On a half-discrete Hilbert-type inequality related to hyperbolic functions

By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2021; no. 1; pp. 1 - 16
Main Author You, Minghui
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 10.09.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-242X
1025-5834
1029-242X
DOI10.1186/s13660-021-02688-7

Cover

Loading…
Abstract By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper.
AbstractList By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper.
Abstract By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper.
ArticleNumber 153
Author You, Minghui
Author_xml – sequence: 1
  givenname: Minghui
  orcidid: 0000-0002-8000-249X
  surname: You
  fullname: You, Minghui
  email: youminghui@hotmail.com
  organization: Mathematics Teaching and Research Section, Zhejiang Institute of Mechanical and Electrical Engineering
BookMark eNp9UT1PHTEQtCIiBUj-QKqTUh_462xfGaEEiJAooKCz1r41-Olyfth-xfv38eOIElFQWGt5Z2bHOyfkaEkLEvKV0TPGjDovTChFe8pZO8qYXn8gx4zyseeSPxz9d_9ETkrZ0IYURh6TX7dLB90TzKGfYvEZK3ZXcXaYa1_3W-zigs87mGPddxlnqDh1NXVPrZVdmqPvwm7xNaalfCYfA8wFv7zWU3L388f9xVV_c3t5ffH9pveSj7V34FA7gUr5QQjl9aRAOWqChiF4rZHK4CfBBwbSSSm4Y4w5NJRrrwdxSq5X1SnBxm5z_A15bxNE-_KQ8qOFXKOf0TohqVFjkAKZDMwZqcZpRDWCaOsCaFrfVq1tTs87LNVu0i4vzbzlg2ZC6Da0ocyK8jmVkjFYHyscvlwzxNkyag8Z2DUD2zZrXzKwByp_Q_1r-F2SWEmlgZdHzP9cvcP6A_-Qmx8
CitedBy_id crossref_primary_10_1515_math_2022_0041
crossref_primary_10_1515_math_2024_0044
Cites_doi 10.1023/B:AMHU.0000036288.28531.a3
10.1007/s00009-014-0468-0
10.1007/s10474-007-6135-1
10.1006/jmaa.1997.5877
10.1186/s13660-020-02401-0
10.3390/math7111054
10.7153/jmi-2018-12-59
10.7153/jmi-2020-14-88
10.2298/AADM180130011R
10.1016/j.jmaa.2005.11.069
10.1007/s12215-011-0039-1
10.1016/S0022-247X(02)00151-8
10.1007/s10474-005-0229-4
10.1016/j.jmaa.2015.04.003
10.1142/8799
10.1007/s11785-018-0830-5
10.1007/s10476-005-0010-5
10.1007/s00009-013-0265-1
10.1090/S0002-9939-98-04444-X
10.1186/s13660-019-2039-1
10.1007/978-3-030-37904-9_11
10.1186/s13660-021-02563-5
10.1186/1029-242X-2011-124
10.2174/97816080505501090101
10.7153/jmi-2019-13-23
10.1007/s10440-018-0195-9
10.1186/s13660-019-2280-7
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/s13660-021-02688-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 16
ExternalDocumentID oai_doaj_org_article_b340869f43e14f1b8469d9e69a3136aa
10_1186_s13660_021_02688_7
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c429t-babe7b3e66c5336c7d6a6b08f7a5fc77e04fcd3251a4b4432b111be8027c753
IEDL.DBID U2A
ISSN 1029-242X
1025-5834
IngestDate Wed Aug 27 01:13:20 EDT 2025
Fri Jul 25 12:18:02 EDT 2025
Tue Jul 01 04:06:21 EDT 2025
Thu Apr 24 22:50:15 EDT 2025
Fri Feb 21 02:47:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rational fraction expansion
47B38
26D10
Hilbert-type inequality
Half-discrete
Bernoulli number
Hyperbolic functions
26D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-babe7b3e66c5336c7d6a6b08f7a5fc77e04fcd3251a4b4432b111be8027c753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8000-249X
OpenAccessLink https://link.springer.com/10.1186/s13660-021-02688-7
PQID 2571337027
PQPubID 237789
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_b340869f43e14f1b8469d9e69a3136aa
proquest_journals_2571337027
crossref_citationtrail_10_1186_s13660_021_02688_7
crossref_primary_10_1186_s13660_021_02688_7
springer_journals_10_1186_s13660_021_02688_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-10
PublicationDateYYYYMMDD 2021-09-10
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-10
  day: 10
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References ChenZ.XuJ.New extensions of Hardy–Hilbert’s inequality with multiple parametersActa Math. Hung.200711743834001164.26020
RassiasM.T.YangB.C.On half-discrete Hilbert’s inequalityAppl. Math. Comput.2013220759330918321329.26041
YangB.C.DebnathL.On a new generalization of Hardy–Hilbert’s inequality and its applicationJ. Math. Anal. Appl.199923248449716895740935.26009
YouM.H.On a class of Hilbert-type inequalities in the whole plane related to exponent functionJ. Inequal. Appl.202120214217995
YangB.C.On a dual Hardy–Hilbert’s inequality and its generalizationAnal. Math.200531215116121515241100.26014
ZhongJ.H.ChenQ.A half-discrete Hilbert-type inequality with the deceasing and homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.201542177813362486
RichardC.F.J.Introduction to Calculus and Analysis1989New YorkSpringer
KrnićM.PečarićJ.PerićI.Advances in Hilbert-Type Inequalities2012ZagrebElement Press1301.26004
RassiasM.T.YangB.C.RaigorodskiiA.On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta functionTrigonometric Sums and Their Applications2020BerlinSpringer229259
WangZ.X.GuoD.R.Introduction to Special Functions2012BeijingHigher Education Press
KrnićM.PečarićJ.General Hilbert’s and Hardy’s inequalitiesMath. Inequal. Appl.200584295121379041079.26018
KrnićM.PečarićJ.Extension of Hilbert’s inequalityJ. Math. Anal. Appl.200632415016022624621112.26019
KrnićM.PečarićJ.VukovićP.Discrete Hilbert-type inequalities with general homogeneous kernelsRend. Circ. Mat. Palermo201160116117128257021231.26018
YangB.C.On Hilbert’s integral inequalityJ. Math. Anal. Appl.1998220277878516149680911.26011
RassiasM.T.YangB.C.On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole planeActa Appl. Math.20191601678039346581429.26037
HongY.HeB.YangB.C.Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels and its applications in operator theoryJ. Math. Inequal.201812377778838573621403.26020
YangB.C.A new Hilbert-type integral inequality with the homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.20123943903923012253
YangB.C.A mixed Hilbert-type inequality with a best constant factorInt. J. Pure Appl. Math.200520331932821520331100.26015
YouM.H.On a new discrete Hilbert-type inequality and applicationMath. Inequal. Appl.20151841575157834146181331.26048
YangB.C.On an extension of Hardy–Hilbert’s inequalityChin. Ann. Math., Ser. A200223224725419006421023.26013
GaoM.Z.YangB.C.On the extended Hilbert’s inequalityProc. Am. Math. Soc.1998126375175914591220935.26011
YangB.C.On an extension of Hilbert’s integral inequality with some parametersAust. J. Math. Anal. Appl.200411182077658
RassiasM.T.YangB.C.On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta functionComplex Anal. Oper. Theory20191341765178239570131435.26031
LiuQ.A Hilbert-type integral inequality under configuring free power and its applicationsJ. Inequal. Appl.201920193934716
HeB.YangB.C.ChenQ.A new multiple half-discrete Hilbert-type inequality with parameters and a best possible constant factorMediterr. J. Math.2015121227124434168581327.26021
YangB.C.A note on Hilbert’s integral inequalitiesChin. Q. J. Math.1998134838517058120970.26011
MoH.M.YangB.C.On a new Hilbert-type integral inequality involving the upper limit functionsJ. Inequal. Appl.202020204062070
YangB.C.WuS.H.WangA.Z.On a reverse half-discrete Hardy–Hilbert’s inequality with parametersMathematics2019711
YangB.C.The Norm of Operator and Hilbert-Type Inequalities2009BeijingScience Press
KrnićM.PečarićJ.VukovićP.A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernelMediterr. J. Math.2013101697171631193281280.26037
YangB.C.DebnathL.Half-Discrete Hilbert-Type Inequalities2014SingaporeWorld Scientific1296.26007
RassiasM.T.YangB.C.RaigorodskiiA.Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta functionAppl. Anal. Discrete Math.20181222732963875322
YangB.C.On a new extension of Hardy–Hilbert’s inequality with some parametersActa Math. Hung.200510843373501091.26021
KuangJ.C.DebnathL.On new generalizations of Hilbert’s inequality and their applicationsJ. Math. Anal. Appl.2002245124826517565880968.26010
RassiasM.T.YangB.C.A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta functionJ. Math. Anal. Appl.201542821286130833349801316.33004
YangB.C.DebnathL.On the extended Hardy–Hilbert’s inequalityJ. Math. Anal. Appl.2002272118719919307101009.26016
RassiasM.T.YangB.C.On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz zeta functionJ. Math. Inequal.201913231533439549391425.26015
LiuQ.LongS.C.A Hilbert-type integral inequality with the kernel of hyperbolic secant functionJ. Zhejiang Univ. Sci. Ed.20134032552593113888
HongY.LiaoJ.Q.YangB.C.A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applicationsJ. Inequal. Appl.202020204101559
YangB.C.On new extensions of Hilbert’s inequalityActa Math. Hung.2004104429129920827781062.26023
RassiasM.T.YangB.C.RaigorodskiiA.On a more accurate reverse Hilbert-type inequality in the whole planeJ. Math. Inequal.20201441359137441935411461.26015
YouM.H.On an extension of the discrete Hilbert inequality and applicationsJ. Wuhan Univ. Natur. Sci. Ed.2021672179184
YangB.C.ChenQ.A half-discrete Hilbert-type inequality with a homogeneous kernel and an extensionJ. Inequal. Appl.2011201128871701279.26060
HardyG.H.LittlewoodJ.E.PólyaG.Inequalities1952LondonCambridge University Press0047.05302
YangB.C.A half-discrete Hilbert’s inequalityJ. Guangdong Univ. Educ.2011313171249.26044
M.Z. Gao (2688_CR7) 1998; 126
J.C. Kuang (2688_CR15) 2002; 245
Y. Hong (2688_CR28) 2020; 2020
B.C. Yang (2688_CR11) 2009
B.C. Yang (2688_CR4) 1999; 23
H.M. Mo (2688_CR29) 2020; 2020
M.T. Rassias (2688_CR21) 2019; 13
Y. Hong (2688_CR27) 2018; 12
M. Krnić (2688_CR40) 2013; 10
B.C. Yang (2688_CR38) 2005; 20
B.C. Yang (2688_CR35) 2011; 2011
M. Krnić (2688_CR10) 2012
M.T. Rassias (2688_CR22) 2019; 160
Z. Chen (2688_CR13) 2007; 117
B.C. Yang (2688_CR14) 2005; 31
M. Krnić (2688_CR8) 2006; 324
B. He (2688_CR36) 2015; 12
Q. Liu (2688_CR42) 2013; 40
M.T. Rassias (2688_CR26) 2018; 12
Z.X. Wang (2688_CR45) 2012
M. Krnić (2688_CR20) 2005; 8
M.T. Rassias (2688_CR24) 2019; 13
M.T. Rassias (2688_CR25) 2020; 14
B.C. Yang (2688_CR41) 2012; 39
M.T. Rassias (2688_CR33) 2013; 220
B.C. Yang (2688_CR12) 2005; 108
G.H. Hardy (2688_CR1) 1952
B.C. Yang (2688_CR3) 2002; 272
M.H. You (2688_CR6) 2021; 67
B.C. Yang (2688_CR19) 1998; 220
B.C. Yang (2688_CR2) 2002; 23
C.F.J. Richard (2688_CR44) 1989
M.H. You (2688_CR31) 2021; 2021
B.C. Yang (2688_CR17) 2004; 1
M. Krnić (2688_CR9) 2011; 60
B.C. Yang (2688_CR18) 1998; 13
M.H. You (2688_CR16) 2015; 18
B.C. Yang (2688_CR37) 2019; 7
J.H. Zhong (2688_CR43) 2015; 42
B.C. Yang (2688_CR32) 2011; 31
M.T. Rassias (2688_CR34) 2020
M.T. Rassias (2688_CR23) 2015; 428
Q. Liu (2688_CR30) 2019; 2019
B.C. Yang (2688_CR5) 2004; 104
B.C. Yang (2688_CR39) 2014
References_xml – reference: YangB.C.On a dual Hardy–Hilbert’s inequality and its generalizationAnal. Math.200531215116121515241100.26014
– reference: YangB.C.On an extension of Hardy–Hilbert’s inequalityChin. Ann. Math., Ser. A200223224725419006421023.26013
– reference: RassiasM.T.YangB.C.A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta functionJ. Math. Anal. Appl.201542821286130833349801316.33004
– reference: ZhongJ.H.ChenQ.A half-discrete Hilbert-type inequality with the deceasing and homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.201542177813362486
– reference: HongY.HeB.YangB.C.Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels and its applications in operator theoryJ. Math. Inequal.201812377778838573621403.26020
– reference: YangB.C.A half-discrete Hilbert’s inequalityJ. Guangdong Univ. Educ.2011313171249.26044
– reference: HardyG.H.LittlewoodJ.E.PólyaG.Inequalities1952LondonCambridge University Press0047.05302
– reference: GaoM.Z.YangB.C.On the extended Hilbert’s inequalityProc. Am. Math. Soc.1998126375175914591220935.26011
– reference: YouM.H.On a new discrete Hilbert-type inequality and applicationMath. Inequal. Appl.20151841575157834146181331.26048
– reference: YangB.C.ChenQ.A half-discrete Hilbert-type inequality with a homogeneous kernel and an extensionJ. Inequal. Appl.2011201128871701279.26060
– reference: YangB.C.DebnathL.Half-Discrete Hilbert-Type Inequalities2014SingaporeWorld Scientific1296.26007
– reference: RichardC.F.J.Introduction to Calculus and Analysis1989New YorkSpringer
– reference: KrnićM.PečarićJ.VukovićP.Discrete Hilbert-type inequalities with general homogeneous kernelsRend. Circ. Mat. Palermo201160116117128257021231.26018
– reference: RassiasM.T.YangB.C.RaigorodskiiA.Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta functionAppl. Anal. Discrete Math.20181222732963875322
– reference: YangB.C.On Hilbert’s integral inequalityJ. Math. Anal. Appl.1998220277878516149680911.26011
– reference: YangB.C.DebnathL.On a new generalization of Hardy–Hilbert’s inequality and its applicationJ. Math. Anal. Appl.199923248449716895740935.26009
– reference: RassiasM.T.YangB.C.RaigorodskiiA.On a more accurate reverse Hilbert-type inequality in the whole planeJ. Math. Inequal.20201441359137441935411461.26015
– reference: MoH.M.YangB.C.On a new Hilbert-type integral inequality involving the upper limit functionsJ. Inequal. Appl.202020204062070
– reference: WangZ.X.GuoD.R.Introduction to Special Functions2012BeijingHigher Education Press
– reference: YangB.C.A new Hilbert-type integral inequality with the homogeneous kernel of degree 0J. Zhejiang Univ. Sci. Ed.20123943903923012253
– reference: YouM.H.On an extension of the discrete Hilbert inequality and applicationsJ. Wuhan Univ. Natur. Sci. Ed.2021672179184
– reference: YouM.H.On a class of Hilbert-type inequalities in the whole plane related to exponent functionJ. Inequal. Appl.202120214217995
– reference: HongY.LiaoJ.Q.YangB.C.A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applicationsJ. Inequal. Appl.202020204101559
– reference: RassiasM.T.YangB.C.On half-discrete Hilbert’s inequalityAppl. Math. Comput.2013220759330918321329.26041
– reference: YangB.C.On new extensions of Hilbert’s inequalityActa Math. Hung.2004104429129920827781062.26023
– reference: ChenZ.XuJ.New extensions of Hardy–Hilbert’s inequality with multiple parametersActa Math. Hung.200711743834001164.26020
– reference: KrnićM.PečarićJ.General Hilbert’s and Hardy’s inequalitiesMath. Inequal. Appl.200584295121379041079.26018
– reference: YangB.C.A note on Hilbert’s integral inequalitiesChin. Q. J. Math.1998134838517058120970.26011
– reference: YangB.C.The Norm of Operator and Hilbert-Type Inequalities2009BeijingScience Press
– reference: YangB.C.DebnathL.On the extended Hardy–Hilbert’s inequalityJ. Math. Anal. Appl.2002272118719919307101009.26016
– reference: YangB.C.On an extension of Hilbert’s integral inequality with some parametersAust. J. Math. Anal. Appl.200411182077658
– reference: HeB.YangB.C.ChenQ.A new multiple half-discrete Hilbert-type inequality with parameters and a best possible constant factorMediterr. J. Math.2015121227124434168581327.26021
– reference: KrnićM.PečarićJ.VukovićP.A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernelMediterr. J. Math.2013101697171631193281280.26037
– reference: RassiasM.T.YangB.C.On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta functionComplex Anal. Oper. Theory20191341765178239570131435.26031
– reference: KrnićM.PečarićJ.Extension of Hilbert’s inequalityJ. Math. Anal. Appl.200632415016022624621112.26019
– reference: RassiasM.T.YangB.C.On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole planeActa Appl. Math.20191601678039346581429.26037
– reference: LiuQ.LongS.C.A Hilbert-type integral inequality with the kernel of hyperbolic secant functionJ. Zhejiang Univ. Sci. Ed.20134032552593113888
– reference: KrnićM.PečarićJ.PerićI.Advances in Hilbert-Type Inequalities2012ZagrebElement Press1301.26004
– reference: RassiasM.T.YangB.C.On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz zeta functionJ. Math. Inequal.201913231533439549391425.26015
– reference: YangB.C.A mixed Hilbert-type inequality with a best constant factorInt. J. Pure Appl. Math.200520331932821520331100.26015
– reference: YangB.C.On a new extension of Hardy–Hilbert’s inequality with some parametersActa Math. Hung.200510843373501091.26021
– reference: KuangJ.C.DebnathL.On new generalizations of Hilbert’s inequality and their applicationsJ. Math. Anal. Appl.2002245124826517565880968.26010
– reference: YangB.C.WuS.H.WangA.Z.On a reverse half-discrete Hardy–Hilbert’s inequality with parametersMathematics2019711
– reference: LiuQ.A Hilbert-type integral inequality under configuring free power and its applicationsJ. Inequal. Appl.201920193934716
– reference: RassiasM.T.YangB.C.RaigorodskiiA.On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta functionTrigonometric Sums and Their Applications2020BerlinSpringer229259
– volume: 104
  start-page: 291
  issue: 4
  year: 2004
  ident: 2688_CR5
  publication-title: Acta Math. Hung.
  doi: 10.1023/B:AMHU.0000036288.28531.a3
– volume: 12
  start-page: 1227
  year: 2015
  ident: 2688_CR36
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-014-0468-0
– volume: 117
  start-page: 383
  issue: 4
  year: 2007
  ident: 2688_CR13
  publication-title: Acta Math. Hung.
  doi: 10.1007/s10474-007-6135-1
– volume: 39
  start-page: 390
  issue: 4
  year: 2012
  ident: 2688_CR41
  publication-title: J. Zhejiang Univ. Sci. Ed.
– volume: 23
  start-page: 484
  issue: 2
  year: 1999
  ident: 2688_CR4
  publication-title: J. Math. Anal. Appl.
– volume: 220
  start-page: 778
  issue: 2
  year: 1998
  ident: 2688_CR19
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5877
– volume: 2020
  year: 2020
  ident: 2688_CR28
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-020-02401-0
– volume: 7
  issue: 11
  year: 2019
  ident: 2688_CR37
  publication-title: Mathematics
  doi: 10.3390/math7111054
– volume-title: Advances in Hilbert-Type Inequalities
  year: 2012
  ident: 2688_CR10
– volume: 12
  start-page: 777
  issue: 3
  year: 2018
  ident: 2688_CR27
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-2018-12-59
– volume: 8
  start-page: 29
  issue: 4
  year: 2005
  ident: 2688_CR20
  publication-title: Math. Inequal. Appl.
– volume: 18
  start-page: 1575
  issue: 4
  year: 2015
  ident: 2688_CR16
  publication-title: Math. Inequal. Appl.
– volume: 14
  start-page: 1359
  issue: 4
  year: 2020
  ident: 2688_CR25
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-2020-14-88
– volume: 12
  start-page: 273
  issue: 2
  year: 2018
  ident: 2688_CR26
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM180130011R
– volume: 13
  start-page: 83
  issue: 4
  year: 1998
  ident: 2688_CR18
  publication-title: Chin. Q. J. Math.
– volume-title: Inequalities
  year: 1952
  ident: 2688_CR1
– volume: 324
  start-page: 150
  year: 2006
  ident: 2688_CR8
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.11.069
– volume: 60
  start-page: 161
  issue: 1
  year: 2011
  ident: 2688_CR9
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/s12215-011-0039-1
– volume: 272
  start-page: 187
  issue: 1
  year: 2002
  ident: 2688_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00151-8
– volume: 108
  start-page: 337
  issue: 4
  year: 2005
  ident: 2688_CR12
  publication-title: Acta Math. Hung.
  doi: 10.1007/s10474-005-0229-4
– volume: 428
  start-page: 1286
  issue: 2
  year: 2015
  ident: 2688_CR23
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.04.003
– volume-title: Half-Discrete Hilbert-Type Inequalities
  year: 2014
  ident: 2688_CR39
  doi: 10.1142/8799
– volume: 13
  start-page: 1765
  issue: 4
  year: 2019
  ident: 2688_CR21
  publication-title: Complex Anal. Oper. Theory
  doi: 10.1007/s11785-018-0830-5
– volume: 20
  start-page: 319
  issue: 3
  year: 2005
  ident: 2688_CR38
  publication-title: Int. J. Pure Appl. Math.
– volume: 42
  start-page: 77
  issue: 1
  year: 2015
  ident: 2688_CR43
  publication-title: J. Zhejiang Univ. Sci. Ed.
– volume: 1
  start-page: 1
  issue: 1
  year: 2004
  ident: 2688_CR17
  publication-title: Aust. J. Math. Anal. Appl.
– volume: 31
  start-page: 151
  issue: 2
  year: 2005
  ident: 2688_CR14
  publication-title: Anal. Math.
  doi: 10.1007/s10476-005-0010-5
– volume: 10
  start-page: 1697
  year: 2013
  ident: 2688_CR40
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-013-0265-1
– volume: 126
  start-page: 751
  issue: 3
  year: 1998
  ident: 2688_CR7
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-98-04444-X
– volume: 2019
  year: 2019
  ident: 2688_CR30
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2039-1
– start-page: 229
  volume-title: Trigonometric Sums and Their Applications
  year: 2020
  ident: 2688_CR34
  doi: 10.1007/978-3-030-37904-9_11
– volume: 245
  start-page: 248
  issue: 1
  year: 2002
  ident: 2688_CR15
  publication-title: J. Math. Anal. Appl.
– volume: 23
  start-page: 247
  issue: 2
  year: 2002
  ident: 2688_CR2
  publication-title: Chin. Ann. Math., Ser. A
– volume: 2021
  year: 2021
  ident: 2688_CR31
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-021-02563-5
– volume: 220
  start-page: 75
  year: 2013
  ident: 2688_CR33
  publication-title: Appl. Math. Comput.
– volume-title: Introduction to Special Functions
  year: 2012
  ident: 2688_CR45
– volume: 31
  start-page: 1
  issue: 3
  year: 2011
  ident: 2688_CR32
  publication-title: J. Guangdong Univ. Educ.
– volume: 2011
  year: 2011
  ident: 2688_CR35
  publication-title: J. Inequal. Appl.
  doi: 10.1186/1029-242X-2011-124
– volume-title: Introduction to Calculus and Analysis
  year: 1989
  ident: 2688_CR44
– volume-title: The Norm of Operator and Hilbert-Type Inequalities
  year: 2009
  ident: 2688_CR11
  doi: 10.2174/97816080505501090101
– volume: 13
  start-page: 315
  issue: 2
  year: 2019
  ident: 2688_CR24
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-2019-13-23
– volume: 160
  start-page: 67
  issue: 1
  year: 2019
  ident: 2688_CR22
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-018-0195-9
– volume: 67
  start-page: 179
  issue: 2
  year: 2021
  ident: 2688_CR6
  publication-title: J. Wuhan Univ. Natur. Sci. Ed.
– volume: 2020
  year: 2020
  ident: 2688_CR29
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2280-7
– volume: 40
  start-page: 255
  issue: 3
  year: 2013
  ident: 2688_CR42
  publication-title: J. Zhejiang Univ. Sci. Ed.
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.237871
Snippet By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type...
Abstract By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications of Mathematics
Bernoulli number
Half-discrete
Hilbert-type inequality
Hyperbolic functions
Inequalities
Inequality
Mathematical functions
Mathematics
Mathematics and Statistics
Rational fraction expansion
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYtvcXWVHLxpsGmySXNUURZBPajgLWTSBAVZZbce_PdO0tYXqBevTQamM5PM97WZCSF7UNVFWauCOc4Vk2X0zAgOzI1cEREhFBxSNfLFpRrfyvO70d2nq77SmbC2PXBruEMQElG3iVIELiMHzJemNkEZJ7hQLkMjzHk9meqoFheV7EtkKnU4w6moTzqOgJwDY0N_SUO5W_8XiPntr2hONmfLZLFDifSo1W6FzIXJKlnqECPt1uNsjZxfTaij9-4xslReO0UETMcPqW1Vw9LHVYoYsi2bfKW5agWlmyd6j0NTSB2BacprOfTWyfXZ6c3JmHW3IzCPOaRh4CBoEEEpj5BNeV0rp6Coonaj6LUOhYy-FohfnAQpRQm4rUGokId65CgbZH7yNAmbhBoNUWkPQhgllRMOHaZiGYrKSICoB4T3prK-axye7q94tJlAVMq25rVoXpvNa1Fm_13muW2b8evs4-SB95mp5XV-gIFgu0CwfwXCgAx7_9luHc4sbkhIwjW-84Ac9D79GP5Zpa3_UGmbLJQ55gxmuyGZb6YvYQcxTAO7OVzfAAg_6ko
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXODAo4DYUpAP3MBqHDt-nBAgllWlwgGQerM8jk0rVbtlEw78-469Tqoi0WscW8nMZ883tmeGkDdg-qbtVcM854rJNgVmBQfmO98kZAgNhxyNfPJVrX7K49PutG64DfVa5bQmloW634S8R36E0EJ3SqMX9f7yN8tVo_Lpai2hcZfc42hpMsLN8suMJ9Pl5Xc211JqKTs7nzK0XJSKxDyXdO2MkFNQjVFHAxcK_yBfYEAvBdGkbxiukt__Bin95xy1mKflY_Kw8kr6YQeEJ-ROXO-TR5Vj0jqDh33y4GTO0zo8Jcff1tTTM3-RWA7P3SKDpqvznPZqZHlzliIH3YVd_qUl6gXHGjf0DJu2kDMK02wXC3Sfke_Lzz8-rVitrsAC2qCRgYeoQUSlAlI-FXSvvILGJO27FLSOjUyhF8h_vAQpRQu4LEI0qIGAPs5zsrferOMLQq2GpHQAIaySyguPClepjY2xEiDpBeGT4Fyoicdz_YsLVxwQo9xO2A6F7YqwHfZ5O_e53KXduPXtj1kf85s5ZXZ5sNn-cnUGOhAS3TebpIhcJg5IvGxvo7Je4IDeL8jhpE1X5_HgrlG3IO8mDV83__-TDm4f7SW53xZsWbSDh2Rv3P6Jr5DdjPC6QPgKfM7v7A
  priority: 102
  providerName: ProQuest
Title On a half-discrete Hilbert-type inequality related to hyperbolic functions
URI https://link.springer.com/article/10.1186/s13660-021-02688-7
https://www.proquest.com/docview/2571337027
https://doaj.org/article/b340869f43e14f1b8469d9e69a3136aa
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBZ5XJpDH2lD3aZGh9wa0dVKllZHx8Q1hjxoEshNaLRSEwh28W4P-fcZybsuKW2hFy2sHuzOQ_ONpBkRcgRVXZS1KpjjXDFZRs-M4MDcyBUREULBIUUjn52r2Y2c345uu6Cwpj_t3m9J5pk6q3WlvjRcKBwzHSlAvwH5q7fJ7gh99yTXN-V442ZxUck-POaP_Z6ZoJyp_xm8_G1HNBua6WvyskOIdLxm6RuyFRb75FWHFmmni80-2TvbZFxt3pL5xYI6euceIkuBtivEwnR2nxJYtSwts1JEk-sAykea41dwrHZJ77BqBSk3ME0WLgvhO3I1Pb2ezFh3TwLzaE1aBg6CBhGU8gjelNe1cgqKKmo3il7rUMjoa4FIxkmQUpSAExyECj1Sj97KAdlZLBfhPaFGQ1TagxBGSeWEQ9apWIaiMhIg6gHhPeGs71KIp5ssHmx2JSpl18S2SGybiW2xz-dNnx_rBBr_bH2S-LFpmZJf5xfL1Xfb6ZIFIdERM1GKwGXkgBDK1CYo4wQO6NyAHPbctJ1GNhanJnTHNf7zgBz3HP5V_fdP-vB_zT-SF2WWNYMW7pDstKuf4RPilhaGZFsWX7Gspljujsfzqzk-T07PL7_h20kpU6kmw7wuMMxC_QRDbutj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELWicAAOLAHEhAA-wAmstNtuLweE2IbJMuFAkHLCst02QYpmkulGKP_ER1J2L1GQyC3XXtytqueqV7arCqEXTtVFWYuCWEoF4WX0RDPqiK1sEYEhFNSlbOT5gZh947tH1dEa-jPkwqRjlYNNzIa6Xvq0Rr4N0IJwSkIU9fb0jKSuUWl3dWih0cFiL5z_hpCtebPzEfT7siynnw4_zEjfVYB4sL0tcdYF6VgQwgPVEV7WwgpXqChtFb2UoeDR1wz8vuWOc1Y6MAcuKPiyl6lHBBj8G5wxnQ4QqunnEb2qSsZ-JAecS84rPe5plJTl_sc0NZCtFONDCo8S2w1lAuSVjktATATYlZfcZO4mcIkC_7Nrm53h9B6607NY_K6D3X20FhYb6G7PaHFvL5oNdHs-VoVtHqDdLwts8bE9iSQlA6-Ar-PZz1RkqyVpKRgD4-2SPM9xzrGBsdolPoZbK5fqF-PkhfNEeYi-XoPUH6H1xXIRHiOspYtCegcKEFxYZgFeIpahUJo7F-UE0UFwxvdlzlO3jROTwx0lTCdsA8I2WdgG3nk1vnPaFfm48un3SR_jk6lAd76wXP0w_Xw3jnEIFnXkLFAeqQOap2sdhLYMBrR2grYGbZreajTmAuMT9HrQ8MXt___S5tWjPUc3Z4fzfbO_c7D3BN0qM840eOAttN6ufoWnwKta9yzDGaPv1zt7_gLcHSwV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE48CggFgr4ACewGseOHR8QAsqybWlBAqSesGzHpkjVbtkEof4zfh4z3iRVkeitx8QPWePP429szwwhT33dFGWjCuY4V0yWKTAjuGeuckUChlBwj97I-wdq9lXuHlaHa-TP4AuDzyoHnZgVdbMIeEa-BdACc0qjqZ76ZxGftqevTn4yzCCFN61DOo0VRPbi6W8w39qXO9sw18_Kcvruy9sZ6zMMsAB6uGPe-ai9iEoFoD0q6EY55Ys6aVeloHUsZAqNAA7gpJdSlB5Ug481jCJozBcByv-KFvCNPurT9yOS6woV_0gUpNRSVma83yi5yLmQOSaTrWohB3eeWm21XCiQHT6dAPsIcKzPbZk5s8A5OvzPDW7eGKe3yI2e0dLXKwjeJmtxvkFu9uyW9rqj3SDX98cIse0dsvtxTh09cseJoWPwErg7nf3AgFsdw2NhCux35fB5SrO_DfTVLegRFC09xjKmuCPnRXOXfL4Eqd8j6_PFPN4n1GiflA5eCKOkcsIB1FQqY1Eb6X3SE8IHwdnQhzzHzBvHNps-tbIrYVsQts3CttDm-djmZBXw48Lab3A-xpoYrDv_WCy_237tWy8kGI4mSRG5TNwD5TONico4AR06NyGbw2zaXoO09gzvE_JimOGz4v8P6cHFvT0hV2Hd2A87B3sPybUyw8zAZrxJ1rvlr_gIKFbnH2c0U_LtchfPXwkHMEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+half-discrete+Hilbert-type+inequality+related+to+hyperbolic+functions&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=You%2C+Minghui&rft.date=2021-09-10&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-021-02688-7&rft.externalDocID=10_1186_s13660_021_02688_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon