Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines

In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave cavity) instrumental for determining not only the kind of machine we may operate, but also the quantitative bounds of its performance? Figurative...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 18; no. 7; p. 244
Main Authors Dağ, Ceren, Niedenzu, Wolfgang, Müstecaplıoğlu, Özgür, Kurizki, Gershon
Format Journal Article
LanguageEnglish
Published MDPI AG 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave cavity) instrumental for determining not only the kind of machine we may operate, but also the quantitative bounds of its performance? Figuratively speaking, if the multiatom cluster is the "crude oil", the question is: Which preparation of the cluster is the refining process that can deliver a "gasoline" with a "specific octane"? We classify coherences or quantum correlations among the atoms according to their ability to serve as: (i) fuel for nonthermal machines corresponding to atomic states whose coherences displace or squeeze the cavity field, as well as cause its heating; and (ii) fuel that is purely "combustible", i.e., corresponds to atomic states that only allow for heat and entropy exchange with the field and can energize a proper heat engine. We identify highly promising multiatom states for each kind of fuel and propose viable experimental schemes for their implementation.
AbstractList In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave cavity) instrumental for determining not only the kind of machine we may operate, but also the quantitative bounds of its performance? Figuratively speaking, if the multiatom cluster is the “crude oil”, the question is: Which preparation of the cluster is the refining process that can deliver a “gasoline” with a “specific octane”? We classify coherences or quantum correlations among the atoms according to their ability to serve as: (i) fuel for nonthermal machines corresponding to atomic states whose coherences displace or squeeze the cavity field, as well as cause its heating; and (ii) fuel that is purely “combustible”, i.e., corresponds to atomic states that only allow for heat and entropy exchange with the field and can energize a proper heat engine. We identify highly promising multiatom states for each kind of fuel and propose viable experimental schemes for their implementation.
Author Kurizki, Gershon
Niedenzu, Wolfgang
Müstecaplıoğlu, Özgür
Dağ, Ceren
Author_xml – sequence: 1
  givenname: Ceren
  surname: Dağ
  fullname: Dağ, Ceren
– sequence: 2
  givenname: Wolfgang
  surname: Niedenzu
  fullname: Niedenzu, Wolfgang
– sequence: 3
  givenname: Özgür
  surname: Müstecaplıoğlu
  fullname: Müstecaplıoğlu, Özgür
– sequence: 4
  givenname: Gershon
  surname: Kurizki
  fullname: Kurizki, Gershon
BookMark eNpNkU9LAzEQxYNUsFYPfoMc9VBNNtnd7FGKfwqtIlQ8htlkYrfsJjXZPfjtba0UTzPzePwezDsnIx88EnLF2a0QFbtDrljJMilPyJizqppKwdjo335GzlPaMJaJjBdj8rEc2r6BPnT0bQDfDx2dhTVG9AYTbTxdNiaGDhLGRCHRxwFb6kKkq52pg5aCt_Ql-P7vXIJZNx7TBTl10Ca8_JsT8v74sJo9TxevT_PZ_WJqZFb1U0AsbC5qV7lCcF6CtaqUZa1YXjlUma2dkK6oQQFzOStN7kChq3ciB7RCTMj8wLUBNnobmw7itw7Q6F8hxE8NsW9MixrB5lZKUZdcyUqYytg8KxVHKbk0hdqxrg-sbQxfA6Zed00y2LbgMQxJc5XleSFkto-9OVh3z0kpojtGc6b3RehjEeIH0e58sg
CitedBy_id crossref_primary_10_1016_j_physrep_2022_01_001
crossref_primary_10_7498_aps_68_20181525
crossref_primary_10_1038_s41566_022_01039_2
crossref_primary_10_1038_s41598_021_92258_0
crossref_primary_10_1103_PhysRevResearch_3_023235
crossref_primary_10_3390_e24050644
crossref_primary_10_1088_2058_9565_ab5e4f
crossref_primary_10_1103_PhysRevE_97_022111
