A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions
We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] by using finite forward differenc...
Saved in:
Published in | Advances in difference equations Vol. 2020; no. 1; pp. 1 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
16.04.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order
α
∈
(
0
,
1
]
by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order
O
(
h
2
+
Δ
t
2
−
α
)
and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature. |
---|---|
AbstractList | We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α∈(0,1] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O(h2+Δt2−α) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature. Abstract We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] $\alpha\in(0,1]$ by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O ( h 2 + Δ t 2 − α ) $O(h^{2}+\Delta t^{2-\alpha})$ and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature. We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order $\alpha\in(0,1]$ α ∈ ( 0 , 1 ] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order $O(h^{2}+\Delta t^{2-\alpha})$ O ( h 2 + Δ t 2 − α ) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature. We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ ( 0 , 1 ] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O ( h 2 + Δ t 2 − α ) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature. |
ArticleNumber | 158 |
Author | Baleanu, Dumitru Khalid, Nauman Iqbal, Muhammad Kashif Abbas, Muhammad |
Author_xml | – sequence: 1 givenname: Nauman surname: Khalid fullname: Khalid, Nauman organization: Department of Mathematics, National College of Business Administration & Economics – sequence: 2 givenname: Muhammad surname: Abbas fullname: Abbas, Muhammad email: muhammadabbas@tdtu.edu.vn organization: Informetrics Research Group, Ton Duc Thang University, Faculty of Mathematics and Statistics, Ton Duc Thang University, Department of Mathematics, University of Sargodha – sequence: 3 givenname: Muhammad Kashif surname: Iqbal fullname: Iqbal, Muhammad Kashif organization: Department of Mathematics, Government College University – sequence: 4 givenname: Dumitru surname: Baleanu fullname: Baleanu, Dumitru organization: Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Department of Medical Research, China Medical University Hospital, China Medical University, Institute of Space Sciences |
BookMark | eNp9kU1uFDEQhS0UJJLABVhZYt3Ef-22l8OIn0iR2MDast3lwaMee2J3o7DjDrkhJ8GZDgKxyMKyXXrfq1K9C3SWcgKEXlPyllIlryrlUrKOMNKOpLK7e4bOqVRDR5UYzv55v0AXte4JYVoodY7KBqflACV6O-GYvkOd487OMSecA97a4zJnPMcD4FCsf6g33WaaIP36eb-13xKG22XVLzWmHS4wQogJRuwXFz1-19Xj1P44LOnE15foebBThVeP9yX6-uH9l-2n7ubzx-vt5qbzgum5czLwQAQdLQgmrOCeS601CSBdkOAs6yl3AfqhBxsU0dRLDz5wO2o-qIFfouvVd8x2b44lHmz5YbKN5lTIZWdsmaOfwAzW9po50jpSIRR12jkyhN5xzjgjpHm9Wb2OJd8ubUlmn5fSdlEN45oIoQetm0qtKl9yrQWC8XE-LWcuNk6GEvOQllnTMi0tc0rL3DWU_Yf-GfhJiK9QbeK0g_J3qieo39R4rLg |
CitedBy_id | crossref_primary_10_3390_math12132137 crossref_primary_10_1515_phys_2024_0030 crossref_primary_10_1515_phys_2023_0120 crossref_primary_10_1016_j_enganabound_2024_106058 crossref_primary_10_3390_axioms10040290 crossref_primary_10_1016_j_aej_2023_05_028 crossref_primary_10_1016_j_joes_2022_01_004 crossref_primary_10_1155_2022_5198968 crossref_primary_10_1088_1402_4896_ac54d0 crossref_primary_10_1016_j_camwa_2024_02_011 crossref_primary_10_3390_computation12030051 crossref_primary_10_1007_s10910_023_01525_0 crossref_primary_10_1002_mma_6798 crossref_primary_10_1063_5_0075227 crossref_primary_10_1016_j_rinp_2022_105244 crossref_primary_10_1007_s12190_023_01973_6 crossref_primary_10_3390_sym12071154 crossref_primary_10_1016_j_rinp_2022_105941 crossref_primary_10_1155_2021_8837846 crossref_primary_10_1371_journal_pone_0295525 crossref_primary_10_3390_fractalfract6090528 crossref_primary_10_1016_j_chaos_2021_110896 crossref_primary_10_1080_25765299_2022_2044595 crossref_primary_10_1088_1402_4896_ac0bd0 crossref_primary_10_3389_fphy_2020_00288 crossref_primary_10_3934_math_2024689 crossref_primary_10_1002_mma_9214 crossref_primary_10_52846_ami_v51i1_1744 crossref_primary_10_1186_s13662_021_03304_0 crossref_primary_10_1186_s13662_021_03571_x crossref_primary_10_1016_j_chaos_2021_110677 crossref_primary_10_1016_j_rinp_2021_104367 crossref_primary_10_1007_s11075_021_01068_y crossref_primary_10_1007_s11784_021_00897_7 crossref_primary_10_1080_10236198_2022_2099273 |
Cites_doi | 10.1016/j.physa.2017.10.010 10.1007/s10915-017-0396-9 10.1186/s13662-019-2125-1 10.1016/S0167-2789(03)00030-7 10.1016/j.jde.2016.05.016 10.1115/1.4025770 10.1007/s12043-016-1225-7 10.1002/num.22195 10.1016/j.physd.2015.06.007 10.1016/j.aej.2019.12.028 10.1016/j.camwa.2018.07.036 10.1063/1.5084035 10.1016/j.ijleo.2016.12.032 10.1007/s11071-016-3262-7 10.1016/j.chaos.2006.03.020 10.1016/j.apm.2012.01.009 10.1016/j.asej.2013.01.006 10.1007/3-7643-7601-5_13 10.1016/j.aej.2020.01.005 10.1016/j.jcp.2017.06.036 10.1016/j.jcp.2018.12.004 10.1016/j.jcp.2006.03.016 10.1007/s12043-013-0583-7 10.1016/j.jmaa.2012.05.066 10.1016/0021-9045(68)90025-7 10.12785/amis/070533 10.1016/j.physa.2016.12.081 10.1140/epjp/i2015-15146-9 10.1088/1674-1056/21/11/110204 10.1007/s40314-018-0672-9 10.1016/0001-6160(79)90196-2 10.1186/1687-1847-2013-199 10.1007/s00521-016-2815-5 10.1016/j.apm.2015.07.021 10.1186/s13662-019-2318-7 10.1016/0021-9045(68)90033-6 10.1016/j.camwa.2008.09.008 10.1007/s11071-016-2751-z 10.1016/j.amc.2018.12.066 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.1186/s13662-020-02616-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1687-1847 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_7aa592b0f3f14481b9bb07f5b3323200 10_1186_s13662_020_02616_x |
GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c429t-b6f3f041dae424a43c369990fe6bf6eba2513bfe575eaf8091c6cecf3ad937873 |
IEDL.DBID | C6C |
ISSN | 1687-1847 1687-1839 |
IngestDate | Wed Aug 27 01:30:19 EDT 2025 Fri Jul 25 18:58:24 EDT 2025 Tue Jul 01 00:35:39 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Fri Feb 21 02:36:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Time fractional Allen–Cahn equation Redefined cubic B-spline functions Finite difference formulation Stability and convergence Caputo’s time fractional derivative |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-b6f3f041dae424a43c369990fe6bf6eba2513bfe575eaf8091c6cecf3ad937873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1186/s13662-020-02616-x |
PQID | 2390449799 |
PQPubID | 237355 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7aa592b0f3f14481b9bb07f5b3323200 proquest_journals_2390449799 crossref_citationtrail_10_1186_s13662_020_02616_x crossref_primary_10_1186_s13662_020_02616_x springer_journals_10_1186_s13662_020_02616_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-16 |
PublicationDateYYYYMMDD | 2020-04-16 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Advances in difference equations |
PublicationTitleAbbrev | Adv Differ Equ |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Yue, Zhou, Feng, Ollivier-Gooch, Hu (CR14) 2006; 219 Sharifi, Rashidinia (CR39) 2016; 281 Yin, Liu, Li, He (CR33) 2019; 379 Atangana, Akgül (CR15) 2020 Hou, Tang, Yang (CR28) 2017; 72 Güner, Bekir, Cevikel (CR25) 2015; 130 Taghizadeh, Mirzazadeh, Rahimian, Akbari (CR8) 2013; 4 Sheikh, Ali, Khan, Saqib (CR17) 2018; 30 Tariq, Akram (CR10) 2017; 88 Jafari, Tajadodi, Baleanu (CR22) 2014; 9 Yasar, Giresunlu (CR24) 2016; 87 Atangana, Gómez-Aguilar (CR16) 2018; 34 Sahoo, Ray (CR9) 2016; 85 Zheng, Wen (CR7) 2013; 2013 de Boor (CR42) 1968; 1 Amin, Abbas, Iqbal, Baleanu (CR20) 2019; 2019 Liu, Cheng, Wang, Zhao (CR32) 2018; 76 Zhai, Weng, Feng (CR26) 2016; 40 Bulut, Baskonus, Pandir (CR6) 2013; 2013 Lu (CR2) 2012; 395 Akgül (CR19) 2019; 29 Prüss, Wilke (CR11) 2006 Sakar, Saldir, Erdogan (CR31) 2018; 37 Khalid, Abbas, Iqbal, Baleanu (CR35) 2019; 2019 Liu, Chen (CR5) 2013; 81 Tariq, Akram (CR1) 2017; 473 Inc, Yusuf, Aliyu, Baleanu (CR34) 2018; 493 Hosseini, Bekir, Ansari (CR30) 2017; 132 Atangana, Akgül, Owolabi (CR18) 2020 Gepreel, Omran (CR4) 2012; 21 Boyce, DiPrima, Meade (CR40) 1992 Liu, Shen (CR13) 2003; 179 Khalid, Abbas, Iqbal (CR36) 2019; 349 Mittal, Jain (CR38) 2012; 36 Allen, Cahn (CR12) 1979; 27 Li, Wang, Yang (CR29) 2017; 347 He, Wu (CR3) 2006; 30 Hall (CR43) 1968; 1 Hamed, Nepomnyashchy (CR23) 2015; 308 Akagi, Schimperna, Segatti (CR27) 2016; 261 Esen, Yagmurlu, Tasbozan (CR21) 2013; 7 Iqbal, Abbas, Khalid (CR37) 2018; 9 Kadalbajoo, Arora (CR41) 2009; 57 H. Bulut (2616_CR6) 2013; 2013 K. Hosseini (2616_CR30) 2017; 132 B. Yin (2616_CR33) 2019; 379 B. Zheng (2616_CR7) 2013; 2013 M. Amin (2616_CR20) 2019; 2019 H. Tariq (2616_CR1) 2017; 473 C. Liu (2616_CR13) 2003; 179 N. Khalid (2616_CR35) 2019; 2019 R.C. Mittal (2616_CR38) 2012; 36 S. Sharifi (2616_CR39) 2016; 281 E.K. Akgül (2616_CR19) 2019; 29 A. Esen (2616_CR21) 2013; 7 M.A. Hamed (2616_CR23) 2015; 308 P. Yue (2616_CR14) 2006; 219 H. Tariq (2616_CR10) 2017; 88 S.M. Allen (2616_CR12) 1979; 27 J. Prüss (2616_CR11) 2006 A. Atangana (2616_CR18) 2020 J.-H. He (2616_CR3) 2006; 30 A. Atangana (2616_CR15) 2020 N.A. Sheikh (2616_CR17) 2018; 30 C. de Boor (2616_CR42) 1968; 1 N. Taghizadeh (2616_CR8) 2013; 4 C.A. Hall (2616_CR43) 1968; 1 N. Khalid (2616_CR36) 2019; 349 H. Jafari (2616_CR22) 2014; 9 M.K. Kadalbajoo (2616_CR41) 2009; 57 E. Yasar (2616_CR24) 2016; 87 S. Sahoo (2616_CR9) 2016; 85 M.K. Iqbal (2616_CR37) 2018; 9 S. Zhai (2616_CR26) 2016; 40 M.G. Sakar (2616_CR31) 2018; 37 T. Hou (2616_CR28) 2017; 72 W.E. Boyce (2616_CR40) 1992 G. Akagi (2616_CR27) 2016; 261 M. Inc (2616_CR34) 2018; 493 O. Güner (2616_CR25) 2015; 130 H. Liu (2616_CR32) 2018; 76 W. Liu (2616_CR5) 2013; 81 A. Atangana (2616_CR16) 2018; 34 B. Lu (2616_CR2) 2012; 395 Z. Li (2616_CR29) 2017; 347 K.A. Gepreel (2616_CR4) 2012; 21 |
References_xml | – volume: 493 start-page: 94 year: 2018 end-page: 106 ident: CR34 article-title: Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis publication-title: Phys. A, Stat. Mech. Appl. doi: 10.1016/j.physa.2017.10.010 – volume: 72 start-page: 1214 issue: 3 year: 2017 end-page: 1231 ident: CR28 article-title: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0396-9 – volume: 2019 issue: 1 year: 2019 ident: CR20 article-title: Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2125-1 – volume: 179 start-page: 211 issue: 3–4 year: 2003 end-page: 228 ident: CR13 article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method publication-title: Phys. D, Nonlinear Phenom. doi: 10.1016/S0167-2789(03)00030-7 – volume: 261 start-page: 2935 issue: 6 year: 2016 end-page: 2985 ident: CR27 article-title: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.05.016 – volume: 9 issue: 2 year: 2014 ident: CR22 article-title: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4025770 – volume: 87 year: 2016 ident: CR24 article-title: The -expansion method for solving nonlinear space-time fractional differential equations publication-title: Pramana J. Phys. doi: 10.1007/s12043-016-1225-7 – volume: 34 start-page: 1502 issue: 5 year: 2018 end-page: 1523 ident: CR16 article-title: Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22195 – volume: 308 start-page: 52 year: 2015 end-page: 58 ident: CR23 article-title: Domain coarsening in a subdiffusive Allen–Cahn equation publication-title: Phys. D, Nonlinear Phenom. doi: 10.1016/j.physd.2015.06.007 – year: 2020 ident: CR15 article-title: Can transfer function and Bode diagram be obtained from Sumudu transform publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2019.12.028 – volume: 2013 year: 2013 ident: CR6 article-title: The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation publication-title: Abstr. Appl. Anal. – volume: 76 start-page: 1876 issue: 8 year: 2018 end-page: 1892 ident: CR32 article-title: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.07.036 – volume: 9 start-page: 377 issue: 3 year: 2018 end-page: 392 ident: CR37 article-title: New cubic B-spline approximation for solving non-linear singular boundary value problems arising in physiology publication-title: Commun. Math. Appl. – volume: 29 issue: 2 year: 2019 ident: CR19 article-title: Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives publication-title: Chaos, Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5084035 – volume: 132 start-page: 203 year: 2017 end-page: 209 ident: CR30 article-title: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method publication-title: Optik, Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2016.12.032 – volume: 88 start-page: 581 issue: 1 year: 2017 end-page: 594 ident: CR10 article-title: New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3262-7 – volume: 30 start-page: 700 issue: 3 year: 2006 end-page: 708 ident: CR3 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.03.020 – volume: 349 start-page: 393 year: 2019 end-page: 407 ident: CR36 article-title: Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms publication-title: Appl. Math. Comput. – volume: 36 start-page: 5555 issue: 11 year: 2012 end-page: 5573 ident: CR38 article-title: Redefined cubic B-splines collocation method for solving convection–diffusion equations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.01.009 – volume: 4 start-page: 897 issue: 4 year: 2013 end-page: 902 ident: CR8 article-title: Application of the simplest equation method to some time-fractional partial differential equations publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.01.006 – start-page: 209 year: 2006 end-page: 236 ident: CR11 article-title: Maximal -regularity and long-time behaviour of the non-isothermal Cahn–Hilliard equation with dynamic boundary conditions publication-title: Partial Differential Equations and Functional Analysis doi: 10.1007/3-7643-7601-5_13 – year: 2020 ident: CR18 article-title: Analysis of fractal fractional differential equations publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.01.005 – volume: 347 start-page: 20 year: 2017 end-page: 38 ident: CR29 article-title: A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.06.036 – volume: 379 start-page: 351 year: 2019 end-page: 372 ident: CR33 article-title: Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.12.004 – volume: 281 start-page: 28 year: 2016 end-page: 38 ident: CR39 article-title: Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method publication-title: Appl. Math. Comput. – volume: 219 start-page: 47 issue: 1 year: 2006 end-page: 67 ident: CR14 article-title: Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.016 – year: 1992 ident: CR40 publication-title: Elementary Differential Equations and Boundary Value Problems – volume: 81 start-page: 377 issue: 3 year: 2013 end-page: 384 ident: CR5 article-title: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations publication-title: Pramana doi: 10.1007/s12043-013-0583-7 – volume: 395 start-page: 684 issue: 2 year: 2012 end-page: 693 ident: CR2 article-title: The first integral method for some time fractional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.05.066 – volume: 1 start-page: 209 issue: 2 year: 1968 end-page: 218 ident: CR43 article-title: On error bounds for spline interpolation publication-title: J. Approx. Theory doi: 10.1016/0021-9045(68)90025-7 – volume: 7 start-page: 1951 issue: 5 year: 2013 end-page: 1956 ident: CR21 article-title: Approximate analytical solution to time-fractional damped Burger and Cahn–Allen equations publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/070533 – volume: 473 start-page: 352 year: 2017 end-page: 362 ident: CR1 article-title: New approach for exact solutions of time fractional Cahn–Allen equation and time fractional Phi-4 equation publication-title: Phys. A, Stat. Mech. Appl. doi: 10.1016/j.physa.2016.12.081 – volume: 130 issue: 7 year: 2015 ident: CR25 article-title: A variety of exact solutions for the time fractional Cahn–Allen equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15146-9 – volume: 21 issue: 11 year: 2012 ident: CR4 article-title: Exact solutions for nonlinear partial fractional differential equations publication-title: Chin. Phys. B doi: 10.1088/1674-1056/21/11/110204 – volume: 37 start-page: 5951 issue: 5 year: 2018 end-page: 5964 ident: CR31 article-title: An iterative approximation for time-fractional Cahn–Allen equation with reproducing kernel method publication-title: Comput. Appl. Math. doi: 10.1007/s40314-018-0672-9 – volume: 27 start-page: 1085 issue: 6 year: 1979 end-page: 1095 ident: CR12 article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening publication-title: Acta Metall. doi: 10.1016/0001-6160(79)90196-2 – volume: 2013 issue: 1 year: 2013 ident: CR7 article-title: Exact solutions for fractional partial differential equations by a new fractional sub-equation method publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2013-199 – volume: 30 start-page: 1865 issue: 6 year: 2018 end-page: 1875 ident: CR17 article-title: A modern approach of Caputo–Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2815-5 – volume: 40 start-page: 1315 issue: 2 year: 2016 end-page: 1324 ident: CR26 article-title: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.07.021 – volume: 2019 issue: 1 year: 2019 ident: CR35 article-title: A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2318-7 – volume: 1 start-page: 452 issue: 4 year: 1968 end-page: 463 ident: CR42 article-title: On the convergence of odd-degree spline interpolation publication-title: J. Approx. Theory doi: 10.1016/0021-9045(68)90033-6 – volume: 57 start-page: 650 issue: 4 year: 2009 end-page: 663 ident: CR41 article-title: B-spline collocation method for the singular-perturbation problem using artificial viscosity publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.09.008 – volume: 85 start-page: 1167 issue: 2 year: 2016 end-page: 1176 ident: CR9 article-title: New solitary wave solutions of time-fractional coupled Jaulent–Miodek equation by using two reliable methods publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2751-z – volume: 37 start-page: 5951 issue: 5 year: 2018 ident: 2616_CR31 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-018-0672-9 – volume: 395 start-page: 684 issue: 2 year: 2012 ident: 2616_CR2 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.05.066 – volume: 349 start-page: 393 year: 2019 ident: 2616_CR36 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.12.066 – volume: 219 start-page: 47 issue: 1 year: 2006 ident: 2616_CR14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.016 – volume: 29 issue: 2 year: 2019 ident: 2616_CR19 publication-title: Chaos, Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5084035 – volume: 40 start-page: 1315 issue: 2 year: 2016 ident: 2616_CR26 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.07.021 – volume: 4 start-page: 897 issue: 4 year: 2013 ident: 2616_CR8 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.01.006 – volume: 34 start-page: 1502 issue: 5 year: 2018 ident: 2616_CR16 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22195 – volume: 493 start-page: 94 year: 2018 ident: 2616_CR34 publication-title: Phys. A, Stat. Mech. Appl. doi: 10.1016/j.physa.2017.10.010 – volume: 21 issue: 11 year: 2012 ident: 2616_CR4 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/21/11/110204 – volume: 30 start-page: 1865 issue: 6 year: 2018 ident: 2616_CR17 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2815-5 – year: 2020 ident: 2616_CR15 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2019.12.028 – volume: 281 start-page: 28 year: 2016 ident: 2616_CR39 publication-title: Appl. Math. Comput. – volume: 473 start-page: 352 year: 2017 ident: 2616_CR1 publication-title: Phys. A, Stat. Mech. Appl. doi: 10.1016/j.physa.2016.12.081 – volume: 2019 issue: 1 year: 2019 ident: 2616_CR20 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2125-1 – volume: 379 start-page: 351 year: 2019 ident: 2616_CR33 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.12.004 – volume: 7 start-page: 1951 issue: 5 year: 2013 ident: 2616_CR21 publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/070533 – volume: 1 start-page: 452 issue: 4 year: 1968 ident: 2616_CR42 publication-title: J. Approx. Theory doi: 10.1016/0021-9045(68)90033-6 – volume: 2019 issue: 1 year: 2019 ident: 2616_CR35 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2318-7 – year: 2020 ident: 2616_CR18 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.01.005 – volume: 1 start-page: 209 issue: 2 year: 1968 ident: 2616_CR43 publication-title: J. Approx. Theory doi: 10.1016/0021-9045(68)90025-7 – volume: 2013 issue: 1 year: 2013 ident: 2616_CR7 publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2013-199 – volume: 57 start-page: 650 issue: 4 year: 2009 ident: 2616_CR41 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.09.008 – volume: 179 start-page: 211 issue: 3–4 year: 2003 ident: 2616_CR13 publication-title: Phys. D, Nonlinear Phenom. doi: 10.1016/S0167-2789(03)00030-7 – volume: 81 start-page: 377 issue: 3 year: 2013 ident: 2616_CR5 publication-title: Pramana doi: 10.1007/s12043-013-0583-7 – volume: 347 start-page: 20 year: 2017 ident: 2616_CR29 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.06.036 – volume: 130 issue: 7 year: 2015 ident: 2616_CR25 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15146-9 – volume: 72 start-page: 1214 issue: 3 year: 2017 ident: 2616_CR28 publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0396-9 – volume: 9 start-page: 377 issue: 3 year: 2018 ident: 2616_CR37 publication-title: Commun. Math. Appl. – volume: 308 start-page: 52 year: 2015 ident: 2616_CR23 publication-title: Phys. D, Nonlinear Phenom. doi: 10.1016/j.physd.2015.06.007 – volume: 76 start-page: 1876 issue: 8 year: 2018 ident: 2616_CR32 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.07.036 – volume: 87 year: 2016 ident: 2616_CR24 publication-title: Pramana J. Phys. doi: 10.1007/s12043-016-1225-7 – volume-title: Elementary Differential Equations and Boundary Value Problems year: 1992 ident: 2616_CR40 – volume: 27 start-page: 1085 issue: 6 year: 1979 ident: 2616_CR12 publication-title: Acta Metall. doi: 10.1016/0001-6160(79)90196-2 – volume: 261 start-page: 2935 issue: 6 year: 2016 ident: 2616_CR27 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.05.016 – volume: 36 start-page: 5555 issue: 11 year: 2012 ident: 2616_CR38 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.01.009 – volume: 132 start-page: 203 year: 2017 ident: 2616_CR30 publication-title: Optik, Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2016.12.032 – volume: 30 start-page: 700 issue: 3 year: 2006 ident: 2616_CR3 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.03.020 – volume: 9 issue: 2 year: 2014 ident: 2616_CR22 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4025770 – volume: 2013 year: 2013 ident: 2616_CR6 publication-title: Abstr. Appl. Anal. – start-page: 209 volume-title: Partial Differential Equations and Functional Analysis year: 2006 ident: 2616_CR11 doi: 10.1007/3-7643-7601-5_13 – volume: 85 start-page: 1167 issue: 2 year: 2016 ident: 2616_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2751-z – volume: 88 start-page: 581 issue: 1 year: 2017 ident: 2616_CR10 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3262-7 |
SSID | ssj0029488 |
Score | 2.3940148 |
Snippet | We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of... Abstract We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis B spline functions Caputo’s time fractional derivative Collocation methods Computer simulation Difference and Functional Equations Exact solutions Finite difference formulation Finite difference method Functional Analysis Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Redefined cubic B-spline functions Stability and convergence Time fractional Allen–Cahn equation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVcvCmodtNms0e22Ipgp4s9BaSNNFC2dY-oEf_g__QX-Iku9uHoF687iYhzHxhviGZbxC6SaiIrWGCJL5sGeIxJcIAlrkylAE9TaMgx_D4xLs99tBv9Ddaffk3Ybk8cG64WqJUI4115KgD7g8kK9U6SlxDUwpkIArZOsS8MpkqUq0UcFmWyAhem9Up5zHxqZLPOThZboWhoNa_RTG_3YqGYNM5RAcFS8TNfHdHaMdmx2h_QzvwBE2bOFvk1y0jPFyrZYwzPHa4rSaL-Rj7zvHYTfPiBb-gb5zy-f7RVq8Ztm-5zDf2b99f8NQOrIP1B9gs9NDgFpn5al2YD6EvoPMU9Tr3z-0uKRooEANhZk40B6tFrD5QlsVMMWooB0IYOcu141YrIDdUOwuUzSonwIyGG2scVQNgLSKhZ2g3G2f2HGFKnTMi4iZJYa3YiiR1_mkqeNpruDUqqF7aU5pCXdw3uRjJkGUILnMfSPCBDD6Qywq6Xc2Z5Noav45ueTetRnpd7PAB0CILtMi_0FJB1dLJsjisMxnTNGLM329W0F3p-PXvn7d08R9bukR7cQAmI3VeRbvz6cJeAdGZ6-uA6S82C_gm priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELba5dIeUFuoupQiH3orFknsdZxTxa5AqFJRVYHEzbIdmyKhZMnuShx5h75hn6QzjrNbkMo1sZ2fGXu-8Xi-IeRzyVXhnVCsxLRlsMecKQe6LI3jAuBplUU6hu_n8uxSfLuaXKUNt0U6VjmsiXGhrluHe-RHBTjnQmAQ6uv8jmHVKIyuphIaL8kWLMFKjcjW9OT8x8-1y1WJWHkyl_B4xAJD2oySR4ucS1kwdJ_QD5Hs_pFpigz-j2Dnk0hpNECnb8h2Qo70uBf1W_LCN-_I63_4BHdId0ybVR-CuaU3GwaNtqFtoDMzXy1bitXkaej6hAYcEIup_Hn4PTO_Gurveupviufhr2nnax9g_Jq6lb1xdMoWmMEL_cEcRo3dJZenJxezM5aKKjAHpmfJrAw8ZCKvjReFMII7LgEkZsFLG6S3BgAPt8EDjPMmKIATTjrvAjc1IBlV8vdk1LSN_0Ao5yE4lUlXVjBW4VVZBTyuCtJHXrfJmOTD_9QuMY5j4YtbHT0PJXUvAw0y0FEG-n5Mvqz7zHu-jWdbT1FM65bIlR0vtN21TlNPl8ZMqsJm8N3gPQJMr6zNyjCxnAOczLIx2R-ErNMEXuiNuo3J4SD4ze3_v9Le86N9JK-KqHKC5XKfjJbdyn8CWLO0B0l3_wIFnvPj priority: 102 providerName: ProQuest |
Title | A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions |
URI | https://link.springer.com/article/10.1186/s13662-020-02616-x https://www.proquest.com/docview/2390449799 https://doaj.org/article/7aa592b0f3f14481b9bb07f5b3323200 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZouLQH1EJRA2nkAzdq4V17vd5jsiKgSokQaiRulu3YgIQ2IQ-JI_-h_7C_hLF3Ex6ilXqxtLu29zFjzTc7nm8QOsqZTJ3lkuQhbRnsMSPSgi4LbRkHeFrQSMcwHInzMf95lV01NDkhF-Zl_D6R4mSRMCFSEpyc4C0IAnhxO0tYHso0lKLcOFcFaOI6Kebdca8MT-TnfwUq38RBo3kZfEY7DS7EvVqQX9CWq3bRpxdsgXA03FCsLvbQvIerVR1uucO3z2wZ0wpPPS71bLWc4lA5Hvt5nbwQpg-FU_48_i71TYXdfU3zjcPe92s8dxPn4W4TbFfm1uI-WYRsXRgPpi9q51c0Hpz-Ks9JU0CBWDAzS2KEZ57yZKIdT7nmzDIBgJB6J4wXzmgAN8x4B5DNaS8BOlhhnfVMTwC1yJzto1Y1rdw3hBnz3koqbF7AXKmTeeHD1lSQdOBwy9ooWX9dZRt28VDk4k5FL0MKVUtEgURUlIh6aKPjzZhZza3xz979ILRNz8CLHU-Auqhmmalc66xIDYX3Bk8RIHlhDM19ZhgD6EhpG3XWIlfNYl2olBWU8xDfbKMfazV4vvz3Rzr4v-6H6GMaFZKTRHRQazlfue8AaZamiz5wegatHEC73T8dXVx2o353408CaMdp7wkl9POF |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK9YKOADnMBqYnud5IBQu7Bs6c-plXoztmOXSlWyze6KcuMdeA8eiidhxkl2KRK99ZrYo9gznp-M5xtCXmUi597JnGVYtgz2WLDcgSwr44QE97RIIhzD_oGaHMnPx8PjNfKrr4XBa5W9ToyKuqwd_iPf5BCcS4lJqPfTc4ZdozC72rfQaMVi13__BiHb7N3OB-Dva87HHw9HE9Z1FWAOdO-cWRVESGRaGi-5NFI4ocBLSoJXNihvDVh8YYMHP8abkIM9dcp5F4QpwZTnmQC6N8hNKcCSY2X6-NMywCtk7HOZKlgseh59kU6uNmepUIozDNYw6lHs4pIhjP0CLjm5_-Rlo7kb3yN3Oz-VbrWCdZ-s-eoBufMXeuFD0mzRatEmfM7o6Qqvo65oHejITBfzmmLvehqatnwCCWLrlt8_fo7M14r68xZonOLt-xPa-NIHoF9St7Cnjm6zGdYLw3wwvvF8PCJH17LZj8l6VVf-CaFChODyRLmsAFrc51kR8HIsyBqiyA0HJO33U7sO3xzbbJzpGOfkSrc80MADHXmgLwbkzXLOtEX3uHL0NrJpORKRueODujnR3UHXmTHDgtsE1g2xKgQFhbVJFoZWCHBek2RANnom605dzPRKuAfkbc_41ev_f9LTq6m9JLcmh_t7em_nYPcZuc2j-EmWqg2yPm8W_jk4VHP7IkoxJV-u-9j8ATajMNY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVCwV8gBNYm8ReJzkg1N121VJYVYhKvRnbsUulKtlmd0W58Q68DY_DkzB2kl2KRG-9JvYo9vx-sWcG4GXKssQantHUpy2jP2Y0MyjLQhnGMTzNo1CO4eNU7B3x98fD4w341eXC-GuVnU0MhrqojP9HPkgQnHPuD6EGrr0WcbgzeTc7p76DlD9p7dppNCJyYL9_Q_g2f7u_g7x-lSST3c_jPdp2GKAG7fCCauGYi3hcKMsTrjgzTGDEFDkrtBNWK_T-TDuLMY1VLkPfaoSxxjFVoFvPUoZ0b8Bm6lFRDzZHu9PDTyu4l_PQ9TIWuHQfh3QpO5kYzGMmREI9dPMYSNCLS24xdA-4FPL-c0obnN_kLtxpo1ay3YjZPdiw5X24_VctwwdQb5Ny2Rz_nJHTdfWOqiSVI2M1Wy4q4jvZE1c3yRSeoG_k8vvHz7H6WhJ73pQdJ_4u_gmpbWEd0i-IWepTQ0Z07rOHcT664qAtD-HoWrb7EfTKqrSPgTDmnMkiYdIcaSU2S3Pnr8qi5PmacsM-xN1-StNWO_dNN85kQD2ZkA0PJPJABh7Iiz68Xs2ZNbU-rhw98mxajfR1usODqj6RrdrLVKlhnugI143IFSFCrnWUuqFmDEPZKOrDVsdk2RqPuVyLeh_edIxfv_7_Jz25mtoLuIkqIz_sTw-ewq0kSB-nsdiC3qJe2mcYXS3081aMCXy5bs35A3ruNmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+investigation+of+Caputo+time+fractional+Allen%E2%80%93Cahn+equation+using+redefined+cubic+B-spline+functions&rft.jtitle=Advances+in+difference+equations&rft.au=Khalid%2C+Nauman&rft.au=Abbas%2C+Muhammad&rft.au=Iqbal%2C+Muhammad+Kashif&rft.au=Baleanu%2C+Dumitru&rft.date=2020-04-16&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-020-02616-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_020_02616_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |