Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines
In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave cavity) instrumental for determining not only the kind of machine we may operate, but also the quantitative bounds of its performance? Figurative...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 18; no. 7; p. 244 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave cavity) instrumental for determining not only the kind of machine we may operate, but also the quantitative bounds of its performance? Figuratively speaking, if the multiatom cluster is the "crude oil", the question is: Which preparation of the cluster is the refining process that can deliver a "gasoline" with a "specific octane"? We classify coherences or quantum correlations among the atoms according to their ability to serve as: (i) fuel for nonthermal machines corresponding to atomic states whose coherences displace or squeeze the cavity field, as well as cause its heating; and (ii) fuel that is purely "combustible", i.e., corresponds to atomic states that only allow for heat and entropy exchange with the field and can energize a proper heat engine. We identify highly promising multiatom states for each kind of fuel and propose viable experimental schemes for their implementation. |
---|---|
AbstractList | In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave cavity) instrumental for determining not only the kind of machine we may operate, but also the quantitative bounds of its performance? Figuratively speaking, if the multiatom cluster is the “crude oil”, the question is: Which preparation of the cluster is the refining process that can deliver a “gasoline” with a “specific octane”? We classify coherences or quantum correlations among the atoms according to their ability to serve as: (i) fuel for nonthermal machines corresponding to atomic states whose coherences displace or squeeze the cavity field, as well as cause its heating; and (ii) fuel that is purely “combustible”, i.e., corresponds to atomic states that only allow for heat and entropy exchange with the field and can energize a proper heat engine. We identify highly promising multiatom states for each kind of fuel and propose viable experimental schemes for their implementation. |
Author | Kurizki, Gershon Niedenzu, Wolfgang Müstecaplıoğlu, Özgür Dağ, Ceren |
Author_xml | – sequence: 1 givenname: Ceren surname: Dağ fullname: Dağ, Ceren – sequence: 2 givenname: Wolfgang surname: Niedenzu fullname: Niedenzu, Wolfgang – sequence: 3 givenname: Özgür surname: Müstecaplıoğlu fullname: Müstecaplıoğlu, Özgür – sequence: 4 givenname: Gershon surname: Kurizki fullname: Kurizki, Gershon |
BookMark | eNpNkU9LAzEQxYNUsFYPfoMc9VBNNtnd7FGKfwqtIlQ8htlkYrfsJjXZPfjtba0UTzPzePwezDsnIx88EnLF2a0QFbtDrljJMilPyJizqppKwdjo335GzlPaMJaJjBdj8rEc2r6BPnT0bQDfDx2dhTVG9AYTbTxdNiaGDhLGRCHRxwFb6kKkq52pg5aCt_Ql-P7vXIJZNx7TBTl10Ca8_JsT8v74sJo9TxevT_PZ_WJqZFb1U0AsbC5qV7lCcF6CtaqUZa1YXjlUma2dkK6oQQFzOStN7kChq3ciB7RCTMj8wLUBNnobmw7itw7Q6F8hxE8NsW9MixrB5lZKUZdcyUqYytg8KxVHKbk0hdqxrg-sbQxfA6Zed00y2LbgMQxJc5XleSFkto-9OVh3z0kpojtGc6b3RehjEeIH0e58sg |
CitedBy_id | crossref_primary_10_1016_j_physrep_2022_01_001 crossref_primary_10_7498_aps_68_20181525 crossref_primary_10_1038_s41566_022_01039_2 crossref_primary_10_1038_s41598_021_92258_0 crossref_primary_10_1103_PhysRevResearch_3_023235 crossref_primary_10_3390_e24050644 crossref_primary_10_1088_2058_9565_ab5e4f crossref_primary_10_1103_PhysRevE_97_022111 crossref_primary_10_1088_1367_2630_ab2684 crossref_primary_10_1103_PhysRevE_100_012109 crossref_primary_10_3390_info15010035 crossref_primary_10_1209_0295_5075_117_50002 crossref_primary_10_1140_epjs_s11734_021_00091_3 crossref_primary_10_1103_PhysRevE_101_022113 crossref_primary_10_1140_epjqt_s40507_022_00148_9 crossref_primary_10_1103_PhysRevA_94_062315 crossref_primary_10_1103_PhysRevA_97_012114 crossref_primary_10_1088_1367_2630_aca49b crossref_primary_10_1103_PhysRevA_102_042220 crossref_primary_10_1103_PhysRevA_99_012319 crossref_primary_10_1103_PhysRevA_96_022319 crossref_primary_10_1126_sciadv_adf1070 crossref_primary_10_1140_epjs_s11734_021_00085_1 crossref_primary_10_1088_1367_2630_ac6a01 crossref_primary_10_1103_PhysRevE_100_032129 crossref_primary_10_1103_PhysRevA_110_012411 crossref_primary_10_1007_s11128_017_1591_1 crossref_primary_10_1088_2058_9565_aaf5f7 crossref_primary_10_1007_s11128_019_2488_y crossref_primary_10_1103_PhysRevE_102_042111 crossref_primary_10_1103_PhysRevA_96_032117 crossref_primary_10_1103_PhysRevE_106_054131 crossref_primary_10_1088_1367_2630_ad32e5 crossref_primary_10_1088_1361_6455_abb4b2 crossref_primary_10_1103_PhysRevA_98_062104 crossref_primary_10_1140_epjst_e2019_800060_7 crossref_primary_10_1038_s41534_017_0012_8 crossref_primary_10_1142_S0217732321501741 crossref_primary_10_1088_1367_2630_aaed55 crossref_primary_10_1103_PhysRevE_99_042145 crossref_primary_10_1103_PhysRevA_99_052105 crossref_primary_10_1103_PhysRevLett_126_130403 crossref_primary_10_1038_s41467_017_01991_6 crossref_primary_10_1088_1367_2630_ac9498 crossref_primary_10_1088_1367_2630_18_8_083012 crossref_primary_10_1088_1367_2630_ac5131 crossref_primary_10_1103_PhysRevA_101_062316 crossref_primary_10_1103_PhysRevA_107_042202 crossref_primary_10_1007_s11128_020_02898_w crossref_primary_10_1007_s11128_018_2076_6 crossref_primary_10_1088_1367_2630_ad202a crossref_primary_10_1364_JOSAB_36_003000 crossref_primary_10_1364_JOSAB_33_002313 crossref_primary_10_1088_1751_8121_ac3eba crossref_primary_10_1088_1674_1056_acfa85 crossref_primary_10_1063_5_0139998 crossref_primary_10_1103_PhysRevResearch_2_023145 crossref_primary_10_1103_PhysRevResearch_4_023221 crossref_primary_10_3390_e24040474 crossref_primary_10_1021_acs_jpcc_8b11445 crossref_primary_10_1038_s42005_021_00599_z crossref_primary_10_1088_1367_2630_ad3573 crossref_primary_10_1103_PhysRevE_96_062120 crossref_primary_10_1103_PhysRevLett_122_110601 crossref_primary_10_1073_pnas_1711381114 crossref_primary_10_1088_1367_2630_abeb47 crossref_primary_10_1088_2058_9565_ac10ef crossref_primary_10_1007_s12043_018_1615_0 crossref_primary_10_1088_1402_4896_ab4de5 crossref_primary_10_1007_s11128_018_1893_y crossref_primary_10_3390_e21121182 crossref_primary_10_1103_PhysRevE_108_014130 crossref_primary_10_1103_PhysRevResearch_6_013310 crossref_primary_10_1140_epjp_s13360_022_03148_x crossref_primary_10_1364_JOSAB_36_001252 crossref_primary_10_1103_PhysRevE_95_022119 crossref_primary_10_1103_PhysRevA_109_043705 |
Cites_doi | 10.1209/epl/i2004-10101-2 10.1016/bs.aamop.2015.07.002 10.1103/PhysRevE.90.022102 10.1088/1751-8113/40/28/S01 10.1070/PU1996v039n07ABEH000158 10.1103/PhysRevLett.59.1899 10.1016/0030-4018(90)90325-N 10.1103/PhysRevLett.74.900 10.1103/PhysRevA.81.052121 10.1103/RevModPhys.71.S263 10.1103/PhysRev.112.1940 10.1007/BF01614224 10.1126/science.1078955 10.1038/srep12953 10.1103/PhysRevLett.98.070502 10.1103/PhysRevA.71.053818 10.1007/BF01011769 10.1103/PhysRevLett.54.551 10.1103/PhysRevA.88.062311 10.1103/PhysRev.170.379 10.1103/PhysRevLett.92.153601 10.1103/PhysRevLett.58.353 10.1103/PhysRevX.6.011032 10.1103/PhysRev.93.99 10.1103/PhysRevLett.82.3795 10.1103/PhysRevE.89.052132 10.1103/PhysRevE.86.051105 10.1209/0295-5075/88/50003 10.1103/PhysRevA.46.5913 10.1103/PhysRevE.84.051122 10.1063/1.1523786 10.1103/PhysRevA.36.90 10.1103/PhysRevA.49.2933 10.1103/PhysRevE.73.036122 10.1103/PhysRevLett.104.251102 10.1103/PhysRevE.93.012145 10.1038/srep16245 10.1103/PhysRevA.65.023809 10.1209/0295-5075/106/20001 10.1103/PhysRev.159.208 10.1103/PhysRevA.34.3077 10.1103/PhysRevA.75.022327 10.1103/PhysRevA.34.2032 10.1103/PhysRevE.91.032119 10.1038/35001526 10.1103/PhysRevA.87.033831 10.1209/0295-5075/103/60005 10.1103/PhysRevLett.112.030602 10.1103/PhysRevLett.83.714 10.1103/RevModPhys.68.127 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 DOA |
DOI | 10.3390/e18070244 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
EndPage | 244 |
ExternalDocumentID | oai_doaj_org_article_ead5d443b718493c9cd52781e4414c68 10_3390_e18070244 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IPNFZ J9A KQ8 L6V M7S MODMG M~E OK1 PIMPY PROAC PTHSS RIG RNS TR2 TUS XSB ~8M 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c429t-aee6d53bf9f63117add8747b8059fe82dbf34f6ba8a0f507c5fa8efb34f1aed33 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Tue Oct 22 15:14:27 EDT 2024 Fri Oct 25 06:18:27 EDT 2024 Fri Aug 23 03:47:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-aee6d53bf9f63117add8747b8059fe82dbf34f6ba8a0f507c5fa8efb34f1aed33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/ead5d443b718493c9cd52781e4414c68 |
PQID | 1825563423 |
PQPubID | 23500 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ead5d443b718493c9cd52781e4414c68 proquest_miscellaneous_1825563423 crossref_primary_10_3390_e18070244 |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2016 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref52 ref55 ref10 Nielsen (ref51) 2010 ref19 ref18 ref50 Scully (ref16) 2001 ref46 Scully (ref17) 2002; 643 ref48 ref47 ref42 Orszag (ref11) 1994; 49 Gelbwaser-Klimovsky (ref36) 2015; 64 ref49 Breuer (ref45) 2002 ref8 Gardiner (ref44) 2000 ref7 ref9 ref4 ref3 Mandel (ref53) 1995 ref5 ref40 Schaller (ref43) 2014 ref35 ref34 ref31 ref30 ref33 ref32 Varcoe (ref6) 2000; 403 ref2 ref1 Agarwal (ref54) 2012 ref38 ref24 ref23 Meystre (ref41) 2007 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Walls (ref39) 2008 ref60 Schwabl (ref37) 2006 Niedenzu (ref29) 2015 ref61 |
References_xml | – ident: ref32 doi: 10.1209/epl/i2004-10101-2 – volume: 64 start-page: 329 year: 2015 ident: ref36 article-title: Thermodynamics of Quantum Systems Under Dynamical Control publication-title: Adv. At. Mol. Opt. Phys. doi: 10.1016/bs.aamop.2015.07.002 contributor: fullname: Gelbwaser-Klimovsky – ident: ref35 doi: 10.1103/PhysRevE.90.022102 – ident: ref40 doi: 10.1088/1751-8113/40/28/S01 – ident: ref3 doi: 10.1070/PU1996v039n07ABEH000158 – ident: ref10 doi: 10.1103/PhysRevLett.59.1899 – ident: ref38 doi: 10.1016/0030-4018(90)90325-N – year: 2012 ident: ref54 contributor: fullname: Agarwal – ident: ref12 doi: 10.1103/PhysRevLett.74.900 – ident: ref21 doi: 10.1103/PhysRevA.81.052121 – year: 2008 ident: ref39 contributor: fullname: Walls – ident: ref1 doi: 10.1103/RevModPhys.71.S263 – year: 2015 ident: ref29 article-title: Efficiency bounds for quantum engines powered by non-thermal baths contributor: fullname: Niedenzu – ident: ref2 doi: 10.1103/PhysRev.112.1940 – ident: ref30 doi: 10.1007/BF01614224 – ident: ref18 doi: 10.1126/science.1078955 – ident: ref27 doi: 10.1038/srep12953 – ident: ref47 doi: 10.1103/PhysRevLett.98.070502 – ident: ref9 doi: 10.1103/PhysRevA.71.053818 – ident: ref31 doi: 10.1007/BF01011769 – ident: ref4 doi: 10.1103/PhysRevLett.54.551 – ident: ref55 doi: 10.1103/PhysRevA.88.062311 – year: 2001 ident: ref16 contributor: fullname: Scully – ident: ref42 doi: 10.1103/PhysRev.170.379 – ident: ref46 doi: 10.1103/PhysRevLett.92.153601 – ident: ref7 doi: 10.1103/PhysRevLett.58.353 – ident: ref57 doi: 10.1103/PhysRevX.6.011032 – ident: ref52 doi: 10.1103/PhysRev.93.99 – ident: ref8 doi: 10.1103/PhysRevLett.82.3795 – ident: ref20 doi: 10.1103/PhysRevE.89.052132 – ident: ref24 doi: 10.1103/PhysRevE.86.051105 – ident: ref19 doi: 10.1209/0295-5075/88/50003 – ident: ref15 doi: 10.1103/PhysRevA.46.5913 – year: 2002 ident: ref45 contributor: fullname: Breuer – year: 2010 ident: ref51 contributor: fullname: Nielsen – ident: ref23 doi: 10.1103/PhysRevE.84.051122 – year: 2007 ident: ref41 contributor: fullname: Meystre – volume: 643 start-page: 83 year: 2002 ident: ref17 article-title: Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence II: Microscopic Model publication-title: AIP Conf. Proc. doi: 10.1063/1.1523786 contributor: fullname: Scully – ident: ref59 doi: 10.1103/PhysRevA.36.90 – year: 2000 ident: ref44 contributor: fullname: Gardiner – volume: 49 start-page: 2933 year: 1994 ident: ref11 article-title: Quantum cooperative effects in a micromaser publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.2933 contributor: fullname: Orszag – ident: ref22 doi: 10.1103/PhysRevE.73.036122 – ident: ref48 doi: 10.1103/PhysRevLett.104.251102 – ident: ref28 doi: 10.1103/PhysRevE.93.012145 – ident: ref56 doi: 10.1038/srep16245 – ident: ref14 doi: 10.1103/PhysRevA.65.023809 – ident: ref25 doi: 10.1209/0295-5075/106/20001 – year: 1995 ident: ref53 contributor: fullname: Mandel – ident: ref49 doi: 10.1103/PhysRev.159.208 – year: 2006 ident: ref37 contributor: fullname: Schwabl – ident: ref5 doi: 10.1103/PhysRevA.34.3077 – ident: ref58 doi: 10.1103/PhysRevA.75.022327 – ident: ref13 doi: 10.1103/PhysRevA.34.2032 – ident: ref33 doi: 10.1103/PhysRevE.91.032119 – volume: 403 start-page: 743 year: 2000 ident: ref6 article-title: Preparing pure photon number states of the radiation field publication-title: Nature doi: 10.1038/35001526 contributor: fullname: Varcoe – year: 2014 ident: ref43 contributor: fullname: Schaller – ident: ref61 doi: 10.1103/PhysRevA.87.033831 – ident: ref34 doi: 10.1209/0295-5075/103/60005 – ident: ref26 doi: 10.1103/PhysRevLett.112.030602 – ident: ref60 doi: 10.1103/PhysRevLett.83.714 – ident: ref50 doi: 10.1103/RevModPhys.68.127 |
SSID | ssj0023216 |
Score | 2.500046 |
Snippet | In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 244 |
SubjectTerms | Activation Atomic states Clusters Coherence Entropy Fuels Holes micromaser Nuclear fuels quantum coherence quantum thermodynamics |
Title | Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines |
URI | https://search.proquest.com/docview/1825563423 https://doaj.org/article/ead5d443b718493c9cd52781e4414c68 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86X3wRRcX5MaL4WtYsaZo8OtkHwoaKw72VpElAmJ3Y9v_3knZD8cEXXwoNhTZ3l7vfL727IHQruGDSSR1JbmTElFGRTqhfeAAvTMzyJGzmzOZ8umAPy2T57agvnxPWtAduBNeHmSaGMarBiTJJc5mbZJAKYiGOs5w3Zb6x3JCplmrRAeFNHyEKpL5viQDThkj2I_qEJv2_fHAILONDdNAiQnzXfMkR2rHFMXoNhbFAiN_xUw2Tr9-xL6QIpXklfivwLCTSKV8riVWJx7VdYcCfGNQOrnaFVWHwfF1U7e0s5Eza8gQtxqOX-2nUnoEQ5RApqkhZy01CtZOOU0JScEcCGIAWAIucFQOjHWWOayVU7ADb5YlTwjoNg0RZQ-kp6hTrwp4h7ETOTAqrwuScGUm0SrnzECJ2sQE_00U3G9lkH02riwwoghdgthVgFw291LYP-O7UYQB0lrU6y_7SWRddb2SegTX7XxSqsOu6zIDt-I5lgPHO_-NFF2gfAA5v0msvUaf6rO0VgIhK99CuGE96aG84mj8-94L1wHWyJF8m_8in |
link.rule.ids | 315,783,787,867,2109,27936,27937,33386,33757 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiatom+Quantum+Coherences+in+Micromasers+as+Fuel+for+Thermal+and+Nonthermal+Machines&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Ceren+B.+Da%C4%9F&rft.au=Wolfgang+Niedenzu&rft.au=%C3%96zg%C3%BCr+E.+M%C3%BCstecapl%C4%B1o%C4%9Flu&rft.au=Gershon+Kurizki&rft.date=2016-07-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=18&rft.issue=7&rft.spage=244&rft_id=info:doi/10.3390%2Fe18070244&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ead5d443b718493c9cd52781e4414c68 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |