Metal catalyst-assisted growth of GaN nanowires on graphene films for flexible photocatalyst applications
We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2...
Saved in:
Published in | Current applied physics Vol. 14; no. 11; pp. 1437 - 1442 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2014
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1567-1739 1878-1675 |
DOI | 10.1016/j.cap.2014.08.007 |
Cover
Loading…
Abstract | We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions. |
---|---|
AbstractList | We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO sub(2)/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions. We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions. We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions. KCI Citation Count: 27 |
Author | Kim, Nam-Jung Lee, Sang-Hyup Yi, Gyu-Chul Kim, Yong-Jin Park, Jun Beom |
Author_xml | – sequence: 1 givenname: Jun Beom surname: Park fullname: Park, Jun Beom organization: Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea – sequence: 2 givenname: Nam-Jung surname: Kim fullname: Kim, Nam-Jung organization: Department of Physics and Chemistry, Korea Military Academy, Seoul 139-799, Republic of Korea – sequence: 3 givenname: Yong-Jin surname: Kim fullname: Kim, Yong-Jin organization: Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea – sequence: 4 givenname: Sang-Hyup surname: Lee fullname: Lee, Sang-Hyup organization: Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea – sequence: 5 givenname: Gyu-Chul surname: Yi fullname: Yi, Gyu-Chul email: gyuchul.yi@gmail.com, gcyi@snu.ac.kr organization: Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001928397$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU9vVSEQxYmpiW31A7hj6eZe4f7jEldNo7VJbRNT12QuDH288uAKtLXfXtqniXFRFjNMOL-TMOeIHIQYkJD3nLWc8enjttWwth3jQ8vmljHxihzyWcwNn8R4UO_jJBouevmGHOW8ZZUZ2HBI3Dcs4KmGWh9zaSBnlwsaepPiQ9nQaOkZXNIAIT64hJnGUJ9g3WBAap3fZWpjotbjL7d4pOsmlvjXjcK6elcnF0N-S15b8Bnf_enH5MeXz9enX5uLq7Pz05OLRg-dLM0y4NRZLgfBOAwLTqxbRqNxMEZiZ2AeLeeCicnAMlrR91KiNYsUgKbr6zkmH_a-IVl1q52K4J77TVS3SZ18vz5XnHWj-Ee6pvjzDnNRO5c1eg8B411WfBp5L2uRVSr2Up1izgmt0q48f6wkcL46qqcc1FbVHNRTDorNquZQSf4fuSa3g_T4IvNpz2Bd1L3DpLJ2GDSamoEuykT3Av0b-xqkYg |
CitedBy_id | crossref_primary_10_1002_adfm_202209880 crossref_primary_10_1016_j_pquantelec_2018_07_001 crossref_primary_10_1021_cg5015219 crossref_primary_10_1021_acs_cgd_4c00418 crossref_primary_10_1021_acs_nanolett_7b01196 crossref_primary_10_1016_j_mser_2019_04_001 crossref_primary_10_1002_adfm_202405717 crossref_primary_10_1063_5_0024126 crossref_primary_10_1016_j_mee_2023_111995 crossref_primary_10_1080_00222348_2018_1516340 crossref_primary_10_1088_0268_1242_31_11_115005 crossref_primary_10_1007_s11082_016_0583_1 crossref_primary_10_1021_acs_nanolett_6b01453 crossref_primary_10_1016_j_jcrysgro_2015_12_044 crossref_primary_10_1142_S0217979216502179 crossref_primary_10_1002_adfm_202001283 crossref_primary_10_1016_j_electacta_2017_09_041 crossref_primary_10_7498_aps_69_20200445 crossref_primary_10_1016_j_cap_2015_04_029 crossref_primary_10_1002_adma_201903407 crossref_primary_10_1039_C6RA02440H crossref_primary_10_1063_1_4950707 crossref_primary_10_1016_j_apsusc_2017_12_084 crossref_primary_10_1016_j_rser_2017_05_136 crossref_primary_10_1063_5_0049695 crossref_primary_10_1142_S0217979216502520 crossref_primary_10_1002_adfm_202005677 crossref_primary_10_1080_15980316_2024_2312942 crossref_primary_10_1016_j_mssp_2022_106911 crossref_primary_10_1007_s11426_023_1769_y crossref_primary_10_1021_acsanm_0c00221 crossref_primary_10_1016_j_cplett_2022_139597 crossref_primary_10_1016_j_jcrysgro_2015_12_051 crossref_primary_10_1016_j_nanoen_2020_104463 crossref_primary_10_1016_j_pquantelec_2015_11_001 |
Cites_doi | 10.1021/nn700320y 10.1021/nl2006802 10.1021/nl0707398 10.1038/nmat1177 10.1002/adma.200306673 10.1016/S0022-0248(00)00526-1 10.1002/adma.201102407 10.1021/ja993713u 10.1146/annurev-matsci-071312-121659 10.1063/1.1868059 10.1021/cr00017a016 10.1126/science.1195403 10.1021/jp901011u 10.1088/1367-2630/11/12/125021 10.1021/ja0518777 10.1021/nl060553t 10.1063/1.2243710 10.1038/nnano.2010.132 10.1063/1.1753975 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7QQ 7SR 7U5 8FD JG9 L7M ACYCR |
DOI | 10.1016/j.cap.2014.08.007 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 |
EndPage | 1442 |
ExternalDocumentID | oai_kci_go_kr_ARTI_102573 10_1016_j_cap_2014_08_007 S156717391400248X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QQ 7SR 7U5 8FD EFKBS JG9 L7M ABPIF ABPTK ACYCR |
ID | FETCH-LOGICAL-c429t-b4e62f194701a4be602b5dce4dd9e2da85f117076dab5f73399efdb97aed23333 |
IEDL.DBID | .~1 |
ISSN | 1567-1739 |
IngestDate | Fri Nov 17 19:18:08 EST 2023 Thu Sep 04 18:23:33 EDT 2025 Tue Jul 01 01:06:03 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Fri Feb 23 02:29:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Nanowire GaN Graphene Photocatalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-b4e62f194701a4be602b5dce4dd9e2da85f117076dab5f73399efdb97aed23333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 G704-001115.2014.14.11.027 |
PQID | 1651396519 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_102573 proquest_miscellaneous_1651396519 crossref_citationtrail_10_1016_j_cap_2014_08_007 crossref_primary_10_1016_j_cap_2014_08_007 elsevier_sciencedirect_doi_10_1016_j_cap_2014_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Current applied physics |
PublicationYear | 2014 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Duan, Lieber (bib5) 2000; 122 Xu, Wang, Harrison, Bell, Ansell, Winser, Cheng, Foxon, Kawabe (bib17) 2000; 217 Kuykendall, Pauzauskie, Zhang, Goldberger, Sirbuly, Denlinger, Yang (bib9) 2004; 3 Lee, Kim, Hong, Jeon, Bae, Hong, Yi (bib12) 2011; 23 Chung, Lee, Yi (bib13) 2010; 330 Hong, Jeon, Kim, Jeon, Park, Yi (bib15) 2009; 11 Hyun, Zhang, Lauhon (bib1) 2013; 43 Reshchikov, Morkoc (bib16) 2005; 97 Kim, Lee, Yi (bib14) 2009; 95 Bae, Bin Han, Zhang, Wei, Duan, Zhang, Wang (bib18) 2009; 113 Yoo, Hong, An, Yi, Chon, Joo, Kim, Lee (bib10) 2006; 89 Yang, An, Park, Yi, Choi (bib2) 2004; 16 Fox, Dulay (bib20) 1993; 93 Maeda, Takata, Hara, Saito, Inoue, Kobayashi, Domen (bib19) 2005; 127 Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song, Kim, Kim, Ozyilmaz, Ahn, Hong, Iijima (bib11) 2010; 5 Jung, Hong, Li, Cho, Kim, Yi (bib4) 2008; 2 Wagner, Ellis (bib3) 1964; 4 Calarco, Meijers, Debnath, Stoica, Sutter, Luth (bib7) 2007; 7 Hersee, Sun, Wang (bib8) 2006; 6 Wang, Pierre, Kibria, Cui, Han, Bevan, Guo, Paradis, Hakima, Mi (bib6) 2011; 11 Wang (10.1016/j.cap.2014.08.007_bib6) 2011; 11 Calarco (10.1016/j.cap.2014.08.007_bib7) 2007; 7 Reshchikov (10.1016/j.cap.2014.08.007_bib16) 2005; 97 Bae (10.1016/j.cap.2014.08.007_bib18) 2009; 113 Chung (10.1016/j.cap.2014.08.007_bib13) 2010; 330 Jung (10.1016/j.cap.2014.08.007_bib4) 2008; 2 Hersee (10.1016/j.cap.2014.08.007_bib8) 2006; 6 Fox (10.1016/j.cap.2014.08.007_bib20) 1993; 93 Kuykendall (10.1016/j.cap.2014.08.007_bib9) 2004; 3 Lee (10.1016/j.cap.2014.08.007_bib12) 2011; 23 Yang (10.1016/j.cap.2014.08.007_bib2) 2004; 16 Hyun (10.1016/j.cap.2014.08.007_bib1) 2013; 43 Duan (10.1016/j.cap.2014.08.007_bib5) 2000; 122 Kim (10.1016/j.cap.2014.08.007_bib14) 2009; 95 Xu (10.1016/j.cap.2014.08.007_bib17) 2000; 217 Wagner (10.1016/j.cap.2014.08.007_bib3) 1964; 4 Bae (10.1016/j.cap.2014.08.007_bib11) 2010; 5 Hong (10.1016/j.cap.2014.08.007_bib15) 2009; 11 Yoo (10.1016/j.cap.2014.08.007_bib10) 2006; 89 Maeda (10.1016/j.cap.2014.08.007_bib19) 2005; 127 |
References_xml | – volume: 89 start-page: 3124 year: 2006 ident: bib10 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 125021 year: 2009 ident: bib15 publication-title: New. J. Phys. – volume: 93 start-page: 341 year: 1993 ident: bib20 publication-title: Chem. Rev. – volume: 11 start-page: 2353 year: 2011 ident: bib6 publication-title: Nano Lett. – volume: 95 start-page: 3101 year: 2009 ident: bib14 publication-title: Appl. Phys. Lett. – volume: 330 start-page: 655 year: 2010 ident: bib13 publication-title: Science – volume: 3 start-page: 524 year: 2004 ident: bib9 publication-title: Nat. Mater. – volume: 122 start-page: 188 year: 2000 ident: bib5 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 574 year: 2010 ident: bib11 publication-title: Nat. Nanotechnol. – volume: 217 start-page: 228 year: 2000 ident: bib17 publication-title: J. Cryst. Growth – volume: 43 start-page: 451 year: 2013 ident: bib1 publication-title: Annu. Rev. Mater. Res. – volume: 4 start-page: 89 year: 1964 ident: bib3 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 1661 year: 2004 ident: bib2 publication-title: Adv. Mater. – volume: 113 start-page: 10379 year: 2009 ident: bib18 publication-title: J. Phys. Chem. C – volume: 127 start-page: 8286 year: 2005 ident: bib19 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2248 year: 2007 ident: bib7 publication-title: Nano Lett. – volume: 6 start-page: 1808 year: 2006 ident: bib8 publication-title: Nano Lett. – volume: 97 start-page: 061301 year: 2005 ident: bib16 publication-title: J. Appl. Phys. – volume: 23 start-page: 4614 year: 2011 ident: bib12 publication-title: Adv. Mater. – volume: 2 start-page: 637 year: 2008 ident: bib4 publication-title: ACS Nano – volume: 2 start-page: 637 issue: 4 year: 2008 ident: 10.1016/j.cap.2014.08.007_bib4 publication-title: ACS Nano doi: 10.1021/nn700320y – volume: 11 start-page: 2353 issue: 6 year: 2011 ident: 10.1016/j.cap.2014.08.007_bib6 publication-title: Nano Lett. doi: 10.1021/nl2006802 – volume: 7 start-page: 2248 issue: 8 year: 2007 ident: 10.1016/j.cap.2014.08.007_bib7 publication-title: Nano Lett. doi: 10.1021/nl0707398 – volume: 3 start-page: 524 issue: 8 year: 2004 ident: 10.1016/j.cap.2014.08.007_bib9 publication-title: Nat. Mater. doi: 10.1038/nmat1177 – volume: 16 start-page: 1661 issue: 18 year: 2004 ident: 10.1016/j.cap.2014.08.007_bib2 publication-title: Adv. Mater. doi: 10.1002/adma.200306673 – volume: 217 start-page: 228 issue: 3 year: 2000 ident: 10.1016/j.cap.2014.08.007_bib17 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(00)00526-1 – volume: 23 start-page: 4614 issue: 40 year: 2011 ident: 10.1016/j.cap.2014.08.007_bib12 publication-title: Adv. Mater. doi: 10.1002/adma.201102407 – volume: 122 start-page: 188 issue: 1 year: 2000 ident: 10.1016/j.cap.2014.08.007_bib5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993713u – volume: 43 start-page: 451 year: 2013 ident: 10.1016/j.cap.2014.08.007_bib1 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-071312-121659 – volume: 97 start-page: 061301 issue: 6 year: 2005 ident: 10.1016/j.cap.2014.08.007_bib16 publication-title: J. Appl. Phys. doi: 10.1063/1.1868059 – volume: 93 start-page: 341 issue: 1 year: 1993 ident: 10.1016/j.cap.2014.08.007_bib20 publication-title: Chem. Rev. doi: 10.1021/cr00017a016 – volume: 330 start-page: 655 issue: 6004 year: 2010 ident: 10.1016/j.cap.2014.08.007_bib13 publication-title: Science doi: 10.1126/science.1195403 – volume: 113 start-page: 10379 issue: 24 year: 2009 ident: 10.1016/j.cap.2014.08.007_bib18 publication-title: J. Phys. Chem. C doi: 10.1021/jp901011u – volume: 95 start-page: 3101 issue: 21 year: 2009 ident: 10.1016/j.cap.2014.08.007_bib14 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 125021 year: 2009 ident: 10.1016/j.cap.2014.08.007_bib15 publication-title: New. J. Phys. doi: 10.1088/1367-2630/11/12/125021 – volume: 127 start-page: 8286 issue: 23 year: 2005 ident: 10.1016/j.cap.2014.08.007_bib19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0518777 – volume: 6 start-page: 1808 issue: 8 year: 2006 ident: 10.1016/j.cap.2014.08.007_bib8 publication-title: Nano Lett. doi: 10.1021/nl060553t – volume: 89 start-page: 3124 issue: 4 year: 2006 ident: 10.1016/j.cap.2014.08.007_bib10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2243710 – volume: 5 start-page: 574 issue: 8 year: 2010 ident: 10.1016/j.cap.2014.08.007_bib11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 4 start-page: 89 issue: 5 year: 1964 ident: 10.1016/j.cap.2014.08.007_bib3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1753975 |
SSID | ssj0016404 |
Score | 2.2598662 |
Snippet | We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method.... |
SourceID | nrf proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1437 |
SubjectTerms | Catalysts Foils Gallium nitrides GaN Graphene Nanostructure Nanowire Nanowires Nickel Photocatalysis Photocatalyst 물리학 |
Title | Metal catalyst-assisted growth of GaN nanowires on graphene films for flexible photocatalyst applications |
URI | https://dx.doi.org/10.1016/j.cap.2014.08.007 https://www.proquest.com/docview/1651396519 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001928397 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2014, 14(11), , pp.1437-1442 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4qBIXBLSIt4zEqZK7ieMkmyNCwNKKvQDS3iw_IbAkq004cOG3M-NNUKtWHJpDokR2Eo2dmW8y428IOXFDY1MvIqa84UwobhmAWM5conVsrOde4-Lk63E2uhM_J-lkiZz1a2EwrbLT_QudHrR1d2XQSXMwK8vBDXgeGEIuwEVAYq4JrmAXOfLn_3j7SPMAbyCUEMTGDFv3kc2Q42UUUlbGIrB4YkXZf9um5Wru_9LVwQBdbJD1DjnS08XLbZIlV22RLyGD0zRfSXntAEfT8DvmtWkZgGIcQUvvwdFuH2jt6aUa00pVNdITN7SuaGCrBmVHfTl9bijgV-qRIFNPHZ091G3d343-Huf-Ru4uzm_PRqyro8AMWJuWaeEy7uNC5FGshHZZxHVqjRPWFo5bNUw91p_JM6t06vMEMIvzVhe5cpYnsG2Tlaqu3A6hmU2SyLm8AFQhLLda26HgXHObA7RJ0l0S9RKUpiMZx1oXU9lnkz1KELpEoUusfxnlu-T7R5fZgmHjs8aiHxb5xzSRYAE-63YMQyifTCmRThuP97V8mktwGq6gD-itBNr0AyzhE8O4iapc_dLIOEsBJ8Ou2Pu_x--TNTxbLGE8ICvt_MUdApZp9VGYrEdk9fTq12j8DoXS9Ls |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF45qarmEvWpOknbrdRTpa1hWcAcI6up08a-NJF8W-0zoXbAMuSQS357ZtYQtWqVQzmABLOAZpeZb9jZbwj55MbGpl5ETHnDmVDcMgCxnLlE69hYz73GxcmzeTa9EN8X6WJAJv1aGEyr7Gz_1qYHa92dGXXaHK3LcvQTIg-cQi4gREBirsUOeSLSJMeh_eXuIc8DwoFQQxClGYr3U5shycso5KyMRaDxxJKy_3ZOO9XG_2Wsgwc6eU72O-hIj7dv94IMXPWSPA0pnKZ5RcqZAyBNw_-Y26ZlgIqxCy29hEi7vaK1p9_UnFaqqpGfuKF1RQNdNVg76svVdUMBwFKPDJl65ej6qm7r_m7094nu1-Ti5Ov5ZMq6QgrMgLtpmRYu4z4uRB7FSmiXRVyn1jhhbeG4VePUYwGaPLNKpz5PALQ4b3WRK2d5AtsbslvVlXtLaGaTJHIuLwBWCMut1nYsONfc5oBtknRIol6D0nQs41jsYiX7dLJfEpQuUekSC2BG-ZB8fmiy3lJsPCYs-m6Rf4wTCS7gsWYfoQvl0pQS-bTxeFnL5UZC1HAKbcBwJSDTd7CEbwwnTlTl6ptGxlkKQBl2xcH_Pf4DeTY9n53Js9P5j0Oyh1e26xmPyG67uXHvANi0-n0YuPczZPZR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+catalyst-assisted+growth+of+GaN+nanowires+on+graphene+films+for+flexible+photocatalyst+applications&rft.jtitle=Current+applied+physics&rft.au=Park%2C+Jun+Beom&rft.au=Kim%2C+Nam-Jung&rft.au=Kim%2C+Yong-Jin&rft.au=Lee%2C+Sang-Hyup&rft.date=2014-11-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=14&rft.issue=11&rft.spage=1437&rft.epage=1442&rft_id=info:doi/10.1016%2Fj.cap.2014.08.007&rft.externalDocID=S156717391400248X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |