Metal catalyst-assisted growth of GaN nanowires on graphene films for flexible photocatalyst applications

We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 14; no. 11; pp. 1437 - 1442
Main Authors Park, Jun Beom, Kim, Nam-Jung, Kim, Yong-Jin, Lee, Sang-Hyup, Yi, Gyu-Chul
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2014
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
DOI10.1016/j.cap.2014.08.007

Cover

Loading…
Abstract We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions.
AbstractList We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO sub(2)/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions.
We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions.
We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions. KCI Citation Count: 27
Author Kim, Nam-Jung
Lee, Sang-Hyup
Yi, Gyu-Chul
Kim, Yong-Jin
Park, Jun Beom
Author_xml – sequence: 1
  givenname: Jun Beom
  surname: Park
  fullname: Park, Jun Beom
  organization: Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea
– sequence: 2
  givenname: Nam-Jung
  surname: Kim
  fullname: Kim, Nam-Jung
  organization: Department of Physics and Chemistry, Korea Military Academy, Seoul 139-799, Republic of Korea
– sequence: 3
  givenname: Yong-Jin
  surname: Kim
  fullname: Kim, Yong-Jin
  organization: Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea
– sequence: 4
  givenname: Sang-Hyup
  surname: Lee
  fullname: Lee, Sang-Hyup
  organization: Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
– sequence: 5
  givenname: Gyu-Chul
  surname: Yi
  fullname: Yi, Gyu-Chul
  email: gyuchul.yi@gmail.com, gcyi@snu.ac.kr
  organization: Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001928397$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9vVSEQxYmpiW31A7hj6eZe4f7jEldNo7VJbRNT12QuDH288uAKtLXfXtqniXFRFjNMOL-TMOeIHIQYkJD3nLWc8enjttWwth3jQ8vmljHxihzyWcwNn8R4UO_jJBouevmGHOW8ZZUZ2HBI3Dcs4KmGWh9zaSBnlwsaepPiQ9nQaOkZXNIAIT64hJnGUJ9g3WBAap3fZWpjotbjL7d4pOsmlvjXjcK6elcnF0N-S15b8Bnf_enH5MeXz9enX5uLq7Pz05OLRg-dLM0y4NRZLgfBOAwLTqxbRqNxMEZiZ2AeLeeCicnAMlrR91KiNYsUgKbr6zkmH_a-IVl1q52K4J77TVS3SZ18vz5XnHWj-Ee6pvjzDnNRO5c1eg8B411WfBp5L2uRVSr2Up1izgmt0q48f6wkcL46qqcc1FbVHNRTDorNquZQSf4fuSa3g_T4IvNpz2Bd1L3DpLJ2GDSamoEuykT3Av0b-xqkYg
CitedBy_id crossref_primary_10_1002_adfm_202209880
crossref_primary_10_1016_j_pquantelec_2018_07_001
crossref_primary_10_1021_cg5015219
crossref_primary_10_1021_acs_cgd_4c00418
crossref_primary_10_1021_acs_nanolett_7b01196
crossref_primary_10_1016_j_mser_2019_04_001
crossref_primary_10_1002_adfm_202405717
crossref_primary_10_1063_5_0024126
crossref_primary_10_1016_j_mee_2023_111995
crossref_primary_10_1080_00222348_2018_1516340
crossref_primary_10_1088_0268_1242_31_11_115005
crossref_primary_10_1007_s11082_016_0583_1
crossref_primary_10_1021_acs_nanolett_6b01453
crossref_primary_10_1016_j_jcrysgro_2015_12_044
crossref_primary_10_1142_S0217979216502179
crossref_primary_10_1002_adfm_202001283
crossref_primary_10_1016_j_electacta_2017_09_041
crossref_primary_10_7498_aps_69_20200445
crossref_primary_10_1016_j_cap_2015_04_029
crossref_primary_10_1002_adma_201903407
crossref_primary_10_1039_C6RA02440H
crossref_primary_10_1063_1_4950707
crossref_primary_10_1016_j_apsusc_2017_12_084
crossref_primary_10_1016_j_rser_2017_05_136
crossref_primary_10_1063_5_0049695
crossref_primary_10_1142_S0217979216502520
crossref_primary_10_1002_adfm_202005677
crossref_primary_10_1080_15980316_2024_2312942
crossref_primary_10_1016_j_mssp_2022_106911
crossref_primary_10_1007_s11426_023_1769_y
crossref_primary_10_1021_acsanm_0c00221
crossref_primary_10_1016_j_cplett_2022_139597
crossref_primary_10_1016_j_jcrysgro_2015_12_051
crossref_primary_10_1016_j_nanoen_2020_104463
crossref_primary_10_1016_j_pquantelec_2015_11_001
Cites_doi 10.1021/nn700320y
10.1021/nl2006802
10.1021/nl0707398
10.1038/nmat1177
10.1002/adma.200306673
10.1016/S0022-0248(00)00526-1
10.1002/adma.201102407
10.1021/ja993713u
10.1146/annurev-matsci-071312-121659
10.1063/1.1868059
10.1021/cr00017a016
10.1126/science.1195403
10.1021/jp901011u
10.1088/1367-2630/11/12/125021
10.1021/ja0518777
10.1021/nl060553t
10.1063/1.2243710
10.1038/nnano.2010.132
10.1063/1.1753975
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7QQ
7SR
7U5
8FD
JG9
L7M
ACYCR
DOI 10.1016/j.cap.2014.08.007
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 1442
ExternalDocumentID oai_kci_go_kr_ARTI_102573
10_1016_j_cap_2014_08_007
S156717391400248X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QQ
7SR
7U5
8FD
EFKBS
JG9
L7M
ABPIF
ABPTK
ACYCR
ID FETCH-LOGICAL-c429t-b4e62f194701a4be602b5dce4dd9e2da85f117076dab5f73399efdb97aed23333
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Fri Nov 17 19:18:08 EST 2023
Thu Sep 04 18:23:33 EDT 2025
Tue Jul 01 01:06:03 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Fri Feb 23 02:29:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nanowire
GaN
Graphene
Photocatalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-b4e62f194701a4be602b5dce4dd9e2da85f117076dab5f73399efdb97aed23333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-001115.2014.14.11.027
PQID 1651396519
PQPubID 23500
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_102573
proquest_miscellaneous_1651396519
crossref_citationtrail_10_1016_j_cap_2014_08_007
crossref_primary_10_1016_j_cap_2014_08_007
elsevier_sciencedirect_doi_10_1016_j_cap_2014_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Current applied physics
PublicationYear 2014
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Duan, Lieber (bib5) 2000; 122
Xu, Wang, Harrison, Bell, Ansell, Winser, Cheng, Foxon, Kawabe (bib17) 2000; 217
Kuykendall, Pauzauskie, Zhang, Goldberger, Sirbuly, Denlinger, Yang (bib9) 2004; 3
Lee, Kim, Hong, Jeon, Bae, Hong, Yi (bib12) 2011; 23
Chung, Lee, Yi (bib13) 2010; 330
Hong, Jeon, Kim, Jeon, Park, Yi (bib15) 2009; 11
Hyun, Zhang, Lauhon (bib1) 2013; 43
Reshchikov, Morkoc (bib16) 2005; 97
Kim, Lee, Yi (bib14) 2009; 95
Bae, Bin Han, Zhang, Wei, Duan, Zhang, Wang (bib18) 2009; 113
Yoo, Hong, An, Yi, Chon, Joo, Kim, Lee (bib10) 2006; 89
Yang, An, Park, Yi, Choi (bib2) 2004; 16
Fox, Dulay (bib20) 1993; 93
Maeda, Takata, Hara, Saito, Inoue, Kobayashi, Domen (bib19) 2005; 127
Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song, Kim, Kim, Ozyilmaz, Ahn, Hong, Iijima (bib11) 2010; 5
Jung, Hong, Li, Cho, Kim, Yi (bib4) 2008; 2
Wagner, Ellis (bib3) 1964; 4
Calarco, Meijers, Debnath, Stoica, Sutter, Luth (bib7) 2007; 7
Hersee, Sun, Wang (bib8) 2006; 6
Wang, Pierre, Kibria, Cui, Han, Bevan, Guo, Paradis, Hakima, Mi (bib6) 2011; 11
Wang (10.1016/j.cap.2014.08.007_bib6) 2011; 11
Calarco (10.1016/j.cap.2014.08.007_bib7) 2007; 7
Reshchikov (10.1016/j.cap.2014.08.007_bib16) 2005; 97
Bae (10.1016/j.cap.2014.08.007_bib18) 2009; 113
Chung (10.1016/j.cap.2014.08.007_bib13) 2010; 330
Jung (10.1016/j.cap.2014.08.007_bib4) 2008; 2
Hersee (10.1016/j.cap.2014.08.007_bib8) 2006; 6
Fox (10.1016/j.cap.2014.08.007_bib20) 1993; 93
Kuykendall (10.1016/j.cap.2014.08.007_bib9) 2004; 3
Lee (10.1016/j.cap.2014.08.007_bib12) 2011; 23
Yang (10.1016/j.cap.2014.08.007_bib2) 2004; 16
Hyun (10.1016/j.cap.2014.08.007_bib1) 2013; 43
Duan (10.1016/j.cap.2014.08.007_bib5) 2000; 122
Kim (10.1016/j.cap.2014.08.007_bib14) 2009; 95
Xu (10.1016/j.cap.2014.08.007_bib17) 2000; 217
Wagner (10.1016/j.cap.2014.08.007_bib3) 1964; 4
Bae (10.1016/j.cap.2014.08.007_bib11) 2010; 5
Hong (10.1016/j.cap.2014.08.007_bib15) 2009; 11
Yoo (10.1016/j.cap.2014.08.007_bib10) 2006; 89
Maeda (10.1016/j.cap.2014.08.007_bib19) 2005; 127
References_xml – volume: 89
  start-page: 3124
  year: 2006
  ident: bib10
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 125021
  year: 2009
  ident: bib15
  publication-title: New. J. Phys.
– volume: 93
  start-page: 341
  year: 1993
  ident: bib20
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2353
  year: 2011
  ident: bib6
  publication-title: Nano Lett.
– volume: 95
  start-page: 3101
  year: 2009
  ident: bib14
  publication-title: Appl. Phys. Lett.
– volume: 330
  start-page: 655
  year: 2010
  ident: bib13
  publication-title: Science
– volume: 3
  start-page: 524
  year: 2004
  ident: bib9
  publication-title: Nat. Mater.
– volume: 122
  start-page: 188
  year: 2000
  ident: bib5
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 574
  year: 2010
  ident: bib11
  publication-title: Nat. Nanotechnol.
– volume: 217
  start-page: 228
  year: 2000
  ident: bib17
  publication-title: J. Cryst. Growth
– volume: 43
  start-page: 451
  year: 2013
  ident: bib1
  publication-title: Annu. Rev. Mater. Res.
– volume: 4
  start-page: 89
  year: 1964
  ident: bib3
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 1661
  year: 2004
  ident: bib2
  publication-title: Adv. Mater.
– volume: 113
  start-page: 10379
  year: 2009
  ident: bib18
  publication-title: J. Phys. Chem. C
– volume: 127
  start-page: 8286
  year: 2005
  ident: bib19
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2248
  year: 2007
  ident: bib7
  publication-title: Nano Lett.
– volume: 6
  start-page: 1808
  year: 2006
  ident: bib8
  publication-title: Nano Lett.
– volume: 97
  start-page: 061301
  year: 2005
  ident: bib16
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 4614
  year: 2011
  ident: bib12
  publication-title: Adv. Mater.
– volume: 2
  start-page: 637
  year: 2008
  ident: bib4
  publication-title: ACS Nano
– volume: 2
  start-page: 637
  issue: 4
  year: 2008
  ident: 10.1016/j.cap.2014.08.007_bib4
  publication-title: ACS Nano
  doi: 10.1021/nn700320y
– volume: 11
  start-page: 2353
  issue: 6
  year: 2011
  ident: 10.1016/j.cap.2014.08.007_bib6
  publication-title: Nano Lett.
  doi: 10.1021/nl2006802
– volume: 7
  start-page: 2248
  issue: 8
  year: 2007
  ident: 10.1016/j.cap.2014.08.007_bib7
  publication-title: Nano Lett.
  doi: 10.1021/nl0707398
– volume: 3
  start-page: 524
  issue: 8
  year: 2004
  ident: 10.1016/j.cap.2014.08.007_bib9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1177
– volume: 16
  start-page: 1661
  issue: 18
  year: 2004
  ident: 10.1016/j.cap.2014.08.007_bib2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306673
– volume: 217
  start-page: 228
  issue: 3
  year: 2000
  ident: 10.1016/j.cap.2014.08.007_bib17
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(00)00526-1
– volume: 23
  start-page: 4614
  issue: 40
  year: 2011
  ident: 10.1016/j.cap.2014.08.007_bib12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102407
– volume: 122
  start-page: 188
  issue: 1
  year: 2000
  ident: 10.1016/j.cap.2014.08.007_bib5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993713u
– volume: 43
  start-page: 451
  year: 2013
  ident: 10.1016/j.cap.2014.08.007_bib1
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-071312-121659
– volume: 97
  start-page: 061301
  issue: 6
  year: 2005
  ident: 10.1016/j.cap.2014.08.007_bib16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1868059
– volume: 93
  start-page: 341
  issue: 1
  year: 1993
  ident: 10.1016/j.cap.2014.08.007_bib20
  publication-title: Chem. Rev.
  doi: 10.1021/cr00017a016
– volume: 330
  start-page: 655
  issue: 6004
  year: 2010
  ident: 10.1016/j.cap.2014.08.007_bib13
  publication-title: Science
  doi: 10.1126/science.1195403
– volume: 113
  start-page: 10379
  issue: 24
  year: 2009
  ident: 10.1016/j.cap.2014.08.007_bib18
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901011u
– volume: 95
  start-page: 3101
  issue: 21
  year: 2009
  ident: 10.1016/j.cap.2014.08.007_bib14
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 125021
  year: 2009
  ident: 10.1016/j.cap.2014.08.007_bib15
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/11/12/125021
– volume: 127
  start-page: 8286
  issue: 23
  year: 2005
  ident: 10.1016/j.cap.2014.08.007_bib19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0518777
– volume: 6
  start-page: 1808
  issue: 8
  year: 2006
  ident: 10.1016/j.cap.2014.08.007_bib8
  publication-title: Nano Lett.
  doi: 10.1021/nl060553t
– volume: 89
  start-page: 3124
  issue: 4
  year: 2006
  ident: 10.1016/j.cap.2014.08.007_bib10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2243710
– volume: 5
  start-page: 574
  issue: 8
  year: 2010
  ident: 10.1016/j.cap.2014.08.007_bib11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 4
  start-page: 89
  issue: 5
  year: 1964
  ident: 10.1016/j.cap.2014.08.007_bib3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1753975
SSID ssj0016404
Score 2.2598662
Snippet We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method....
SourceID nrf
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1437
SubjectTerms Catalysts
Foils
Gallium nitrides
GaN
Graphene
Nanostructure
Nanowire
Nanowires
Nickel
Photocatalysis
Photocatalyst
물리학
Title Metal catalyst-assisted growth of GaN nanowires on graphene films for flexible photocatalyst applications
URI https://dx.doi.org/10.1016/j.cap.2014.08.007
https://www.proquest.com/docview/1651396519
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001928397
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2014, 14(11), , pp.1437-1442
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4qBIXBLSIt4zEqZK7ieMkmyNCwNKKvQDS3iw_IbAkq004cOG3M-NNUKtWHJpDokR2Eo2dmW8y428IOXFDY1MvIqa84UwobhmAWM5conVsrOde4-Lk63E2uhM_J-lkiZz1a2EwrbLT_QudHrR1d2XQSXMwK8vBDXgeGEIuwEVAYq4JrmAXOfLn_3j7SPMAbyCUEMTGDFv3kc2Q42UUUlbGIrB4YkXZf9um5Wru_9LVwQBdbJD1DjnS08XLbZIlV22RLyGD0zRfSXntAEfT8DvmtWkZgGIcQUvvwdFuH2jt6aUa00pVNdITN7SuaGCrBmVHfTl9bijgV-qRIFNPHZ091G3d343-Huf-Ru4uzm_PRqyro8AMWJuWaeEy7uNC5FGshHZZxHVqjRPWFo5bNUw91p_JM6t06vMEMIvzVhe5cpYnsG2Tlaqu3A6hmU2SyLm8AFQhLLda26HgXHObA7RJ0l0S9RKUpiMZx1oXU9lnkz1KELpEoUusfxnlu-T7R5fZgmHjs8aiHxb5xzSRYAE-63YMQyifTCmRThuP97V8mktwGq6gD-itBNr0AyzhE8O4iapc_dLIOEsBJ8Ou2Pu_x--TNTxbLGE8ICvt_MUdApZp9VGYrEdk9fTq12j8DoXS9Ls
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF45qarmEvWpOknbrdRTpa1hWcAcI6up08a-NJF8W-0zoXbAMuSQS357ZtYQtWqVQzmABLOAZpeZb9jZbwj55MbGpl5ETHnDmVDcMgCxnLlE69hYz73GxcmzeTa9EN8X6WJAJv1aGEyr7Gz_1qYHa92dGXXaHK3LcvQTIg-cQi4gREBirsUOeSLSJMeh_eXuIc8DwoFQQxClGYr3U5shycso5KyMRaDxxJKy_3ZOO9XG_2Wsgwc6eU72O-hIj7dv94IMXPWSPA0pnKZ5RcqZAyBNw_-Y26ZlgIqxCy29hEi7vaK1p9_UnFaqqpGfuKF1RQNdNVg76svVdUMBwFKPDJl65ej6qm7r_m7094nu1-Ti5Ov5ZMq6QgrMgLtpmRYu4z4uRB7FSmiXRVyn1jhhbeG4VePUYwGaPLNKpz5PALQ4b3WRK2d5AtsbslvVlXtLaGaTJHIuLwBWCMut1nYsONfc5oBtknRIol6D0nQs41jsYiX7dLJfEpQuUekSC2BG-ZB8fmiy3lJsPCYs-m6Rf4wTCS7gsWYfoQvl0pQS-bTxeFnL5UZC1HAKbcBwJSDTd7CEbwwnTlTl6ptGxlkKQBl2xcH_Pf4DeTY9n53Js9P5j0Oyh1e26xmPyG67uXHvANi0-n0YuPczZPZR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+catalyst-assisted+growth+of+GaN+nanowires+on+graphene+films+for+flexible+photocatalyst+applications&rft.jtitle=Current+applied+physics&rft.au=Park%2C+Jun+Beom&rft.au=Kim%2C+Nam-Jung&rft.au=Kim%2C+Yong-Jin&rft.au=Lee%2C+Sang-Hyup&rft.date=2014-11-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=14&rft.issue=11&rft.spage=1437&rft.epage=1442&rft_id=info:doi/10.1016%2Fj.cap.2014.08.007&rft.externalDocID=S156717391400248X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon