Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions

We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a...

Full description

Saved in:
Bibliographic Details
Published inBoundary value problems Vol. 2022; no. 1; pp. 1 - 16
Main Author Yan, Debao
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 14.01.2022
Hindawi Limited
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
AbstractList We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at $t=0$ t = 0 , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t=0, 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
Abstract We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 $t=0$ , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
ArticleNumber 3
Author Yan, Debao
Author_xml – sequence: 1
  givenname: Debao
  orcidid: 0000-0002-0211-2175
  surname: Yan
  fullname: Yan, Debao
  email: bbs0415@yeah.net
  organization: School of Mathematics and Statistics, Heze University
BookMark eNp9UU1rFjEQDlLBtvoHPAU8r-Z7N0cpagsFD-o5zCazL3lZkzbJgv57874rKh56ymTm-RjmuSIXKSck5DVnbzmfzLvKpTF8YEIMjOtJD-IZueRmGgcxjuzin_oFuar1yJi0UolL8uNLXrcWc6p0yYUC9dDwkMtPmhdaYzpsKxTa3daYsFdLAX-Cw0pDXBYsmFrsH3zcYJep23xE32jLNKauVfp0zlsK0EV9TiGecS_J8wXWiq9-v9fk28cPX29uh_vPn-5u3t8PXgnbhhkNB2B6FBMK45FJD9rYibMxTGFWxnoJWtjenGfJlZW9jwa99laHMMprcrfrhgxH91Di976HyxDduZHLwUFp0a_oRqa9YhqVVFwxa2AUzDMR1BQkMotd682u9VDy44a1uWPeSr9FdcJwazjjRnSU2FG-5FoLLn9cOXOntNyelutpuXNa7kSa_iP52M4XbQXi-jRV7tTafdIBy9-tnmD9AvS1rSM
CitedBy_id crossref_primary_10_1016_j_cjph_2022_04_015
crossref_primary_10_1155_2024_5554742
crossref_primary_10_11948_20220329
crossref_primary_10_3934_mbe_2023206
Cites_doi 10.1186/s13661-016-0572-0
10.1006/jmaa.1996.0456
10.18514/MMN.2014.511
10.1186/s13662-020-02549-5
10.1016/j.jmaa.2005.02.052
10.1155/2009/375486
10.1186/1687-1847-2013-213
10.1186/1687-2770-2012-73
10.1016/j.na.2009.03.030
10.1186/s13661-018-0941-y
10.1016/j.mcm.2012.06.024
10.1016/j.na.2007.08.042
10.1007/s12190-013-0689-6
10.1155/ADE/2006/90479
10.1186/s13662-020-02594-0
10.1186/s13661-019-1205-1
10.1186/1687-2770-2012-81
10.1016/j.jmaa.2010.04.034
10.1515/GMJ.2009.401
10.1007/s12190-012-0610-8
10.1016/j.na.2009.07.012
10.1186/s13662-015-0729-7
10.22436/jnsa.010.04.63
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13661-022-01585-2
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1687-2770
EndPage 16
ExternalDocumentID oai_doaj_org_article_705c405e43414096a720c02d48d3e09e
10_1186_s13661_022_01585_2
GroupedDBID -A0
0R~
23N
2WC
3V.
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EBLON
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c429t-be61aa05728e26ce03ca5698107d8db469c3a529a56bb314937d8e6ec5c95dd73
IEDL.DBID C24
ISSN 1687-2770
1687-2762
IngestDate Wed Aug 27 01:30:05 EDT 2025
Fri Jul 25 18:58:07 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Tue Jul 01 02:44:20 EDT 2025
Fri Feb 21 02:46:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fractional differential equation
34B16
Fixed point theorem
Singular boundary value problem
Integral boundary condition
34B10
34A08
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-be61aa05728e26ce03ca5698107d8db469c3a529a56bb314937d8e6ec5c95dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0211-2175
OpenAccessLink https://link.springer.com/10.1186/s13661-022-01585-2
PQID 2619610162
PQPubID 237307
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_705c405e43414096a720c02d48d3e09e
proquest_journals_2619610162
crossref_primary_10_1186_s13661_022_01585_2
crossref_citationtrail_10_1186_s13661_022_01585_2
springer_journals_10_1186_s13661_022_01585_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-14
PublicationDateYYYYMMDD 2022-01-14
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Boundary value problems
PublicationTitleAbbrev Bound Value Probl
PublicationYear 2022
Publisher Springer International Publishing
Hindawi Limited
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Hindawi Limited
– name: SpringerOpen
References WangY.LiuL.WuY.Existence and uniqueness of a positive solution to singular fractional differential equationsBound. Value Probl.20122012301633010.1186/1687-2770-2012-81
Wang, Y., Xu, J.: Sobolev Space, Southeast University Press (2003) (in Chinese)
PodlubnyI.Fractional Differential Equations1999San DiegoAcademic Press0924.34008
MillerK.S.RossB.An Introduction to the Fractional Calculus and Differential Equations1993New YorkWiley0789.26002
XuX.JiangD.YuanC.Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equationsNonlinear Anal.20097146764688254870110.1016/j.na.2009.03.030
TariboonJ.SitthiwiratthamT.NtouyasS.K.Boundary value problems for a new class of three-point nonlocal Riemann–Liouville integral boundary conditionsAdv. Differ. Equ.20132013308986410.1186/1687-1847-2013-213
QiuT.BaiZ.Existence of positive solutions for singular fractional differential equationsElectron. J. Differ. Equ.200814624489011172.34313
LakshmikanthamV.VatsalaA.S.Basic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042
ZhaoY.SunS.HanZ.ZhangM.Positive solutions for boundary value problems of nonlinear fractional differential equationsAppl. Math. Comput.20112176950695827756851227.34011
ZhangS.Positive solutions for boundary value problems of nonlinear fractional differential equationsElectron. J. Differ. Equ.20062006221358010.1155/ADE/2006/90479
AhmadB.NtouyasS.K.AssolamiA.Caputo type fractional differential equations with nonlocal Riemann–Liouville integral boundary conditionsJ. Appl. Math. Comput.201341339350301712510.1007/s12190-012-0610-8
JleliM.SametB.On positive solutions for a class of singular nonlinear fractional differential equationsBound. Value Probl.20122012296088310.1186/1687-2770-2012-73
KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory of Fractional Differential Equations2006AmsterdamElsevier1092.45003
MatarM.M.On existence of positive solution for initial value problem of nonlinear fractional differential equations of orderActa Math. Univ. Comen.2015LXXXIV1515733164031340.34031
JiangD.YuanC.The positive properties of the Green function for Dirichlet type boundary value problems of nonlinear fractional differential equations and its applicationNonlinear Anal.201072710719257933910.1016/j.na.2009.07.012
KrasnoselskiiM.A.Two remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119
LiuL.MinD.WuY.Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann–Stieltjes integral boundary value conditionsAdv. Differ. Equ.20202020414152110.1186/s13662-020-02594-0
SmartD.R.Fixed Point Theorems1980CambridgeCambridge University Press0427.47036
SamkoS.G.KilbasA.A.MarichevO.I.Fractional Integrals and Derivatives, Theory and Applications1993YverdonGordon & Breach0818.26003
AgarwalR.P.BenchoraM.HamaniS.Boundary value problems for fractional differential equationsGeorgian Math. J.2009163401411257266310.1515/GMJ.2009.401
WangY.The Green function of a class of two-term fractional differential equation boundary value problem and its applicationAdv. Differ. Equ.20202020406780910.1186/s13662-020-02549-5
AgarwalR.P.O’reganD.StaněkS.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equationsJ. Math. Anal. Appl.20103715768266098610.1016/j.jmaa.2010.04.034
AhmadB.SivasundaramS.On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional orderAppl. Math. Comput.201021748048726785591207.45014
DarwishM.A.NtouyasS.K.Existence results for first order boundary value problems for fractional differential equations with four-point integral boundary conditionsMiskolc Math. Notes20141515161325966910.18514/MMN.2014.511
LakshmikanthamV.VatsalaA.S.Theory of fractional differential inequalities and applicationsCommun. Appl.2007113–439540223681911159.34006
WangY.LiuL.Positive properties of the Green function for two-term fractional differential equations and its applicationsJ. Nonlinear Sci. Appl.20171020942102364663810.22436/jnsa.010.04.63
HeY.Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditionsAdv. Differ. Equ.20162016345408610.1186/s13662-015-0729-7
DelboscoD.RodinoL.Existence and uniqueness for a nonlinear fractional differential equationJ. Math. Anal. Appl.1996204609625142146710.1006/jmaa.1996.0456
WuJ.LiuY.Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spacesElectron. J. Differ. Equ.20092009255009110.1155/2009/375486
YanD.Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations with singular boundary value conditionsMath. Probl. Eng.202120214241894
BaiZ.LiuH.Positive solutions for boundary value problem of nonlinear fractional differential equationJ. Math. Anal. Appl.20053112495505216841310.1016/j.jmaa.2005.02.052
VongS.Positive solutions of singular fractional differential equation with integral boundary conditionsMath. Comput. Model.20135710531059303411010.1016/j.mcm.2012.06.024
WangY.Existence and multiplicity of positive solutions for a class of singular fractional nonlocal boundary value problemsBound. Value Probl.20192019395078010.1186/s13661-019-1205-1
ZhangX.ZhongQ.Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equationsBound. Value Probl.20162016347674310.1186/s13661-016-0572-0
GuoL.ZhangX.Existence of positive solutions for the singular fractional differential equationsJ. Appl. Math. Comput.201444215228314773810.1007/s12190-013-0689-6
MinD.LiuL.WuY.Uniqueness of positive solutions for the singular nonlinear fractional differential equations involving integral boundary value conditionsBound. Value Probl.2018201810.1186/s13661-018-0941-y
T. Qiu (1585_CR25) 2008; 146
I. Podlubny (1585_CR3) 1999
J. Tariboon (1585_CR15) 2013; 2013
M.A. Krasnoselskii (1585_CR34) 1955; 10
B. Ahmad (1585_CR14) 2010; 217
A.A. Kilbas (1585_CR1) 2006
L. Liu (1585_CR31) 2020; 2020
J. Wu (1585_CR10) 2009; 2009
K.S. Miller (1585_CR2) 1993
D. Jiang (1585_CR11) 2010; 72
Y. Wang (1585_CR18) 2017; 10
Y. Wang (1585_CR33) 2019; 2019
S. Vong (1585_CR32) 2013; 57
D. Min (1585_CR30) 2018; 2018
R.P. Agarwal (1585_CR24) 2010; 371
D. Yan (1585_CR28) 2021; 2021
Y. He (1585_CR29) 2016; 2016
B. Ahmad (1585_CR17) 2013; 41
Z. Bai (1585_CR9) 2005; 311
V. Lakshmikantham (1585_CR5) 2007; 11
M. Jleli (1585_CR26) 2012; 2012
D.R. Smart (1585_CR35) 1980
D. Delbosco (1585_CR12) 1996; 204
L. Guo (1585_CR27) 2014; 44
Y. Wang (1585_CR22) 2012; 2012
R.P. Agarwal (1585_CR8) 2009; 16
M.M. Matar (1585_CR20) 2015; LXXXIV
S.G. Samko (1585_CR6) 1993
X. Xu (1585_CR13) 2009; 71
1585_CR36
M.A. Darwish (1585_CR16) 2014; 15
Y. Wang (1585_CR19) 2020; 2020
S. Zhang (1585_CR7) 2006; 2006
V. Lakshmikantham (1585_CR4) 2008; 69
X. Zhang (1585_CR23) 2016; 2016
Y. Zhao (1585_CR21) 2011; 217
References_xml – reference: MinD.LiuL.WuY.Uniqueness of positive solutions for the singular nonlinear fractional differential equations involving integral boundary value conditionsBound. Value Probl.2018201810.1186/s13661-018-0941-y
– reference: LakshmikanthamV.VatsalaA.S.Basic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042
– reference: AhmadB.NtouyasS.K.AssolamiA.Caputo type fractional differential equations with nonlocal Riemann–Liouville integral boundary conditionsJ. Appl. Math. Comput.201341339350301712510.1007/s12190-012-0610-8
– reference: SmartD.R.Fixed Point Theorems1980CambridgeCambridge University Press0427.47036
– reference: HeY.Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditionsAdv. Differ. Equ.20162016345408610.1186/s13662-015-0729-7
– reference: YanD.Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations with singular boundary value conditionsMath. Probl. Eng.202120214241894
– reference: DelboscoD.RodinoL.Existence and uniqueness for a nonlinear fractional differential equationJ. Math. Anal. Appl.1996204609625142146710.1006/jmaa.1996.0456
– reference: WangY.The Green function of a class of two-term fractional differential equation boundary value problem and its applicationAdv. Differ. Equ.20202020406780910.1186/s13662-020-02549-5
– reference: PodlubnyI.Fractional Differential Equations1999San DiegoAcademic Press0924.34008
– reference: WuJ.LiuY.Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spacesElectron. J. Differ. Equ.20092009255009110.1155/2009/375486
– reference: AgarwalR.P.BenchoraM.HamaniS.Boundary value problems for fractional differential equationsGeorgian Math. J.2009163401411257266310.1515/GMJ.2009.401
– reference: JiangD.YuanC.The positive properties of the Green function for Dirichlet type boundary value problems of nonlinear fractional differential equations and its applicationNonlinear Anal.201072710719257933910.1016/j.na.2009.07.012
– reference: WangY.LiuL.Positive properties of the Green function for two-term fractional differential equations and its applicationsJ. Nonlinear Sci. Appl.20171020942102364663810.22436/jnsa.010.04.63
– reference: LiuL.MinD.WuY.Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann–Stieltjes integral boundary value conditionsAdv. Differ. Equ.20202020414152110.1186/s13662-020-02594-0
– reference: VongS.Positive solutions of singular fractional differential equation with integral boundary conditionsMath. Comput. Model.20135710531059303411010.1016/j.mcm.2012.06.024
– reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory of Fractional Differential Equations2006AmsterdamElsevier1092.45003
– reference: WangY.LiuL.WuY.Existence and uniqueness of a positive solution to singular fractional differential equationsBound. Value Probl.20122012301633010.1186/1687-2770-2012-81
– reference: ZhaoY.SunS.HanZ.ZhangM.Positive solutions for boundary value problems of nonlinear fractional differential equationsAppl. Math. Comput.20112176950695827756851227.34011
– reference: ZhangS.Positive solutions for boundary value problems of nonlinear fractional differential equationsElectron. J. Differ. Equ.20062006221358010.1155/ADE/2006/90479
– reference: MillerK.S.RossB.An Introduction to the Fractional Calculus and Differential Equations1993New YorkWiley0789.26002
– reference: Wang, Y., Xu, J.: Sobolev Space, Southeast University Press (2003) (in Chinese)
– reference: KrasnoselskiiM.A.Two remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119
– reference: SamkoS.G.KilbasA.A.MarichevO.I.Fractional Integrals and Derivatives, Theory and Applications1993YverdonGordon & Breach0818.26003
– reference: GuoL.ZhangX.Existence of positive solutions for the singular fractional differential equationsJ. Appl. Math. Comput.201444215228314773810.1007/s12190-013-0689-6
– reference: DarwishM.A.NtouyasS.K.Existence results for first order boundary value problems for fractional differential equations with four-point integral boundary conditionsMiskolc Math. Notes20141515161325966910.18514/MMN.2014.511
– reference: AgarwalR.P.O’reganD.StaněkS.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equationsJ. Math. Anal. Appl.20103715768266098610.1016/j.jmaa.2010.04.034
– reference: BaiZ.LiuH.Positive solutions for boundary value problem of nonlinear fractional differential equationJ. Math. Anal. Appl.20053112495505216841310.1016/j.jmaa.2005.02.052
– reference: WangY.Existence and multiplicity of positive solutions for a class of singular fractional nonlocal boundary value problemsBound. Value Probl.20192019395078010.1186/s13661-019-1205-1
– reference: TariboonJ.SitthiwiratthamT.NtouyasS.K.Boundary value problems for a new class of three-point nonlocal Riemann–Liouville integral boundary conditionsAdv. Differ. Equ.20132013308986410.1186/1687-1847-2013-213
– reference: ZhangX.ZhongQ.Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equationsBound. Value Probl.20162016347674310.1186/s13661-016-0572-0
– reference: AhmadB.SivasundaramS.On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional orderAppl. Math. Comput.201021748048726785591207.45014
– reference: QiuT.BaiZ.Existence of positive solutions for singular fractional differential equationsElectron. J. Differ. Equ.200814624489011172.34313
– reference: LakshmikanthamV.VatsalaA.S.Theory of fractional differential inequalities and applicationsCommun. Appl.2007113–439540223681911159.34006
– reference: MatarM.M.On existence of positive solution for initial value problem of nonlinear fractional differential equations of orderActa Math. Univ. Comen.2015LXXXIV1515733164031340.34031
– reference: JleliM.SametB.On positive solutions for a class of singular nonlinear fractional differential equationsBound. Value Probl.20122012296088310.1186/1687-2770-2012-73
– reference: XuX.JiangD.YuanC.Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equationsNonlinear Anal.20097146764688254870110.1016/j.na.2009.03.030
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 1585_CR3
– volume: 217
  start-page: 480
  year: 2010
  ident: 1585_CR14
  publication-title: Appl. Math. Comput.
– volume: 2016
  year: 2016
  ident: 1585_CR23
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-016-0572-0
– volume: 204
  start-page: 609
  year: 1996
  ident: 1585_CR12
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0456
– ident: 1585_CR36
– volume: 15
  start-page: 51
  issue: 1
  year: 2014
  ident: 1585_CR16
  publication-title: Miskolc Math. Notes
  doi: 10.18514/MMN.2014.511
– volume: LXXXIV
  start-page: 51
  issue: 1
  year: 2015
  ident: 1585_CR20
  publication-title: Acta Math. Univ. Comen.
– volume: 2020
  year: 2020
  ident: 1585_CR19
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02549-5
– volume-title: An Introduction to the Fractional Calculus and Differential Equations
  year: 1993
  ident: 1585_CR2
– volume: 311
  start-page: 495
  issue: 2
  year: 2005
  ident: 1585_CR9
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.02.052
– volume: 2009
  year: 2009
  ident: 1585_CR10
  publication-title: Electron. J. Differ. Equ.
  doi: 10.1155/2009/375486
– volume: 2013
  year: 2013
  ident: 1585_CR15
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-213
– volume: 2012
  year: 2012
  ident: 1585_CR26
  publication-title: Bound. Value Probl.
  doi: 10.1186/1687-2770-2012-73
– volume: 71
  start-page: 4676
  year: 2009
  ident: 1585_CR13
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.03.030
– volume: 2018
  year: 2018
  ident: 1585_CR30
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-018-0941-y
– volume: 57
  start-page: 1053
  year: 2013
  ident: 1585_CR32
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2012.06.024
– volume: 69
  start-page: 2677
  issue: 8
  year: 2008
  ident: 1585_CR4
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.08.042
– volume: 44
  start-page: 215
  year: 2014
  ident: 1585_CR27
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-013-0689-6
– volume-title: Theory of Fractional Differential Equations
  year: 2006
  ident: 1585_CR1
– volume: 2006
  year: 2006
  ident: 1585_CR7
  publication-title: Electron. J. Differ. Equ.
  doi: 10.1155/ADE/2006/90479
– volume: 217
  start-page: 6950
  year: 2011
  ident: 1585_CR21
  publication-title: Appl. Math. Comput.
– volume: 2020
  year: 2020
  ident: 1585_CR31
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02594-0
– volume: 2019
  year: 2019
  ident: 1585_CR33
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-019-1205-1
– volume: 10
  start-page: 123
  year: 1955
  ident: 1585_CR34
  publication-title: Usp. Mat. Nauk
– volume: 2012
  year: 2012
  ident: 1585_CR22
  publication-title: Bound. Value Probl.
  doi: 10.1186/1687-2770-2012-81
– volume: 371
  start-page: 57
  year: 2010
  ident: 1585_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.04.034
– volume-title: Fixed Point Theorems
  year: 1980
  ident: 1585_CR35
– volume: 16
  start-page: 401
  issue: 3
  year: 2009
  ident: 1585_CR8
  publication-title: Georgian Math. J.
  doi: 10.1515/GMJ.2009.401
– volume: 41
  start-page: 339
  year: 2013
  ident: 1585_CR17
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-012-0610-8
– volume: 72
  start-page: 710
  year: 2010
  ident: 1585_CR11
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.07.012
– volume: 11
  start-page: 395
  issue: 3–4
  year: 2007
  ident: 1585_CR5
  publication-title: Commun. Appl.
– volume-title: Fractional Integrals and Derivatives, Theory and Applications
  year: 1993
  ident: 1585_CR6
– volume: 2021
  year: 2021
  ident: 1585_CR28
  publication-title: Math. Probl. Eng.
– volume: 146
  year: 2008
  ident: 1585_CR25
  publication-title: Electron. J. Differ. Equ.
– volume: 2016
  year: 2016
  ident: 1585_CR29
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-015-0729-7
– volume: 10
  start-page: 2094
  year: 2017
  ident: 1585_CR18
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.04.63
SSID ssj0039342
Score 2.2641785
Snippet We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear...
Abstract We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Approximations and Expansions
Boundary conditions
Boundary value problems
Difference and Functional Equations
Differential equations
Existence theorems
Fixed point theorem
Fixed points (mathematics)
Fractional differential equation
Integral boundary condition
Mathematical analysis
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Singular boundary value problem
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5IENrCZ-xRkBUVVIMFGpm-VXpqqFppX4-ZzjpFAkYGGzHMc5-c6-R87fIXRlLYiupIEI4wXhRbCk9HlsSQP2q-DeN9kWz3I05o8TMflS6ivmhCV44LRwgyITDoyKwOG4BV9EmoJmLqOeK89CVoZ4-oLO65ypdAazknHaXZFRclDnDPQQiZnroP6UIHRDDTVo_Rsm5re_oo2yGe6jvdZKxLeJugO0FWaHaPdpDbFaH6H3dUALg92JDY6pTfG6CZ5XOAYAYn4pniUkDGhVi3SFAabtiqLA5p7i8JbAvmtcr2wMyuDlHLcgElNsm6pLMCm4zT5ldx2j8fDh5X5E2jIKxIGyWRIbZG4M2GVUBSpjfTBnhCwVOH5eeQv-sWNG0BI6rWXgMTHoDzI44UrhfcFO0DZQG04RrjLFqTVWGku5cmCdi0rJXCkemAm26qG8W1XtWozxWOpiqhtfQ0mdOKGBE7rhhKY9dL1-5zUhbPw6-i4yaz0yomM3HSAzupUZ_ZfM9FC_Y7Vut2ytoyspYywDvnHTsf_z8c8knf0HSedohybxJDnvo-3lYhUuwNxZ2stGsj8AZzH54A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA7qXvQgPnF9kYM3DbZ5bXoSFZdFcBFR8BbyqpfF1e0K_nwnabqioLeSpiF0Xt9MJjMInVgLrCtpIMJ4QfggWFL5Mj5JA_hVcO9TtsVYjp747bN4zgG3JqdVdjoxKWo_dTFGfh6RvoyuJr14eyexa1Q8Xc0tNJZRD1SwAuerd3Uzvn_odDGrWGqfU0oQJQpy312bUfK8KRnYJhKz2cEkKkHoD9OUKvj_gJ2_TkqTARpuoPWMHPFlS-pNtBRet9Da3aLsarONPhdBLgxYFBsc053iFRQ8rXEMCsScU_zaVseAp3rWXmuAZbtGKSDwExze2wLgDW4-bAzU4PkU58ISE2xTJyZYFFxp32Z87aCn4c3j9Yjk1grEgQGaExtkaQxgNaoClbFnmDNCVgqcQa-8BZ_ZMSNoBYPWMvCiGIwHGZxwlfB-wHbRCuw27CFcF4pTa6w0lnLlALGLWslSKR6YCbbuo7L7q9rluuOx_cVEJ_9DSd1SQgMldKKEpn10uvjmra268e_sq0isxcxYMTsNTGcvOgugHhTCATgNHMw2-LTSDGjhCuq58iwUVeijw47UOotxo7-Zro_OOvJ_v_57S_v_r3aAVmnLeKTkh2hlPvsIRwBu5vY4c_AX_X72Gg
  priority: 102
  providerName: ProQuest
Title Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions
URI https://link.springer.com/article/10.1186/s13661-022-01585-2
https://www.proquest.com/docview/2619610162
https://doaj.org/article/705c405e43414096a720c02d48d3e09e
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NixMxFA-6vehBdv3A6m7JwZsGZ_LVzLEtrWXBImKht5Cv8VJa7bSwf_6-JDMjXVzByyNkkpkwL8l7v-R9IPTBWpi6kgYijBeEj4MllS9jSRrQXwX3PllbrORyzW83YtM6hTWdtXt3JZl26rSslfzclAxkCYnW5yDClCCw8Q4EYPc4r2fRxyHvv6xinHbuMX_tdyaCUqT-M_XywY1oEjSLS_Si1RDxJLP0Cj0Ju5fo-dc-vGrzCt31h1kYdE5scDRriq4meF_jCP6jbSne5SgYUKoP2X0BXtslRIGFvcXhdw703eDmZOOBDD7ucRtAYottyrgELwXI7LNl12u0Xsx_zJakTaFAHAiaI7FBlsaATkZVoDLmBnNGyEoB6PPKW8DGjhlBK6i0lgFaYlAfZHDCVcL7MXuDLmC04S3CdaE4tcZKYylXDjRzUStZKsUDM8HWQ1R2f1W7Nr54THOx1QlnKKkzJzRwQidOaDpEH_s-v3J0jX-2nkZm9S1jZOxUsT_81O1C0-NCOFBCAwfxDNhVmjEtXEE9V56FogpDdN2xWrfLtdERRsp4jgHf-NSx_8_jx4f07v-av0fPaJ6IpOTX6OJ4OIUbUGqOdoSe8uILULUAOpjOV9--j9K8jlTORumwAOiaTu4BQd71ng
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLzEQgs-wAmsJn6tc0BVeSxb-ji1Um_Gr3BZddvNVsCf4jcytpOtikRvvUVOYkWZ8fj77PF8AG-cQ9dVLFJpg6RiHB1tQp2ulEX8KkUIOdviSE1PxLdTeboGf4azMCmtcoiJOVCHuU9r5NsJ6atENdnO-QVNqlFpd3WQ0ChusR9__0TK1n3Y-4z2fcvY5MvxpyntVQWox9i7pC6q2lqEKUxHppJclrdSNRp5UNDBIV303ErWYKNzHAkEx_aoope-kSGMOfZ7B-4Kzps0ovTk6xD5ecOzWE-tcOAyjDLDIR2ttrua40xIU-48TsBaUnZtIsx6AddA7j_7snm6m2zAwx6nkt3iWI9gLZ49hgeHqyKv3RP4tVpSI4h8iSUpuSodeCHzlqQliJThSs5KLQ68ahflEAV2O8iyYHiZkXhRyo13pLt0aVmILOekL2MxIy7rPmGnSNxDyS97Cie38sufwTp-bXwOpK20YM46ZR0T2iM_kK1WtdYichtdO4J6-KvG91XOk9jGzGS2o5UpljBoCZMtYdgI3q3eOS81Pm58-mMy1urJVJ87N8wXP0w_3M24kh6hcBQIEpBBKztmla9YEDrwWDVxBJuDqU0fNDpz5eIjeD-Y_-r2_z_pxc29vYZ70-PDA3Owd7T_Eu6z4oS0Fpuwvlxcxi2EVUv3Kvsyge-3PXj-AqlAMY0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggPhUFwr4ACewNrFjxzkgRGlXLYVVhajUm_FXuKy67WYr4K_x6xjbyVZForfeIm_WijLjmfec8TyAV9ai60oWqDBe0KoOlja-jFfSIH4Vlfep2mIm94-rTyfiZAP-DGdhYlnlEBNToPYLF_fIJxHpy0g12aTtyyKOdqfvz85pVJCKX1oHOY3sIofh90-kb927g1209WvGpnvfPu7TXmGAOozDK2qDLI1ByMJUYDJKZzkjZKOQE3nlLVJHx41gDQ5ay5FMcBwPMjjhGuF9zXHeW7BZIysqRrC5szc7-jrkAd7wJN1TSlzGDGPOcGRHyUlXcsyLNFbSYzpWgrIraTGpB1yBvP98pU3Jb3of7vWolXzIbvYANsLpQ7j7Zd3ytXsEv9YbbARxMDEkllrF4y9k0ZK4IRHrXclp7syBV-0yH6nAaQeRFgw2cxLOc_PxjnQXNm4SkdWC9E0t5sQmFSicFGm8z9Vmj-H4Rl76Exjh04YtIG2hKmaNlcaySjlkC6JVslSqCtwE246hHN6qdn3P8yi9MdeJ-yipsyU0WkInS2g2hjfr_5zljh_X3r0TjbW-M3brTgOL5Q_dL35dF8IhMA4VQgbk09LUrHAF85XyPBRNGMP2YGrdh5BOXzr8GN4O5r_8-f-P9PT62V7CbVw4-vPB7PAZ3GHZB2lZbcNotbwIzxFjreyL3pkJfL_p9fMXGzw3Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+for+a+category+of+singular+nonlinear+fractional+differential+equations+subject+to+integral+boundary+conditions&rft.jtitle=Boundary+value+problems&rft.au=Yan%2C+Debao&rft.date=2022-01-14&rft.issn=1687-2770&rft.eissn=1687-2770&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1186%2Fs13661-022-01585-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13661_022_01585_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-2770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-2770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-2770&client=summon