Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds

Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular...

Full description

Saved in:
Bibliographic Details
Published innpj quantum information Vol. 8; no. 1; pp. 1 - 6
Main Authors Wang, Chenlu, Li, Xuegang, Xu, Huikai, Li, Zhiyuan, Wang, Junhua, Yang, Zhen, Mi, Zhenyu, Liang, Xuehui, Su, Tang, Yang, Chuhong, Wang, Guangyue, Wang, Wenyan, Li, Yongchao, Chen, Mo, Li, Chengyao, Linghu, Kehuan, Han, Jiaxiu, Zhang, Yingshan, Feng, Yulong, Song, Yu, Ma, Teng, Zhang, Jingning, Wang, Ruixia, Zhao, Peng, Liu, Weiyang, Xue, Guangming, Jin, Yirong, Yu, Haifeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.01.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.
AbstractList Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.
Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.
Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.
ArticleNumber 3
Author Yu, Haifeng
Ma, Teng
Su, Tang
Linghu, Kehuan
Liu, Weiyang
Wang, Junhua
Zhang, Jingning
Yang, Zhen
Chen, Mo
Wang, Chenlu
Li, Chengyao
Zhang, Yingshan
Liang, Xuehui
Mi, Zhenyu
Xue, Guangming
Li, Zhiyuan
Feng, Yulong
Wang, Guangyue
Yang, Chuhong
Wang, Ruixia
Han, Jiaxiu
Wang, Wenyan
Song, Yu
Li, Yongchao
Li, Xuegang
Jin, Yirong
Xu, Huikai
Zhao, Peng
Author_xml – sequence: 1
  givenname: Chenlu
  surname: Wang
  fullname: Wang, Chenlu
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 2
  givenname: Xuegang
  surname: Li
  fullname: Li, Xuegang
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 3
  givenname: Huikai
  surname: Xu
  fullname: Xu, Huikai
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 4
  givenname: Zhiyuan
  surname: Li
  fullname: Li, Zhiyuan
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 5
  givenname: Junhua
  surname: Wang
  fullname: Wang, Junhua
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 6
  givenname: Zhen
  surname: Yang
  fullname: Yang, Zhen
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 7
  givenname: Zhenyu
  surname: Mi
  fullname: Mi, Zhenyu
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 8
  givenname: Xuehui
  surname: Liang
  fullname: Liang, Xuehui
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 9
  givenname: Tang
  surname: Su
  fullname: Su, Tang
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 10
  givenname: Chuhong
  surname: Yang
  fullname: Yang, Chuhong
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 11
  givenname: Guangyue
  surname: Wang
  fullname: Wang, Guangyue
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 12
  givenname: Wenyan
  surname: Wang
  fullname: Wang, Wenyan
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 13
  givenname: Yongchao
  surname: Li
  fullname: Li, Yongchao
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 14
  givenname: Mo
  surname: Chen
  fullname: Chen, Mo
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 15
  givenname: Chengyao
  surname: Li
  fullname: Li, Chengyao
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 16
  givenname: Kehuan
  surname: Linghu
  fullname: Linghu, Kehuan
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 17
  givenname: Jiaxiu
  surname: Han
  fullname: Han, Jiaxiu
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 18
  givenname: Yingshan
  surname: Zhang
  fullname: Zhang, Yingshan
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 19
  givenname: Yulong
  surname: Feng
  fullname: Feng, Yulong
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 20
  givenname: Yu
  surname: Song
  fullname: Song, Yu
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 21
  givenname: Teng
  surname: Ma
  fullname: Ma, Teng
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 22
  givenname: Jingning
  orcidid: 0000-0003-3712-5774
  surname: Zhang
  fullname: Zhang, Jingning
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 23
  givenname: Ruixia
  surname: Wang
  fullname: Wang, Ruixia
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 24
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 25
  givenname: Weiyang
  orcidid: 0000-0003-2281-6054
  surname: Liu
  fullname: Liu, Weiyang
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 26
  givenname: Guangming
  surname: Xue
  fullname: Xue, Guangming
  email: xuegm@baqis.ac.cn
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 27
  givenname: Yirong
  surname: Jin
  fullname: Jin, Yirong
  email: jinyr@baqis.ac.cn
  organization: Beijing Academy of Quantum Information Sciences
– sequence: 28
  givenname: Haifeng
  surname: Yu
  fullname: Yu, Haifeng
  email: hfyu@baqis.ac.cn
  organization: Beijing Academy of Quantum Information Sciences
BookMark eNp9Uc1u1jAQtFCRKKUvwMkS55T1T5yEG6qgVKrEpZzNxna--lNip7ajirfHNAiqHnpaa3dnZsfzlpyEGBwh7xlcMBD9xyxZK2QDnDUALYOGvyKnHFrVKNF3J0_eb8h5zkcAYAPvuWSn5OdtfMBkM10TmuINzvR-w1C2hZq4rFtxKX-iJWHISwx1NvpCH3y5o0hnP7niF0dxXVNEc-fDgcJFSxc_zz47E4PN78jrCefszv_WM_Lj65fby2_Nzfer68vPN42RfCjNCFM3cmVbpgR0DMdOil4Ky7gVTnHeTgYnNFIZUGCUqgbMKBlwKZgdJyHOyPXOayMe9Zr8gumXjuj1YyOmg8ZUDc5O94PsmUE58FZK4AaVQmtVJ3ucJlC2cn3Yuaqt-83loo9xS6Ger3lVFkINqqtbfN8yKeac3PRPlYH-E4zeg9E1GP0YjOYV1D8DGV-w-BjqH_v5ZajYobnqhINL_696AfUbiMujeg
CitedBy_id crossref_primary_10_1103_PhysRevApplied_21_014043
crossref_primary_10_1103_PRXQuantum_6_010308
crossref_primary_10_1103_PhysRevB_105_224309
crossref_primary_10_1007_s11467_022_1249_z
crossref_primary_10_1088_0256_307X_40_11_110303
crossref_primary_10_1088_1674_1056_ac89e7
crossref_primary_10_1109_MNANO_2024_3475889
crossref_primary_10_1088_2633_4356_ad4b8c
crossref_primary_10_1038_s41534_024_00868_z
crossref_primary_10_1088_1674_1056_ad73b6
crossref_primary_10_1109_JMMCT_2024_3439531
crossref_primary_10_1088_2058_9565_ac6a04
crossref_primary_10_1038_s41534_022_00644_x
crossref_primary_10_1103_PhysRevApplied_20_024011
crossref_primary_10_1063_5_0230767
crossref_primary_10_1063_5_0170259
crossref_primary_10_1103_PRXQuantum_3_030307
crossref_primary_10_35848_1347_4065_acfde6
crossref_primary_10_1063_5_0128964
crossref_primary_10_1063_5_0169391
crossref_primary_10_1126_sciadv_adr0875
crossref_primary_10_1103_PhysRevApplied_18_064092
crossref_primary_10_1016_j_jallcom_2024_176700
crossref_primary_10_1103_PhysRevResearch_6_033001
crossref_primary_10_1103_PhysRevA_109_022442
crossref_primary_10_1016_j_cjph_2025_01_040
crossref_primary_10_1038_s41928_023_01033_8
crossref_primary_10_1103_PhysRevB_111_064503
crossref_primary_10_1103_PhysRevResearch_6_033215
crossref_primary_10_1116_6_0003368
crossref_primary_10_1038_s41598_023_39052_2
crossref_primary_10_1038_s41586_024_07294_3
crossref_primary_10_1063_5_0156618
crossref_primary_10_1103_PhysRevApplied_19_064024
crossref_primary_10_1016_j_physc_2025_1354652
crossref_primary_10_1103_PhysRevB_107_195441
crossref_primary_10_1103_PhysRevResearch_4_043054
crossref_primary_10_1016_j_aej_2023_09_073
crossref_primary_10_3390_inorganics11030117
crossref_primary_10_1088_0256_307X_40_7_070304
crossref_primary_10_1038_s41534_025_00972_8
crossref_primary_10_1088_1748_0221_19_09_P09001
crossref_primary_10_1109_TQE_2022_3209881
crossref_primary_10_1038_s41598_023_39420_y
crossref_primary_10_1063_5_0124821
crossref_primary_10_1063_5_0161893
crossref_primary_10_1063_5_0249115
crossref_primary_10_1103_PhysRevApplied_20_044054
crossref_primary_10_1063_5_0157654
crossref_primary_10_1103_PhysRevResearch_4_043127
crossref_primary_10_1103_PhysRevA_109_012601
crossref_primary_10_1103_PhysRevA_107_032616
crossref_primary_10_1088_2058_9565_acb2f2
crossref_primary_10_1103_PhysRevX_13_021028
crossref_primary_10_1103_PhysRevApplied_19_044031
crossref_primary_10_1103_PRXQuantum_5_040318
crossref_primary_10_1103_PhysRevA_107_042428
crossref_primary_10_1007_s11141_024_10341_8
crossref_primary_10_1103_PhysRevResearch_5_013148
crossref_primary_10_1103_PRXQuantum_4_040319
crossref_primary_10_1038_s41467_022_34614_w
crossref_primary_10_1103_PhysRevA_105_062436
crossref_primary_10_1103_PhysRevApplied_18_034063
crossref_primary_10_1007_s10909_023_02978_y
crossref_primary_10_1021_acsnano_3c10740
crossref_primary_10_1103_PhysRevApplied_19_024013
crossref_primary_10_1109_MWC_001_2300288
crossref_primary_10_1109_TED_2024_3496433
crossref_primary_10_1103_PhysRevApplied_20_054033
crossref_primary_10_1103_PRXQuantum_5_040307
crossref_primary_10_1109_TASC_2024_3513276
crossref_primary_10_1103_PhysRevApplied_22_034007
crossref_primary_10_3390_e24070952
crossref_primary_10_1007_s41745_022_00330_z
crossref_primary_10_1103_PhysRevApplied_19_034011
crossref_primary_10_1103_PhysRevApplied_23_014062
crossref_primary_10_1063_5_0155213
crossref_primary_10_1103_PhysRevResearch_6_013329
crossref_primary_10_1038_s41534_025_00967_5
crossref_primary_10_1103_PhysRevB_110_104416
crossref_primary_10_1103_PhysRevB_110_035157
crossref_primary_10_1088_1674_1056_ad02e7
crossref_primary_10_1126_sciadv_ado9094
crossref_primary_10_1103_PhysRevLett_134_097001
crossref_primary_10_1038_s41598_022_14973_6
crossref_primary_10_1007_s11128_023_04096_w
crossref_primary_10_1021_acsnano_4c05251
crossref_primary_10_3389_fmats_2024_1343005
crossref_primary_10_1103_PhysRevApplied_20_044021
crossref_primary_10_1002_pssr_202300478
crossref_primary_10_1116_6_0002886
crossref_primary_10_3390_app14041478
crossref_primary_10_1063_5_0165137
crossref_primary_10_1109_TASC_2024_3350595
crossref_primary_10_1038_s41534_024_00863_4
crossref_primary_10_1063_5_0250428
crossref_primary_10_1103_PhysRevApplied_18_034038
crossref_primary_10_1109_TASC_2025_3534184
crossref_primary_10_1186_s43088_024_00489_7
crossref_primary_10_1103_PhysRevLett_131_211001
crossref_primary_10_1088_1402_4896_acb32f
crossref_primary_10_1088_1674_1056_ad6a3c
crossref_primary_10_1002_adma_202411780
crossref_primary_10_1103_PhysRevA_106_052420
crossref_primary_10_1038_s41567_023_02247_5
crossref_primary_10_1063_5_0182642
crossref_primary_10_1088_2633_4356_ac78ba
crossref_primary_10_1007_s10773_023_05366_0
crossref_primary_10_1063_5_0218021
crossref_primary_10_1103_PhysRevA_105_063724
crossref_primary_10_1103_PhysRevLett_132_250204
crossref_primary_10_1088_1361_6463_acf7cf
crossref_primary_10_1002_adma_202310280
crossref_primary_10_1380_vss_68_137
crossref_primary_10_1038_s41598_024_65520_4
crossref_primary_10_1103_PhysRevApplied_19_044001
crossref_primary_10_1116_6_0002586
crossref_primary_10_1016_j_knosys_2024_111480
crossref_primary_10_1103_PhysRevA_108_052417
crossref_primary_10_1103_PhysRevD_111_063047
crossref_primary_10_1038_s41534_024_00840_x
crossref_primary_10_1103_PhysRevX_14_041056
crossref_primary_10_1103_PhysRevApplied_22_014060
crossref_primary_10_1103_PhysRevApplied_22_014063
crossref_primary_10_1103_PhysRevResearch_4_023054
crossref_primary_10_1038_s41467_025_56503_8
crossref_primary_10_1103_PRXQuantum_4_030336
crossref_primary_10_1038_s41467_023_39785_8
crossref_primary_10_1103_PhysRevX_14_041050
crossref_primary_10_1109_ACCESS_2024_3367109
crossref_primary_10_1038_s41467_022_34727_2
crossref_primary_10_1038_s41567_022_01613_z
crossref_primary_10_1088_1361_6668_acc214
crossref_primary_10_1103_PhysRevA_111_032609
crossref_primary_10_1145_3674151
crossref_primary_10_3390_condmat8010029
crossref_primary_10_1103_PRXQuantum_5_020326
crossref_primary_10_1109_TASC_2024_3419905
crossref_primary_10_1063_5_0189377
crossref_primary_10_1109_TASC_2023_3247987
crossref_primary_10_1103_PhysRevResearch_6_023026
crossref_primary_10_1103_PhysRevA_110_062607
crossref_primary_10_1007_s11467_023_1357_4
crossref_primary_10_1063_5_0102092
crossref_primary_10_1103_PhysRevApplied_20_014034
crossref_primary_10_1088_0256_307X_41_7_070302
crossref_primary_10_1038_s41467_024_48230_3
crossref_primary_10_1063_5_0245710
crossref_primary_10_1103_PhysRevA_108_032615
crossref_primary_10_1109_LED_2024_3453174
crossref_primary_10_1016_j_chip_2023_100067
crossref_primary_10_1063_5_0216711
crossref_primary_10_3103_S1068335623602273
crossref_primary_10_1116_5_0137078
crossref_primary_10_1063_5_0227281
crossref_primary_10_1103_PhysRevA_108_042427
crossref_primary_10_1103_PhysRevApplied_23_034013
crossref_primary_10_1038_s41467_023_39656_2
crossref_primary_10_1007_s00500_022_06961_9
crossref_primary_10_1063_5_0217493
crossref_primary_10_1021_acs_jpclett_3c00850
crossref_primary_10_1103_PhysRevX_15_011070
crossref_primary_10_1038_s41567_024_02740_5
crossref_primary_10_1038_s43246_024_00659_1
crossref_primary_10_1038_s41586_023_05784_4
crossref_primary_10_3390_app13020817
crossref_primary_10_1038_s41586_024_07941_9
crossref_primary_10_1103_PhysRevApplied_18_L061001
crossref_primary_10_1103_PRXQuantum_5_020312
crossref_primary_10_1038_s41534_023_00781_x
crossref_primary_10_1103_PhysRevA_111_032614
crossref_primary_10_1103_PhysRevApplied_18_044026
crossref_primary_10_3390_earth5030027
crossref_primary_10_1103_PhysRevApplied_23_034025
crossref_primary_10_1103_PhysRevApplied_21_034027
crossref_primary_10_1038_s41534_024_00860_7
crossref_primary_10_1103_PhysRevApplied_21_044035
crossref_primary_10_1088_1361_6668_acdafe
crossref_primary_10_1103_PRXQuantum_3_040338
crossref_primary_10_1109_TASC_2023_3244142
crossref_primary_10_1038_s41598_024_57248_y
crossref_primary_10_1063_5_0230436
crossref_primary_10_1088_1361_6668_ad10b6
crossref_primary_10_3390_e24060792
crossref_primary_10_1103_PhysRevResearch_6_023064
crossref_primary_10_1103_PhysRevApplied_23_034036
crossref_primary_10_1103_PhysRevApplied_21_044030
crossref_primary_10_1103_PhysRevB_109_014315
crossref_primary_10_1109_TCSI_2023_3274599
crossref_primary_10_1103_PhysRevA_110_052607
crossref_primary_10_1103_PhysRevApplied_23_024017
crossref_primary_10_1038_s41534_022_00600_9
crossref_primary_10_1103_PhysRevA_107_052609
crossref_primary_10_1103_PhysRevD_110_115021
crossref_primary_10_1063_5_0191234
crossref_primary_10_1038_s41467_024_47857_6
crossref_primary_10_1103_PhysRevD_110_115020
crossref_primary_10_1002_advs_202413058
crossref_primary_10_1088_2058_9565_adbded
crossref_primary_10_1103_PhysRevX_13_041005
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_1103_PhysRevApplied_20_034065
crossref_primary_10_1103_PhysRevA_105_062605
crossref_primary_10_1103_PhysRevApplied_23_034046
crossref_primary_10_1007_s11128_024_04425_7
crossref_primary_10_1063_5_0169339
crossref_primary_10_1116_6_0003459
Cites_doi 10.1103/PhysRevApplied.5.044004
10.1103/PhysRevB.75.140515
10.1038/nature23879
10.1038/s41586-020-2619-8
10.1103/PhysRevB.71.161401
10.1146/annurev-conmatphys-031119-050605
10.1038/ncomms12964
10.1038/s41467-021-22030-5
10.1063/1.4813269
10.1126/science.abb9811
10.1038/s43246-021-00204-4
10.1103/PhysRevLett.121.090502
10.1038/s41586-019-1666-5
10.1103/PhysRevA.76.042319
10.1109/TASC.2016.2629670
10.1103/PhysRevLett.111.080502
10.1103/PhysRevApplied.16.014018
10.1109/TASC.2012.2235508
10.1063/5.0068255
10.1038/nature13171
10.1038/nphys1994
10.1126/science.1175552
10.1088/0953-2048/29/4/044001
10.1063/1.1663849
10.1088/1361-6633/ab3a7e
10.1038/s43246-021-00174-7
10.1103/PhysRevLett.107.240501
10.1109/IEDM19573.2019.8993458
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1038/s41534-021-00510-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 2056-6387
EndPage 6
ExternalDocumentID oai_doaj_org_article_89481ca49254402ca66add6748aff06d
10_1038_s41534_021_00510_2
GrantInformation_xml – fundername: NSF of Beijing (Grant No. Z190012)
– fundername: NSF of Beijing (Grant No. Z190012), the NSFC of China (Grant No. 11890704, 12004042), National Key Research and Development Program of China (Grant No. 2016YFA0301800), Key-Area Research and Development Program of Guang Dong Province (Grant No. 2018B030326001).
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AAFWJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c429t-b0f7b26d5163071ab743843d12d3e6225fcafac46c060c66192cb4102431dbf33
IEDL.DBID C6C
ISSN 2056-6387
IngestDate Wed Aug 27 01:31:06 EDT 2025
Wed Aug 13 11:26:49 EDT 2025
Tue Jul 01 01:32:55 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Fri Feb 21 02:39:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-b0f7b26d5163071ab743843d12d3e6225fcafac46c060c66192cb4102431dbf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2281-6054
0000-0003-3712-5774
OpenAccessLink https://www.nature.com/articles/s41534-021-00510-2
PQID 2619336967
PQPubID 2041919
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_89481ca49254402ca66add6748aff06d
proquest_journals_2619336967
crossref_primary_10_1038_s41534_021_00510_2
crossref_citationtrail_10_1038_s41534_021_00510_2
springer_journals_10_1038_s41534_021_00510_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-13
PublicationDateYYYYMMDD 2022-01-13
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj quantum information
PublicationTitleAbbrev npj Quantum Inf
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gambetta (CR11) 2017; 27
Jia (CR24) 2012; 23
Barends (CR7) 2013; 111
You, Hu, Ashhab, Nori (CR9) 2007; 75
CR12
Barends (CR5) 2014; 508
Dial (CR22) 2016; 29
Bylander (CR21) 2011; 7
Arute (CR1) 2019; 574
Place (CR14) 2021; 12
Müller, Cole, Lisenfeld (CR28) 2019; 82
Premkumar (CR26) 2021; 2
Kandala (CR3) 2017; 549
Paik (CR13) 2011; 107
Kjaergaard (CR4) 2020; 11
Manucharyan, Koch, Glazman, Devoret (CR8) 2009; 326
Yan (CR10) 2016; 7
Vepsäläinen (CR20) 2020; 584
Tan, Mather, Perrella, Read, Buhrman (CR27) 2005; 71
Lindau, Spicer (CR23) 1974; 45
Arute (CR2) 2020; 369
Chang (CR15) 2013; 103
Winkel (CR18) 2020; 10
Kim (CR16) 2021; 2
Klimov (CR19) 2018; 121
Koch (CR6) 2007; 76
Li (CR29) 2021; 119
Samkharadze (CR17) 2016; 5
Verjauw (CR25) 2021; 16
PV Klimov (510_CR19) 2018; 121
J Bylander (510_CR21) 2011; 7
AP Vepsäläinen (510_CR20) 2020; 584
F Arute (510_CR2) 2020; 369
APM Place (510_CR14) 2021; 12
E Tan (510_CR27) 2005; 71
J Verjauw (510_CR25) 2021; 16
F Arute (510_CR1) 2019; 574
R Barends (510_CR5) 2014; 508
A Kandala (510_CR3) 2017; 549
N Samkharadze (510_CR17) 2016; 5
C Müller (510_CR28) 2019; 82
J Chang (510_CR15) 2013; 103
H Paik (510_CR13) 2011; 107
JM Gambetta (510_CR11) 2017; 27
X Li (510_CR29) 2021; 119
510_CR12
F Yan (510_CR10) 2016; 7
M Kjaergaard (510_CR4) 2020; 11
A Premkumar (510_CR26) 2021; 2
I Lindau (510_CR23) 1974; 45
R Barends (510_CR7) 2013; 111
J Koch (510_CR6) 2007; 76
VE Manucharyan (510_CR8) 2009; 326
O Dial (510_CR22) 2016; 29
JQ You (510_CR9) 2007; 75
P Winkel (510_CR18) 2020; 10
XQ Jia (510_CR24) 2012; 23
S Kim (510_CR16) 2021; 2
References_xml – volume: 10
  start-page: 031032
  year: 2020
  ident: CR18
  article-title: Implementation of a transmon qubit using superconducting granular aluminum
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 044004
  year: 2016
  ident: CR17
  article-title: High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.044004
– volume: 75
  start-page: 140515(R)
  year: 2007
  ident: CR9
  article-title: Low-decoherence flux qubit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.140515
– ident: CR12
– volume: 549
  start-page: 242
  year: 2017
  end-page: 246
  ident: CR3
  article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 584
  start-page: 551
  year: 2020
  end-page: 556
  ident: CR20
  article-title: Impact of ionizing radiation on superconducting qubit coherence
  publication-title: Nature
  doi: 10.1038/s41586-020-2619-8
– volume: 71
  start-page: 161401(R)
  year: 2005
  ident: CR27
  article-title: Oxygen stoichiometry and instability in aluminum oxide tunnel barrier layers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.161401
– volume: 11
  start-page: 369
  year: 2020
  end-page: 395
  ident: CR4
  article-title: Superconducting qubits: current state of play
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031119-050605
– volume: 7
  year: 2016
  ident: CR10
  article-title: The flux qubit revisited to enhance coherence and reproducibility
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12964
– volume: 12
  year: 2021
  ident: CR14
  article-title: New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22030-5
– volume: 103
  start-page: 012602
  year: 2013
  ident: CR15
  article-title: Improved superconducting qubit coherence using titanium nitride
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4813269
– volume: 369
  start-page: 1084
  year: 2020
  end-page: 1089
  ident: CR2
  article-title: Hartree-Fock on a superconducting qubit quantum computer
  publication-title: Science
  doi: 10.1126/science.abb9811
– volume: 2
  start-page: 98
  year: 2021
  ident: CR16
  article-title: Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00204-4
– volume: 121
  start-page: 090502
  year: 2018
  ident: CR19
  article-title: Fluctuations of energy-relaxation times in superconducting qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.090502
– volume: 574
  start-page: 505
  year: 2019
  end-page: 510
  ident: CR1
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 76
  start-page: 042319
  year: 2007
  ident: CR6
  article-title: Charge-insensitive qubit design derived from the Cooper pair box
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.042319
– volume: 27
  start-page: 1700205
  year: 2017
  ident: CR11
  article-title: Investigating surface loss effects in superconducting transmon qubits
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2016.2629670
– volume: 111
  start-page: 080502
  year: 2013
  ident: CR7
  article-title: Coherent Josephson qubit suitable for scalable quantum integrated circuits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.080502
– volume: 16
  start-page: 014018
  year: 2021
  ident: CR25
  article-title: Investigation of microwave loss induced by oxide regrowth in high- Nb resonators
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.014018
– volume: 23
  start-page: 2300704
  year: 2012
  ident: CR24
  article-title: High performance ultra-thin niobium films for superconducting hot-electron devices
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2012.2235508
– volume: 119
  start-page: 184003
  year: 2021
  ident: CR29
  article-title: Vacuum-gap transmon qubits realized using flip-chip technology
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0068255
– volume: 508
  start-page: 500
  year: 2014
  end-page: 503
  ident: CR5
  article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 7
  start-page: 565
  year: 2011
  end-page: 570
  ident: CR21
  article-title: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1994
– volume: 326
  start-page: 113
  year: 2009
  end-page: 116
  ident: CR8
  article-title: Fluxonium: single Cooper-pair circuit free of charge offsets
  publication-title: Science
  doi: 10.1126/science.1175552
– volume: 29
  start-page: 044001
  year: 2016
  ident: CR22
  article-title: Bulk and surface loss in superconducting transmon qubits
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/4/044001
– volume: 45
  start-page: 3720
  year: 1974
  ident: CR23
  article-title: Oxidation of Nb as studied by the UV-photoemission technique
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1663849
– volume: 82
  start-page: 124501
  year: 2019
  ident: CR28
  article-title: Towards understanding two-level-systems in amorphous solids: insights from quantum circuits
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab3a7e
– volume: 2
  start-page: 72
  year: 2021
  ident: CR26
  article-title: Microscopic relaxation channels in materials for superconducting qubits
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00174-7
– volume: 107
  start-page: 240501
  year: 2011
  ident: CR13
  article-title: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.240501
– volume: 12
  year: 2021
  ident: 510_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22030-5
– volume: 27
  start-page: 1700205
  year: 2017
  ident: 510_CR11
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2016.2629670
– volume: 111
  start-page: 080502
  year: 2013
  ident: 510_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.080502
– volume: 11
  start-page: 369
  year: 2020
  ident: 510_CR4
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031119-050605
– volume: 76
  start-page: 042319
  year: 2007
  ident: 510_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.042319
– volume: 508
  start-page: 500
  year: 2014
  ident: 510_CR5
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 7
  year: 2016
  ident: 510_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12964
– volume: 29
  start-page: 044001
  year: 2016
  ident: 510_CR22
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/4/044001
– volume: 71
  start-page: 161401(R)
  year: 2005
  ident: 510_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.161401
– volume: 121
  start-page: 090502
  year: 2018
  ident: 510_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.090502
– volume: 584
  start-page: 551
  year: 2020
  ident: 510_CR20
  publication-title: Nature
  doi: 10.1038/s41586-020-2619-8
– volume: 82
  start-page: 124501
  year: 2019
  ident: 510_CR28
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab3a7e
– volume: 369
  start-page: 1084
  year: 2020
  ident: 510_CR2
  publication-title: Science
  doi: 10.1126/science.abb9811
– volume: 5
  start-page: 044004
  year: 2016
  ident: 510_CR17
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.044004
– volume: 326
  start-page: 113
  year: 2009
  ident: 510_CR8
  publication-title: Science
  doi: 10.1126/science.1175552
– volume: 549
  start-page: 242
  year: 2017
  ident: 510_CR3
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 7
  start-page: 565
  year: 2011
  ident: 510_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1994
– volume: 574
  start-page: 505
  year: 2019
  ident: 510_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 103
  start-page: 012602
  year: 2013
  ident: 510_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4813269
– volume: 2
  start-page: 98
  year: 2021
  ident: 510_CR16
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00204-4
– volume: 75
  start-page: 140515(R)
  year: 2007
  ident: 510_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.140515
– volume: 107
  start-page: 240501
  year: 2011
  ident: 510_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.240501
– volume: 10
  start-page: 031032
  year: 2020
  ident: 510_CR18
  publication-title: Phys. Rev. X
– volume: 119
  start-page: 184003
  year: 2021
  ident: 510_CR29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0068255
– volume: 16
  start-page: 014018
  year: 2021
  ident: 510_CR25
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.014018
– volume: 45
  start-page: 3720
  year: 1974
  ident: 510_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1663849
– ident: 510_CR12
  doi: 10.1109/IEDM19573.2019.8993458
– volume: 23
  start-page: 2300704
  year: 2012
  ident: 510_CR24
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2012.2235508
– volume: 2
  start-page: 72
  year: 2021
  ident: 510_CR26
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00174-7
SSID ssj0001928241
Score 2.6345396
Snippet Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching...
Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/766/119/1003
639/766/483/2802
639/766/483/481
Aluminum
Classical and Quantum Gravitation
Computers
Etching
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
Tantalum
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4qTlzKo0VdWFAOvbWBZJLJznIDVLRCoieQuKV5SotgoZ3Z_4-dyWyhEnDpdZJIlmOP7ST-PkK-uphCitPIpPQ1UyEKZl1VM5t0PVXCcZmPLi5_6tm1uripb55RfeGbsB4euFfcUYNwIt4ihp6CWsdbrcElkSLDpsR1wL8vxLxnxdRtn7c0EJtKlwyXzVELkUoqhi8SsiGy6kUkyoD9L7LMfy5Gc7w53yQfS6JIT3oBt8iHuNgmGwMJAy0--Yn8usoPX1ta-p1gze8lqGt5T32Z3B7TDkMSWByMuXlH8fSVWno3TxHJ5emALA6SUH5YU-QimrdYK4f2M7k-_3F1NmOFNoF5CC4dczxNXKVDDakWJBDWQZLQKBlEFWTU4L_J22S90p5r7jVWUN4pgdCEIrgk5Q5ZWzws4hdCK-3lRE6Fc8kqLlWjnQtpgn1aNSwNIyIGFRpfMMWR2uLO5Ltt2Zhe7QbUbrLaTTUi31ZrHntEjTdnn-LOrGYiGnb-ADZiio2Y92xkRMbDvprioq3B0lEim-FkRL4Pe_13-HWRdv-HSHtkvcJGCi6YkGOy1v1Zxn1Ibzp3kC35Cch684Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKvXAB-kAsj8qH3sDFjh0nywXRqghVak8g7c31E60Eu0Cy_58Zr8MKJLgmduTMeDzjsef7CPnuYgopjiOT0tdMhSiYdVXNbNL1WAnHZU5d_P2nL6_Vn0k9KQm3rlyrHNbEvFCHuccc-QlG-hLJ55qz-weGrFF4ulooNNbIR4QuwytdzaRZ5VjGsKFQotTKcNmedOCvpGJ4LyFPR1a98EcZtv9FrPnqeDR7nYttslnCRXq-1O8n8iHOPpOtgYqBFsv8Qv5f5euvHS1VT9DnYQFCW9xRXxp3p7RHxwQ_Au_ctKeYg6WW3k5TRIp5OuCLw0go_1FTZCSadrhjDt1Xcn3x--rXJSvkCcyDi-mZ46lxlQ41BFwQRlgHoUKrZBBVkFGDFSdvk_VKe66517iP8k4JBCgUwSUpd8j6bD6Lu4RW2stGjoVzySouVaudC6nBaq0auoYREYMIjS_I4khwcWvyCbdszVLsBsRusthNNSJHz33ul7ga77b-iZp5bomY2PnB_PHGFBMzLQLPeItoiwp2xd5qDYs3kqnYlDgO82DQqymG2pnVtBqR40HXq9dvD2nv_a_tk40KCyW4YEIekPX-cREPIXzp3bc8R58AcbvrVw
  priority: 102
  providerName: ProQuest
Title Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
URI https://link.springer.com/article/10.1038/s41534-021-00510-2
https://www.proquest.com/docview/2619336967
https://doaj.org/article/89481ca49254402ca66add6748aff06d
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfDFalU8rUcefNNosslm9_p2PVrKgUW0hXuL-SwH9ardvf_fmVy2paKFPi1sMjBkJpmZZOY3hLx3MYUUJ5FJ6WumQhTMuqpmNul6ooTjMl9dfDnVJ-dqvqgXW6QaamFy0n6GtMzH9JAd9rkDQyMVw4SCrEcMjt0dhG5HrZ7p2e29ygSCCCVKfQyX7T9I79igDNV_x7_860k0W5rjZ-RpcRHpdMPUc7IVV3tkd2i_QMtu3COPc_am716QH2c5-bWjpeYJqH-vYcnWP6kvZN0B7dEsgdbBmFv2FG9gqaWXyxSxwTwd0MWBJ8o_1RT7ES07jJdD95KcHx-dzU5YaZ3APBiYnjmeGlfpUIO7BU6EdeAotEoGUQUZNezh5G2yXmnPNfcaoyjvlEB4QhFckvIV2V5dreJrQivtZSMnwrlkFZeq1c6F1GCtVg2kYUTEsJjGF1xxbG9xafL7tmzNRgAGBGCyAEw1Ih9uaH5tUDXunX2IMrqZiYjY-cfV9YUpGmJahJ3xFrEWFcTE3moNRze2UrEpcWRzf5CwKdu0Mxg-Suxo2IzIx0Hqt8P_Z-nNw6a_JU8qLJvgggm5T7b763V8B85M78bkUbNoxmRnOp1_n8P38Oj067dx1ulxviD4A-rg8No
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAXKC8RWsAHOIHp-rHOBgkhCq1S2kYIpVJvrp8oUkna7kaIP8VvZGbjbVQkeut1ba-smfG87JmPkFcuppDiMDIpfclUiJxZJ0pmky6HirtCtqmLo7EeHauvJ-XJGvnT1cLgs8pOJ7aKOsw95si30dOXCD43-Hh-wRA1Cm9XOwiNpVgcxN-_IGSrP-x_Af6-FmJvd_J5xDKqAPOgexvmijRwQocSPBGwr9aBDa2UDFwEGTWId_I2Wa-0L3ThNQYY3imOnft4cAkToKDy15WEUKZH1nd2x9--r7I6QwhhFM_VOYWstmuwkFIxfAnRHgAmrlnAFijgmnf7z4Vsa-f2Nsi97KDST0uJekDW4uwhud-BP9CsCx6R00n74Lamuc4K1lwsgE2Ln9TnyfV72qApBNLBmJs2FLO-1NKzaYoIak-7juawE1q8KyliIE1rjNFD_Zgc3wphn5DebD6LTwkV2suBHHLnklWFVJV2LqQB1oeVsDT0Ce9IaHzuZY6QGmemvVOXlVmS3QDZTUt2I_rkzdWa82Unjxtn7yBnrmZiF-72w_zyh8mH2lTY6sZb7O-oIA73VmswFwjfYlMqcJtbHV9NVg21WQlyn7zteL0a_v-Wnt38t5fkzmhydGgO98cHm-SuwDKNgjMut0ivuVzE5-A8Ne5FllhKTm_7kPwF9ucoXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIiEuvBGBFnyAE5is117vBqmqgBK1FCoOrZSb62cVqSRtdyPEX-PXdcbxNioSvfWatSNr3jP2zEfIGxuij2EUmBCuYtIHzowtK2aiqkaS20Kk0sWPA7V7JL9Nqska-dv3wuCzyt4mJkPt5w5r5EOM9AWCz9XDmJ9F_NwZb5-dM0SQwpvWHk5jKSL74c9vSN_arb0d4PXbshx_PfyyyzLCAHNghztmi1jbUvkKohLwtcaCP22k8Lz0IigQ9ehMNE4qV6jCKUw2nJUcp_hxbyMWQ8H836lFxVHH6km9qu-MIJmRPPfpFKIZtuArhWT4JiKpAiuv-cIEGXAtzv3najZ5vPFDcj-HqvTTUrYekbUwe0we9DAQNFuFJ-T4MD29bWnuuII95wtg2OIXdXlx-5F26BSBcPDNTjuK9V9q6Ok0BoS3p_1sczgJLT5UFNGQpi1m6759So5uhazPyPpsPgvPCS2VE7UYcWujkYWQjbLWxxo7xSrY6geE9yTULk81R3CNU51u10Wjl2TXQHadyK7LAXl3tedsOdPjxtWfkTNXK3Eed_phfnGis3rrBofeOIOTHiVk5M4oBY4DgVxMjAUec6Pnq85GotUrkR6Q9z2vV5__f6QXN__ba3IXVEN_3zvYf0nuldivUXDGxQZZ7y4WYROiqM6-SuJKyfFt68clvm4rLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+practical+quantum+computers%3A+transmon+qubit+with+a+lifetime+approaching+0.5+milliseconds&rft.jtitle=npj+quantum+information&rft.au=Wang%2C+Chenlu&rft.au=Li%2C+Xuegang&rft.au=Xu%2C+Huikai&rft.au=Li%2C+Zhiyuan&rft.date=2022-01-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2056-6387&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41534-021-00510-2&rft.externalDocID=10_1038_s41534_021_00510_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon