On a half-discrete Hilbert-type inequality related to hyperbolic functions
By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the...
Saved in:
Published in | Journal of inequalities and applications Vol. 2021; no. 1; pp. 1 - 16 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
10.09.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-242X 1025-5834 1029-242X |
DOI | 10.1186/s13660-021-02688-7 |
Cover
Loading…
Abstract | By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper. |
---|---|
AbstractList | By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper. Abstract By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper. |
ArticleNumber | 153 |
Author | You, Minghui |
Author_xml | – sequence: 1 givenname: Minghui orcidid: 0000-0002-8000-249X surname: You fullname: You, Minghui email: youminghui@hotmail.com organization: Mathematics Teaching and Research Section, Zhejiang Institute of Mechanical and Electrical Engineering |
BookMark | eNp9UT1PHTEQtCIiBUj-QKqTUh_462xfGaEEiJAooKCz1r41-Olyfth-xfv38eOIElFQWGt5Z2bHOyfkaEkLEvKV0TPGjDovTChFe8pZO8qYXn8gx4zyseeSPxz9d_9ETkrZ0IYURh6TX7dLB90TzKGfYvEZK3ZXcXaYa1_3W-zigs87mGPddxlnqDh1NXVPrZVdmqPvwm7xNaalfCYfA8wFv7zWU3L388f9xVV_c3t5ffH9pveSj7V34FA7gUr5QQjl9aRAOWqChiF4rZHK4CfBBwbSSSm4Y4w5NJRrrwdxSq5X1SnBxm5z_A15bxNE-_KQ8qOFXKOf0TohqVFjkAKZDMwZqcZpRDWCaOsCaFrfVq1tTs87LNVu0i4vzbzlg2ZC6Da0ocyK8jmVkjFYHyscvlwzxNkyag8Z2DUD2zZrXzKwByp_Q_1r-F2SWEmlgZdHzP9cvcP6A_-Qmx8 |
CitedBy_id | crossref_primary_10_1515_math_2022_0041 crossref_primary_10_1515_math_2024_0044 |
Cites_doi | 10.1023/B:AMHU.0000036288.28531.a3 10.1007/s00009-014-0468-0 10.1007/s10474-007-6135-1 10.1006/jmaa.1997.5877 10.1186/s13660-020-02401-0 10.3390/math7111054 10.7153/jmi-2018-12-59 10.7153/jmi-2020-14-88 10.2298/AADM180130011R 10.1016/j.jmaa.2005.11.069 10.1007/s12215-011-0039-1 10.1016/S0022-247X(02)00151-8 10.1007/s10474-005-0229-4 10.1016/j.jmaa.2015.04.003 10.1142/8799 10.1007/s11785-018-0830-5 10.1007/s10476-005-0010-5 10.1007/s00009-013-0265-1 10.1090/S0002-9939-98-04444-X 10.1186/s13660-019-2039-1 10.1007/978-3-030-37904-9_11 10.1186/s13660-021-02563-5 10.1186/1029-242X-2011-124 10.2174/97816080505501090101 10.7153/jmi-2019-13-23 10.1007/s10440-018-0195-9 10.1186/s13660-019-2280-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1186/s13660-021-02688-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1029-242X |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_b340869f43e14f1b8469d9e69a3136aa 10_1186_s13660_021_02688_7 |
GroupedDBID | -A0 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 D-I DU5 EBLON EBS ESX GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT 7TB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-babe7b3e66c5336c7d6a6b08f7a5fc77e04fcd3251a4b4432b111be8027c753 |
IEDL.DBID | U2A |
ISSN | 1029-242X 1025-5834 |
IngestDate | Wed Aug 27 01:13:20 EDT 2025 Fri Jul 25 12:18:02 EDT 2025 Tue Jul 01 04:06:21 EDT 2025 Thu Apr 24 22:50:15 EDT 2025 Fri Feb 21 02:47:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rational fraction expansion 47B38 26D10 Hilbert-type inequality Half-discrete Bernoulli number Hyperbolic functions 26D15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-babe7b3e66c5336c7d6a6b08f7a5fc77e04fcd3251a4b4432b111be8027c753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8000-249X |
OpenAccessLink | https://link.springer.com/10.1186/s13660-021-02688-7 |
PQID | 2571337027 |
PQPubID | 237789 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b340869f43e14f1b8469d9e69a3136aa proquest_journals_2571337027 crossref_citationtrail_10_1186_s13660_021_02688_7 crossref_primary_10_1186_s13660_021_02688_7 springer_journals_10_1186_s13660_021_02688_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-10 |
PublicationDateYYYYMMDD | 2021-09-10 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of inequalities and applications |
PublicationTitleAbbrev | J Inequal Appl |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | ChenZ.XuJ.New extensions of Hardy–Hilbert’s inequality with multiple parametersActa Math. Hung.200711743834001164.26020 RassiasM.T.YangB.C.On half-discrete Hilbert’s inequalityAppl. Math. Comput.2013220759330918321329.26041 YangB.C.DebnathL.On a new generalization of Hardy–Hilbert’s inequality and its applicationJ. Math. Anal. Appl.199923248449716895740935.26009 YouM.H.On a class of Hilbert-type inequalities in the whole plane related to exponent functionJ. Inequal. Appl.202120214217995 YangB.C.On a dual Hardy–Hilbert’s inequality and its generalizationAnal. Math.200531215116121515241100.26014 ZhongJ.H.ChenQ.A half-discrete Hilbert-type inequality with the deceasing and homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.201542177813362486 RichardC.F.J.Introduction to Calculus and Analysis1989New YorkSpringer KrnićM.PečarićJ.PerićI.Advances in Hilbert-Type Inequalities2012ZagrebElement Press1301.26004 RassiasM.T.YangB.C.RaigorodskiiA.On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta functionTrigonometric Sums and Their Applications2020BerlinSpringer229259 WangZ.X.GuoD.R.Introduction to Special Functions2012BeijingHigher Education Press KrnićM.PečarićJ.General Hilbert’s and Hardy’s inequalitiesMath. Inequal. Appl.200584295121379041079.26018 KrnićM.PečarićJ.Extension of Hilbert’s inequalityJ. Math. Anal. Appl.200632415016022624621112.26019 KrnićM.PečarićJ.VukovićP.Discrete Hilbert-type inequalities with general homogeneous kernelsRend. Circ. Mat. Palermo201160116117128257021231.26018 YangB.C.On Hilbert’s integral inequalityJ. Math. Anal. Appl.1998220277878516149680911.26011 RassiasM.T.YangB.C.On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole planeActa Appl. Math.20191601678039346581429.26037 HongY.HeB.YangB.C.Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels and its applications in operator theoryJ. Math. Inequal.201812377778838573621403.26020 YangB.C.A new Hilbert-type integral inequality with the homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.20123943903923012253 YangB.C.A mixed Hilbert-type inequality with a best constant factorInt. J. Pure Appl. Math.200520331932821520331100.26015 YouM.H.On a new discrete Hilbert-type inequality and applicationMath. Inequal. Appl.20151841575157834146181331.26048 YangB.C.On an extension of Hardy–Hilbert’s inequalityChin. Ann. Math., Ser. A200223224725419006421023.26013 GaoM.Z.YangB.C.On the extended Hilbert’s inequalityProc. Am. Math. Soc.1998126375175914591220935.26011 YangB.C.On an extension of Hilbert’s integral inequality with some parametersAust. J. Math. Anal. Appl.200411182077658 RassiasM.T.YangB.C.On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta functionComplex Anal. Oper. Theory20191341765178239570131435.26031 LiuQ.A Hilbert-type integral inequality under configuring free power and its applicationsJ. Inequal. Appl.201920193934716 HeB.YangB.C.ChenQ.A new multiple half-discrete Hilbert-type inequality with parameters and a best possible constant factorMediterr. J. Math.2015121227124434168581327.26021 YangB.C.A note on Hilbert’s integral inequalitiesChin. Q. J. Math.1998134838517058120970.26011 MoH.M.YangB.C.On a new Hilbert-type integral inequality involving the upper limit functionsJ. Inequal. Appl.202020204062070 YangB.C.WuS.H.WangA.Z.On a reverse half-discrete Hardy–Hilbert’s inequality with parametersMathematics2019711 YangB.C.The Norm of Operator and Hilbert-Type Inequalities2009BeijingScience Press KrnićM.PečarićJ.VukovićP.A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernelMediterr. J. Math.2013101697171631193281280.26037 YangB.C.DebnathL.Half-Discrete Hilbert-Type Inequalities2014SingaporeWorld Scientific1296.26007 RassiasM.T.YangB.C.RaigorodskiiA.Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta functionAppl. Anal. Discrete Math.20181222732963875322 YangB.C.On a new extension of Hardy–Hilbert’s inequality with some parametersActa Math. Hung.200510843373501091.26021 KuangJ.C.DebnathL.On new generalizations of Hilbert’s inequality and their applicationsJ. Math. Anal. Appl.2002245124826517565880968.26010 RassiasM.T.YangB.C.A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta functionJ. Math. Anal. Appl.201542821286130833349801316.33004 YangB.C.DebnathL.On the extended Hardy–Hilbert’s inequalityJ. Math. Anal. Appl.2002272118719919307101009.26016 RassiasM.T.YangB.C.On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz zeta functionJ. Math. Inequal.201913231533439549391425.26015 LiuQ.LongS.C.A Hilbert-type integral inequality with the kernel of hyperbolic secant functionJ. Zhejiang Univ. Sci. Ed.20134032552593113888 HongY.LiaoJ.Q.YangB.C.A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applicationsJ. Inequal. Appl.202020204101559 YangB.C.On new extensions of Hilbert’s inequalityActa Math. Hung.2004104429129920827781062.26023 RassiasM.T.YangB.C.RaigorodskiiA.On a more accurate reverse Hilbert-type inequality in the whole planeJ. Math. Inequal.20201441359137441935411461.26015 YouM.H.On an extension of the discrete Hilbert inequality and applicationsJ. Wuhan Univ. Natur. Sci. Ed.2021672179184 YangB.C.ChenQ.A half-discrete Hilbert-type inequality with a homogeneous kernel and an extensionJ. Inequal. Appl.2011201128871701279.26060 HardyG.H.LittlewoodJ.E.PólyaG.Inequalities1952LondonCambridge University Press0047.05302 YangB.C.A half-discrete Hilbert’s inequalityJ. Guangdong Univ. Educ.2011313171249.26044 M.Z. Gao (2688_CR7) 1998; 126 J.C. Kuang (2688_CR15) 2002; 245 Y. Hong (2688_CR28) 2020; 2020 B.C. Yang (2688_CR11) 2009 B.C. Yang (2688_CR4) 1999; 23 H.M. Mo (2688_CR29) 2020; 2020 M.T. Rassias (2688_CR21) 2019; 13 Y. Hong (2688_CR27) 2018; 12 M. Krnić (2688_CR40) 2013; 10 B.C. Yang (2688_CR38) 2005; 20 B.C. Yang (2688_CR35) 2011; 2011 M. Krnić (2688_CR10) 2012 M.T. Rassias (2688_CR22) 2019; 160 Z. Chen (2688_CR13) 2007; 117 B.C. Yang (2688_CR14) 2005; 31 M. Krnić (2688_CR8) 2006; 324 B. He (2688_CR36) 2015; 12 Q. Liu (2688_CR42) 2013; 40 M.T. Rassias (2688_CR26) 2018; 12 Z.X. Wang (2688_CR45) 2012 M. Krnić (2688_CR20) 2005; 8 M.T. Rassias (2688_CR24) 2019; 13 M.T. Rassias (2688_CR25) 2020; 14 B.C. Yang (2688_CR41) 2012; 39 M.T. Rassias (2688_CR33) 2013; 220 B.C. Yang (2688_CR12) 2005; 108 G.H. Hardy (2688_CR1) 1952 B.C. Yang (2688_CR3) 2002; 272 M.H. You (2688_CR6) 2021; 67 B.C. Yang (2688_CR19) 1998; 220 B.C. Yang (2688_CR2) 2002; 23 C.F.J. Richard (2688_CR44) 1989 M.H. You (2688_CR31) 2021; 2021 B.C. Yang (2688_CR17) 2004; 1 M. Krnić (2688_CR9) 2011; 60 B.C. Yang (2688_CR18) 1998; 13 M.H. You (2688_CR16) 2015; 18 B.C. Yang (2688_CR37) 2019; 7 J.H. Zhong (2688_CR43) 2015; 42 B.C. Yang (2688_CR32) 2011; 31 M.T. Rassias (2688_CR34) 2020 M.T. Rassias (2688_CR23) 2015; 428 Q. Liu (2688_CR30) 2019; 2019 B.C. Yang (2688_CR5) 2004; 104 B.C. Yang (2688_CR39) 2014 |
References_xml | – reference: YangB.C.On a dual Hardy–Hilbert’s inequality and its generalizationAnal. Math.200531215116121515241100.26014 – reference: YangB.C.On an extension of Hardy–Hilbert’s inequalityChin. Ann. Math., Ser. A200223224725419006421023.26013 – reference: RassiasM.T.YangB.C.A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta functionJ. Math. Anal. Appl.201542821286130833349801316.33004 – reference: ZhongJ.H.ChenQ.A half-discrete Hilbert-type inequality with the deceasing and homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.201542177813362486 – reference: HongY.HeB.YangB.C.Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels and its applications in operator theoryJ. Math. Inequal.201812377778838573621403.26020 – reference: YangB.C.A half-discrete Hilbert’s inequalityJ. Guangdong Univ. Educ.2011313171249.26044 – reference: HardyG.H.LittlewoodJ.E.PólyaG.Inequalities1952LondonCambridge University Press0047.05302 – reference: GaoM.Z.YangB.C.On the extended Hilbert’s inequalityProc. Am. Math. Soc.1998126375175914591220935.26011 – reference: YouM.H.On a new discrete Hilbert-type inequality and applicationMath. Inequal. Appl.20151841575157834146181331.26048 – reference: YangB.C.ChenQ.A half-discrete Hilbert-type inequality with a homogeneous kernel and an extensionJ. Inequal. Appl.2011201128871701279.26060 – reference: YangB.C.DebnathL.Half-Discrete Hilbert-Type Inequalities2014SingaporeWorld Scientific1296.26007 – reference: RichardC.F.J.Introduction to Calculus and Analysis1989New YorkSpringer – reference: KrnićM.PečarićJ.VukovićP.Discrete Hilbert-type inequalities with general homogeneous kernelsRend. Circ. Mat. Palermo201160116117128257021231.26018 – reference: RassiasM.T.YangB.C.RaigorodskiiA.Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta functionAppl. Anal. Discrete Math.20181222732963875322 – reference: YangB.C.On Hilbert’s integral inequalityJ. Math. Anal. Appl.1998220277878516149680911.26011 – reference: YangB.C.DebnathL.On a new generalization of Hardy–Hilbert’s inequality and its applicationJ. Math. Anal. Appl.199923248449716895740935.26009 – reference: RassiasM.T.YangB.C.RaigorodskiiA.On a more accurate reverse Hilbert-type inequality in the whole planeJ. Math. Inequal.20201441359137441935411461.26015 – reference: MoH.M.YangB.C.On a new Hilbert-type integral inequality involving the upper limit functionsJ. Inequal. Appl.202020204062070 – reference: WangZ.X.GuoD.R.Introduction to Special Functions2012BeijingHigher Education Press – reference: YangB.C.A new Hilbert-type integral inequality with the homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.20123943903923012253 – reference: YouM.H.On an extension of the discrete Hilbert inequality and applicationsJ. Wuhan Univ. Natur. Sci. Ed.2021672179184 – reference: YouM.H.On a class of Hilbert-type inequalities in the whole plane related to exponent functionJ. Inequal. Appl.202120214217995 – reference: HongY.LiaoJ.Q.YangB.C.A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applicationsJ. Inequal. Appl.202020204101559 – reference: RassiasM.T.YangB.C.On half-discrete Hilbert’s inequalityAppl. Math. Comput.2013220759330918321329.26041 – reference: YangB.C.On new extensions of Hilbert’s inequalityActa Math. Hung.2004104429129920827781062.26023 – reference: ChenZ.XuJ.New extensions of Hardy–Hilbert’s inequality with multiple parametersActa Math. Hung.200711743834001164.26020 – reference: KrnićM.PečarićJ.General Hilbert’s and Hardy’s inequalitiesMath. Inequal. Appl.200584295121379041079.26018 – reference: YangB.C.A note on Hilbert’s integral inequalitiesChin. Q. J. Math.1998134838517058120970.26011 – reference: YangB.C.The Norm of Operator and Hilbert-Type Inequalities2009BeijingScience Press – reference: YangB.C.DebnathL.On the extended Hardy–Hilbert’s inequalityJ. Math. Anal. Appl.2002272118719919307101009.26016 – reference: YangB.C.On an extension of Hilbert’s integral inequality with some parametersAust. J. Math. Anal. Appl.200411182077658 – reference: HeB.YangB.C.ChenQ.A new multiple half-discrete Hilbert-type inequality with parameters and a best possible constant factorMediterr. J. Math.2015121227124434168581327.26021 – reference: KrnićM.PečarićJ.VukovićP.A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernelMediterr. J. Math.2013101697171631193281280.26037 – reference: RassiasM.T.YangB.C.On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta functionComplex Anal. Oper. Theory20191341765178239570131435.26031 – reference: KrnićM.PečarićJ.Extension of Hilbert’s inequalityJ. Math. Anal. Appl.200632415016022624621112.26019 – reference: RassiasM.T.YangB.C.On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole planeActa Appl. Math.20191601678039346581429.26037 – reference: LiuQ.LongS.C.A Hilbert-type integral inequality with the kernel of hyperbolic secant functionJ. Zhejiang Univ. Sci. Ed.20134032552593113888 – reference: KrnićM.PečarićJ.PerićI.Advances in Hilbert-Type Inequalities2012ZagrebElement Press1301.26004 – reference: RassiasM.T.YangB.C.On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz zeta functionJ. Math. Inequal.201913231533439549391425.26015 – reference: YangB.C.A mixed Hilbert-type inequality with a best constant factorInt. J. Pure Appl. Math.200520331932821520331100.26015 – reference: YangB.C.On a new extension of Hardy–Hilbert’s inequality with some parametersActa Math. Hung.200510843373501091.26021 – reference: KuangJ.C.DebnathL.On new generalizations of Hilbert’s inequality and their applicationsJ. Math. Anal. Appl.2002245124826517565880968.26010 – reference: YangB.C.WuS.H.WangA.Z.On a reverse half-discrete Hardy–Hilbert’s inequality with parametersMathematics2019711 – reference: LiuQ.A Hilbert-type integral inequality under configuring free power and its applicationsJ. Inequal. Appl.201920193934716 – reference: RassiasM.T.YangB.C.RaigorodskiiA.On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta functionTrigonometric Sums and Their Applications2020BerlinSpringer229259 – volume: 104 start-page: 291 issue: 4 year: 2004 ident: 2688_CR5 publication-title: Acta Math. Hung. doi: 10.1023/B:AMHU.0000036288.28531.a3 – volume: 12 start-page: 1227 year: 2015 ident: 2688_CR36 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-014-0468-0 – volume: 117 start-page: 383 issue: 4 year: 2007 ident: 2688_CR13 publication-title: Acta Math. Hung. doi: 10.1007/s10474-007-6135-1 – volume: 39 start-page: 390 issue: 4 year: 2012 ident: 2688_CR41 publication-title: J. Zhejiang Univ. Sci. Ed. – volume: 23 start-page: 484 issue: 2 year: 1999 ident: 2688_CR4 publication-title: J. Math. Anal. Appl. – volume: 220 start-page: 778 issue: 2 year: 1998 ident: 2688_CR19 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1997.5877 – volume: 2020 year: 2020 ident: 2688_CR28 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-020-02401-0 – volume: 7 issue: 11 year: 2019 ident: 2688_CR37 publication-title: Mathematics doi: 10.3390/math7111054 – volume-title: Advances in Hilbert-Type Inequalities year: 2012 ident: 2688_CR10 – volume: 12 start-page: 777 issue: 3 year: 2018 ident: 2688_CR27 publication-title: J. Math. Inequal. doi: 10.7153/jmi-2018-12-59 – volume: 8 start-page: 29 issue: 4 year: 2005 ident: 2688_CR20 publication-title: Math. Inequal. Appl. – volume: 18 start-page: 1575 issue: 4 year: 2015 ident: 2688_CR16 publication-title: Math. Inequal. Appl. – volume: 14 start-page: 1359 issue: 4 year: 2020 ident: 2688_CR25 publication-title: J. Math. Inequal. doi: 10.7153/jmi-2020-14-88 – volume: 12 start-page: 273 issue: 2 year: 2018 ident: 2688_CR26 publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM180130011R – volume: 13 start-page: 83 issue: 4 year: 1998 ident: 2688_CR18 publication-title: Chin. Q. J. Math. – volume-title: Inequalities year: 1952 ident: 2688_CR1 – volume: 324 start-page: 150 year: 2006 ident: 2688_CR8 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.11.069 – volume: 60 start-page: 161 issue: 1 year: 2011 ident: 2688_CR9 publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/s12215-011-0039-1 – volume: 272 start-page: 187 issue: 1 year: 2002 ident: 2688_CR3 publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00151-8 – volume: 108 start-page: 337 issue: 4 year: 2005 ident: 2688_CR12 publication-title: Acta Math. Hung. doi: 10.1007/s10474-005-0229-4 – volume: 428 start-page: 1286 issue: 2 year: 2015 ident: 2688_CR23 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.04.003 – volume-title: Half-Discrete Hilbert-Type Inequalities year: 2014 ident: 2688_CR39 doi: 10.1142/8799 – volume: 13 start-page: 1765 issue: 4 year: 2019 ident: 2688_CR21 publication-title: Complex Anal. Oper. Theory doi: 10.1007/s11785-018-0830-5 – volume: 20 start-page: 319 issue: 3 year: 2005 ident: 2688_CR38 publication-title: Int. J. Pure Appl. Math. – volume: 42 start-page: 77 issue: 1 year: 2015 ident: 2688_CR43 publication-title: J. Zhejiang Univ. Sci. Ed. – volume: 1 start-page: 1 issue: 1 year: 2004 ident: 2688_CR17 publication-title: Aust. J. Math. Anal. Appl. – volume: 31 start-page: 151 issue: 2 year: 2005 ident: 2688_CR14 publication-title: Anal. Math. doi: 10.1007/s10476-005-0010-5 – volume: 10 start-page: 1697 year: 2013 ident: 2688_CR40 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-013-0265-1 – volume: 126 start-page: 751 issue: 3 year: 1998 ident: 2688_CR7 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-98-04444-X – volume: 2019 year: 2019 ident: 2688_CR30 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2039-1 – start-page: 229 volume-title: Trigonometric Sums and Their Applications year: 2020 ident: 2688_CR34 doi: 10.1007/978-3-030-37904-9_11 – volume: 245 start-page: 248 issue: 1 year: 2002 ident: 2688_CR15 publication-title: J. Math. Anal. Appl. – volume: 23 start-page: 247 issue: 2 year: 2002 ident: 2688_CR2 publication-title: Chin. Ann. Math., Ser. A – volume: 2021 year: 2021 ident: 2688_CR31 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-021-02563-5 – volume: 220 start-page: 75 year: 2013 ident: 2688_CR33 publication-title: Appl. Math. Comput. – volume-title: Introduction to Special Functions year: 2012 ident: 2688_CR45 – volume: 31 start-page: 1 issue: 3 year: 2011 ident: 2688_CR32 publication-title: J. Guangdong Univ. Educ. – volume: 2011 year: 2011 ident: 2688_CR35 publication-title: J. Inequal. Appl. doi: 10.1186/1029-242X-2011-124 – volume-title: Introduction to Calculus and Analysis year: 1989 ident: 2688_CR44 – volume-title: The Norm of Operator and Hilbert-Type Inequalities year: 2009 ident: 2688_CR11 doi: 10.2174/97816080505501090101 – volume: 13 start-page: 315 issue: 2 year: 2019 ident: 2688_CR24 publication-title: J. Math. Inequal. doi: 10.7153/jmi-2019-13-23 – volume: 160 start-page: 67 issue: 1 year: 2019 ident: 2688_CR22 publication-title: Acta Appl. Math. doi: 10.1007/s10440-018-0195-9 – volume: 67 start-page: 179 issue: 2 year: 2021 ident: 2688_CR6 publication-title: J. Wuhan Univ. Natur. Sci. Ed. – volume: 2020 year: 2020 ident: 2688_CR29 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2280-7 – volume: 40 start-page: 255 issue: 3 year: 2013 ident: 2688_CR42 publication-title: J. Zhejiang Univ. Sci. Ed. |
SSID | ssj0021384 ssib044744598 ssib008501289 |
Score | 2.237871 |
Snippet | By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type... Abstract By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Applications of Mathematics Bernoulli number Half-discrete Hilbert-type inequality Hyperbolic functions Inequalities Inequality Mathematical functions Mathematics Mathematics and Statistics Rational fraction expansion |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYtvcXWVHLxpsGmySXNUURZBPajgLWTSBAVZZbce_PdO0tYXqBevTQamM5PM97WZCSF7UNVFWauCOc4Vk2X0zAgOzI1cEREhFBxSNfLFpRrfyvO70d2nq77SmbC2PXBruEMQElG3iVIELiMHzJemNkEZJ7hQLkMjzHk9meqoFheV7EtkKnU4w6moTzqOgJwDY0N_SUO5W_8XiPntr2hONmfLZLFDifSo1W6FzIXJKlnqECPt1uNsjZxfTaij9-4xslReO0UETMcPqW1Vw9LHVYoYsi2bfKW5agWlmyd6j0NTSB2BacprOfTWyfXZ6c3JmHW3IzCPOaRh4CBoEEEpj5BNeV0rp6Coonaj6LUOhYy-FohfnAQpRQm4rUGokId65CgbZH7yNAmbhBoNUWkPQhgllRMOHaZiGYrKSICoB4T3prK-axye7q94tJlAVMq25rVoXpvNa1Fm_13muW2b8evs4-SB95mp5XV-gIFgu0CwfwXCgAx7_9luHc4sbkhIwjW-84Ac9D79GP5Zpa3_UGmbLJQ55gxmuyGZb6YvYQcxTAO7OVzfAAg_6ko priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXODAo4DYUpAP3MBqHDt-nBAgllWlwgGQerM8jk0rVbtlEw78-469Tqoi0WscW8nMZ883tmeGkDdg-qbtVcM854rJNgVmBQfmO98kZAgNhxyNfPJVrX7K49PutG64DfVa5bQmloW634S8R36E0EJ3SqMX9f7yN8tVo_Lpai2hcZfc42hpMsLN8suMJ9Pl5Xc211JqKTs7nzK0XJSKxDyXdO2MkFNQjVFHAxcK_yBfYEAvBdGkbxiukt__Bin95xy1mKflY_Kw8kr6YQeEJ-ROXO-TR5Vj0jqDh33y4GTO0zo8Jcff1tTTM3-RWA7P3SKDpqvznPZqZHlzliIH3YVd_qUl6gXHGjf0DJu2kDMK02wXC3Sfke_Lzz8-rVitrsAC2qCRgYeoQUSlAlI-FXSvvILGJO27FLSOjUyhF8h_vAQpRQu4LEI0qIGAPs5zsrferOMLQq2GpHQAIaySyguPClepjY2xEiDpBeGT4Fyoicdz_YsLVxwQo9xO2A6F7YqwHfZ5O_e53KXduPXtj1kf85s5ZXZ5sNn-cnUGOhAS3TebpIhcJg5IvGxvo7Je4IDeL8jhpE1X5_HgrlG3IO8mDV83__-TDm4f7SW53xZsWbSDh2Rv3P6Jr5DdjPC6QPgKfM7v7A priority: 102 providerName: ProQuest |
Title | On a half-discrete Hilbert-type inequality related to hyperbolic functions |
URI | https://link.springer.com/article/10.1186/s13660-021-02688-7 https://www.proquest.com/docview/2571337027 https://doaj.org/article/b340869f43e14f1b8469d9e69a3136aa |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBZ5XJpDH2lD3aZGh9wa0dVKllZHx8Q1hjxoEshNaLRSEwh28W4P-fcZybsuKW2hFy2sHuzOQ_ONpBkRcgRVXZS1KpjjXDFZRs-M4MDcyBUREULBIUUjn52r2Y2c345uu6Cwpj_t3m9J5pk6q3WlvjRcKBwzHSlAvwH5q7fJ7gh99yTXN-V442ZxUck-POaP_Z6ZoJyp_xm8_G1HNBua6WvyskOIdLxm6RuyFRb75FWHFmmni80-2TvbZFxt3pL5xYI6euceIkuBtivEwnR2nxJYtSwts1JEk-sAykea41dwrHZJ77BqBSk3ME0WLgvhO3I1Pb2ezFh3TwLzaE1aBg6CBhGU8gjelNe1cgqKKmo3il7rUMjoa4FIxkmQUpSAExyECj1Sj97KAdlZLBfhPaFGQ1TagxBGSeWEQ9apWIaiMhIg6gHhPeGs71KIp5ssHmx2JSpl18S2SGybiW2xz-dNnx_rBBr_bH2S-LFpmZJf5xfL1Xfb6ZIFIdERM1GKwGXkgBDK1CYo4wQO6NyAHPbctJ1GNhanJnTHNf7zgBz3HP5V_fdP-vB_zT-SF2WWNYMW7pDstKuf4RPilhaGZFsWX7Gspljujsfzqzk-T07PL7_h20kpU6kmw7wuMMxC_QRDbutj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELWicAAOLAHEhAA-wAmstNtuLweE2IbJMuFAkHLCst02QYpmkulGKP_ER1J2L1GQyC3XXtytqueqV7arCqEXTtVFWYuCWEoF4WX0RDPqiK1sEYEhFNSlbOT5gZh947tH1dEa-jPkwqRjlYNNzIa6Xvq0Rr4N0IJwSkIU9fb0jKSuUWl3dWih0cFiL5z_hpCtebPzEfT7siynnw4_zEjfVYB4sL0tcdYF6VgQwgPVEV7WwgpXqChtFb2UoeDR1wz8vuWOc1Y6MAcuKPiyl6lHBBj8G5wxnQ4QqunnEb2qSsZ-JAecS84rPe5plJTl_sc0NZCtFONDCo8S2w1lAuSVjktATATYlZfcZO4mcIkC_7Nrm53h9B6607NY_K6D3X20FhYb6G7PaHFvL5oNdHs-VoVtHqDdLwts8bE9iSQlA6-Ar-PZz1RkqyVpKRgD4-2SPM9xzrGBsdolPoZbK5fqF-PkhfNEeYi-XoPUH6H1xXIRHiOspYtCegcKEFxYZgFeIpahUJo7F-UE0UFwxvdlzlO3jROTwx0lTCdsA8I2WdgG3nk1vnPaFfm48un3SR_jk6lAd76wXP0w_Xw3jnEIFnXkLFAeqQOap2sdhLYMBrR2grYGbZreajTmAuMT9HrQ8MXt___S5tWjPUc3Z4fzfbO_c7D3BN0qM840eOAttN6ufoWnwKta9yzDGaPv1zt7_gLcHSwV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE48CggFgr4ACewGseOHR8QAsqybWlBAqSesGzHpkjVbtkEof4zfh4z3iRVkeitx8QPWePP429szwwhT33dFGWjCuY4V0yWKTAjuGeuckUChlBwj97I-wdq9lXuHlaHa-TP4AuDzyoHnZgVdbMIeEa-BdACc0qjqZ76ZxGftqevTn4yzCCFN61DOo0VRPbi6W8w39qXO9sw18_Kcvruy9sZ6zMMsAB6uGPe-ai9iEoFoD0q6EY55Ys6aVeloHUsZAqNAA7gpJdSlB5Ug481jCJozBcByv-KFvCNPurT9yOS6woV_0gUpNRSVma83yi5yLmQOSaTrWohB3eeWm21XCiQHT6dAPsIcKzPbZk5s8A5OvzPDW7eGKe3yI2e0dLXKwjeJmtxvkFu9uyW9rqj3SDX98cIse0dsvtxTh09cseJoWPwErg7nf3AgFsdw2NhCux35fB5SrO_DfTVLegRFC09xjKmuCPnRXOXfL4Eqd8j6_PFPN4n1GiflA5eCKOkcsIB1FQqY1Eb6X3SE8IHwdnQhzzHzBvHNps-tbIrYVsQts3CttDm-djmZBXw48Lab3A-xpoYrDv_WCy_237tWy8kGI4mSRG5TNwD5TONico4AR06NyGbw2zaXoO09gzvE_JimOGz4v8P6cHFvT0hV2Hd2A87B3sPybUyw8zAZrxJ1rvlr_gIKFbnH2c0U_LtchfPXwkHMEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+half-discrete+Hilbert-type+inequality+related+to+hyperbolic+functions&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=You%2C+Minghui&rft.date=2021-09-10&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-021-02688-7&rft.externalDocID=10_1186_s13660_021_02688_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |