The Challenge of Non-Technical Loss Detection Using Artificial Intelligence: A Survey

Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 10; no. 1; pp. 760 - 775
Main Authors Glauner, Patrick, Meira, Jorge Augusto, Valtchev, Petko, State, Radu, Bettinger, Franck
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2017
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1875-6891
1875-6883
1875-6883
DOI10.2991/ijcis.2017.10.1.51

Cover

Loading…
Abstract Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future.
AbstractList Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future.
Author Meira, Jorge Augusto
Glauner, Patrick
State, Radu
Valtchev, Petko
Bettinger, Franck
Author_xml – sequence: 1
  givenname: Patrick
  surname: Glauner
  fullname: Glauner, Patrick
  email: patrick.glauner@uni.lu
  organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
– sequence: 2
  givenname: Jorge Augusto
  surname: Meira
  fullname: Meira, Jorge Augusto
  organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
– sequence: 3
  givenname: Petko
  surname: Valtchev
  fullname: Valtchev, Petko
  organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, University of Quebec in Montreal
– sequence: 4
  givenname: Radu
  surname: State
  fullname: State, Radu
  organization: Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
– sequence: 5
  givenname: Franck
  surname: Bettinger
  fullname: Bettinger, Franck
  organization: CHOICE Technologies Holding Sàrl
BookMark eNp9UcFuEzEUXKEiUUp_gJMlzhtsr3dt9xYFSiNFcCA5W963z4mjxS72Bql_X29TisShp_c0b2Y0evO-uggxYFV9ZHTBtWaf_RF8XnDK5KJAbNGyN9UlU7KtO6Wai5dds3fVdc5HSilnglIhLqvd9oBkdbDjiGGPJDryPYZ6i3AIHuxINjFn8gUnhMnHQHbZhz1Zpsk7D77c12HCcfR7DIA3ZEl-ntIffPhQvXV2zHj9PK-q3e3X7equ3vz4tl4tNzUIrqcaOtSAsmnUoIbBSsfb1ilpO6d475zrhKa8wV6h0LJng9BMcwDqhoZ1WtjmqlqffYdoj-Y--V82PZhovXkCYtobW7LCiEa0lIEGoaBvhFZKy4Y6BGS2a_tOyeL16ex1n-LvE-bJHOMphRLfcNHJVnctm1nqzIJUPpPQGfCTnX8zJetHw6iZOzFPnZi5kxlipmVFyv-T_g38qqg5i3Ihl4bSv1SvqB4BtTKi1A
CitedBy_id crossref_primary_10_1109_TSG_2019_2961136
crossref_primary_10_1007_s13369_021_06313_z
crossref_primary_10_1155_2022_8389800
crossref_primary_10_1155_2022_5332876
crossref_primary_10_1155_2022_5770385
crossref_primary_10_1155_2022_4512795
crossref_primary_10_17159_sajs_2020_8189
crossref_primary_10_3390_en13123110
crossref_primary_10_1109_TPWRS_2018_2853162
crossref_primary_10_1155_2022_2888925
crossref_primary_10_3390_en13123227
crossref_primary_10_3390_app15063361
crossref_primary_10_1016_j_ijepes_2018_01_036
crossref_primary_10_1109_ACCESS_2022_3191685
crossref_primary_10_3233_JIFS_179098
crossref_primary_10_3390_en16196832
crossref_primary_10_1016_j_jclepro_2021_125834
crossref_primary_10_3233_JIFS_179097
crossref_primary_10_1109_ACCESS_2020_2980079
crossref_primary_10_1155_2022_2114377
crossref_primary_10_1609_aimag_v42i2_15097
crossref_primary_10_1016_j_apenergy_2019_01_076
crossref_primary_10_1109_TIM_2024_3379084
crossref_primary_10_3390_en12091748
crossref_primary_10_1016_j_jup_2020_101113
crossref_primary_10_3389_fpsyg_2022_854542
crossref_primary_10_1109_ACCESS_2020_2982779
crossref_primary_10_1155_2022_3347166
crossref_primary_10_1155_2021_1258080
crossref_primary_10_1155_2021_9507917
crossref_primary_10_1155_2022_7440337
crossref_primary_10_1016_j_ijepes_2018_03_031
crossref_primary_10_1155_2021_8038433
crossref_primary_10_1016_j_neucom_2020_03_085
crossref_primary_10_1155_2022_3706373
crossref_primary_10_3390_su142013627
crossref_primary_10_3233_JIFS_179143
crossref_primary_10_3390_en13215674
crossref_primary_10_3233_JIFS_179147
crossref_primary_10_3390_electricity5020017
crossref_primary_10_1155_2022_4750018
crossref_primary_10_3233_ICA_230728
crossref_primary_10_3390_app13095710
crossref_primary_10_1007_s10618_023_00927_7
crossref_primary_10_1109_TIM_2021_3127649
crossref_primary_10_3390_app11010401
crossref_primary_10_4018_JGIM_286760
crossref_primary_10_1007_s10994_021_06051_1
crossref_primary_10_1109_ACCESS_2019_2920080
crossref_primary_10_1080_03772063_2020_1787881
crossref_primary_10_1016_j_ecmx_2025_100965
crossref_primary_10_1109_TSG_2022_3148817
crossref_primary_10_1109_TSG_2018_2818167
crossref_primary_10_3390_app11188612
crossref_primary_10_3390_math10111878
crossref_primary_10_1016_j_epsr_2020_106904
crossref_primary_10_56294_sctconf2024684
crossref_primary_10_1109_TPWRS_2019_2928276
crossref_primary_10_3389_fpsyg_2022_953482
crossref_primary_10_3390_electronics11050693
crossref_primary_10_15446_ing_investig_v38n2_67331
crossref_primary_10_1155_2022_5403681
crossref_primary_10_1016_j_ijepes_2017_09_019
crossref_primary_10_1109_ACCESS_2025_3539763
crossref_primary_10_1155_2022_1575813
crossref_primary_10_1109_TII_2022_3179243
crossref_primary_10_4018_JGIM_292064
crossref_primary_10_1155_2022_1924138
crossref_primary_10_1109_ACCESS_2021_3110510
crossref_primary_10_32604_cmc_2022_025466
crossref_primary_10_1016_j_ijinfomgt_2019_08_002
crossref_primary_10_1155_2022_6797243
crossref_primary_10_3390_su131910696
crossref_primary_10_1007_s00521_020_04861_3
crossref_primary_10_1007_s12652_019_01649_9
crossref_primary_10_1155_2021_7227416
crossref_primary_10_1155_2021_8028658
crossref_primary_10_1155_2019_4136874
crossref_primary_10_1155_2021_5582598
crossref_primary_10_1109_TPWRS_2019_2943115
crossref_primary_10_1155_2022_5441170
crossref_primary_10_1155_2022_7145588
crossref_primary_10_3233_JIFS_179062
crossref_primary_10_3233_JIFS_179060
crossref_primary_10_3233_JIFS_179065
crossref_primary_10_3390_en13215599
crossref_primary_10_1155_2022_8797317
crossref_primary_10_3233_JIFS_179066
crossref_primary_10_3390_en13184727
crossref_primary_10_1155_2022_3973665
crossref_primary_10_1155_2022_9925930
crossref_primary_10_3233_JIFS_179104
crossref_primary_10_3390_en14040958
crossref_primary_10_1109_TSG_2018_2807925
crossref_primary_10_1063_1_5140564
crossref_primary_10_1155_2022_4748544
crossref_primary_10_1155_2022_1303252
crossref_primary_10_1002_2050_7038_13046
crossref_primary_10_1155_2022_3538755
crossref_primary_10_1080_19376812_2024_2360620
crossref_primary_10_1109_ACCESS_2021_3122009
crossref_primary_10_1155_2022_4332439
crossref_primary_10_1155_2022_7427967
crossref_primary_10_1016_j_esr_2025_101674
crossref_primary_10_1155_2022_1123356
crossref_primary_10_3389_fpsyg_2022_898107
crossref_primary_10_3390_en13153832
crossref_primary_10_3390_s21248423
crossref_primary_10_1007_s41870_022_00876_2
crossref_primary_10_1155_2022_5121762
crossref_primary_10_1016_j_rser_2021_111205
crossref_primary_10_1088_1742_6596_2797_1_012038
crossref_primary_10_1155_2022_3614883
crossref_primary_10_1016_j_jvcir_2019_03_004
crossref_primary_10_1016_j_epsr_2018_01_005
ContentType Journal Article
Copyright the Authors. Published by Atlantis Press 2017
2017. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the Authors. Published by Atlantis Press 2017
– notice: 2017. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.2991/ijcis.2017.10.1.51
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
EndPage 775
ExternalDocumentID oai_doaj_org_article_4501c9c48cb349889730fece1a65b687
10_2991_ijcis_2017_10_1_51
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFKRA
AFPKN
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IL9
IPNFZ
J~4
K7-
M4Z
O9-
OK1
PIMPY
RIG
RSV
SOJ
TDBHL
TFL
TFW
TR2
AASML
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-c6e9ce7338d8dda7f255f87a6f82bfff649023eb8e497b1d49192cc0fd31694a3
IEDL.DBID C6C
ISSN 1875-6891
1875-6883
IngestDate Wed Aug 27 01:16:48 EDT 2025
Thu Jul 24 01:42:05 EDT 2025
Tue Jul 01 01:20:16 EDT 2025
Thu Apr 24 22:55:14 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Covariate shift
expert systems
machine learning
stochastic processes
electricity theft
non-technical losses
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c6e9ce7338d8dda7f255f87a6f82bfff649023eb8e497b1d49192cc0fd31694a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.2991/ijcis.2017.10.1.51
PQID 2467596517
PQPubID 4869256
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_4501c9c48cb349889730fece1a65b687
proquest_journals_2467596517
crossref_citationtrail_10_2991_ijcis_2017_10_1_51
crossref_primary_10_2991_ijcis_2017_10_1_51
springer_journals_10_2991_ijcis_2017_10_1_51
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170100
2017-00-00
20170101
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References Zaharia, Chowdhury, Franklin, Shenker, Stoica (CR61) 2010; 10
CR39
CR38
Ertekin, Rudin, McCormick (CR55) 2015; 9
CR37
CR34
CR33
CR32
CR30
Tang, Zhang, Chawla, Krasser (CR41) 2009; 39
Vapnik (CR36) 1999; 10
CR2
CR3
CR5
CR9
CR48
CR47
CR46
CR45
CR44
CR42
Wolpert (CR62) 1996; 8
Depuru, Wang, Devabhaktuni, Green (CR6) 2013; 47
Alam, Kabir, Rahman, Chowdhury (CR8) 2004; 29
CR19
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (CR53) 2012; 29
CR18
CR17
CR16
Werley, Angelos, Saavedra, Carmona Cortés, Nunes de Souza (CR21) 2011; 26
Le Cun, Bengio, Hinton (CR52) 2015; 521
Jiang, Lu, Wang, Luo, Shen, Shen (CR14) 2014; 19
CR15
CR59
Nizar, Dong, Wang (CR35) 2008; 23
CR58
CR13
CR12
CR56
CR11
CR10
CR54
CR50
Oba Ramos, de Sousa, Papa, Falcao (CR31) 2011; 26
Nagi, Siah Yap, Kiong Tiong, Khaleel Ahmed, Nagi (CR7) 2011; 26
Chang, Lin (CR49) 2011; 2
Japkowicz, Stephen (CR40) 2002; 6
Domingos (CR43) 2012; 55
López-Vázquez (CR51) 2016; 37
CR29
CR28
CR27
CR26
CR25
Cortes, Mohri (CR57) 2014; 519
CR24
CR22
Smith (CR4) 2004; 32
CR20
CR60
Nagi, Siah Yap, Kiong Tiong, Khaleel Ahmed, Mohamad (CR1) 2010; 25
Spirić, Stanković, Dočić, Popović (CR23) 2014; 62
References_xml – ident: CR45
– ident: CR22
– volume: 32
  start-page: 2067
  issue: 18
  year: 2004
  end-page: 2076
  ident: CR4
  article-title: Electricity theft: a comparative analysis
  publication-title: Energy Policy
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR52
  article-title: Deep learning
  publication-title: Nature
– ident: CR39
– ident: CR16
– ident: CR12
– volume: 9
  start-page: 122
  issue: 1
  year: 2015
  end-page: 144
  ident: CR55
  article-title: Reactive point processes: A new approach to predicting power failures in underground electrical systems
  publication-title: The Annals of Applied Statistics
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  end-page: 1390
  ident: CR62
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural computation
– ident: CR29
– ident: CR54
– volume: 19
  start-page: 105
  issue: 2
  year: 2014
  end-page: 120
  ident: CR14
  article-title: Energy-theft detection issues for advanced metering infrastructure in smart grid
  publication-title: Tsinghua Science and Technology
– ident: CR58
– ident: CR25
– volume: 47
  start-page: 21
  year: 2013
  end-page: 30
  ident: CR6
  article-title: High performance computing for detection of electricity theft
  publication-title: International Journal of Electrical Power & Energy Systems
– ident: CR42
– volume: 55
  start-page: 78
  issue: 10
  year: 2012
  end-page: 87
  ident: CR43
  article-title: A few useful things to know about machine learning
  publication-title: Communications of the ACM
– volume: 37
  start-page: 4683
  issue: 19
  year: 2016
  end-page: 4697
  ident: CR51
  article-title: A protocol for the ranking of interpolation algorithms based on confidence levels
  publication-title: International Journal of Remote Sensing
– ident: CR46
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  ident: CR53
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– ident: CR19
– volume: 26
  start-page: 1284
  issue: 2
  year: 2011
  end-page: 1285
  ident: CR7
  article-title: Improving svm-based nontechnical loss detection in power utility using the fuzzy inference system
  publication-title: IEEE Transactions on power delivery
– ident: CR15
– ident: CR50
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR60
– ident: CR5
– ident: CR26
– ident: CR18
– ident: CR47
– volume: 25
  start-page: 1162
  issue: 2
  year: 2010
  end-page: 1171
  ident: CR1
  article-title: Nontechnical loss detection for metered customers in power utility using support vector machines
  publication-title: IEEE transactions on Power Delivery
– ident: CR2
– ident: CR37
– ident: CR30
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  end-page: 449
  ident: CR40
  article-title: The class imbalance problem: A systematic study
  publication-title: Intelligent data analysis
– ident: CR10
– volume: 26
  start-page: 181
  issue: 1
  year: 2011
  end-page: 189
  ident: CR31
  article-title: A new approach for nontechnical losses detection based on optimum-path forest
  publication-title: IEEE Transactions on Power Systems
– ident: CR33
– volume: 10
  start-page: 10
  year: 2010
  end-page: 10
  ident: CR61
  article-title: Spark: cluster computing with working sets
  publication-title: HotCloud
– volume: 23
  start-page: 946
  issue: 3
  year: 2008
  end-page: 955
  ident: CR35
  article-title: Power utility nontechnical loss analysis with extreme learning machine method
  publication-title: IEEE Transactions on Power Systems
– volume: 26
  start-page: 2436
  issue: 4
  year: 2011
  end-page: 2442
  ident: CR21
  article-title: Detection and identification of abnormalities in customer consumptions in power distribution systems
  publication-title: IEEE Transactions on Power Delivery
– ident: CR56
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  end-page: 999
  ident: CR36
  article-title: An overview of statistical learning theory
  publication-title: IEEE transactions on neural networks
– volume: 29
  start-page: 1773
  issue: 11
  year: 2004
  end-page: 1783
  ident: CR8
  article-title: Power sector reform in bangladesh: Electricity distribution system
  publication-title: Energy
– ident: CR27
– volume: 519
  start-page: 103
  year: 2014
  end-page: 126
  ident: CR57
  article-title: Domain adaptation and sample bias correction theory and algorithm for regression
  publication-title: Theoretical Computer Science
– volume: 39
  start-page: 281
  issue: 1
  year: 2009
  end-page: 288
  ident: CR41
  article-title: Svms modeling for highly imbalanced classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 2
  start-page: 27:1
  year: 2011
  end-page: 27:27
  ident: CR49
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– ident: CR44
– ident: CR48
– ident: CR3
– ident: CR38
– volume: 62
  start-page: 727
  year: 2014
  end-page: 734
  ident: CR23
  article-title: Using the rough set theory to detect fraud committed by electricity customers
  publication-title: International Journal of Electrical Power & Energy Systems
– ident: CR17
– ident: CR13
– ident: CR34
– ident: CR59
– ident: CR28
– ident: CR24
– ident: CR20
SSID ssj0002140044
ssib050732782
Score 2.4781613
Snippet Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 760
SubjectTerms Algorithms
Artificial intelligence
Computer engineering
Covariate shift
Electric power distribution
Electric power grids
Electrical engineering
Electricity
electricity theft
expert systems
Impact analysis
machine learning
non-technical losses
Research Article
stochastic processes
Theft
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJy68EYOBcuAG3ZYuSRNuY4AGgl1g0m5Vm4c0hDqEBhL_Hjttx4YEXLjmLduJ7ST-TMgJPp1lStioE2c84rl1kbLKR1wa1BiJ8F0MFL4fysGI347FeCHVF_4JK-GBS8K1uegwow1XJu9yrZQGkfTOOJZJkUsV4shB5y04U3gGxwxlk5dRMnDisvbkyUwQnpslLTwoWoItaaIA2L9kZX57GA365nqTrFeGIu2VC9wiK67YJht1EgZa7ckdMgJG036dEoVOPR1OiyjcmCP96R3MTS_dLHy5Kmj4IhBGLaEj6M0CJuc57dGHt9d397FLRtdXj_1BVOVKiAxolFlkpNPGJeBwWmVtlnhwFbxKMulVnHvvJdegnV2uHNdJzizXYNoZ0_G2y6TmWXePrBbTwu0T6sGkMwjThlnTbSyzWObSxYY754GXrEFYTbfUVEDimM_iOQWHAmmdBlqnSGssYqmAPqfzPi8ljMavrS-QHfOWCIEdCkAw0kow0r8Eo0GaNTPTal_CLKAXhJaCQfVZzeCv6p-XdPAfSzokazhmeYPTJKuz1zd3BDbNLD8O4vsJ-RTyLw
  priority: 102
  providerName: Directory of Open Access Journals
Title The Challenge of Non-Technical Loss Detection Using Artificial Intelligence: A Survey
URI https://link.springer.com/article/10.2991/ijcis.2017.10.1.51
https://www.proquest.com/docview/2467596517
https://doaj.org/article/4501c9c48cb349889730fece1a65b687
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFy--xeeSgzeNbtokTbytq4su6kUXvJU2D1CkK7IK_ntn0nZ1BQWPzbPMJJnJTOYbQg7QdVZo6Vg3KQQTpfNMOx2YUBYlRiZDioHCN7fqciSGD_KhgcnBWJhv_ns4KPnJ45N9RFRtnh3j_j7GaOkFyVOFz7f6qj-1pyQcV2N0IoMKzpQ2vI6R-WWYGTkU4fpndMwfbtEobQYrZKlRE2mv5usqmfPVGlluUzDQZkeukxGwmfbbhCh0HOjtuGLRXo7Up9cwNz33k_jgqqLxgUActQaOoFffEDlPaY_evb2--48NMhpc3PcvWZMpgVmQJxNmlTfWZ3DddNq5IgtwUQg6K1TQSRlCUMKAbPal9sJkJXfCgGJnbTe4lCsjinSTzFfjym8RGkChswjShjnTXaKKRJXKJ1Z4H4CTfJvwlm65bWDEMZvFcw7XCaR1HmmdI62xiOcS-hxO-7zUIBp_tj5DdkxbIgB2LIB1kTf7KReyy62xQtsyFUZrAydV8NbzQslS6Wyb7LXMzJtdCbOAVJBGSQ7VRy2Dv6p__6Wd_zXfJYv4WVtq9sj85PXN74PuMik7ZKHXG94NO3HxdqIF4BPL3Ok9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYQHOBSHqUqlIIP3FpDvLG9NreUh0IacoFI3KxdPxBVtUEhVOLfM-PdDQ-JSlzXr9WMxzP2zHxDyD66zgotPetkhWCi9IFpryMTyqHGyGXsYqLwxUj1x2JwLa-bpLD7Ntq9dUmmkxqDlcGIObz9424RX5vnByjpB5g3vaSl0rC7l3q9weVg_raScdyZyaEM5jhT2vA6X-adiV7ppATd_8refOMiTZrnbI18akxG2qt5vE4WQrVBVttyDLSRzs9kDCynx21xFDqJdDSpWHo7R07QIaxNT8IsBV9VNAULpFlrEAl6_gKd84j26OXD9F943CTjs9Or4z5rqiYwB7plxpwKxoUcrp5ee1_kES4NUeeFijorY4xKGNDTodRBmLzkXhgw8pzrRN_lyoii-4UsVpMqfCU0gnHnELAN66f7TBWZKlXInAghAlf5FuEt3axrIMWxssVfC1cLpLVNtLZIa_zErYQxP-Zj7mpAjf_2_oXsmPdEMOz0YTK9sY1sWSE73BkntCu7wmht4NSKwQVeKFkqnW-RnZaZtpFQWAU0hDRKcmj-2TL4ufn9X9r-WPc9sty_uhja4fno9zeygk31C84OWZxNH8J3sGlm5W6zhZ8As0XvFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELemVpp4gW2A-Nrmh72BoU4dx95bB6uggwoJKvFmJf5ARShFVYrEf8-dk3QwCaS9-jO68-XOvrvfEfIDXWe5Sh3rJblgonCeKacCE9KixsjS0MdE4YuxPJ2I0U168yKLP0a7ty7JOqcBUZrK6ujBhRi4DAbN0fTOThFrm2eHKPWHmEPdVRLM8w7pDgajq9HynSXheEqjcxlMcyaV5nXuzBsLvdJPEcb_le35j7s0aqHhJ7LamI90UPP7M_ngyy9krS3NQBtJXScTYD89bgul0Fmg41nJ4js6coWew970xFcxEKukMXAgrloDStCzF0idP-mAXi3mj_5pg0yGv6-PT1lTQYFZ0DMVs9Jr6zO4hjrlXJ4FuEAEleUyqKQIIUihQWf7Qnmhs4I7ocHgs7YXXJ9LLfL-JumUs9JvERrA0LMI3oa11F0i80QW0idWeB-Aw3yb8JZuxjbw4ljl4t7ANQNpbSKtDdIam7hJYc7-cs5DDa7x7uhfyI7lSATGjg2z-a1p5MyItMettkLZoi-0Uhr-YMFbz3OZFlJl22SvZaZppBV2AW2Raply6D5oGfy3--1P2vm_4d_Jx8uToTk_G__ZJSvYUz_m7JFONV_4r2DeVMW35gQ_A2XH81c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Challenge+of+Non-Technical+Loss+Detection+Using+Artificial+Intelligence%3A+A+Survey&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Glauner%2C+Patrick&rft.au=Meira%2C+Jorge+Augusto&rft.au=Valtchev%2C+Petko&rft.au=State%2C+Radu&rft.date=2017&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=10&rft.issue=1&rft.spage=760&rft_id=info:doi/10.2991%2Fijcis.2017.10.1.51&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_2017_10_1_51
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon