The Challenge of Non-Technical Loss Detection Using Artificial Intelligence: A Survey
Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of th...
Saved in:
Published in | International journal of computational intelligence systems Vol. 10; no. 1; pp. 760 - 775 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2017
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1875-6891 1875-6883 1875-6883 |
DOI | 10.2991/ijcis.2017.10.1.51 |
Cover
Loading…
Abstract | Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future. |
---|---|
AbstractList | Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future. |
Author | Meira, Jorge Augusto Glauner, Patrick State, Radu Valtchev, Petko Bettinger, Franck |
Author_xml | – sequence: 1 givenname: Patrick surname: Glauner fullname: Glauner, Patrick email: patrick.glauner@uni.lu organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg – sequence: 2 givenname: Jorge Augusto surname: Meira fullname: Meira, Jorge Augusto organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg – sequence: 3 givenname: Petko surname: Valtchev fullname: Valtchev, Petko organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, University of Quebec in Montreal – sequence: 4 givenname: Radu surname: State fullname: State, Radu organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg – sequence: 5 givenname: Franck surname: Bettinger fullname: Bettinger, Franck organization: CHOICE Technologies Holding Sàrl |
BookMark | eNp9UcFuEzEUXKEiUUp_gJMlzhtsr3dt9xYFSiNFcCA5W963z4mjxS72Bql_X29TisShp_c0b2Y0evO-uggxYFV9ZHTBtWaf_RF8XnDK5KJAbNGyN9UlU7KtO6Wai5dds3fVdc5HSilnglIhLqvd9oBkdbDjiGGPJDryPYZ6i3AIHuxINjFn8gUnhMnHQHbZhz1Zpsk7D77c12HCcfR7DIA3ZEl-ntIffPhQvXV2zHj9PK-q3e3X7equ3vz4tl4tNzUIrqcaOtSAsmnUoIbBSsfb1ilpO6d475zrhKa8wV6h0LJng9BMcwDqhoZ1WtjmqlqffYdoj-Y--V82PZhovXkCYtobW7LCiEa0lIEGoaBvhFZKy4Y6BGS2a_tOyeL16ex1n-LvE-bJHOMphRLfcNHJVnctm1nqzIJUPpPQGfCTnX8zJetHw6iZOzFPnZi5kxlipmVFyv-T_g38qqg5i3Ihl4bSv1SvqB4BtTKi1A |
CitedBy_id | crossref_primary_10_1109_TSG_2019_2961136 crossref_primary_10_1007_s13369_021_06313_z crossref_primary_10_1155_2022_8389800 crossref_primary_10_1155_2022_5332876 crossref_primary_10_1155_2022_5770385 crossref_primary_10_1155_2022_4512795 crossref_primary_10_17159_sajs_2020_8189 crossref_primary_10_3390_en13123110 crossref_primary_10_1109_TPWRS_2018_2853162 crossref_primary_10_1155_2022_2888925 crossref_primary_10_3390_en13123227 crossref_primary_10_3390_app15063361 crossref_primary_10_1016_j_ijepes_2018_01_036 crossref_primary_10_1109_ACCESS_2022_3191685 crossref_primary_10_3233_JIFS_179098 crossref_primary_10_3390_en16196832 crossref_primary_10_1016_j_jclepro_2021_125834 crossref_primary_10_3233_JIFS_179097 crossref_primary_10_1109_ACCESS_2020_2980079 crossref_primary_10_1155_2022_2114377 crossref_primary_10_1609_aimag_v42i2_15097 crossref_primary_10_1016_j_apenergy_2019_01_076 crossref_primary_10_1109_TIM_2024_3379084 crossref_primary_10_3390_en12091748 crossref_primary_10_1016_j_jup_2020_101113 crossref_primary_10_3389_fpsyg_2022_854542 crossref_primary_10_1109_ACCESS_2020_2982779 crossref_primary_10_1155_2022_3347166 crossref_primary_10_1155_2021_1258080 crossref_primary_10_1155_2021_9507917 crossref_primary_10_1155_2022_7440337 crossref_primary_10_1016_j_ijepes_2018_03_031 crossref_primary_10_1155_2021_8038433 crossref_primary_10_1016_j_neucom_2020_03_085 crossref_primary_10_1155_2022_3706373 crossref_primary_10_3390_su142013627 crossref_primary_10_3233_JIFS_179143 crossref_primary_10_3390_en13215674 crossref_primary_10_3233_JIFS_179147 crossref_primary_10_3390_electricity5020017 crossref_primary_10_1155_2022_4750018 crossref_primary_10_3233_ICA_230728 crossref_primary_10_3390_app13095710 crossref_primary_10_1007_s10618_023_00927_7 crossref_primary_10_1109_TIM_2021_3127649 crossref_primary_10_3390_app11010401 crossref_primary_10_4018_JGIM_286760 crossref_primary_10_1007_s10994_021_06051_1 crossref_primary_10_1109_ACCESS_2019_2920080 crossref_primary_10_1080_03772063_2020_1787881 crossref_primary_10_1016_j_ecmx_2025_100965 crossref_primary_10_1109_TSG_2022_3148817 crossref_primary_10_1109_TSG_2018_2818167 crossref_primary_10_3390_app11188612 crossref_primary_10_3390_math10111878 crossref_primary_10_1016_j_epsr_2020_106904 crossref_primary_10_56294_sctconf2024684 crossref_primary_10_1109_TPWRS_2019_2928276 crossref_primary_10_3389_fpsyg_2022_953482 crossref_primary_10_3390_electronics11050693 crossref_primary_10_15446_ing_investig_v38n2_67331 crossref_primary_10_1155_2022_5403681 crossref_primary_10_1016_j_ijepes_2017_09_019 crossref_primary_10_1109_ACCESS_2025_3539763 crossref_primary_10_1155_2022_1575813 crossref_primary_10_1109_TII_2022_3179243 crossref_primary_10_4018_JGIM_292064 crossref_primary_10_1155_2022_1924138 crossref_primary_10_1109_ACCESS_2021_3110510 crossref_primary_10_32604_cmc_2022_025466 crossref_primary_10_1016_j_ijinfomgt_2019_08_002 crossref_primary_10_1155_2022_6797243 crossref_primary_10_3390_su131910696 crossref_primary_10_1007_s00521_020_04861_3 crossref_primary_10_1007_s12652_019_01649_9 crossref_primary_10_1155_2021_7227416 crossref_primary_10_1155_2021_8028658 crossref_primary_10_1155_2019_4136874 crossref_primary_10_1155_2021_5582598 crossref_primary_10_1109_TPWRS_2019_2943115 crossref_primary_10_1155_2022_5441170 crossref_primary_10_1155_2022_7145588 crossref_primary_10_3233_JIFS_179062 crossref_primary_10_3233_JIFS_179060 crossref_primary_10_3233_JIFS_179065 crossref_primary_10_3390_en13215599 crossref_primary_10_1155_2022_8797317 crossref_primary_10_3233_JIFS_179066 crossref_primary_10_3390_en13184727 crossref_primary_10_1155_2022_3973665 crossref_primary_10_1155_2022_9925930 crossref_primary_10_3233_JIFS_179104 crossref_primary_10_3390_en14040958 crossref_primary_10_1109_TSG_2018_2807925 crossref_primary_10_1063_1_5140564 crossref_primary_10_1155_2022_4748544 crossref_primary_10_1155_2022_1303252 crossref_primary_10_1002_2050_7038_13046 crossref_primary_10_1155_2022_3538755 crossref_primary_10_1080_19376812_2024_2360620 crossref_primary_10_1109_ACCESS_2021_3122009 crossref_primary_10_1155_2022_4332439 crossref_primary_10_1155_2022_7427967 crossref_primary_10_1016_j_esr_2025_101674 crossref_primary_10_1155_2022_1123356 crossref_primary_10_3389_fpsyg_2022_898107 crossref_primary_10_3390_en13153832 crossref_primary_10_3390_s21248423 crossref_primary_10_1007_s41870_022_00876_2 crossref_primary_10_1155_2022_5121762 crossref_primary_10_1016_j_rser_2021_111205 crossref_primary_10_1088_1742_6596_2797_1_012038 crossref_primary_10_1155_2022_3614883 crossref_primary_10_1016_j_jvcir_2019_03_004 crossref_primary_10_1016_j_epsr_2018_01_005 |
ContentType | Journal Article |
Copyright | the Authors. Published by Atlantis Press 2017 2017. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: the Authors. Published by Atlantis Press 2017 – notice: 2017. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.2991/ijcis.2017.10.1.51 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-6883 |
EndPage | 775 |
ExternalDocumentID | oai_doaj_org_article_4501c9c48cb349889730fece1a65b687 10_2991_ijcis_2017_10_1_51 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX ADMSI AENEX AFGXO AFKRA AFPKN AHDSZ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ H13 HCIFZ HZ~ IL9 IPNFZ J~4 K7- M4Z O9- OK1 PIMPY RIG RSV SOJ TDBHL TFL TFW TR2 AASML AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c429t-c6e9ce7338d8dda7f255f87a6f82bfff649023eb8e497b1d49192cc0fd31694a3 |
IEDL.DBID | C6C |
ISSN | 1875-6891 1875-6883 |
IngestDate | Wed Aug 27 01:16:48 EDT 2025 Thu Jul 24 01:42:05 EDT 2025 Tue Jul 01 01:20:16 EDT 2025 Thu Apr 24 22:55:14 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Covariate shift expert systems machine learning stochastic processes electricity theft non-technical losses |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-c6e9ce7338d8dda7f255f87a6f82bfff649023eb8e497b1d49192cc0fd31694a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.2991/ijcis.2017.10.1.51 |
PQID | 2467596517 |
PQPubID | 4869256 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4501c9c48cb349889730fece1a65b687 proquest_journals_2467596517 crossref_citationtrail_10_2991_ijcis_2017_10_1_51 crossref_primary_10_2991_ijcis_2017_10_1_51 springer_journals_10_2991_ijcis_2017_10_1_51 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170100 2017-00-00 20170101 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 1 year: 2017 text: 20170100 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2017 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | Zaharia, Chowdhury, Franklin, Shenker, Stoica (CR61) 2010; 10 CR39 CR38 Ertekin, Rudin, McCormick (CR55) 2015; 9 CR37 CR34 CR33 CR32 CR30 Tang, Zhang, Chawla, Krasser (CR41) 2009; 39 Vapnik (CR36) 1999; 10 CR2 CR3 CR5 CR9 CR48 CR47 CR46 CR45 CR44 CR42 Wolpert (CR62) 1996; 8 Depuru, Wang, Devabhaktuni, Green (CR6) 2013; 47 Alam, Kabir, Rahman, Chowdhury (CR8) 2004; 29 CR19 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (CR53) 2012; 29 CR18 CR17 CR16 Werley, Angelos, Saavedra, Carmona Cortés, Nunes de Souza (CR21) 2011; 26 Le Cun, Bengio, Hinton (CR52) 2015; 521 Jiang, Lu, Wang, Luo, Shen, Shen (CR14) 2014; 19 CR15 CR59 Nizar, Dong, Wang (CR35) 2008; 23 CR58 CR13 CR12 CR56 CR11 CR10 CR54 CR50 Oba Ramos, de Sousa, Papa, Falcao (CR31) 2011; 26 Nagi, Siah Yap, Kiong Tiong, Khaleel Ahmed, Nagi (CR7) 2011; 26 Chang, Lin (CR49) 2011; 2 Japkowicz, Stephen (CR40) 2002; 6 Domingos (CR43) 2012; 55 López-Vázquez (CR51) 2016; 37 CR29 CR28 CR27 CR26 CR25 Cortes, Mohri (CR57) 2014; 519 CR24 CR22 Smith (CR4) 2004; 32 CR20 CR60 Nagi, Siah Yap, Kiong Tiong, Khaleel Ahmed, Mohamad (CR1) 2010; 25 Spirić, Stanković, Dočić, Popović (CR23) 2014; 62 |
References_xml | – ident: CR45 – ident: CR22 – volume: 32 start-page: 2067 issue: 18 year: 2004 end-page: 2076 ident: CR4 article-title: Electricity theft: a comparative analysis publication-title: Energy Policy – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR52 article-title: Deep learning publication-title: Nature – ident: CR39 – ident: CR16 – ident: CR12 – volume: 9 start-page: 122 issue: 1 year: 2015 end-page: 144 ident: CR55 article-title: Reactive point processes: A new approach to predicting power failures in underground electrical systems publication-title: The Annals of Applied Statistics – volume: 8 start-page: 1341 issue: 7 year: 1996 end-page: 1390 ident: CR62 article-title: The lack of a priori distinctions between learning algorithms publication-title: Neural computation – ident: CR29 – ident: CR54 – volume: 19 start-page: 105 issue: 2 year: 2014 end-page: 120 ident: CR14 article-title: Energy-theft detection issues for advanced metering infrastructure in smart grid publication-title: Tsinghua Science and Technology – ident: CR58 – ident: CR25 – volume: 47 start-page: 21 year: 2013 end-page: 30 ident: CR6 article-title: High performance computing for detection of electricity theft publication-title: International Journal of Electrical Power & Energy Systems – ident: CR42 – volume: 55 start-page: 78 issue: 10 year: 2012 end-page: 87 ident: CR43 article-title: A few useful things to know about machine learning publication-title: Communications of the ACM – volume: 37 start-page: 4683 issue: 19 year: 2016 end-page: 4697 ident: CR51 article-title: A protocol for the ranking of interpolation algorithms based on confidence levels publication-title: International Journal of Remote Sensing – ident: CR46 – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 ident: CR53 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine – ident: CR19 – volume: 26 start-page: 1284 issue: 2 year: 2011 end-page: 1285 ident: CR7 article-title: Improving svm-based nontechnical loss detection in power utility using the fuzzy inference system publication-title: IEEE Transactions on power delivery – ident: CR15 – ident: CR50 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR60 – ident: CR5 – ident: CR26 – ident: CR18 – ident: CR47 – volume: 25 start-page: 1162 issue: 2 year: 2010 end-page: 1171 ident: CR1 article-title: Nontechnical loss detection for metered customers in power utility using support vector machines publication-title: IEEE transactions on Power Delivery – ident: CR2 – ident: CR37 – ident: CR30 – volume: 6 start-page: 429 issue: 5 year: 2002 end-page: 449 ident: CR40 article-title: The class imbalance problem: A systematic study publication-title: Intelligent data analysis – ident: CR10 – volume: 26 start-page: 181 issue: 1 year: 2011 end-page: 189 ident: CR31 article-title: A new approach for nontechnical losses detection based on optimum-path forest publication-title: IEEE Transactions on Power Systems – ident: CR33 – volume: 10 start-page: 10 year: 2010 end-page: 10 ident: CR61 article-title: Spark: cluster computing with working sets publication-title: HotCloud – volume: 23 start-page: 946 issue: 3 year: 2008 end-page: 955 ident: CR35 article-title: Power utility nontechnical loss analysis with extreme learning machine method publication-title: IEEE Transactions on Power Systems – volume: 26 start-page: 2436 issue: 4 year: 2011 end-page: 2442 ident: CR21 article-title: Detection and identification of abnormalities in customer consumptions in power distribution systems publication-title: IEEE Transactions on Power Delivery – ident: CR56 – volume: 10 start-page: 988 issue: 5 year: 1999 end-page: 999 ident: CR36 article-title: An overview of statistical learning theory publication-title: IEEE transactions on neural networks – volume: 29 start-page: 1773 issue: 11 year: 2004 end-page: 1783 ident: CR8 article-title: Power sector reform in bangladesh: Electricity distribution system publication-title: Energy – ident: CR27 – volume: 519 start-page: 103 year: 2014 end-page: 126 ident: CR57 article-title: Domain adaptation and sample bias correction theory and algorithm for regression publication-title: Theoretical Computer Science – volume: 39 start-page: 281 issue: 1 year: 2009 end-page: 288 ident: CR41 article-title: Svms modeling for highly imbalanced classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 2 start-page: 27:1 year: 2011 end-page: 27:27 ident: CR49 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – ident: CR44 – ident: CR48 – ident: CR3 – ident: CR38 – volume: 62 start-page: 727 year: 2014 end-page: 734 ident: CR23 article-title: Using the rough set theory to detect fraud committed by electricity customers publication-title: International Journal of Electrical Power & Energy Systems – ident: CR17 – ident: CR13 – ident: CR34 – ident: CR59 – ident: CR28 – ident: CR24 – ident: CR20 |
SSID | ssj0002140044 ssib050732782 |
Score | 2.4781613 |
Snippet | Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 760 |
SubjectTerms | Algorithms Artificial intelligence Computer engineering Covariate shift Electric power distribution Electric power grids Electrical engineering Electricity electricity theft expert systems Impact analysis machine learning non-technical losses Research Article stochastic processes Theft |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJy68EYOBcuAG3ZYuSRNuY4AGgl1g0m5Vm4c0hDqEBhL_Hjttx4YEXLjmLduJ7ST-TMgJPp1lStioE2c84rl1kbLKR1wa1BiJ8F0MFL4fysGI347FeCHVF_4JK-GBS8K1uegwow1XJu9yrZQGkfTOOJZJkUsV4shB5y04U3gGxwxlk5dRMnDisvbkyUwQnpslLTwoWoItaaIA2L9kZX57GA365nqTrFeGIu2VC9wiK67YJht1EgZa7ckdMgJG036dEoVOPR1OiyjcmCP96R3MTS_dLHy5Kmj4IhBGLaEj6M0CJuc57dGHt9d397FLRtdXj_1BVOVKiAxolFlkpNPGJeBwWmVtlnhwFbxKMulVnHvvJdegnV2uHNdJzizXYNoZ0_G2y6TmWXePrBbTwu0T6sGkMwjThlnTbSyzWObSxYY754GXrEFYTbfUVEDimM_iOQWHAmmdBlqnSGssYqmAPqfzPi8ljMavrS-QHfOWCIEdCkAw0kow0r8Eo0GaNTPTal_CLKAXhJaCQfVZzeCv6p-XdPAfSzokazhmeYPTJKuz1zd3BDbNLD8O4vsJ-RTyLw priority: 102 providerName: Directory of Open Access Journals |
Title | The Challenge of Non-Technical Loss Detection Using Artificial Intelligence: A Survey |
URI | https://link.springer.com/article/10.2991/ijcis.2017.10.1.51 https://www.proquest.com/docview/2467596517 https://doaj.org/article/4501c9c48cb349889730fece1a65b687 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFy--xeeSgzeNbtokTbytq4su6kUXvJU2D1CkK7IK_ntn0nZ1BQWPzbPMJJnJTOYbQg7QdVZo6Vg3KQQTpfNMOx2YUBYlRiZDioHCN7fqciSGD_KhgcnBWJhv_ns4KPnJ45N9RFRtnh3j_j7GaOkFyVOFz7f6qj-1pyQcV2N0IoMKzpQ2vI6R-WWYGTkU4fpndMwfbtEobQYrZKlRE2mv5usqmfPVGlluUzDQZkeukxGwmfbbhCh0HOjtuGLRXo7Up9cwNz33k_jgqqLxgUActQaOoFffEDlPaY_evb2--48NMhpc3PcvWZMpgVmQJxNmlTfWZ3DddNq5IgtwUQg6K1TQSRlCUMKAbPal9sJkJXfCgGJnbTe4lCsjinSTzFfjym8RGkChswjShjnTXaKKRJXKJ1Z4H4CTfJvwlm65bWDEMZvFcw7XCaR1HmmdI62xiOcS-hxO-7zUIBp_tj5DdkxbIgB2LIB1kTf7KReyy62xQtsyFUZrAydV8NbzQslS6Wyb7LXMzJtdCbOAVJBGSQ7VRy2Dv6p__6Wd_zXfJYv4WVtq9sj85PXN74PuMik7ZKHXG94NO3HxdqIF4BPL3Ok9 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYQHOBSHqUqlIIP3FpDvLG9NreUh0IacoFI3KxdPxBVtUEhVOLfM-PdDQ-JSlzXr9WMxzP2zHxDyD66zgotPetkhWCi9IFpryMTyqHGyGXsYqLwxUj1x2JwLa-bpLD7Ntq9dUmmkxqDlcGIObz9424RX5vnByjpB5g3vaSl0rC7l3q9weVg_raScdyZyaEM5jhT2vA6X-adiV7ppATd_8refOMiTZrnbI18akxG2qt5vE4WQrVBVttyDLSRzs9kDCynx21xFDqJdDSpWHo7R07QIaxNT8IsBV9VNAULpFlrEAl6_gKd84j26OXD9F943CTjs9Or4z5rqiYwB7plxpwKxoUcrp5ee1_kES4NUeeFijorY4xKGNDTodRBmLzkXhgw8pzrRN_lyoii-4UsVpMqfCU0gnHnELAN66f7TBWZKlXInAghAlf5FuEt3axrIMWxssVfC1cLpLVNtLZIa_zErYQxP-Zj7mpAjf_2_oXsmPdEMOz0YTK9sY1sWSE73BkntCu7wmht4NSKwQVeKFkqnW-RnZaZtpFQWAU0hDRKcmj-2TL4ufn9X9r-WPc9sty_uhja4fno9zeygk31C84OWZxNH8J3sGlm5W6zhZ8As0XvFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELemVpp4gW2A-Nrmh72BoU4dx95bB6uggwoJKvFmJf5ARShFVYrEf8-dk3QwCaS9-jO68-XOvrvfEfIDXWe5Sh3rJblgonCeKacCE9KixsjS0MdE4YuxPJ2I0U168yKLP0a7ty7JOqcBUZrK6ujBhRi4DAbN0fTOThFrm2eHKPWHmEPdVRLM8w7pDgajq9HynSXheEqjcxlMcyaV5nXuzBsLvdJPEcb_le35j7s0aqHhJ7LamI90UPP7M_ngyy9krS3NQBtJXScTYD89bgul0Fmg41nJ4js6coWew970xFcxEKukMXAgrloDStCzF0idP-mAXi3mj_5pg0yGv6-PT1lTQYFZ0DMVs9Jr6zO4hjrlXJ4FuEAEleUyqKQIIUihQWf7Qnmhs4I7ocHgs7YXXJ9LLfL-JumUs9JvERrA0LMI3oa11F0i80QW0idWeB-Aw3yb8JZuxjbw4ljl4t7ANQNpbSKtDdIam7hJYc7-cs5DDa7x7uhfyI7lSATGjg2z-a1p5MyItMettkLZoi-0Uhr-YMFbz3OZFlJl22SvZaZppBV2AW2Raply6D5oGfy3--1P2vm_4d_Jx8uToTk_G__ZJSvYUz_m7JFONV_4r2DeVMW35gQ_A2XH81c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Challenge+of+Non-Technical+Loss+Detection+Using+Artificial+Intelligence%3A+A+Survey&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Glauner%2C+Patrick&rft.au=Meira%2C+Jorge+Augusto&rft.au=Valtchev%2C+Petko&rft.au=State%2C+Radu&rft.date=2017&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=10&rft.issue=1&rft.spage=760&rft_id=info:doi/10.2991%2Fijcis.2017.10.1.51&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_2017_10_1_51 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon |