A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions

We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] by using finite forward differenc...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2020; no. 1; pp. 1 - 22
Main Authors Khalid, Nauman, Abbas, Muhammad, Iqbal, Muhammad Kashif, Baleanu, Dumitru
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 16.04.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O ( h 2 + Δ t 2 − α ) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
AbstractList We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α∈(0,1] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O(h2+Δt2−α) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
Abstract We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] $\alpha\in(0,1]$ by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O ( h 2 + Δ t 2 − α ) $O(h^{2}+\Delta t^{2-\alpha})$ and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order $\alpha\in(0,1]$ α ∈ ( 0 , 1 ] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order $O(h^{2}+\Delta t^{2-\alpha})$ O ( h 2 + Δ t 2 − α ) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O ( h 2 + Δ t 2 − α ) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
ArticleNumber 158
Author Baleanu, Dumitru
Khalid, Nauman
Iqbal, Muhammad Kashif
Abbas, Muhammad
Author_xml – sequence: 1
  givenname: Nauman
  surname: Khalid
  fullname: Khalid, Nauman
  organization: Department of Mathematics, National College of Business Administration & Economics
– sequence: 2
  givenname: Muhammad
  surname: Abbas
  fullname: Abbas, Muhammad
  email: muhammadabbas@tdtu.edu.vn
  organization: Informetrics Research Group, Ton Duc Thang University, Faculty of Mathematics and Statistics, Ton Duc Thang University, Department of Mathematics, University of Sargodha
– sequence: 3
  givenname: Muhammad Kashif
  surname: Iqbal
  fullname: Iqbal, Muhammad Kashif
  organization: Department of Mathematics, Government College University
– sequence: 4
  givenname: Dumitru
  surname: Baleanu
  fullname: Baleanu, Dumitru
  organization: Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Department of Medical Research, China Medical University Hospital, China Medical University, Institute of Space Sciences
BookMark eNp9kU1uFDEQhS0UJJLABVhZYt3Ef-22l8OIn0iR2MDast3lwaMee2J3o7DjDrkhJ8GZDgKxyMKyXXrfq1K9C3SWcgKEXlPyllIlryrlUrKOMNKOpLK7e4bOqVRDR5UYzv55v0AXte4JYVoodY7KBqflACV6O-GYvkOd487OMSecA97a4zJnPMcD4FCsf6g33WaaIP36eb-13xKG22XVLzWmHS4wQogJRuwXFz1-19Xj1P44LOnE15foebBThVeP9yX6-uH9l-2n7ubzx-vt5qbzgum5czLwQAQdLQgmrOCeS601CSBdkOAs6yl3AfqhBxsU0dRLDz5wO2o-qIFfouvVd8x2b44lHmz5YbKN5lTIZWdsmaOfwAzW9po50jpSIRR12jkyhN5xzjgjpHm9Wb2OJd8ubUlmn5fSdlEN45oIoQetm0qtKl9yrQWC8XE-LWcuNk6GEvOQllnTMi0tc0rL3DWU_Yf-GfhJiK9QbeK0g_J3qieo39R4rLg
CitedBy_id crossref_primary_10_3390_math12132137
crossref_primary_10_1515_phys_2024_0030
crossref_primary_10_1515_phys_2023_0120
crossref_primary_10_1016_j_enganabound_2024_106058
crossref_primary_10_3390_axioms10040290
crossref_primary_10_1016_j_aej_2023_05_028
crossref_primary_10_1016_j_joes_2022_01_004
crossref_primary_10_1155_2022_5198968
crossref_primary_10_1088_1402_4896_ac54d0
crossref_primary_10_1016_j_camwa_2024_02_011
crossref_primary_10_3390_computation12030051
crossref_primary_10_1007_s10910_023_01525_0
crossref_primary_10_1002_mma_6798
crossref_primary_10_1063_5_0075227
crossref_primary_10_1016_j_rinp_2022_105244
crossref_primary_10_1007_s12190_023_01973_6
crossref_primary_10_3390_sym12071154
crossref_primary_10_1016_j_rinp_2022_105941
crossref_primary_10_1155_2021_8837846
crossref_primary_10_1371_journal_pone_0295525
crossref_primary_10_3390_fractalfract6090528
crossref_primary_10_1016_j_chaos_2021_110896
crossref_primary_10_1080_25765299_2022_2044595
crossref_primary_10_1088_1402_4896_ac0bd0
crossref_primary_10_3389_fphy_2020_00288
crossref_primary_10_3934_math_2024689
crossref_primary_10_1002_mma_9214
crossref_primary_10_52846_ami_v51i1_1744
crossref_primary_10_1186_s13662_021_03304_0
crossref_primary_10_1186_s13662_021_03571_x
crossref_primary_10_1016_j_chaos_2021_110677
crossref_primary_10_1016_j_rinp_2021_104367
crossref_primary_10_1007_s11075_021_01068_y
crossref_primary_10_1007_s11784_021_00897_7
crossref_primary_10_1080_10236198_2022_2099273
Cites_doi 10.1016/j.physa.2017.10.010
10.1007/s10915-017-0396-9
10.1186/s13662-019-2125-1
10.1016/S0167-2789(03)00030-7
10.1016/j.jde.2016.05.016
10.1115/1.4025770
10.1007/s12043-016-1225-7
10.1002/num.22195
10.1016/j.physd.2015.06.007
10.1016/j.aej.2019.12.028
10.1016/j.camwa.2018.07.036
10.1063/1.5084035
10.1016/j.ijleo.2016.12.032
10.1007/s11071-016-3262-7
10.1016/j.chaos.2006.03.020
10.1016/j.apm.2012.01.009
10.1016/j.asej.2013.01.006
10.1007/3-7643-7601-5_13
10.1016/j.aej.2020.01.005
10.1016/j.jcp.2017.06.036
10.1016/j.jcp.2018.12.004
10.1016/j.jcp.2006.03.016
10.1007/s12043-013-0583-7
10.1016/j.jmaa.2012.05.066
10.1016/0021-9045(68)90025-7
10.12785/amis/070533
10.1016/j.physa.2016.12.081
10.1140/epjp/i2015-15146-9
10.1088/1674-1056/21/11/110204
10.1007/s40314-018-0672-9
10.1016/0001-6160(79)90196-2
10.1186/1687-1847-2013-199
10.1007/s00521-016-2815-5
10.1016/j.apm.2015.07.021
10.1186/s13662-019-2318-7
10.1016/0021-9045(68)90033-6
10.1016/j.camwa.2008.09.008
10.1007/s11071-016-2751-z
10.1016/j.amc.2018.12.066
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.1186/s13662-020-02616-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 22
ExternalDocumentID oai_doaj_org_article_7aa592b0f3f14481b9bb07f5b3323200
10_1186_s13662_020_02616_x
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c429t-b6f3f041dae424a43c369990fe6bf6eba2513bfe575eaf8091c6cecf3ad937873
IEDL.DBID C6C
ISSN 1687-1847
1687-1839
IngestDate Wed Aug 27 01:30:19 EDT 2025
Fri Jul 25 18:58:24 EDT 2025
Tue Jul 01 00:35:39 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Fri Feb 21 02:36:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Time fractional Allen–Cahn equation
Redefined cubic B-spline functions
Finite difference formulation
Stability and convergence
Caputo’s time fractional derivative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-b6f3f041dae424a43c369990fe6bf6eba2513bfe575eaf8091c6cecf3ad937873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1186/s13662-020-02616-x
PQID 2390449799
PQPubID 237355
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_7aa592b0f3f14481b9bb07f5b3323200
proquest_journals_2390449799
crossref_citationtrail_10_1186_s13662_020_02616_x
crossref_primary_10_1186_s13662_020_02616_x
springer_journals_10_1186_s13662_020_02616_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-16
PublicationDateYYYYMMDD 2020-04-16
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-16
  day: 16
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Yue, Zhou, Feng, Ollivier-Gooch, Hu (CR14) 2006; 219
Sharifi, Rashidinia (CR39) 2016; 281
Yin, Liu, Li, He (CR33) 2019; 379
Atangana, Akgül (CR15) 2020
Hou, Tang, Yang (CR28) 2017; 72
Güner, Bekir, Cevikel (CR25) 2015; 130
Taghizadeh, Mirzazadeh, Rahimian, Akbari (CR8) 2013; 4
Sheikh, Ali, Khan, Saqib (CR17) 2018; 30
Tariq, Akram (CR10) 2017; 88
Jafari, Tajadodi, Baleanu (CR22) 2014; 9
Yasar, Giresunlu (CR24) 2016; 87
Atangana, Gómez-Aguilar (CR16) 2018; 34
Sahoo, Ray (CR9) 2016; 85
Zheng, Wen (CR7) 2013; 2013
de Boor (CR42) 1968; 1
Amin, Abbas, Iqbal, Baleanu (CR20) 2019; 2019
Liu, Cheng, Wang, Zhao (CR32) 2018; 76
Zhai, Weng, Feng (CR26) 2016; 40
Bulut, Baskonus, Pandir (CR6) 2013; 2013
Lu (CR2) 2012; 395
Akgül (CR19) 2019; 29
Prüss, Wilke (CR11) 2006
Sakar, Saldir, Erdogan (CR31) 2018; 37
Khalid, Abbas, Iqbal, Baleanu (CR35) 2019; 2019
Liu, Chen (CR5) 2013; 81
Tariq, Akram (CR1) 2017; 473
Inc, Yusuf, Aliyu, Baleanu (CR34) 2018; 493
Hosseini, Bekir, Ansari (CR30) 2017; 132
Atangana, Akgül, Owolabi (CR18) 2020
Gepreel, Omran (CR4) 2012; 21
Boyce, DiPrima, Meade (CR40) 1992
Liu, Shen (CR13) 2003; 179
Khalid, Abbas, Iqbal (CR36) 2019; 349
Mittal, Jain (CR38) 2012; 36
Allen, Cahn (CR12) 1979; 27
Li, Wang, Yang (CR29) 2017; 347
He, Wu (CR3) 2006; 30
Hall (CR43) 1968; 1
Hamed, Nepomnyashchy (CR23) 2015; 308
Akagi, Schimperna, Segatti (CR27) 2016; 261
Esen, Yagmurlu, Tasbozan (CR21) 2013; 7
Iqbal, Abbas, Khalid (CR37) 2018; 9
Kadalbajoo, Arora (CR41) 2009; 57
H. Bulut (2616_CR6) 2013; 2013
K. Hosseini (2616_CR30) 2017; 132
B. Yin (2616_CR33) 2019; 379
B. Zheng (2616_CR7) 2013; 2013
M. Amin (2616_CR20) 2019; 2019
H. Tariq (2616_CR1) 2017; 473
C. Liu (2616_CR13) 2003; 179
N. Khalid (2616_CR35) 2019; 2019
R.C. Mittal (2616_CR38) 2012; 36
S. Sharifi (2616_CR39) 2016; 281
E.K. Akgül (2616_CR19) 2019; 29
A. Esen (2616_CR21) 2013; 7
M.A. Hamed (2616_CR23) 2015; 308
P. Yue (2616_CR14) 2006; 219
H. Tariq (2616_CR10) 2017; 88
S.M. Allen (2616_CR12) 1979; 27
J. Prüss (2616_CR11) 2006
A. Atangana (2616_CR18) 2020
J.-H. He (2616_CR3) 2006; 30
A. Atangana (2616_CR15) 2020
N.A. Sheikh (2616_CR17) 2018; 30
C. de Boor (2616_CR42) 1968; 1
N. Taghizadeh (2616_CR8) 2013; 4
C.A. Hall (2616_CR43) 1968; 1
N. Khalid (2616_CR36) 2019; 349
H. Jafari (2616_CR22) 2014; 9
M.K. Kadalbajoo (2616_CR41) 2009; 57
E. Yasar (2616_CR24) 2016; 87
S. Sahoo (2616_CR9) 2016; 85
M.K. Iqbal (2616_CR37) 2018; 9
S. Zhai (2616_CR26) 2016; 40
M.G. Sakar (2616_CR31) 2018; 37
T. Hou (2616_CR28) 2017; 72
W.E. Boyce (2616_CR40) 1992
G. Akagi (2616_CR27) 2016; 261
M. Inc (2616_CR34) 2018; 493
O. Güner (2616_CR25) 2015; 130
H. Liu (2616_CR32) 2018; 76
W. Liu (2616_CR5) 2013; 81
A. Atangana (2616_CR16) 2018; 34
B. Lu (2616_CR2) 2012; 395
Z. Li (2616_CR29) 2017; 347
K.A. Gepreel (2616_CR4) 2012; 21
References_xml – volume: 493
  start-page: 94
  year: 2018
  end-page: 106
  ident: CR34
  article-title: Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2017.10.010
– volume: 72
  start-page: 1214
  issue: 3
  year: 2017
  end-page: 1231
  ident: CR28
  article-title: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0396-9
– volume: 2019
  issue: 1
  year: 2019
  ident: CR20
  article-title: Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2125-1
– volume: 179
  start-page: 211
  issue: 3–4
  year: 2003
  end-page: 228
  ident: CR13
  article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method
  publication-title: Phys. D, Nonlinear Phenom.
  doi: 10.1016/S0167-2789(03)00030-7
– volume: 261
  start-page: 2935
  issue: 6
  year: 2016
  end-page: 2985
  ident: CR27
  article-title: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2016.05.016
– volume: 9
  issue: 2
  year: 2014
  ident: CR22
  article-title: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4025770
– volume: 87
  year: 2016
  ident: CR24
  article-title: The -expansion method for solving nonlinear space-time fractional differential equations
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-016-1225-7
– volume: 34
  start-page: 1502
  issue: 5
  year: 2018
  end-page: 1523
  ident: CR16
  article-title: Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22195
– volume: 308
  start-page: 52
  year: 2015
  end-page: 58
  ident: CR23
  article-title: Domain coarsening in a subdiffusive Allen–Cahn equation
  publication-title: Phys. D, Nonlinear Phenom.
  doi: 10.1016/j.physd.2015.06.007
– year: 2020
  ident: CR15
  article-title: Can transfer function and Bode diagram be obtained from Sumudu transform
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2019.12.028
– volume: 2013
  year: 2013
  ident: CR6
  article-title: The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation
  publication-title: Abstr. Appl. Anal.
– volume: 76
  start-page: 1876
  issue: 8
  year: 2018
  end-page: 1892
  ident: CR32
  article-title: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.07.036
– volume: 9
  start-page: 377
  issue: 3
  year: 2018
  end-page: 392
  ident: CR37
  article-title: New cubic B-spline approximation for solving non-linear singular boundary value problems arising in physiology
  publication-title: Commun. Math. Appl.
– volume: 29
  issue: 2
  year: 2019
  ident: CR19
  article-title: Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives
  publication-title: Chaos, Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5084035
– volume: 132
  start-page: 203
  year: 2017
  end-page: 209
  ident: CR30
  article-title: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method
  publication-title: Optik, Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2016.12.032
– volume: 88
  start-page: 581
  issue: 1
  year: 2017
  end-page: 594
  ident: CR10
  article-title: New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3262-7
– volume: 30
  start-page: 700
  issue: 3
  year: 2006
  end-page: 708
  ident: CR3
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.020
– volume: 349
  start-page: 393
  year: 2019
  end-page: 407
  ident: CR36
  article-title: Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms
  publication-title: Appl. Math. Comput.
– volume: 36
  start-page: 5555
  issue: 11
  year: 2012
  end-page: 5573
  ident: CR38
  article-title: Redefined cubic B-splines collocation method for solving convection–diffusion equations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.01.009
– volume: 4
  start-page: 897
  issue: 4
  year: 2013
  end-page: 902
  ident: CR8
  article-title: Application of the simplest equation method to some time-fractional partial differential equations
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.01.006
– start-page: 209
  year: 2006
  end-page: 236
  ident: CR11
  article-title: Maximal -regularity and long-time behaviour of the non-isothermal Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Partial Differential Equations and Functional Analysis
  doi: 10.1007/3-7643-7601-5_13
– year: 2020
  ident: CR18
  article-title: Analysis of fractal fractional differential equations
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.01.005
– volume: 347
  start-page: 20
  year: 2017
  end-page: 38
  ident: CR29
  article-title: A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.06.036
– volume: 379
  start-page: 351
  year: 2019
  end-page: 372
  ident: CR33
  article-title: Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.12.004
– volume: 281
  start-page: 28
  year: 2016
  end-page: 38
  ident: CR39
  article-title: Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method
  publication-title: Appl. Math. Comput.
– volume: 219
  start-page: 47
  issue: 1
  year: 2006
  end-page: 67
  ident: CR14
  article-title: Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.016
– year: 1992
  ident: CR40
  publication-title: Elementary Differential Equations and Boundary Value Problems
– volume: 81
  start-page: 377
  issue: 3
  year: 2013
  end-page: 384
  ident: CR5
  article-title: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations
  publication-title: Pramana
  doi: 10.1007/s12043-013-0583-7
– volume: 395
  start-page: 684
  issue: 2
  year: 2012
  end-page: 693
  ident: CR2
  article-title: The first integral method for some time fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.05.066
– volume: 1
  start-page: 209
  issue: 2
  year: 1968
  end-page: 218
  ident: CR43
  article-title: On error bounds for spline interpolation
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(68)90025-7
– volume: 7
  start-page: 1951
  issue: 5
  year: 2013
  end-page: 1956
  ident: CR21
  article-title: Approximate analytical solution to time-fractional damped Burger and Cahn–Allen equations
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/070533
– volume: 473
  start-page: 352
  year: 2017
  end-page: 362
  ident: CR1
  article-title: New approach for exact solutions of time fractional Cahn–Allen equation and time fractional Phi-4 equation
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2016.12.081
– volume: 130
  issue: 7
  year: 2015
  ident: CR25
  article-title: A variety of exact solutions for the time fractional Cahn–Allen equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2015-15146-9
– volume: 21
  issue: 11
  year: 2012
  ident: CR4
  article-title: Exact solutions for nonlinear partial fractional differential equations
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/21/11/110204
– volume: 37
  start-page: 5951
  issue: 5
  year: 2018
  end-page: 5964
  ident: CR31
  article-title: An iterative approximation for time-fractional Cahn–Allen equation with reproducing kernel method
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-018-0672-9
– volume: 27
  start-page: 1085
  issue: 6
  year: 1979
  end-page: 1095
  ident: CR12
  article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(79)90196-2
– volume: 2013
  issue: 1
  year: 2013
  ident: CR7
  article-title: Exact solutions for fractional partial differential equations by a new fractional sub-equation method
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-199
– volume: 30
  start-page: 1865
  issue: 6
  year: 2018
  end-page: 1875
  ident: CR17
  article-title: A modern approach of Caputo–Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2815-5
– volume: 40
  start-page: 1315
  issue: 2
  year: 2016
  end-page: 1324
  ident: CR26
  article-title: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.07.021
– volume: 2019
  issue: 1
  year: 2019
  ident: CR35
  article-title: A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2318-7
– volume: 1
  start-page: 452
  issue: 4
  year: 1968
  end-page: 463
  ident: CR42
  article-title: On the convergence of odd-degree spline interpolation
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(68)90033-6
– volume: 57
  start-page: 650
  issue: 4
  year: 2009
  end-page: 663
  ident: CR41
  article-title: B-spline collocation method for the singular-perturbation problem using artificial viscosity
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.09.008
– volume: 85
  start-page: 1167
  issue: 2
  year: 2016
  end-page: 1176
  ident: CR9
  article-title: New solitary wave solutions of time-fractional coupled Jaulent–Miodek equation by using two reliable methods
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2751-z
– volume: 37
  start-page: 5951
  issue: 5
  year: 2018
  ident: 2616_CR31
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-018-0672-9
– volume: 395
  start-page: 684
  issue: 2
  year: 2012
  ident: 2616_CR2
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.05.066
– volume: 349
  start-page: 393
  year: 2019
  ident: 2616_CR36
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.12.066
– volume: 219
  start-page: 47
  issue: 1
  year: 2006
  ident: 2616_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.016
– volume: 29
  issue: 2
  year: 2019
  ident: 2616_CR19
  publication-title: Chaos, Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5084035
– volume: 40
  start-page: 1315
  issue: 2
  year: 2016
  ident: 2616_CR26
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.07.021
– volume: 4
  start-page: 897
  issue: 4
  year: 2013
  ident: 2616_CR8
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.01.006
– volume: 34
  start-page: 1502
  issue: 5
  year: 2018
  ident: 2616_CR16
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22195
– volume: 493
  start-page: 94
  year: 2018
  ident: 2616_CR34
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2017.10.010
– volume: 21
  issue: 11
  year: 2012
  ident: 2616_CR4
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/21/11/110204
– volume: 30
  start-page: 1865
  issue: 6
  year: 2018
  ident: 2616_CR17
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2815-5
– year: 2020
  ident: 2616_CR15
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2019.12.028
– volume: 281
  start-page: 28
  year: 2016
  ident: 2616_CR39
  publication-title: Appl. Math. Comput.
– volume: 473
  start-page: 352
  year: 2017
  ident: 2616_CR1
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2016.12.081
– volume: 2019
  issue: 1
  year: 2019
  ident: 2616_CR20
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2125-1
– volume: 379
  start-page: 351
  year: 2019
  ident: 2616_CR33
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.12.004
– volume: 7
  start-page: 1951
  issue: 5
  year: 2013
  ident: 2616_CR21
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/070533
– volume: 1
  start-page: 452
  issue: 4
  year: 1968
  ident: 2616_CR42
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(68)90033-6
– volume: 2019
  issue: 1
  year: 2019
  ident: 2616_CR35
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2318-7
– year: 2020
  ident: 2616_CR18
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.01.005
– volume: 1
  start-page: 209
  issue: 2
  year: 1968
  ident: 2616_CR43
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(68)90025-7
– volume: 2013
  issue: 1
  year: 2013
  ident: 2616_CR7
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-199
– volume: 57
  start-page: 650
  issue: 4
  year: 2009
  ident: 2616_CR41
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.09.008
– volume: 179
  start-page: 211
  issue: 3–4
  year: 2003
  ident: 2616_CR13
  publication-title: Phys. D, Nonlinear Phenom.
  doi: 10.1016/S0167-2789(03)00030-7
– volume: 81
  start-page: 377
  issue: 3
  year: 2013
  ident: 2616_CR5
  publication-title: Pramana
  doi: 10.1007/s12043-013-0583-7
– volume: 347
  start-page: 20
  year: 2017
  ident: 2616_CR29
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.06.036
– volume: 130
  issue: 7
  year: 2015
  ident: 2616_CR25
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2015-15146-9
– volume: 72
  start-page: 1214
  issue: 3
  year: 2017
  ident: 2616_CR28
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0396-9
– volume: 9
  start-page: 377
  issue: 3
  year: 2018
  ident: 2616_CR37
  publication-title: Commun. Math. Appl.
– volume: 308
  start-page: 52
  year: 2015
  ident: 2616_CR23
  publication-title: Phys. D, Nonlinear Phenom.
  doi: 10.1016/j.physd.2015.06.007
– volume: 76
  start-page: 1876
  issue: 8
  year: 2018
  ident: 2616_CR32
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.07.036
– volume: 87
  year: 2016
  ident: 2616_CR24
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-016-1225-7
– volume-title: Elementary Differential Equations and Boundary Value Problems
  year: 1992
  ident: 2616_CR40
– volume: 27
  start-page: 1085
  issue: 6
  year: 1979
  ident: 2616_CR12
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(79)90196-2
– volume: 261
  start-page: 2935
  issue: 6
  year: 2016
  ident: 2616_CR27
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2016.05.016
– volume: 36
  start-page: 5555
  issue: 11
  year: 2012
  ident: 2616_CR38
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.01.009
– volume: 132
  start-page: 203
  year: 2017
  ident: 2616_CR30
  publication-title: Optik, Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2016.12.032
– volume: 30
  start-page: 700
  issue: 3
  year: 2006
  ident: 2616_CR3
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.020
– volume: 9
  issue: 2
  year: 2014
  ident: 2616_CR22
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4025770
– volume: 2013
  year: 2013
  ident: 2616_CR6
  publication-title: Abstr. Appl. Anal.
– start-page: 209
  volume-title: Partial Differential Equations and Functional Analysis
  year: 2006
  ident: 2616_CR11
  doi: 10.1007/3-7643-7601-5_13
– volume: 85
  start-page: 1167
  issue: 2
  year: 2016
  ident: 2616_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2751-z
– volume: 88
  start-page: 581
  issue: 1
  year: 2017
  ident: 2616_CR10
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3262-7
SSID ssj0029488
Score 2.3940148
Snippet We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of...
Abstract We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
B spline functions
Caputo’s time fractional derivative
Collocation methods
Computer simulation
Difference and Functional Equations
Exact solutions
Finite difference formulation
Finite difference method
Functional Analysis
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Redefined cubic B-spline functions
Stability and convergence
Time fractional Allen–Cahn equation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVcvCmodtNms0e22Ipgp4s9BaSNNFC2dY-oEf_g__QX-Iku9uHoF687iYhzHxhviGZbxC6SaiIrWGCJL5sGeIxJcIAlrkylAE9TaMgx_D4xLs99tBv9Ddaffk3Ybk8cG64WqJUI4115KgD7g8kK9U6SlxDUwpkIArZOsS8MpkqUq0UcFmWyAhem9Up5zHxqZLPOThZboWhoNa_RTG_3YqGYNM5RAcFS8TNfHdHaMdmx2h_QzvwBE2bOFvk1y0jPFyrZYwzPHa4rSaL-Rj7zvHYTfPiBb-gb5zy-f7RVq8Ztm-5zDf2b99f8NQOrIP1B9gs9NDgFpn5al2YD6EvoPMU9Tr3z-0uKRooEANhZk40B6tFrD5QlsVMMWooB0IYOcu141YrIDdUOwuUzSonwIyGG2scVQNgLSKhZ2g3G2f2HGFKnTMi4iZJYa3YiiR1_mkqeNpruDUqqF7aU5pCXdw3uRjJkGUILnMfSPCBDD6Qywq6Xc2Z5Noav45ueTetRnpd7PAB0CILtMi_0FJB1dLJsjisMxnTNGLM329W0F3p-PXvn7d08R9bukR7cQAmI3VeRbvz6cJeAdGZ6-uA6S82C_gm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELba5dIeUFuoupQiH3orFknsdZxTxa5AqFJRVYHEzbIdmyKhZMnuShx5h75hn6QzjrNbkMo1sZ2fGXu-8Xi-IeRzyVXhnVCsxLRlsMecKQe6LI3jAuBplUU6hu_n8uxSfLuaXKUNt0U6VjmsiXGhrluHe-RHBTjnQmAQ6uv8jmHVKIyuphIaL8kWLMFKjcjW9OT8x8-1y1WJWHkyl_B4xAJD2oySR4ucS1kwdJ_QD5Hs_pFpigz-j2Dnk0hpNECnb8h2Qo70uBf1W_LCN-_I63_4BHdId0ybVR-CuaU3GwaNtqFtoDMzXy1bitXkaej6hAYcEIup_Hn4PTO_Gurveupviufhr2nnax9g_Jq6lb1xdMoWmMEL_cEcRo3dJZenJxezM5aKKjAHpmfJrAw8ZCKvjReFMII7LgEkZsFLG6S3BgAPt8EDjPMmKIATTjrvAjc1IBlV8vdk1LSN_0Ao5yE4lUlXVjBW4VVZBTyuCtJHXrfJmOTD_9QuMY5j4YtbHT0PJXUvAw0y0FEG-n5Mvqz7zHu-jWdbT1FM65bIlR0vtN21TlNPl8ZMqsJm8N3gPQJMr6zNyjCxnAOczLIx2R-ErNMEXuiNuo3J4SD4ze3_v9Le86N9JK-KqHKC5XKfjJbdyn8CWLO0B0l3_wIFnvPj
  priority: 102
  providerName: ProQuest
Title A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions
URI https://link.springer.com/article/10.1186/s13662-020-02616-x
https://www.proquest.com/docview/2390449799
https://doaj.org/article/7aa592b0f3f14481b9bb07f5b3323200
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZouLQH1EJRA2nkAzdq4V17vd5jsiKgSokQaiRulu3YgIQ2IQ-JI_-h_7C_hLF3Ex6ilXqxtLu29zFjzTc7nm8QOsqZTJ3lkuQhbRnsMSPSgi4LbRkHeFrQSMcwHInzMf95lV01NDkhF-Zl_D6R4mSRMCFSEpyc4C0IAnhxO0tYHso0lKLcOFcFaOI6Kebdca8MT-TnfwUq38RBo3kZfEY7DS7EvVqQX9CWq3bRpxdsgXA03FCsLvbQvIerVR1uucO3z2wZ0wpPPS71bLWc4lA5Hvt5nbwQpg-FU_48_i71TYXdfU3zjcPe92s8dxPn4W4TbFfm1uI-WYRsXRgPpi9q51c0Hpz-Ks9JU0CBWDAzS2KEZ57yZKIdT7nmzDIBgJB6J4wXzmgAN8x4B5DNaS8BOlhhnfVMTwC1yJzto1Y1rdw3hBnz3koqbF7AXKmTeeHD1lSQdOBwy9ooWX9dZRt28VDk4k5FL0MKVUtEgURUlIh6aKPjzZhZza3xz979ILRNz8CLHU-Auqhmmalc66xIDYX3Bk8RIHlhDM19ZhgD6EhpG3XWIlfNYl2olBWU8xDfbKMfazV4vvz3Rzr4v-6H6GMaFZKTRHRQazlfue8AaZamiz5wegatHEC73T8dXVx2o353408CaMdp7wkl9POF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK9YKOADnMBqYnud5IBQu7Bs6c-plXoztmOXSlWyze6KcuMdeA8eiidhxkl2KRK99ZrYo9gznp-M5xtCXmUi597JnGVYtgz2WLDcgSwr44QE97RIIhzD_oGaHMnPx8PjNfKrr4XBa5W9ToyKuqwd_iPf5BCcS4lJqPfTc4ZdozC72rfQaMVi13__BiHb7N3OB-Dva87HHw9HE9Z1FWAOdO-cWRVESGRaGi-5NFI4ocBLSoJXNihvDVh8YYMHP8abkIM9dcp5F4QpwZTnmQC6N8hNKcCSY2X6-NMywCtk7HOZKlgseh59kU6uNmepUIozDNYw6lHs4pIhjP0CLjm5_-Rlo7kb3yN3Oz-VbrWCdZ-s-eoBufMXeuFD0mzRatEmfM7o6Qqvo65oHejITBfzmmLvehqatnwCCWLrlt8_fo7M14r68xZonOLt-xPa-NIHoF9St7Cnjm6zGdYLw3wwvvF8PCJH17LZj8l6VVf-CaFChODyRLmsAFrc51kR8HIsyBqiyA0HJO33U7sO3xzbbJzpGOfkSrc80MADHXmgLwbkzXLOtEX3uHL0NrJpORKRueODujnR3UHXmTHDgtsE1g2xKgQFhbVJFoZWCHBek2RANnom605dzPRKuAfkbc_41ev_f9LTq6m9JLcmh_t7em_nYPcZuc2j-EmWqg2yPm8W_jk4VHP7IkoxJV-u-9j8ATajMNY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVCwV8gBNYm8ReJzkg1N121VJYVYhKvRnbsUulKtlmd0W58Q68DY_DkzB2kl2KRG-9JvYo9vx-sWcG4GXKssQantHUpy2jP2Y0MyjLQhnGMTzNo1CO4eNU7B3x98fD4w341eXC-GuVnU0MhrqojP9HPkgQnHPuD6EGrr0WcbgzeTc7p76DlD9p7dppNCJyYL9_Q_g2f7u_g7x-lSST3c_jPdp2GKAG7fCCauGYi3hcKMsTrjgzTGDEFDkrtBNWK_T-TDuLMY1VLkPfaoSxxjFVoFvPUoZ0b8Bm6lFRDzZHu9PDTyu4l_PQ9TIWuHQfh3QpO5kYzGMmREI9dPMYSNCLS24xdA-4FPL-c0obnN_kLtxpo1ay3YjZPdiw5X24_VctwwdQb5Ny2Rz_nJHTdfWOqiSVI2M1Wy4q4jvZE1c3yRSeoG_k8vvHz7H6WhJ73pQdJ_4u_gmpbWEd0i-IWepTQ0Z07rOHcT664qAtD-HoWrb7EfTKqrSPgTDmnMkiYdIcaSU2S3Pnr8qi5PmacsM-xN1-StNWO_dNN85kQD2ZkA0PJPJABh7Iiz68Xs2ZNbU-rhw98mxajfR1usODqj6RrdrLVKlhnugI143IFSFCrnWUuqFmDEPZKOrDVsdk2RqPuVyLeh_edIxfv_7_Jz25mtoLuIkqIz_sTw-ewq0kSB-nsdiC3qJe2mcYXS3081aMCXy5bs35A3ruNmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+investigation+of+Caputo+time+fractional+Allen%E2%80%93Cahn+equation+using+redefined+cubic+B-spline+functions&rft.jtitle=Advances+in+difference+equations&rft.au=Khalid%2C+Nauman&rft.au=Abbas%2C+Muhammad&rft.au=Iqbal%2C+Muhammad+Kashif&rft.au=Baleanu%2C+Dumitru&rft.date=2020-04-16&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-020-02616-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_020_02616_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon