Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions
We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a...
Saved in:
Published in | Boundary value problems Vol. 2022; no. 1; pp. 1 - 16 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
14.01.2022
Hindawi Limited SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function
f
is singular at
t
=
0
, 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems. |
---|---|
AbstractList | We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function
f
is singular at
$t=0$
t
=
0
, 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems. We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t=0, 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems. We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems. Abstract We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t = 0 $t=0$ , 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems. |
ArticleNumber | 3 |
Author | Yan, Debao |
Author_xml | – sequence: 1 givenname: Debao orcidid: 0000-0002-0211-2175 surname: Yan fullname: Yan, Debao email: bbs0415@yeah.net organization: School of Mathematics and Statistics, Heze University |
BookMark | eNp9UU1rFjEQDlLBtvoHPAU8r-Z7N0cpagsFD-o5zCazL3lZkzbJgv57874rKh56ymTm-RjmuSIXKSck5DVnbzmfzLvKpTF8YEIMjOtJD-IZueRmGgcxjuzin_oFuar1yJi0UolL8uNLXrcWc6p0yYUC9dDwkMtPmhdaYzpsKxTa3daYsFdLAX-Cw0pDXBYsmFrsH3zcYJep23xE32jLNKauVfp0zlsK0EV9TiGecS_J8wXWiq9-v9fk28cPX29uh_vPn-5u3t8PXgnbhhkNB2B6FBMK45FJD9rYibMxTGFWxnoJWtjenGfJlZW9jwa99laHMMprcrfrhgxH91Di976HyxDduZHLwUFp0a_oRqa9YhqVVFwxa2AUzDMR1BQkMotd682u9VDy44a1uWPeSr9FdcJwazjjRnSU2FG-5FoLLn9cOXOntNyelutpuXNa7kSa_iP52M4XbQXi-jRV7tTafdIBy9-tnmD9AvS1rSM |
CitedBy_id | crossref_primary_10_1016_j_cjph_2022_04_015 crossref_primary_10_1155_2024_5554742 crossref_primary_10_11948_20220329 crossref_primary_10_3934_mbe_2023206 |
Cites_doi | 10.1186/s13661-016-0572-0 10.1006/jmaa.1996.0456 10.18514/MMN.2014.511 10.1186/s13662-020-02549-5 10.1016/j.jmaa.2005.02.052 10.1155/2009/375486 10.1186/1687-1847-2013-213 10.1186/1687-2770-2012-73 10.1016/j.na.2009.03.030 10.1186/s13661-018-0941-y 10.1016/j.mcm.2012.06.024 10.1016/j.na.2007.08.042 10.1007/s12190-013-0689-6 10.1155/ADE/2006/90479 10.1186/s13662-020-02594-0 10.1186/s13661-019-1205-1 10.1186/1687-2770-2012-81 10.1016/j.jmaa.2010.04.034 10.1515/GMJ.2009.401 10.1007/s12190-012-0610-8 10.1016/j.na.2009.07.012 10.1186/s13662-015-0729-7 10.22436/jnsa.010.04.63 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1186/s13661-022-01585-2 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1687-2770 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_705c405e43414096a720c02d48d3e09e 10_1186_s13661_022_01585_2 |
GroupedDBID | -A0 0R~ 23N 2WC 3V. 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABJCF ABUWG ACACY ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EBLON EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ U2A ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c429t-be61aa05728e26ce03ca5698107d8db469c3a529a56bb314937d8e6ec5c95dd73 |
IEDL.DBID | C24 |
ISSN | 1687-2770 1687-2762 |
IngestDate | Wed Aug 27 01:30:05 EDT 2025 Fri Jul 25 18:58:07 EDT 2025 Thu Apr 24 23:07:19 EDT 2025 Tue Jul 01 02:44:20 EDT 2025 Fri Feb 21 02:46:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fractional differential equation 34B16 Fixed point theorem Singular boundary value problem Integral boundary condition 34B10 34A08 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-be61aa05728e26ce03ca5698107d8db469c3a529a56bb314937d8e6ec5c95dd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0211-2175 |
OpenAccessLink | https://link.springer.com/10.1186/s13661-022-01585-2 |
PQID | 2619610162 |
PQPubID | 237307 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_705c405e43414096a720c02d48d3e09e proquest_journals_2619610162 crossref_primary_10_1186_s13661_022_01585_2 crossref_citationtrail_10_1186_s13661_022_01585_2 springer_journals_10_1186_s13661_022_01585_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-14 |
PublicationDateYYYYMMDD | 2022-01-14 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Boundary value problems |
PublicationTitleAbbrev | Bound Value Probl |
PublicationYear | 2022 |
Publisher | Springer International Publishing Hindawi Limited SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Hindawi Limited – name: SpringerOpen |
References | WangY.LiuL.WuY.Existence and uniqueness of a positive solution to singular fractional differential equationsBound. Value Probl.20122012301633010.1186/1687-2770-2012-81 Wang, Y., Xu, J.: Sobolev Space, Southeast University Press (2003) (in Chinese) PodlubnyI.Fractional Differential Equations1999San DiegoAcademic Press0924.34008 MillerK.S.RossB.An Introduction to the Fractional Calculus and Differential Equations1993New YorkWiley0789.26002 XuX.JiangD.YuanC.Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equationsNonlinear Anal.20097146764688254870110.1016/j.na.2009.03.030 TariboonJ.SitthiwiratthamT.NtouyasS.K.Boundary value problems for a new class of three-point nonlocal Riemann–Liouville integral boundary conditionsAdv. Differ. Equ.20132013308986410.1186/1687-1847-2013-213 QiuT.BaiZ.Existence of positive solutions for singular fractional differential equationsElectron. J. Differ. Equ.200814624489011172.34313 LakshmikanthamV.VatsalaA.S.Basic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042 ZhaoY.SunS.HanZ.ZhangM.Positive solutions for boundary value problems of nonlinear fractional differential equationsAppl. Math. Comput.20112176950695827756851227.34011 ZhangS.Positive solutions for boundary value problems of nonlinear fractional differential equationsElectron. J. Differ. Equ.20062006221358010.1155/ADE/2006/90479 AhmadB.NtouyasS.K.AssolamiA.Caputo type fractional differential equations with nonlocal Riemann–Liouville integral boundary conditionsJ. Appl. Math. Comput.201341339350301712510.1007/s12190-012-0610-8 JleliM.SametB.On positive solutions for a class of singular nonlinear fractional differential equationsBound. Value Probl.20122012296088310.1186/1687-2770-2012-73 KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory of Fractional Differential Equations2006AmsterdamElsevier1092.45003 MatarM.M.On existence of positive solution for initial value problem of nonlinear fractional differential equations of orderActa Math. Univ. Comen.2015LXXXIV1515733164031340.34031 JiangD.YuanC.The positive properties of the Green function for Dirichlet type boundary value problems of nonlinear fractional differential equations and its applicationNonlinear Anal.201072710719257933910.1016/j.na.2009.07.012 KrasnoselskiiM.A.Two remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119 LiuL.MinD.WuY.Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann–Stieltjes integral boundary value conditionsAdv. Differ. Equ.20202020414152110.1186/s13662-020-02594-0 SmartD.R.Fixed Point Theorems1980CambridgeCambridge University Press0427.47036 SamkoS.G.KilbasA.A.MarichevO.I.Fractional Integrals and Derivatives, Theory and Applications1993YverdonGordon & Breach0818.26003 AgarwalR.P.BenchoraM.HamaniS.Boundary value problems for fractional differential equationsGeorgian Math. J.2009163401411257266310.1515/GMJ.2009.401 WangY.The Green function of a class of two-term fractional differential equation boundary value problem and its applicationAdv. Differ. Equ.20202020406780910.1186/s13662-020-02549-5 AgarwalR.P.O’reganD.StaněkS.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equationsJ. Math. Anal. Appl.20103715768266098610.1016/j.jmaa.2010.04.034 AhmadB.SivasundaramS.On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional orderAppl. Math. Comput.201021748048726785591207.45014 DarwishM.A.NtouyasS.K.Existence results for first order boundary value problems for fractional differential equations with four-point integral boundary conditionsMiskolc Math. Notes20141515161325966910.18514/MMN.2014.511 LakshmikanthamV.VatsalaA.S.Theory of fractional differential inequalities and applicationsCommun. Appl.2007113–439540223681911159.34006 WangY.LiuL.Positive properties of the Green function for two-term fractional differential equations and its applicationsJ. Nonlinear Sci. Appl.20171020942102364663810.22436/jnsa.010.04.63 HeY.Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditionsAdv. Differ. Equ.20162016345408610.1186/s13662-015-0729-7 DelboscoD.RodinoL.Existence and uniqueness for a nonlinear fractional differential equationJ. Math. Anal. Appl.1996204609625142146710.1006/jmaa.1996.0456 WuJ.LiuY.Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spacesElectron. J. Differ. Equ.20092009255009110.1155/2009/375486 YanD.Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations with singular boundary value conditionsMath. Probl. Eng.202120214241894 BaiZ.LiuH.Positive solutions for boundary value problem of nonlinear fractional differential equationJ. Math. Anal. Appl.20053112495505216841310.1016/j.jmaa.2005.02.052 VongS.Positive solutions of singular fractional differential equation with integral boundary conditionsMath. Comput. Model.20135710531059303411010.1016/j.mcm.2012.06.024 WangY.Existence and multiplicity of positive solutions for a class of singular fractional nonlocal boundary value problemsBound. Value Probl.20192019395078010.1186/s13661-019-1205-1 ZhangX.ZhongQ.Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equationsBound. Value Probl.20162016347674310.1186/s13661-016-0572-0 GuoL.ZhangX.Existence of positive solutions for the singular fractional differential equationsJ. Appl. Math. Comput.201444215228314773810.1007/s12190-013-0689-6 MinD.LiuL.WuY.Uniqueness of positive solutions for the singular nonlinear fractional differential equations involving integral boundary value conditionsBound. Value Probl.2018201810.1186/s13661-018-0941-y T. Qiu (1585_CR25) 2008; 146 I. Podlubny (1585_CR3) 1999 J. Tariboon (1585_CR15) 2013; 2013 M.A. Krasnoselskii (1585_CR34) 1955; 10 B. Ahmad (1585_CR14) 2010; 217 A.A. Kilbas (1585_CR1) 2006 L. Liu (1585_CR31) 2020; 2020 J. Wu (1585_CR10) 2009; 2009 K.S. Miller (1585_CR2) 1993 D. Jiang (1585_CR11) 2010; 72 Y. Wang (1585_CR18) 2017; 10 Y. Wang (1585_CR33) 2019; 2019 S. Vong (1585_CR32) 2013; 57 D. Min (1585_CR30) 2018; 2018 R.P. Agarwal (1585_CR24) 2010; 371 D. Yan (1585_CR28) 2021; 2021 Y. He (1585_CR29) 2016; 2016 B. Ahmad (1585_CR17) 2013; 41 Z. Bai (1585_CR9) 2005; 311 V. Lakshmikantham (1585_CR5) 2007; 11 M. Jleli (1585_CR26) 2012; 2012 D.R. Smart (1585_CR35) 1980 D. Delbosco (1585_CR12) 1996; 204 L. Guo (1585_CR27) 2014; 44 Y. Wang (1585_CR22) 2012; 2012 R.P. Agarwal (1585_CR8) 2009; 16 M.M. Matar (1585_CR20) 2015; LXXXIV S.G. Samko (1585_CR6) 1993 X. Xu (1585_CR13) 2009; 71 1585_CR36 M.A. Darwish (1585_CR16) 2014; 15 Y. Wang (1585_CR19) 2020; 2020 S. Zhang (1585_CR7) 2006; 2006 V. Lakshmikantham (1585_CR4) 2008; 69 X. Zhang (1585_CR23) 2016; 2016 Y. Zhao (1585_CR21) 2011; 217 |
References_xml | – reference: MinD.LiuL.WuY.Uniqueness of positive solutions for the singular nonlinear fractional differential equations involving integral boundary value conditionsBound. Value Probl.2018201810.1186/s13661-018-0941-y – reference: LakshmikanthamV.VatsalaA.S.Basic theory of fractional differential equationsNonlinear Anal.200869826772682244636110.1016/j.na.2007.08.042 – reference: AhmadB.NtouyasS.K.AssolamiA.Caputo type fractional differential equations with nonlocal Riemann–Liouville integral boundary conditionsJ. Appl. Math. Comput.201341339350301712510.1007/s12190-012-0610-8 – reference: SmartD.R.Fixed Point Theorems1980CambridgeCambridge University Press0427.47036 – reference: HeY.Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditionsAdv. Differ. Equ.20162016345408610.1186/s13662-015-0729-7 – reference: YanD.Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations with singular boundary value conditionsMath. Probl. Eng.202120214241894 – reference: DelboscoD.RodinoL.Existence and uniqueness for a nonlinear fractional differential equationJ. Math. Anal. Appl.1996204609625142146710.1006/jmaa.1996.0456 – reference: WangY.The Green function of a class of two-term fractional differential equation boundary value problem and its applicationAdv. Differ. Equ.20202020406780910.1186/s13662-020-02549-5 – reference: PodlubnyI.Fractional Differential Equations1999San DiegoAcademic Press0924.34008 – reference: WuJ.LiuY.Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spacesElectron. J. Differ. Equ.20092009255009110.1155/2009/375486 – reference: AgarwalR.P.BenchoraM.HamaniS.Boundary value problems for fractional differential equationsGeorgian Math. J.2009163401411257266310.1515/GMJ.2009.401 – reference: JiangD.YuanC.The positive properties of the Green function for Dirichlet type boundary value problems of nonlinear fractional differential equations and its applicationNonlinear Anal.201072710719257933910.1016/j.na.2009.07.012 – reference: WangY.LiuL.Positive properties of the Green function for two-term fractional differential equations and its applicationsJ. Nonlinear Sci. Appl.20171020942102364663810.22436/jnsa.010.04.63 – reference: LiuL.MinD.WuY.Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann–Stieltjes integral boundary value conditionsAdv. Differ. Equ.20202020414152110.1186/s13662-020-02594-0 – reference: VongS.Positive solutions of singular fractional differential equation with integral boundary conditionsMath. Comput. Model.20135710531059303411010.1016/j.mcm.2012.06.024 – reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory of Fractional Differential Equations2006AmsterdamElsevier1092.45003 – reference: WangY.LiuL.WuY.Existence and uniqueness of a positive solution to singular fractional differential equationsBound. Value Probl.20122012301633010.1186/1687-2770-2012-81 – reference: ZhaoY.SunS.HanZ.ZhangM.Positive solutions for boundary value problems of nonlinear fractional differential equationsAppl. Math. Comput.20112176950695827756851227.34011 – reference: ZhangS.Positive solutions for boundary value problems of nonlinear fractional differential equationsElectron. J. Differ. Equ.20062006221358010.1155/ADE/2006/90479 – reference: MillerK.S.RossB.An Introduction to the Fractional Calculus and Differential Equations1993New YorkWiley0789.26002 – reference: Wang, Y., Xu, J.: Sobolev Space, Southeast University Press (2003) (in Chinese) – reference: KrasnoselskiiM.A.Two remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119 – reference: SamkoS.G.KilbasA.A.MarichevO.I.Fractional Integrals and Derivatives, Theory and Applications1993YverdonGordon & Breach0818.26003 – reference: GuoL.ZhangX.Existence of positive solutions for the singular fractional differential equationsJ. Appl. Math. Comput.201444215228314773810.1007/s12190-013-0689-6 – reference: DarwishM.A.NtouyasS.K.Existence results for first order boundary value problems for fractional differential equations with four-point integral boundary conditionsMiskolc Math. Notes20141515161325966910.18514/MMN.2014.511 – reference: AgarwalR.P.O’reganD.StaněkS.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equationsJ. Math. Anal. Appl.20103715768266098610.1016/j.jmaa.2010.04.034 – reference: BaiZ.LiuH.Positive solutions for boundary value problem of nonlinear fractional differential equationJ. Math. Anal. Appl.20053112495505216841310.1016/j.jmaa.2005.02.052 – reference: WangY.Existence and multiplicity of positive solutions for a class of singular fractional nonlocal boundary value problemsBound. Value Probl.20192019395078010.1186/s13661-019-1205-1 – reference: TariboonJ.SitthiwiratthamT.NtouyasS.K.Boundary value problems for a new class of three-point nonlocal Riemann–Liouville integral boundary conditionsAdv. Differ. Equ.20132013308986410.1186/1687-1847-2013-213 – reference: ZhangX.ZhongQ.Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equationsBound. Value Probl.20162016347674310.1186/s13661-016-0572-0 – reference: AhmadB.SivasundaramS.On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional orderAppl. Math. Comput.201021748048726785591207.45014 – reference: QiuT.BaiZ.Existence of positive solutions for singular fractional differential equationsElectron. J. Differ. Equ.200814624489011172.34313 – reference: LakshmikanthamV.VatsalaA.S.Theory of fractional differential inequalities and applicationsCommun. Appl.2007113–439540223681911159.34006 – reference: MatarM.M.On existence of positive solution for initial value problem of nonlinear fractional differential equations of orderActa Math. Univ. Comen.2015LXXXIV1515733164031340.34031 – reference: JleliM.SametB.On positive solutions for a class of singular nonlinear fractional differential equationsBound. Value Probl.20122012296088310.1186/1687-2770-2012-73 – reference: XuX.JiangD.YuanC.Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equationsNonlinear Anal.20097146764688254870110.1016/j.na.2009.03.030 – volume-title: Fractional Differential Equations year: 1999 ident: 1585_CR3 – volume: 217 start-page: 480 year: 2010 ident: 1585_CR14 publication-title: Appl. Math. Comput. – volume: 2016 year: 2016 ident: 1585_CR23 publication-title: Bound. Value Probl. doi: 10.1186/s13661-016-0572-0 – volume: 204 start-page: 609 year: 1996 ident: 1585_CR12 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1996.0456 – ident: 1585_CR36 – volume: 15 start-page: 51 issue: 1 year: 2014 ident: 1585_CR16 publication-title: Miskolc Math. Notes doi: 10.18514/MMN.2014.511 – volume: LXXXIV start-page: 51 issue: 1 year: 2015 ident: 1585_CR20 publication-title: Acta Math. Univ. Comen. – volume: 2020 year: 2020 ident: 1585_CR19 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02549-5 – volume-title: An Introduction to the Fractional Calculus and Differential Equations year: 1993 ident: 1585_CR2 – volume: 311 start-page: 495 issue: 2 year: 2005 ident: 1585_CR9 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.02.052 – volume: 2009 year: 2009 ident: 1585_CR10 publication-title: Electron. J. Differ. Equ. doi: 10.1155/2009/375486 – volume: 2013 year: 2013 ident: 1585_CR15 publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2013-213 – volume: 2012 year: 2012 ident: 1585_CR26 publication-title: Bound. Value Probl. doi: 10.1186/1687-2770-2012-73 – volume: 71 start-page: 4676 year: 2009 ident: 1585_CR13 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.03.030 – volume: 2018 year: 2018 ident: 1585_CR30 publication-title: Bound. Value Probl. doi: 10.1186/s13661-018-0941-y – volume: 57 start-page: 1053 year: 2013 ident: 1585_CR32 publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2012.06.024 – volume: 69 start-page: 2677 issue: 8 year: 2008 ident: 1585_CR4 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2007.08.042 – volume: 44 start-page: 215 year: 2014 ident: 1585_CR27 publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-013-0689-6 – volume-title: Theory of Fractional Differential Equations year: 2006 ident: 1585_CR1 – volume: 2006 year: 2006 ident: 1585_CR7 publication-title: Electron. J. Differ. Equ. doi: 10.1155/ADE/2006/90479 – volume: 217 start-page: 6950 year: 2011 ident: 1585_CR21 publication-title: Appl. Math. Comput. – volume: 2020 year: 2020 ident: 1585_CR31 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02594-0 – volume: 2019 year: 2019 ident: 1585_CR33 publication-title: Bound. Value Probl. doi: 10.1186/s13661-019-1205-1 – volume: 10 start-page: 123 year: 1955 ident: 1585_CR34 publication-title: Usp. Mat. Nauk – volume: 2012 year: 2012 ident: 1585_CR22 publication-title: Bound. Value Probl. doi: 10.1186/1687-2770-2012-81 – volume: 371 start-page: 57 year: 2010 ident: 1585_CR24 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.04.034 – volume-title: Fixed Point Theorems year: 1980 ident: 1585_CR35 – volume: 16 start-page: 401 issue: 3 year: 2009 ident: 1585_CR8 publication-title: Georgian Math. J. doi: 10.1515/GMJ.2009.401 – volume: 41 start-page: 339 year: 2013 ident: 1585_CR17 publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-012-0610-8 – volume: 72 start-page: 710 year: 2010 ident: 1585_CR11 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.07.012 – volume: 11 start-page: 395 issue: 3–4 year: 2007 ident: 1585_CR5 publication-title: Commun. Appl. – volume-title: Fractional Integrals and Derivatives, Theory and Applications year: 1993 ident: 1585_CR6 – volume: 2021 year: 2021 ident: 1585_CR28 publication-title: Math. Probl. Eng. – volume: 146 year: 2008 ident: 1585_CR25 publication-title: Electron. J. Differ. Equ. – volume: 2016 year: 2016 ident: 1585_CR29 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-015-0729-7 – volume: 10 start-page: 2094 year: 2017 ident: 1585_CR18 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.04.63 |
SSID | ssj0039342 |
Score | 2.2641785 |
Snippet | We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear... Abstract We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Approximations and Expansions Boundary conditions Boundary value problems Difference and Functional Equations Differential equations Existence theorems Fixed point theorem Fixed points (mathematics) Fractional differential equation Integral boundary condition Mathematical analysis Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Singular boundary value problem |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5IENrCZ-xRkBUVVIMFGpm-VXpqqFppX4-ZzjpFAkYGGzHMc5-c6-R87fIXRlLYiupIEI4wXhRbCk9HlsSQP2q-DeN9kWz3I05o8TMflS6ivmhCV44LRwgyITDoyKwOG4BV9EmoJmLqOeK89CVoZ4-oLO65ypdAazknHaXZFRclDnDPQQiZnroP6UIHRDDTVo_Rsm5re_oo2yGe6jvdZKxLeJugO0FWaHaPdpDbFaH6H3dUALg92JDY6pTfG6CZ5XOAYAYn4pniUkDGhVi3SFAabtiqLA5p7i8JbAvmtcr2wMyuDlHLcgElNsm6pLMCm4zT5ldx2j8fDh5X5E2jIKxIGyWRIbZG4M2GVUBSpjfTBnhCwVOH5eeQv-sWNG0BI6rWXgMTHoDzI44UrhfcFO0DZQG04RrjLFqTVWGku5cmCdi0rJXCkemAm26qG8W1XtWozxWOpiqhtfQ0mdOKGBE7rhhKY9dL1-5zUhbPw6-i4yaz0yomM3HSAzupUZ_ZfM9FC_Y7Vut2ytoyspYywDvnHTsf_z8c8knf0HSedohybxJDnvo-3lYhUuwNxZ2stGsj8AZzH54A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA7qXvQgPnF9kYM3DbZ5bXoSFZdFcBFR8BbyqpfF1e0K_nwnabqioLeSpiF0Xt9MJjMInVgLrCtpIMJ4QfggWFL5Mj5JA_hVcO9TtsVYjp747bN4zgG3JqdVdjoxKWo_dTFGfh6RvoyuJr14eyexa1Q8Xc0tNJZRD1SwAuerd3Uzvn_odDGrWGqfU0oQJQpy312bUfK8KRnYJhKz2cEkKkHoD9OUKvj_gJ2_TkqTARpuoPWMHPFlS-pNtBRet9Da3aLsarONPhdBLgxYFBsc053iFRQ8rXEMCsScU_zaVseAp3rWXmuAZbtGKSDwExze2wLgDW4-bAzU4PkU58ISE2xTJyZYFFxp32Z87aCn4c3j9Yjk1grEgQGaExtkaQxgNaoClbFnmDNCVgqcQa-8BZ_ZMSNoBYPWMvCiGIwHGZxwlfB-wHbRCuw27CFcF4pTa6w0lnLlALGLWslSKR6YCbbuo7L7q9rluuOx_cVEJ_9DSd1SQgMldKKEpn10uvjmra268e_sq0isxcxYMTsNTGcvOgugHhTCATgNHMw2-LTSDGjhCuq58iwUVeijw47UOotxo7-Zro_OOvJ_v_57S_v_r3aAVmnLeKTkh2hlPvsIRwBu5vY4c_AX_X72Gg priority: 102 providerName: ProQuest |
Title | Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions |
URI | https://link.springer.com/article/10.1186/s13661-022-01585-2 https://www.proquest.com/docview/2619610162 https://doaj.org/article/705c405e43414096a720c02d48d3e09e |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NixMxFA-6vehBdv3A6m7JwZsGZ_LVzLEtrWXBImKht5Cv8VJa7bSwf_6-JDMjXVzByyNkkpkwL8l7v-R9IPTBWpi6kgYijBeEj4MllS9jSRrQXwX3PllbrORyzW83YtM6hTWdtXt3JZl26rSslfzclAxkCYnW5yDClCCw8Q4EYPc4r2fRxyHvv6xinHbuMX_tdyaCUqT-M_XywY1oEjSLS_Si1RDxJLP0Cj0Ju5fo-dc-vGrzCt31h1kYdE5scDRriq4meF_jCP6jbSne5SgYUKoP2X0BXtslRIGFvcXhdw703eDmZOOBDD7ucRtAYottyrgELwXI7LNl12u0Xsx_zJakTaFAHAiaI7FBlsaATkZVoDLmBnNGyEoB6PPKW8DGjhlBK6i0lgFaYlAfZHDCVcL7MXuDLmC04S3CdaE4tcZKYylXDjRzUStZKsUDM8HWQ1R2f1W7Nr54THOx1QlnKKkzJzRwQidOaDpEH_s-v3J0jX-2nkZm9S1jZOxUsT_81O1C0-NCOFBCAwfxDNhVmjEtXEE9V56FogpDdN2xWrfLtdERRsp4jgHf-NSx_8_jx4f07v-av0fPaJ6IpOTX6OJ4OIUbUGqOdoSe8uILULUAOpjOV9--j9K8jlTORumwAOiaTu4BQd71ng |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLzEQgs-wAmsJn6tc0BVeSxb-ji1Um_Gr3BZddvNVsCf4jcytpOtikRvvUVOYkWZ8fj77PF8AG-cQ9dVLFJpg6RiHB1tQp2ulEX8KkUIOdviSE1PxLdTeboGf4azMCmtcoiJOVCHuU9r5NsJ6atENdnO-QVNqlFpd3WQ0ChusR9__0TK1n3Y-4z2fcvY5MvxpyntVQWox9i7pC6q2lqEKUxHppJclrdSNRp5UNDBIV303ErWYKNzHAkEx_aoope-kSGMOfZ7B-4Kzps0ovTk6xD5ecOzWE-tcOAyjDLDIR2ttrua40xIU-48TsBaUnZtIsx6AddA7j_7snm6m2zAwx6nkt3iWI9gLZ49hgeHqyKv3RP4tVpSI4h8iSUpuSodeCHzlqQliJThSs5KLQ68ahflEAV2O8iyYHiZkXhRyo13pLt0aVmILOekL2MxIy7rPmGnSNxDyS97Cie38sufwTp-bXwOpK20YM46ZR0T2iM_kK1WtdYichtdO4J6-KvG91XOk9jGzGS2o5UpljBoCZMtYdgI3q3eOS81Pm58-mMy1urJVJ87N8wXP0w_3M24kh6hcBQIEpBBKztmla9YEDrwWDVxBJuDqU0fNDpz5eIjeD-Y_-r2_z_pxc29vYZ70-PDA3Owd7T_Eu6z4oS0Fpuwvlxcxi2EVUv3Kvsyge-3PXj-AqlAMY0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggPhUFwr4ACewNrFjxzkgRGlXLYVVhajUm_FXuKy67WYr4K_x6xjbyVZForfeIm_WijLjmfec8TyAV9ai60oWqDBe0KoOlja-jFfSIH4Vlfep2mIm94-rTyfiZAP-DGdhYlnlEBNToPYLF_fIJxHpy0g12aTtyyKOdqfvz85pVJCKX1oHOY3sIofh90-kb927g1209WvGpnvfPu7TXmGAOozDK2qDLI1ByMJUYDJKZzkjZKOQE3nlLVJHx41gDQ5ay5FMcBwPMjjhGuF9zXHeW7BZIysqRrC5szc7-jrkAd7wJN1TSlzGDGPOcGRHyUlXcsyLNFbSYzpWgrIraTGpB1yBvP98pU3Jb3of7vWolXzIbvYANsLpQ7j7Zd3ytXsEv9YbbARxMDEkllrF4y9k0ZK4IRHrXclp7syBV-0yH6nAaQeRFgw2cxLOc_PxjnQXNm4SkdWC9E0t5sQmFSicFGm8z9Vmj-H4Rl76Exjh04YtIG2hKmaNlcaySjlkC6JVslSqCtwE246hHN6qdn3P8yi9MdeJ-yipsyU0WkInS2g2hjfr_5zljh_X3r0TjbW-M3brTgOL5Q_dL35dF8IhMA4VQgbk09LUrHAF85XyPBRNGMP2YGrdh5BOXzr8GN4O5r_8-f-P9PT62V7CbVw4-vPB7PAZ3GHZB2lZbcNotbwIzxFjreyL3pkJfL_p9fMXGzw3Hw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+for+a+category+of+singular+nonlinear+fractional+differential+equations+subject+to+integral+boundary+conditions&rft.jtitle=Boundary+value+problems&rft.au=Yan%2C+Debao&rft.date=2022-01-14&rft.issn=1687-2770&rft.eissn=1687-2770&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1186%2Fs13661-022-01585-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13661_022_01585_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-2770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-2770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-2770&client=summon |