Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular...
Saved in:
Published in | npj quantum information Vol. 8; no. 1; pp. 1 - 6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.01.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best
T
1
lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers. |
---|---|
AbstractList | Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers. Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers. Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers. |
ArticleNumber | 3 |
Author | Yu, Haifeng Ma, Teng Su, Tang Linghu, Kehuan Liu, Weiyang Wang, Junhua Zhang, Jingning Yang, Zhen Chen, Mo Wang, Chenlu Li, Chengyao Zhang, Yingshan Liang, Xuehui Mi, Zhenyu Xue, Guangming Li, Zhiyuan Feng, Yulong Wang, Guangyue Yang, Chuhong Wang, Ruixia Han, Jiaxiu Wang, Wenyan Song, Yu Li, Yongchao Li, Xuegang Jin, Yirong Xu, Huikai Zhao, Peng |
Author_xml | – sequence: 1 givenname: Chenlu surname: Wang fullname: Wang, Chenlu organization: Beijing Academy of Quantum Information Sciences – sequence: 2 givenname: Xuegang surname: Li fullname: Li, Xuegang organization: Beijing Academy of Quantum Information Sciences – sequence: 3 givenname: Huikai surname: Xu fullname: Xu, Huikai organization: Beijing Academy of Quantum Information Sciences – sequence: 4 givenname: Zhiyuan surname: Li fullname: Li, Zhiyuan organization: Beijing Academy of Quantum Information Sciences – sequence: 5 givenname: Junhua surname: Wang fullname: Wang, Junhua organization: Beijing Academy of Quantum Information Sciences – sequence: 6 givenname: Zhen surname: Yang fullname: Yang, Zhen organization: Beijing Academy of Quantum Information Sciences – sequence: 7 givenname: Zhenyu surname: Mi fullname: Mi, Zhenyu organization: Beijing Academy of Quantum Information Sciences – sequence: 8 givenname: Xuehui surname: Liang fullname: Liang, Xuehui organization: Beijing Academy of Quantum Information Sciences – sequence: 9 givenname: Tang surname: Su fullname: Su, Tang organization: Beijing Academy of Quantum Information Sciences – sequence: 10 givenname: Chuhong surname: Yang fullname: Yang, Chuhong organization: Beijing Academy of Quantum Information Sciences – sequence: 11 givenname: Guangyue surname: Wang fullname: Wang, Guangyue organization: Beijing Academy of Quantum Information Sciences – sequence: 12 givenname: Wenyan surname: Wang fullname: Wang, Wenyan organization: Beijing Academy of Quantum Information Sciences – sequence: 13 givenname: Yongchao surname: Li fullname: Li, Yongchao organization: Beijing Academy of Quantum Information Sciences – sequence: 14 givenname: Mo surname: Chen fullname: Chen, Mo organization: Beijing Academy of Quantum Information Sciences – sequence: 15 givenname: Chengyao surname: Li fullname: Li, Chengyao organization: Beijing Academy of Quantum Information Sciences – sequence: 16 givenname: Kehuan surname: Linghu fullname: Linghu, Kehuan organization: Beijing Academy of Quantum Information Sciences – sequence: 17 givenname: Jiaxiu surname: Han fullname: Han, Jiaxiu organization: Beijing Academy of Quantum Information Sciences – sequence: 18 givenname: Yingshan surname: Zhang fullname: Zhang, Yingshan organization: Beijing Academy of Quantum Information Sciences – sequence: 19 givenname: Yulong surname: Feng fullname: Feng, Yulong organization: Beijing Academy of Quantum Information Sciences – sequence: 20 givenname: Yu surname: Song fullname: Song, Yu organization: Beijing Academy of Quantum Information Sciences – sequence: 21 givenname: Teng surname: Ma fullname: Ma, Teng organization: Beijing Academy of Quantum Information Sciences – sequence: 22 givenname: Jingning orcidid: 0000-0003-3712-5774 surname: Zhang fullname: Zhang, Jingning organization: Beijing Academy of Quantum Information Sciences – sequence: 23 givenname: Ruixia surname: Wang fullname: Wang, Ruixia organization: Beijing Academy of Quantum Information Sciences – sequence: 24 givenname: Peng surname: Zhao fullname: Zhao, Peng organization: Beijing Academy of Quantum Information Sciences – sequence: 25 givenname: Weiyang orcidid: 0000-0003-2281-6054 surname: Liu fullname: Liu, Weiyang organization: Beijing Academy of Quantum Information Sciences – sequence: 26 givenname: Guangming surname: Xue fullname: Xue, Guangming email: xuegm@baqis.ac.cn organization: Beijing Academy of Quantum Information Sciences – sequence: 27 givenname: Yirong surname: Jin fullname: Jin, Yirong email: jinyr@baqis.ac.cn organization: Beijing Academy of Quantum Information Sciences – sequence: 28 givenname: Haifeng surname: Yu fullname: Yu, Haifeng email: hfyu@baqis.ac.cn organization: Beijing Academy of Quantum Information Sciences |
BookMark | eNp9Uc1u1jAQtFCRKKUvwMkS55T1T5yEG6qgVKrEpZzNxna--lNip7ajirfHNAiqHnpaa3dnZsfzlpyEGBwh7xlcMBD9xyxZK2QDnDUALYOGvyKnHFrVKNF3J0_eb8h5zkcAYAPvuWSn5OdtfMBkM10TmuINzvR-w1C2hZq4rFtxKX-iJWHISwx1NvpCH3y5o0hnP7niF0dxXVNEc-fDgcJFSxc_zz47E4PN78jrCefszv_WM_Lj65fby2_Nzfer68vPN42RfCjNCFM3cmVbpgR0DMdOil4Ky7gVTnHeTgYnNFIZUGCUqgbMKBlwKZgdJyHOyPXOayMe9Zr8gumXjuj1YyOmg8ZUDc5O94PsmUE58FZK4AaVQmtVJ3ucJlC2cn3Yuaqt-83loo9xS6Ger3lVFkINqqtbfN8yKeac3PRPlYH-E4zeg9E1GP0YjOYV1D8DGV-w-BjqH_v5ZajYobnqhINL_696AfUbiMujeg |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_21_014043 crossref_primary_10_1103_PRXQuantum_6_010308 crossref_primary_10_1103_PhysRevB_105_224309 crossref_primary_10_1007_s11467_022_1249_z crossref_primary_10_1088_0256_307X_40_11_110303 crossref_primary_10_1088_1674_1056_ac89e7 crossref_primary_10_1109_MNANO_2024_3475889 crossref_primary_10_1088_2633_4356_ad4b8c crossref_primary_10_1038_s41534_024_00868_z crossref_primary_10_1088_1674_1056_ad73b6 crossref_primary_10_1109_JMMCT_2024_3439531 crossref_primary_10_1088_2058_9565_ac6a04 crossref_primary_10_1038_s41534_022_00644_x crossref_primary_10_1103_PhysRevApplied_20_024011 crossref_primary_10_1063_5_0230767 crossref_primary_10_1063_5_0170259 crossref_primary_10_1103_PRXQuantum_3_030307 crossref_primary_10_35848_1347_4065_acfde6 crossref_primary_10_1063_5_0128964 crossref_primary_10_1063_5_0169391 crossref_primary_10_1126_sciadv_adr0875 crossref_primary_10_1103_PhysRevApplied_18_064092 crossref_primary_10_1016_j_jallcom_2024_176700 crossref_primary_10_1103_PhysRevResearch_6_033001 crossref_primary_10_1103_PhysRevA_109_022442 crossref_primary_10_1016_j_cjph_2025_01_040 crossref_primary_10_1038_s41928_023_01033_8 crossref_primary_10_1103_PhysRevB_111_064503 crossref_primary_10_1103_PhysRevResearch_6_033215 crossref_primary_10_1116_6_0003368 crossref_primary_10_1038_s41598_023_39052_2 crossref_primary_10_1038_s41586_024_07294_3 crossref_primary_10_1063_5_0156618 crossref_primary_10_1103_PhysRevApplied_19_064024 crossref_primary_10_1016_j_physc_2025_1354652 crossref_primary_10_1103_PhysRevB_107_195441 crossref_primary_10_1103_PhysRevResearch_4_043054 crossref_primary_10_1016_j_aej_2023_09_073 crossref_primary_10_3390_inorganics11030117 crossref_primary_10_1088_0256_307X_40_7_070304 crossref_primary_10_1038_s41534_025_00972_8 crossref_primary_10_1088_1748_0221_19_09_P09001 crossref_primary_10_1109_TQE_2022_3209881 crossref_primary_10_1038_s41598_023_39420_y crossref_primary_10_1063_5_0124821 crossref_primary_10_1063_5_0161893 crossref_primary_10_1063_5_0249115 crossref_primary_10_1103_PhysRevApplied_20_044054 crossref_primary_10_1063_5_0157654 crossref_primary_10_1103_PhysRevResearch_4_043127 crossref_primary_10_1103_PhysRevA_109_012601 crossref_primary_10_1103_PhysRevA_107_032616 crossref_primary_10_1088_2058_9565_acb2f2 crossref_primary_10_1103_PhysRevX_13_021028 crossref_primary_10_1103_PhysRevApplied_19_044031 crossref_primary_10_1103_PRXQuantum_5_040318 crossref_primary_10_1103_PhysRevA_107_042428 crossref_primary_10_1007_s11141_024_10341_8 crossref_primary_10_1103_PhysRevResearch_5_013148 crossref_primary_10_1103_PRXQuantum_4_040319 crossref_primary_10_1038_s41467_022_34614_w crossref_primary_10_1103_PhysRevA_105_062436 crossref_primary_10_1103_PhysRevApplied_18_034063 crossref_primary_10_1007_s10909_023_02978_y crossref_primary_10_1021_acsnano_3c10740 crossref_primary_10_1103_PhysRevApplied_19_024013 crossref_primary_10_1109_MWC_001_2300288 crossref_primary_10_1109_TED_2024_3496433 crossref_primary_10_1103_PhysRevApplied_20_054033 crossref_primary_10_1103_PRXQuantum_5_040307 crossref_primary_10_1109_TASC_2024_3513276 crossref_primary_10_1103_PhysRevApplied_22_034007 crossref_primary_10_3390_e24070952 crossref_primary_10_1007_s41745_022_00330_z crossref_primary_10_1103_PhysRevApplied_19_034011 crossref_primary_10_1103_PhysRevApplied_23_014062 crossref_primary_10_1063_5_0155213 crossref_primary_10_1103_PhysRevResearch_6_013329 crossref_primary_10_1038_s41534_025_00967_5 crossref_primary_10_1103_PhysRevB_110_104416 crossref_primary_10_1103_PhysRevB_110_035157 crossref_primary_10_1088_1674_1056_ad02e7 crossref_primary_10_1126_sciadv_ado9094 crossref_primary_10_1103_PhysRevLett_134_097001 crossref_primary_10_1038_s41598_022_14973_6 crossref_primary_10_1007_s11128_023_04096_w crossref_primary_10_1021_acsnano_4c05251 crossref_primary_10_3389_fmats_2024_1343005 crossref_primary_10_1103_PhysRevApplied_20_044021 crossref_primary_10_1002_pssr_202300478 crossref_primary_10_1116_6_0002886 crossref_primary_10_3390_app14041478 crossref_primary_10_1063_5_0165137 crossref_primary_10_1109_TASC_2024_3350595 crossref_primary_10_1038_s41534_024_00863_4 crossref_primary_10_1063_5_0250428 crossref_primary_10_1103_PhysRevApplied_18_034038 crossref_primary_10_1109_TASC_2025_3534184 crossref_primary_10_1186_s43088_024_00489_7 crossref_primary_10_1103_PhysRevLett_131_211001 crossref_primary_10_1088_1402_4896_acb32f crossref_primary_10_1088_1674_1056_ad6a3c crossref_primary_10_1002_adma_202411780 crossref_primary_10_1103_PhysRevA_106_052420 crossref_primary_10_1038_s41567_023_02247_5 crossref_primary_10_1063_5_0182642 crossref_primary_10_1088_2633_4356_ac78ba crossref_primary_10_1007_s10773_023_05366_0 crossref_primary_10_1063_5_0218021 crossref_primary_10_1103_PhysRevA_105_063724 crossref_primary_10_1103_PhysRevLett_132_250204 crossref_primary_10_1088_1361_6463_acf7cf crossref_primary_10_1002_adma_202310280 crossref_primary_10_1380_vss_68_137 crossref_primary_10_1038_s41598_024_65520_4 crossref_primary_10_1103_PhysRevApplied_19_044001 crossref_primary_10_1116_6_0002586 crossref_primary_10_1016_j_knosys_2024_111480 crossref_primary_10_1103_PhysRevA_108_052417 crossref_primary_10_1103_PhysRevD_111_063047 crossref_primary_10_1038_s41534_024_00840_x crossref_primary_10_1103_PhysRevX_14_041056 crossref_primary_10_1103_PhysRevApplied_22_014060 crossref_primary_10_1103_PhysRevApplied_22_014063 crossref_primary_10_1103_PhysRevResearch_4_023054 crossref_primary_10_1038_s41467_025_56503_8 crossref_primary_10_1103_PRXQuantum_4_030336 crossref_primary_10_1038_s41467_023_39785_8 crossref_primary_10_1103_PhysRevX_14_041050 crossref_primary_10_1109_ACCESS_2024_3367109 crossref_primary_10_1038_s41467_022_34727_2 crossref_primary_10_1038_s41567_022_01613_z crossref_primary_10_1088_1361_6668_acc214 crossref_primary_10_1103_PhysRevA_111_032609 crossref_primary_10_1145_3674151 crossref_primary_10_3390_condmat8010029 crossref_primary_10_1103_PRXQuantum_5_020326 crossref_primary_10_1109_TASC_2024_3419905 crossref_primary_10_1063_5_0189377 crossref_primary_10_1109_TASC_2023_3247987 crossref_primary_10_1103_PhysRevResearch_6_023026 crossref_primary_10_1103_PhysRevA_110_062607 crossref_primary_10_1007_s11467_023_1357_4 crossref_primary_10_1063_5_0102092 crossref_primary_10_1103_PhysRevApplied_20_014034 crossref_primary_10_1088_0256_307X_41_7_070302 crossref_primary_10_1038_s41467_024_48230_3 crossref_primary_10_1063_5_0245710 crossref_primary_10_1103_PhysRevA_108_032615 crossref_primary_10_1109_LED_2024_3453174 crossref_primary_10_1016_j_chip_2023_100067 crossref_primary_10_1063_5_0216711 crossref_primary_10_3103_S1068335623602273 crossref_primary_10_1116_5_0137078 crossref_primary_10_1063_5_0227281 crossref_primary_10_1103_PhysRevA_108_042427 crossref_primary_10_1103_PhysRevApplied_23_034013 crossref_primary_10_1038_s41467_023_39656_2 crossref_primary_10_1007_s00500_022_06961_9 crossref_primary_10_1063_5_0217493 crossref_primary_10_1021_acs_jpclett_3c00850 crossref_primary_10_1103_PhysRevX_15_011070 crossref_primary_10_1038_s41567_024_02740_5 crossref_primary_10_1038_s43246_024_00659_1 crossref_primary_10_1038_s41586_023_05784_4 crossref_primary_10_3390_app13020817 crossref_primary_10_1038_s41586_024_07941_9 crossref_primary_10_1103_PhysRevApplied_18_L061001 crossref_primary_10_1103_PRXQuantum_5_020312 crossref_primary_10_1038_s41534_023_00781_x crossref_primary_10_1103_PhysRevA_111_032614 crossref_primary_10_1103_PhysRevApplied_18_044026 crossref_primary_10_3390_earth5030027 crossref_primary_10_1103_PhysRevApplied_23_034025 crossref_primary_10_1103_PhysRevApplied_21_034027 crossref_primary_10_1038_s41534_024_00860_7 crossref_primary_10_1103_PhysRevApplied_21_044035 crossref_primary_10_1088_1361_6668_acdafe crossref_primary_10_1103_PRXQuantum_3_040338 crossref_primary_10_1109_TASC_2023_3244142 crossref_primary_10_1038_s41598_024_57248_y crossref_primary_10_1063_5_0230436 crossref_primary_10_1088_1361_6668_ad10b6 crossref_primary_10_3390_e24060792 crossref_primary_10_1103_PhysRevResearch_6_023064 crossref_primary_10_1103_PhysRevApplied_23_034036 crossref_primary_10_1103_PhysRevApplied_21_044030 crossref_primary_10_1103_PhysRevB_109_014315 crossref_primary_10_1109_TCSI_2023_3274599 crossref_primary_10_1103_PhysRevA_110_052607 crossref_primary_10_1103_PhysRevApplied_23_024017 crossref_primary_10_1038_s41534_022_00600_9 crossref_primary_10_1103_PhysRevA_107_052609 crossref_primary_10_1103_PhysRevD_110_115021 crossref_primary_10_1063_5_0191234 crossref_primary_10_1038_s41467_024_47857_6 crossref_primary_10_1103_PhysRevD_110_115020 crossref_primary_10_1002_advs_202413058 crossref_primary_10_1088_2058_9565_adbded crossref_primary_10_1103_PhysRevX_13_041005 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_1103_PhysRevApplied_20_034065 crossref_primary_10_1103_PhysRevA_105_062605 crossref_primary_10_1103_PhysRevApplied_23_034046 crossref_primary_10_1007_s11128_024_04425_7 crossref_primary_10_1063_5_0169339 crossref_primary_10_1116_6_0003459 |
Cites_doi | 10.1103/PhysRevApplied.5.044004 10.1103/PhysRevB.75.140515 10.1038/nature23879 10.1038/s41586-020-2619-8 10.1103/PhysRevB.71.161401 10.1146/annurev-conmatphys-031119-050605 10.1038/ncomms12964 10.1038/s41467-021-22030-5 10.1063/1.4813269 10.1126/science.abb9811 10.1038/s43246-021-00204-4 10.1103/PhysRevLett.121.090502 10.1038/s41586-019-1666-5 10.1103/PhysRevA.76.042319 10.1109/TASC.2016.2629670 10.1103/PhysRevLett.111.080502 10.1103/PhysRevApplied.16.014018 10.1109/TASC.2012.2235508 10.1063/5.0068255 10.1038/nature13171 10.1038/nphys1994 10.1126/science.1175552 10.1088/0953-2048/29/4/044001 10.1063/1.1663849 10.1088/1361-6633/ab3a7e 10.1038/s43246-021-00174-7 10.1103/PhysRevLett.107.240501 10.1109/IEDM19573.2019.8993458 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41534-021-00510-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 2056-6387 |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_89481ca49254402ca66add6748aff06d 10_1038_s41534_021_00510_2 |
GrantInformation_xml | – fundername: NSF of Beijing (Grant No. Z190012) – fundername: NSF of Beijing (Grant No. Z190012), the NSFC of China (Grant No. 11890704, 12004042), National Key Research and Development Program of China (Grant No. 2016YFA0301800), Key-Area Research and Development Program of Guang Dong Province (Grant No. 2018B030326001). |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KQ8 LK8 M7P M~E NAO NO~ OK1 PIMPY PQQKQ PROAC RNT SNYQT UKHRP AAFWJ AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-b0f7b26d5163071ab743843d12d3e6225fcafac46c060c66192cb4102431dbf33 |
IEDL.DBID | C6C |
ISSN | 2056-6387 |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Wed Aug 13 11:26:49 EDT 2025 Tue Jul 01 01:32:55 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Fri Feb 21 02:39:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-b0f7b26d5163071ab743843d12d3e6225fcafac46c060c66192cb4102431dbf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2281-6054 0000-0003-3712-5774 |
OpenAccessLink | https://www.nature.com/articles/s41534-021-00510-2 |
PQID | 2619336967 |
PQPubID | 2041919 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_89481ca49254402ca66add6748aff06d proquest_journals_2619336967 crossref_primary_10_1038_s41534_021_00510_2 crossref_citationtrail_10_1038_s41534_021_00510_2 springer_journals_10_1038_s41534_021_00510_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-13 |
PublicationDateYYYYMMDD | 2022-01-13 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj quantum information |
PublicationTitleAbbrev | npj Quantum Inf |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Gambetta (CR11) 2017; 27 Jia (CR24) 2012; 23 Barends (CR7) 2013; 111 You, Hu, Ashhab, Nori (CR9) 2007; 75 CR12 Barends (CR5) 2014; 508 Dial (CR22) 2016; 29 Bylander (CR21) 2011; 7 Arute (CR1) 2019; 574 Place (CR14) 2021; 12 Müller, Cole, Lisenfeld (CR28) 2019; 82 Premkumar (CR26) 2021; 2 Kandala (CR3) 2017; 549 Paik (CR13) 2011; 107 Kjaergaard (CR4) 2020; 11 Manucharyan, Koch, Glazman, Devoret (CR8) 2009; 326 Yan (CR10) 2016; 7 Vepsäläinen (CR20) 2020; 584 Tan, Mather, Perrella, Read, Buhrman (CR27) 2005; 71 Lindau, Spicer (CR23) 1974; 45 Arute (CR2) 2020; 369 Chang (CR15) 2013; 103 Winkel (CR18) 2020; 10 Kim (CR16) 2021; 2 Klimov (CR19) 2018; 121 Koch (CR6) 2007; 76 Li (CR29) 2021; 119 Samkharadze (CR17) 2016; 5 Verjauw (CR25) 2021; 16 PV Klimov (510_CR19) 2018; 121 J Bylander (510_CR21) 2011; 7 AP Vepsäläinen (510_CR20) 2020; 584 F Arute (510_CR2) 2020; 369 APM Place (510_CR14) 2021; 12 E Tan (510_CR27) 2005; 71 J Verjauw (510_CR25) 2021; 16 F Arute (510_CR1) 2019; 574 R Barends (510_CR5) 2014; 508 A Kandala (510_CR3) 2017; 549 N Samkharadze (510_CR17) 2016; 5 C Müller (510_CR28) 2019; 82 J Chang (510_CR15) 2013; 103 H Paik (510_CR13) 2011; 107 JM Gambetta (510_CR11) 2017; 27 X Li (510_CR29) 2021; 119 510_CR12 F Yan (510_CR10) 2016; 7 M Kjaergaard (510_CR4) 2020; 11 A Premkumar (510_CR26) 2021; 2 I Lindau (510_CR23) 1974; 45 R Barends (510_CR7) 2013; 111 J Koch (510_CR6) 2007; 76 VE Manucharyan (510_CR8) 2009; 326 O Dial (510_CR22) 2016; 29 JQ You (510_CR9) 2007; 75 P Winkel (510_CR18) 2020; 10 XQ Jia (510_CR24) 2012; 23 S Kim (510_CR16) 2021; 2 |
References_xml | – volume: 10 start-page: 031032 year: 2020 ident: CR18 article-title: Implementation of a transmon qubit using superconducting granular aluminum publication-title: Phys. Rev. X – volume: 5 start-page: 044004 year: 2016 ident: CR17 article-title: High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.044004 – volume: 75 start-page: 140515(R) year: 2007 ident: CR9 article-title: Low-decoherence flux qubit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.140515 – ident: CR12 – volume: 549 start-page: 242 year: 2017 end-page: 246 ident: CR3 article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets publication-title: Nature doi: 10.1038/nature23879 – volume: 584 start-page: 551 year: 2020 end-page: 556 ident: CR20 article-title: Impact of ionizing radiation on superconducting qubit coherence publication-title: Nature doi: 10.1038/s41586-020-2619-8 – volume: 71 start-page: 161401(R) year: 2005 ident: CR27 article-title: Oxygen stoichiometry and instability in aluminum oxide tunnel barrier layers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.161401 – volume: 11 start-page: 369 year: 2020 end-page: 395 ident: CR4 article-title: Superconducting qubits: current state of play publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031119-050605 – volume: 7 year: 2016 ident: CR10 article-title: The flux qubit revisited to enhance coherence and reproducibility publication-title: Nat. Commun. doi: 10.1038/ncomms12964 – volume: 12 year: 2021 ident: CR14 article-title: New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds publication-title: Nat. Commun. doi: 10.1038/s41467-021-22030-5 – volume: 103 start-page: 012602 year: 2013 ident: CR15 article-title: Improved superconducting qubit coherence using titanium nitride publication-title: Appl. Phys. Lett. doi: 10.1063/1.4813269 – volume: 369 start-page: 1084 year: 2020 end-page: 1089 ident: CR2 article-title: Hartree-Fock on a superconducting qubit quantum computer publication-title: Science doi: 10.1126/science.abb9811 – volume: 2 start-page: 98 year: 2021 ident: CR16 article-title: Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate publication-title: Commun. Mater. doi: 10.1038/s43246-021-00204-4 – volume: 121 start-page: 090502 year: 2018 ident: CR19 article-title: Fluctuations of energy-relaxation times in superconducting qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.090502 – volume: 574 start-page: 505 year: 2019 end-page: 510 ident: CR1 article-title: Quantum supremacy using a programmable superconducting processor publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 76 start-page: 042319 year: 2007 ident: CR6 article-title: Charge-insensitive qubit design derived from the Cooper pair box publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.042319 – volume: 27 start-page: 1700205 year: 2017 ident: CR11 article-title: Investigating surface loss effects in superconducting transmon qubits publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2016.2629670 – volume: 111 start-page: 080502 year: 2013 ident: CR7 article-title: Coherent Josephson qubit suitable for scalable quantum integrated circuits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.080502 – volume: 16 start-page: 014018 year: 2021 ident: CR25 article-title: Investigation of microwave loss induced by oxide regrowth in high- Nb resonators publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.014018 – volume: 23 start-page: 2300704 year: 2012 ident: CR24 article-title: High performance ultra-thin niobium films for superconducting hot-electron devices publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2012.2235508 – volume: 119 start-page: 184003 year: 2021 ident: CR29 article-title: Vacuum-gap transmon qubits realized using flip-chip technology publication-title: Appl. Phys. Lett. doi: 10.1063/5.0068255 – volume: 508 start-page: 500 year: 2014 end-page: 503 ident: CR5 article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance publication-title: Nature doi: 10.1038/nature13171 – volume: 7 start-page: 565 year: 2011 end-page: 570 ident: CR21 article-title: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit publication-title: Nat. Phys. doi: 10.1038/nphys1994 – volume: 326 start-page: 113 year: 2009 end-page: 116 ident: CR8 article-title: Fluxonium: single Cooper-pair circuit free of charge offsets publication-title: Science doi: 10.1126/science.1175552 – volume: 29 start-page: 044001 year: 2016 ident: CR22 article-title: Bulk and surface loss in superconducting transmon qubits publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/4/044001 – volume: 45 start-page: 3720 year: 1974 ident: CR23 article-title: Oxidation of Nb as studied by the UV-photoemission technique publication-title: J. Appl. Phys. doi: 10.1063/1.1663849 – volume: 82 start-page: 124501 year: 2019 ident: CR28 article-title: Towards understanding two-level-systems in amorphous solids: insights from quantum circuits publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab3a7e – volume: 2 start-page: 72 year: 2021 ident: CR26 article-title: Microscopic relaxation channels in materials for superconducting qubits publication-title: Commun. Mater. doi: 10.1038/s43246-021-00174-7 – volume: 107 start-page: 240501 year: 2011 ident: CR13 article-title: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.240501 – volume: 12 year: 2021 ident: 510_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22030-5 – volume: 27 start-page: 1700205 year: 2017 ident: 510_CR11 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2016.2629670 – volume: 111 start-page: 080502 year: 2013 ident: 510_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.080502 – volume: 11 start-page: 369 year: 2020 ident: 510_CR4 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031119-050605 – volume: 76 start-page: 042319 year: 2007 ident: 510_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.042319 – volume: 508 start-page: 500 year: 2014 ident: 510_CR5 publication-title: Nature doi: 10.1038/nature13171 – volume: 7 year: 2016 ident: 510_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms12964 – volume: 29 start-page: 044001 year: 2016 ident: 510_CR22 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/4/044001 – volume: 71 start-page: 161401(R) year: 2005 ident: 510_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.161401 – volume: 121 start-page: 090502 year: 2018 ident: 510_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.090502 – volume: 584 start-page: 551 year: 2020 ident: 510_CR20 publication-title: Nature doi: 10.1038/s41586-020-2619-8 – volume: 82 start-page: 124501 year: 2019 ident: 510_CR28 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab3a7e – volume: 369 start-page: 1084 year: 2020 ident: 510_CR2 publication-title: Science doi: 10.1126/science.abb9811 – volume: 5 start-page: 044004 year: 2016 ident: 510_CR17 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.044004 – volume: 326 start-page: 113 year: 2009 ident: 510_CR8 publication-title: Science doi: 10.1126/science.1175552 – volume: 549 start-page: 242 year: 2017 ident: 510_CR3 publication-title: Nature doi: 10.1038/nature23879 – volume: 7 start-page: 565 year: 2011 ident: 510_CR21 publication-title: Nat. Phys. doi: 10.1038/nphys1994 – volume: 574 start-page: 505 year: 2019 ident: 510_CR1 publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 103 start-page: 012602 year: 2013 ident: 510_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4813269 – volume: 2 start-page: 98 year: 2021 ident: 510_CR16 publication-title: Commun. Mater. doi: 10.1038/s43246-021-00204-4 – volume: 75 start-page: 140515(R) year: 2007 ident: 510_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.140515 – volume: 107 start-page: 240501 year: 2011 ident: 510_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.240501 – volume: 10 start-page: 031032 year: 2020 ident: 510_CR18 publication-title: Phys. Rev. X – volume: 119 start-page: 184003 year: 2021 ident: 510_CR29 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0068255 – volume: 16 start-page: 014018 year: 2021 ident: 510_CR25 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.014018 – volume: 45 start-page: 3720 year: 1974 ident: 510_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.1663849 – ident: 510_CR12 doi: 10.1109/IEDM19573.2019.8993458 – volume: 23 start-page: 2300704 year: 2012 ident: 510_CR24 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2012.2235508 – volume: 2 start-page: 72 year: 2021 ident: 510_CR26 publication-title: Commun. Mater. doi: 10.1038/s43246-021-00174-7 |
SSID | ssj0001928241 |
Score | 2.6345396 |
Snippet | Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching... Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/766/119/1003 639/766/483/2802 639/766/483/481 Aluminum Classical and Quantum Gravitation Computers Etching Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory Tantalum |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4qTlzKo0VdWFAOvbWBZJLJznIDVLRCoieQuKV5SotgoZ3Z_4-dyWyhEnDpdZJIlmOP7ST-PkK-uphCitPIpPQ1UyEKZl1VM5t0PVXCcZmPLi5_6tm1uripb55RfeGbsB4euFfcUYNwIt4ihp6CWsdbrcElkSLDpsR1wL8vxLxnxdRtn7c0EJtKlwyXzVELkUoqhi8SsiGy6kUkyoD9L7LMfy5Gc7w53yQfS6JIT3oBt8iHuNgmGwMJAy0--Yn8usoPX1ta-p1gze8lqGt5T32Z3B7TDkMSWByMuXlH8fSVWno3TxHJ5emALA6SUH5YU-QimrdYK4f2M7k-_3F1NmOFNoF5CC4dczxNXKVDDakWJBDWQZLQKBlEFWTU4L_J22S90p5r7jVWUN4pgdCEIrgk5Q5ZWzws4hdCK-3lRE6Fc8kqLlWjnQtpgn1aNSwNIyIGFRpfMMWR2uLO5Ltt2Zhe7QbUbrLaTTUi31ZrHntEjTdnn-LOrGYiGnb-ADZiio2Y92xkRMbDvprioq3B0lEim-FkRL4Pe_13-HWRdv-HSHtkvcJGCi6YkGOy1v1Zxn1Ibzp3kC35Cch684Y priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKvXAB-kAsj8qH3sDFjh0nywXRqghVak8g7c31E60Eu0Cy_58Zr8MKJLgmduTMeDzjsef7CPnuYgopjiOT0tdMhSiYdVXNbNL1WAnHZU5d_P2nL6_Vn0k9KQm3rlyrHNbEvFCHuccc-QlG-hLJ55qz-weGrFF4ulooNNbIR4QuwytdzaRZ5VjGsKFQotTKcNmedOCvpGJ4LyFPR1a98EcZtv9FrPnqeDR7nYttslnCRXq-1O8n8iHOPpOtgYqBFsv8Qv5f5euvHS1VT9DnYQFCW9xRXxp3p7RHxwQ_Au_ctKeYg6WW3k5TRIp5OuCLw0go_1FTZCSadrhjDt1Xcn3x--rXJSvkCcyDi-mZ46lxlQ41BFwQRlgHoUKrZBBVkFGDFSdvk_VKe66517iP8k4JBCgUwSUpd8j6bD6Lu4RW2stGjoVzySouVaudC6nBaq0auoYREYMIjS_I4khwcWvyCbdszVLsBsRusthNNSJHz33ul7ga77b-iZp5bomY2PnB_PHGFBMzLQLPeItoiwp2xd5qDYs3kqnYlDgO82DQqymG2pnVtBqR40HXq9dvD2nv_a_tk40KCyW4YEIekPX-cREPIXzp3bc8R58AcbvrVw priority: 102 providerName: ProQuest |
Title | Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds |
URI | https://link.springer.com/article/10.1038/s41534-021-00510-2 https://www.proquest.com/docview/2619336967 https://doaj.org/article/89481ca49254402ca66add6748aff06d |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfDFalU8rUcefNNosslm9_p2PVrKgUW0hXuL-SwH9ardvf_fmVy2paKFPi1sMjBkJpmZZOY3hLx3MYUUJ5FJ6WumQhTMuqpmNul6ooTjMl9dfDnVJ-dqvqgXW6QaamFy0n6GtMzH9JAd9rkDQyMVw4SCrEcMjt0dhG5HrZ7p2e29ygSCCCVKfQyX7T9I79igDNV_x7_860k0W5rjZ-RpcRHpdMPUc7IVV3tkd2i_QMtu3COPc_am716QH2c5-bWjpeYJqH-vYcnWP6kvZN0B7dEsgdbBmFv2FG9gqaWXyxSxwTwd0MWBJ8o_1RT7ES07jJdD95KcHx-dzU5YaZ3APBiYnjmeGlfpUIO7BU6EdeAotEoGUQUZNezh5G2yXmnPNfcaoyjvlEB4QhFckvIV2V5dreJrQivtZSMnwrlkFZeq1c6F1GCtVg2kYUTEsJjGF1xxbG9xafL7tmzNRgAGBGCyAEw1Ih9uaH5tUDXunX2IMrqZiYjY-cfV9YUpGmJahJ3xFrEWFcTE3moNRze2UrEpcWRzf5CwKdu0Mxg-Suxo2IzIx0Hqt8P_Z-nNw6a_JU8qLJvgggm5T7b763V8B85M78bkUbNoxmRnOp1_n8P38Oj067dx1ulxviD4A-rg8No |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAXKC8RWsAHOIHp-rHOBgkhCq1S2kYIpVJvrp8oUkna7kaIP8VvZGbjbVQkeut1ba-smfG87JmPkFcuppDiMDIpfclUiJxZJ0pmky6HirtCtqmLo7EeHauvJ-XJGvnT1cLgs8pOJ7aKOsw95si30dOXCD43-Hh-wRA1Cm9XOwiNpVgcxN-_IGSrP-x_Af6-FmJvd_J5xDKqAPOgexvmijRwQocSPBGwr9aBDa2UDFwEGTWId_I2Wa-0L3ThNQYY3imOnft4cAkToKDy15WEUKZH1nd2x9--r7I6QwhhFM_VOYWstmuwkFIxfAnRHgAmrlnAFijgmnf7z4Vsa-f2Nsi97KDST0uJekDW4uwhud-BP9CsCx6R00n74Lamuc4K1lwsgE2Ln9TnyfV72qApBNLBmJs2FLO-1NKzaYoIak-7juawE1q8KyliIE1rjNFD_Zgc3wphn5DebD6LTwkV2suBHHLnklWFVJV2LqQB1oeVsDT0Ce9IaHzuZY6QGmemvVOXlVmS3QDZTUt2I_rkzdWa82Unjxtn7yBnrmZiF-72w_zyh8mH2lTY6sZb7O-oIA73VmswFwjfYlMqcJtbHV9NVg21WQlyn7zteL0a_v-Wnt38t5fkzmhydGgO98cHm-SuwDKNgjMut0ivuVzE5-A8Ne5FllhKTm_7kPwF9ucoXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIiEuvBGBFnyAE5is117vBqmqgBK1FCoOrZSb62cVqSRtdyPEX-PXdcbxNioSvfWatSNr3jP2zEfIGxuij2EUmBCuYtIHzowtK2aiqkaS20Kk0sWPA7V7JL9Nqska-dv3wuCzyt4mJkPt5w5r5EOM9AWCz9XDmJ9F_NwZb5-dM0SQwpvWHk5jKSL74c9vSN_arb0d4PXbshx_PfyyyzLCAHNghztmi1jbUvkKohLwtcaCP22k8Lz0IigQ9ehMNE4qV6jCKUw2nJUcp_hxbyMWQ8H836lFxVHH6km9qu-MIJmRPPfpFKIZtuArhWT4JiKpAiuv-cIEGXAtzv3najZ5vPFDcj-HqvTTUrYekbUwe0we9DAQNFuFJ-T4MD29bWnuuII95wtg2OIXdXlx-5F26BSBcPDNTjuK9V9q6Ok0BoS3p_1sczgJLT5UFNGQpi1m6759So5uhazPyPpsPgvPCS2VE7UYcWujkYWQjbLWxxo7xSrY6geE9yTULk81R3CNU51u10Wjl2TXQHadyK7LAXl3tedsOdPjxtWfkTNXK3Eed_phfnGis3rrBofeOIOTHiVk5M4oBY4DgVxMjAUec6Pnq85GotUrkR6Q9z2vV5__f6QXN__ba3IXVEN_3zvYf0nuldivUXDGxQZZ7y4WYROiqM6-SuJKyfFt68clvm4rLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+practical+quantum+computers%3A+transmon+qubit+with+a+lifetime+approaching+0.5+milliseconds&rft.jtitle=npj+quantum+information&rft.au=Wang%2C+Chenlu&rft.au=Li%2C+Xuegang&rft.au=Xu%2C+Huikai&rft.au=Li%2C+Zhiyuan&rft.date=2022-01-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2056-6387&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41534-021-00510-2&rft.externalDocID=10_1038_s41534_021_00510_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon |