year: 2013
  ident: CR31
  publication-title: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls Waves
– volume: 104
  start-page: 3423
  year: 2000
  end-page: 3428
  ident: CR11
  article-title: Friction of gels. 5. Negative load dependence of polysaccharide gels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp992277v
– volume: 34
  start-page: 9617
  year: 2018
  end-page: 9626
  ident: CR15
  article-title: Friction of poroelastic contacts with thin hydrogel films
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01466
– volume: 66
  start-page: 102
  year: 2018
  ident: CR30
  article-title: Thixotropic mechanics in soft hydrated sliding interfaces
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-018-1056-4
– volume: 82
  start-page: 958
  year: 2007
  end-page: 964
  ident: CR3
  article-title: Biochemical composition of the superficial layer of articular cartilage
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31248
– volume: 11
  start-page: 25427
  year: 2019
  end-page: 25435
  ident: CR22
  article-title: Creating an interface: rendering a double-network hydrogel lubricious via spontaneous delamination
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07387
– volume: 123
  start-page: 5582
  year: 2001
  end-page: 5583
  ident: CR17
  article-title: Synthesis of hydrogels with extremely low surface friction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003794q
– volume: 12
  start-page: 8049
  year: 2016
  end-page: 8058
  ident: CR16
  article-title: Poroelastic indentation of mechanically confined hydrogel layers
  publication-title: Soft Matter
  doi: 10.1039/C6SM01448H
– volume: 100
  start-page: 236
  year: 1978
  end-page: 245
  ident: CR20
  article-title: Elastohydrodynamic lubrication of elliptical contacts for materials of low elastic modulus I—fully flooded conjunction
  publication-title: J. Lubr. Technol.
  doi: 10.1115/1.3453152
– volume: 6
  start-page: 1901320
  year: 2019
  ident: CR24
  article-title: Structuring hydrogel surfaces for tribology
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901320
– volume: 11
  start-page: 3
  year: 2017
  end-page: 7
  ident: CR34
  article-title: Polymer osmotic pressure in hydrogel contact mechanics
  publication-title: Biotribology
  doi: 10.1016/j.biotri.2017.03.004
– volume: 319
  start-page: 575
  year: 2008
  end-page: 576
  ident: CR2
  article-title: Sweet, hairy, soft, and slippery
  publication-title: Science
  doi: 10.1126/science.1153273
– volume: 101
  start-page: 5487
  year: 1997
  end-page: 5489
  ident: CR5
  article-title: Friction of gels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9713118
– volume: 25
  start-page: 99
  year: 2017
  end-page: 107
  ident: CR21
  article-title: Tribological rehydration of cartilage and its potential role in preserving joint health
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2016.09.018
– volume: 1
  start-page: 24
  year: 2015
  end-page: 29
  ident: CR9
  article-title: Mesh size control of polymer fluctuation lubrication in gemini hydrogels
  publication-title: Biotribology
  doi: 10.1016/j.biotri.2015.03.001
– volume: 109
  start-page: 8062
  year: 1998
  end-page: 8068
  ident: CR6
  article-title: Gel friction: a model based on surface repulsion and adsorption
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477453
– volume: 12
  start-page: 6536
  year: 2016
  end-page: 6546
  ident: CR29
  article-title: Soft hydrated sliding interfaces as complex fluids
  publication-title: Soft Matter
  doi: 10.1039/C6SM00623J
– year: 1981
  ident: CR32
  publication-title: Basic Lubrication Theory
– volume: 103
  start-page: 6001
  year: 1999
  end-page: 6006
  ident: CR7
  article-title: Friction of gels. 3. Friction on solid surfaces
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9902553
– volume: 70
  start-page: 3967
  year: 1999
  end-page: 3969
  ident: CR25
  article-title: Calibration of rectangular atomic force microscope cantilevers
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1150021
– volume: 57
  start-page: 635
  year: 1995
  end-page: 657
  ident: CR1
  article-title: Mucin biophysics
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.ph.57.030195.003223
– volume: 103
  start-page: 6007
  year: 1999
  end-page: 6014
  ident: CR10
  article-title: Friction of gels. 4. Friction on charged gels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990256v
– volume: 35
  start-page: 15805
  year: 2019
  end-page: 15812
  ident: CR18
  article-title: Linking friction and surface properties of hydrogels molded against materials of different surface energies
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b01636
– volume: 107
  start-page: 10221
  year: 2003
  end-page: 10225
  ident: CR13
  article-title: Friction of gels. 7. Observation of static friction between like-charged gels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022463s
– volume: 38
  start-page: 839
  year: 2005
  end-page: 843
  ident: CR27
  article-title: Characterization of the interfacial interaction between polyacrylamide and silicon substrate by Fourier transform infrared spectroscopy
  publication-title: Macromolecules
  doi: 10.1021/ma0486896
– volume: 413
  start-page: 51
  year: 2001
  end-page: 54
  ident: CR28
  article-title: Fluidity of water confined to subnanometre films
  publication-title: Nature
  doi: 10.1038/35092523
– volume: 105
  start-page: 4565
  year: 2001
  end-page: 4571
  ident: CR23
  article-title: Heterogeneous polymerization of hydrogels on hydrophobic substrate
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003242u
– volume: 77
  start-page: 053701
  year: 2006
  ident: CR26
  article-title: Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2198768
– volume: 17
  start-page: 301
  year: 1971
  end-page: 312
  ident: CR33
  article-title: How does rubber slide?
  publication-title: Wear
  doi: 10.1016/0043-1648(71)90033-0
– volume: 65
  start-page: 031605
  year: 2002
  ident: CR19
  article-title: Wetting transitions at soft, sliding interfaces
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.031605
– volume: 107
  start-page: 10221
  year: 2003
  ident: 1304_CR13
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022463s
– volume: 123
  start-page: 5582
  year: 2001
  ident: 1304_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003794q
– volume: 38
  start-page: 839
  year: 2005
  ident: 1304_CR27
  publication-title: Macromolecules
  doi: 10.1021/ma0486896
– volume-title: Basic Lubrication Theory
  year: 1981
  ident: 1304_CR32
– volume: 82
  start-page: 958
  year: 2007
  ident: 1304_CR3
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31248
– volume: 66
  start-page: 102
  year: 2018
  ident: 1304_CR30
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-018-1056-4
– volume: 57
  start-page: 635
  year: 1995
  ident: 1304_CR1
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.ph.57.030195.003223
– volume: 103
  start-page: 6007
  year: 1999
  ident: 1304_CR10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp990256v
– volume: 17
  start-page: 301
  year: 1971
  ident: 1304_CR33
  publication-title: Wear
  doi: 10.1016/0043-1648(71)90033-0
– volume: 11
  start-page: 3
  year: 2017
  ident: 1304_CR34
  publication-title: Biotribology
  doi: 10.1016/j.biotri.2017.03.004
– volume: 101
  start-page: 5487
  year: 1997
  ident: 1304_CR5
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9713118
– volume: 100
  start-page: 236
  year: 1978
  ident: 1304_CR20
  publication-title: J. Lubr. Technol.
  doi: 10.1115/1.3453152
– volume: 65
  start-page: 031605
  year: 2002
  ident: 1304_CR19
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.031605
– volume: 103
  start-page: 6001
  year: 1999
  ident: 1304_CR7
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9902553
– volume: 12
  start-page: 6536
  year: 2016
  ident: 1304_CR29
  publication-title: Soft Matter
  doi: 10.1039/C6SM00623J
– volume: 70
  start-page: 3967
  year: 1999
  ident: 1304_CR25
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1150021
– volume: 413
  start-page: 51
  year: 2001
  ident: 1304_CR28
  publication-title: Nature
  doi: 10.1038/35092523
– volume: 10
  start-page: 8955
  year: 2014
  ident: 1304_CR14
  publication-title: Soft Matter
  doi: 10.1039/C4SM01728E
– volume: 25
  start-page: 99
  year: 2017
  ident: 1304_CR21
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2016.09.018
– volume: 35
  start-page: 15805
  year: 2019
  ident: 1304_CR18
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b01636
– volume: 105
  start-page: 4565
  year: 2001
  ident: 1304_CR23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003242u
– volume: 1
  start-page: 24
  year: 2015
  ident: 1304_CR9
  publication-title: Biotribology
  doi: 10.1016/j.biotri.2015.03.001
– volume: 12
  start-page: 8049
  year: 2016
  ident: 1304_CR16
  publication-title: Soft Matter
  doi: 10.1039/C6SM01448H
– volume: 106
  start-page: 4596
  year: 2002
  ident: 1304_CR12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012380w
– volume: 6
  start-page: 1901320
  year: 2019
  ident: 1304_CR24
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901320
– volume-title: Scaling Concepts in Polymer Physics
  year: 1979
  ident: 1304_CR8
– volume: 109
  start-page: 8062
  year: 1998
  ident: 1304_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477453
– volume: 77
  start-page: 053701
  year: 2006
  ident: 1304_CR26
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2198768
– volume: 104
  start-page: 3423
  year: 2000
  ident: 1304_CR11
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp992277v
– volume: 11
  start-page: 25427
  year: 2019
  ident: 1304_CR22
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07387
– volume: 34
  start-page: 9617
  year: 2018
  ident: 1304_CR15
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01466
– volume-title: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls Waves
  year: 2013
  ident: 1304_CR31
– volume: 66
  start-page: 113
  year: 2018
  ident: 1304_CR4
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-018-1063-5
– volume: 319
  start-page: 575
  year: 2008
  ident: 1304_CR2
  publication-title: Science
  doi: 10.1126/science.1153273
SSID ssj0010085
Score 2.432211
Snippet To understand the dissipative mechanisms in soft hydrogel lubrication, polyacrylamide (PAAm) hydrogels with two distinct surface structures were examined under...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acrylamide
Chemistry and Materials Science
Contact pressure
Corrosion and Coatings
Crosslinking
Exudation
Fourier transforms
Friction
Hydration
Hydrogels
Materials Science
Nanotechnology
Original Paper
Physical Chemistry
Polyacrylamide
Shearing
Surface structure
Surfaces and Interfaces
Theoretical and Applied Mechanics
Thin Films
Tribology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QuMAB8RSDgXLgBpGaJk3T44SYBhIcGJN2q9I80CTYULdJ7N_jZO0KCJC4NnYOtlt_ruMvCF1oJ5zh1JCoyDThVBdEOWGJdJq6yCgpmJ8dvn8Q_SG_GyWjaihsVp92r1uS4UvdDLv5e5KJL3d8t40TQI6bia_dIYqHcXfdO_AoIvQ4Y0agvmPVqMzPe3xNRw3G_NYWDdmmt4t2KpiIuyu_7qENO9lH25_IAw_Q4-1rwM7gNTx1uL80K2diNTF4sCidgoVBoIddlBYDOMW9chzGGLx8V5dLiIaxsUF1-gxJ8hANezdP131S3ZBANOSROdESqimmnFFJETkltUgMACptM5mlkfE9UGOTVMfMmtioiMHDggvqEu4cZ4YdodZkOrHHCHtadq4KZmkKSk4V1lKhU2WtjE0k0zaitaFyXdGH-1ssXvKG-NgbNwfj5sG4-XsbXa513lbkGX9Kd2r759WLNMs9Q1smJKdRG13VPmmWf9_t5H_ip2grDmHh_690UAu8Y88AbsyL8xBdH1jizPM
  priority: 102
  providerName: Springer Nature
Title Importance of Hydration and Surface Structure for Friction of Acrylamide Hydrogels
URI https://link.springer.com/article/10.1007/s11249-020-01304-x
https://www.proquest.com/docview/2393968410
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RTjMfXADSLaJk2zExrTxgCBEDAJTlWaB0KCDcaQxr_HyTIGSHDpIU1ysN34c1x_BthTllvNEk3isqEIS1RJpOWGCKsSG2spOHW1wxeXvNtjZ3fZXbhwewu_VU7PRH9Q64Fyd-SHjqqrwQVL4qOXV-K6RrnsamihMQ9VPIIFBl_V4_bl1fVXHsEhCp_vTCnBWI-GsplJ8Zzru0xc-OSyd4yMf7qmGd78lSL1nqezDEsBMkbNiY5XYM70V2HxG5HgGlyfPnscjRqMBjbqfuiJYiPZ19HN-9BKfHHjqWLfhyZCoBp1ho--pMHNb6rhB1rGozZ-6eABHeY69Drt21aXhG4JRKFPGRElMLKi0mqZlbGVQvFMI7hSpiEaeaxdPlSbLFcpNTrVMqY4WDKe2IxZy6imG1DpD_pmEyJH0c5kSU2S4yIrS2MSrnJpjEh1LPIaJFNBFSpQibuOFk_FjATZCbdA4RZeuMW4Bvtfa14mRBr_zt6Zyr8IH9VbMTOBGhxMdTJ7_fduW__vtg0LqTcDd7eyAxXUhtlFqDEq6zAvOid1qDZP7s_b9WBdONriLXz20uYntXjVSA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7R9EA5VC20IpSWPZQTrGp7148cUIXahqSQHEgicXPX-6iQSgIJCPKn-hs7s7ZJQSI3rt6HrNnPu9_seL4B-Kxd4owMDQ-KluYy1AVXLrE8czp0gVFZIih3uNdPOiP58yw-W4G_dS4M_VZZ74l-ozYTTXfkX0iqq5VkMgy-Xl5xqhpF0dW6hEYJi2M7v0WXbXbQ_Y7ruxtF7R_Dbx1eVRXgGvfea64z9ECEckbFReBUppPYIAnRtpW10sBQ3NDYONWRsCYyKhD4sJBJ6GLpnBRG4Lwv4KUU-DqUmd4-uo9aEH_x0dVIcPQsRZWkU6bqUZVnTs4axQolv3t4EC7Y7aOArD_n2m_gdUVQ2WGJqLewYsfrsPafbOEGnHYvPGtHvLCJY525KWHE1Niwwc3UKWwYeGHam6llSItZe3ruEyio_6GezhGH58b6oZPfeDy_g9GzWPE9NMaTsd0ERoLwUhXChikOcqqwNkx0qqzNIhNkaRPC2lC5roTLqX7Gn3whuUzGzdG4uTdufteEvfsxl6Vsx9Le27X98-oTnuULwDVhv16TRfPTs20tn20HVjvD3kl-0u0ff4BXkYcE3epsQwNXxn5EknNdfPLIYvDruaH8D8JhDRk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfRBvOJ0ah5807C2SdP2cUzL5mWIc7C3kuYiA-1G3cD9e5O03aao4GtzkodzUs53-vV8B4ALrqgSxBXISSOOiMtTxBSVKFTcVY5gIcWmd_ihRzsDcjv0hytd_PZv94qSLHoajEpTNm1OhGouG9_MzGRkSh_DvBGkUeS6rlQsUdum7QWPYBCF5Ts9jHSth8u2mZ_P-JqalnjzG0VqM0-8A7ZLyAhbRYx3wZrM9sDWipDgPnjqvlkcrSMIxwp25qIILGSZgP1Zrphe6Fup2FkuoQaqMM5HtqXB2Ld4Ptc3YySk3Tp-0QnzAAzim-d2B5XTEhDXOWWKeKgrK8yUYH7qKBZy6gsNrriMwihwhOFDhfQD7mEpPMEcrB-mhLrKJ0oRLPAhqGXjTB4BaCTaCUuxdAO9SbFUSpfygEkZesIJgzpwK0clvJQSNxMtXpOlCLJxbqKdm1jnJh91cLnYMymENP60blT-T8qX6j0xam0RDYnr1MFVFZPl8u-nHf_P_BxsPF7HyX23d3cCNj17Q8xnlwao6UDJU41CpumZvWifRWTUDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+Hydration+and+Surface+Structure+for+Friction+of+Acrylamide+Hydrogels&rft.jtitle=Tribology+letters&rft.au=Simi%C4%8D%2C+Rok&rft.au=Yetkin%2C+Melis&rft.au=Zhang%2C+Kaihuan&rft.au=Spencer%2C+Nicholas+D.&rft.date=2020-06-01&rft.issn=1023-8883&rft.eissn=1573-2711&rft.volume=68&rft.issue=2&rft_id=info:doi/10.1007%2Fs11249-020-01304-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11249_020_01304_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-8883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-8883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-8883&client=summon