crossref_primary_10_1088_1367_2630_ab2684
crossref_primary_10_1103_PhysRevE_100_012109
crossref_primary_10_3390_info15010035
crossref_primary_10_1209_0295_5075_117_50002
crossref_primary_10_1140_epjs_s11734_021_00091_3
crossref_primary_10_1103_PhysRevE_101_022113
crossref_primary_10_1140_epjqt_s40507_022_00148_9
crossref_primary_10_1103_PhysRevA_94_062315
crossref_primary_10_1103_PhysRevA_97_012114
crossref_primary_10_1088_1367_2630_aca49b
crossref_primary_10_1103_PhysRevA_102_042220
crossref_primary_10_1103_PhysRevA_99_012319
crossref_primary_10_1103_PhysRevA_96_022319
crossref_primary_10_1126_sciadv_adf1070
crossref_primary_10_1140_epjs_s11734_021_00085_1
crossref_primary_10_1088_1367_2630_ac6a01
crossref_primary_10_1103_PhysRevE_100_032129
crossref_primary_10_1103_PhysRevA_110_012411
crossref_primary_10_1007_s11128_017_1591_1
crossref_primary_10_1088_2058_9565_aaf5f7
crossref_primary_10_1007_s11128_019_2488_y
crossref_primary_10_1103_PhysRevE_102_042111
crossref_primary_10_1103_PhysRevA_96_032117
crossref_primary_10_1103_PhysRevE_106_054131
crossref_primary_10_1088_1367_2630_ad32e5
crossref_primary_10_1088_1361_6455_abb4b2
crossref_primary_10_1103_PhysRevA_98_062104
crossref_primary_10_1140_epjst_e2019_800060_7
crossref_primary_10_1038_s41534_017_0012_8
crossref_primary_10_1142_S0217732321501741
crossref_primary_10_1088_1367_2630_aaed55
crossref_primary_10_1103_PhysRevE_99_042145
crossref_primary_10_1103_PhysRevA_99_052105
crossref_primary_10_1103_PhysRevLett_126_130403
crossref_primary_10_1038_s41467_017_01991_6
crossref_primary_10_1088_1367_2630_ac9498
crossref_primary_10_1088_1367_2630_18_8_083012
crossref_primary_10_1088_1367_2630_ac5131
crossref_primary_10_1103_PhysRevA_101_062316
crossref_primary_10_1103_PhysRevA_107_042202
crossref_primary_10_1007_s11128_020_02898_w
crossref_primary_10_1007_s11128_018_2076_6
crossref_primary_10_1088_1367_2630_ad202a
crossref_primary_10_1364_JOSAB_36_003000
crossref_primary_10_1364_JOSAB_33_002313
crossref_primary_10_1088_1751_8121_ac3eba
crossref_primary_10_1088_1674_1056_acfa85
crossref_primary_10_1063_5_0139998
crossref_primary_10_1103_PhysRevResearch_2_023145
crossref_primary_10_1103_PhysRevResearch_4_023221
crossref_primary_10_3390_e24040474
crossref_primary_10_1021_acs_jpcc_8b11445
crossref_primary_10_1038_s42005_021_00599_z
crossref_primary_10_1088_1367_2630_ad3573
crossref_primary_10_1103_PhysRevE_96_062120
crossref_primary_10_1103_PhysRevLett_122_110601
crossref_primary_10_1073_pnas_1711381114
crossref_primary_10_1088_1367_2630_abeb47
crossref_primary_10_1088_2058_9565_ac10ef
crossref_primary_10_1007_s12043_018_1615_0
crossref_primary_10_1088_1402_4896_ab4de5
crossref_primary_10_1007_s11128_018_1893_y
crossref_primary_10_3390_e21121182
crossref_primary_10_1103_PhysRevE_108_014130
crossref_primary_10_1103_PhysRevResearch_6_013310
crossref_primary_10_1140_epjp_s13360_022_03148_x
crossref_primary_10_1364_JOSAB_36_001252
crossref_primary_10_1103_PhysRevE_95_022119
crossref_primary_10_1103_PhysRevA_109_043705
Cites_doi 10.1209/epl/i2004-10101-2
10.1016/bs.aamop.2015.07.002
10.1103/PhysRevE.90.022102
10.1088/1751-8113/40/28/S01
10.1070/PU1996v039n07ABEH000158
10.1103/PhysRevLett.59.1899
10.1016/0030-4018(90)90325-N
10.1103/PhysRevLett.74.900
10.1103/PhysRevA.81.052121
10.1103/RevModPhys.71.S263
10.1103/PhysRev.112.1940
10.1007/BF01614224
10.1126/science.1078955
10.1038/srep12953
10.1103/PhysRevLett.98.070502
10.1103/PhysRevA.71.053818
10.1007/BF01011769
10.1103/PhysRevLett.54.551
10.1103/PhysRevA.88.062311
10.1103/PhysRev.170.379
10.1103/PhysRevLett.92.153601
10.1103/PhysRevLett.58.353
10.1103/PhysRevX.6.011032
10.1103/PhysRev.93.99
10.1103/PhysRevLett.82.3795
10.1103/PhysRevE.89.052132
10.1103/PhysRevE.86.051105
10.1209/0295-5075/88/50003
10.1103/PhysRevA.46.5913
10.1103/PhysRevE.84.051122
10.1063/1.1523786
10.1103/PhysRevA.36.90
10.1103/PhysRevA.49.2933
10.1103/PhysRevE.73.036122
10.1103/PhysRevLett.104.251102
10.1103/PhysRevE.93.012145
10.1038/srep16245
10.1103/PhysRevA.65.023809
10.1209/0295-5075/106/20001
10.1103/PhysRev.159.208
10.1103/PhysRevA.34.3077
10.1103/PhysRevA.75.022327
10.1103/PhysRevA.34.2032
10.1103/PhysRevE.91.032119
10.1038/35001526
10.1103/PhysRevA.87.033831
10.1209/0295-5075/103/60005
10.1103/PhysRevLett.112.030602
10.1103/PhysRevLett.83.714
10.1103/RevModPhys.68.127
ContentType Journal Article
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOA
DOI 10.3390/e18070244
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
EndPage 244
ExternalDocumentID oai_doaj_org_article_ead5d443b718493c9cd52781e4414c68
10_3390_e18070244
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PIMPY
PROAC
PTHSS
RIG
RNS
TR2
TUS
XSB
~8M
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c429t-aee6d53bf9f63117add8747b8059fe82dbf34f6ba8a0f507c5fa8efb34f1aed33
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Tue Oct 22 15:14:27 EDT 2024
Fri Oct 25 06:18:27 EDT 2024
Fri Aug 23 03:47:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-aee6d53bf9f63117add8747b8059fe82dbf34f6ba8a0f507c5fa8efb34f1aed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/ead5d443b718493c9cd52781e4414c68
PQID 1825563423
PQPubID 23500
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ead5d443b718493c9cd52781e4414c68
proquest_miscellaneous_1825563423
crossref_primary_10_3390_e18070244
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref55
ref10
Nielsen (ref51) 2010
ref19
ref18
ref50
Scully (ref16) 2001
ref46
Scully (ref17) 2002; 643
ref48
ref47
ref42
Orszag (ref11) 1994; 49
Gelbwaser-Klimovsky (ref36) 2015; 64
ref49
Breuer (ref45) 2002
ref8
Gardiner (ref44) 2000
ref7
ref9
ref4
ref3
Mandel (ref53) 1995
ref5
ref40
Schaller (ref43) 2014
ref35
ref34
ref31
ref30
ref33
ref32
Varcoe (ref6) 2000; 403
ref2
ref1
Agarwal (ref54) 2012
ref38
ref24
ref23
Meystre (ref41) 2007
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Walls (ref39) 2008
ref60
Schwabl (ref37) 2006
Niedenzu (ref29) 2015
ref61
References_xml – ident: ref32
  doi: 10.1209/epl/i2004-10101-2
– volume: 64
  start-page: 329
  year: 2015
  ident: ref36
  article-title: Thermodynamics of Quantum Systems Under Dynamical Control
  publication-title: Adv. At. Mol. Opt. Phys.
  doi: 10.1016/bs.aamop.2015.07.002
  contributor:
    fullname: Gelbwaser-Klimovsky
– ident: ref35
  doi: 10.1103/PhysRevE.90.022102
– ident: ref40
  doi: 10.1088/1751-8113/40/28/S01
– ident: ref3
  doi: 10.1070/PU1996v039n07ABEH000158
– ident: ref10
  doi: 10.1103/PhysRevLett.59.1899
– ident: ref38
  doi: 10.1016/0030-4018(90)90325-N
– year: 2012
  ident: ref54
  contributor:
    fullname: Agarwal
– ident: ref12
  doi: 10.1103/PhysRevLett.74.900
– ident: ref21
  doi: 10.1103/PhysRevA.81.052121
– year: 2008
  ident: ref39
  contributor:
    fullname: Walls
– ident: ref1
  doi: 10.1103/RevModPhys.71.S263
– year: 2015
  ident: ref29
  article-title: Efficiency bounds for quantum engines powered by non-thermal baths
  contributor:
    fullname: Niedenzu
– ident: ref2
  doi: 10.1103/PhysRev.112.1940
– ident: ref30
  doi: 10.1007/BF01614224
– ident: ref18
  doi: 10.1126/science.1078955
– ident: ref27
  doi: 10.1038/srep12953
– ident: ref47
  doi: 10.1103/PhysRevLett.98.070502
– ident: ref9
  doi: 10.1103/PhysRevA.71.053818
– ident: ref31
  doi: 10.1007/BF01011769
– ident: ref4
  doi: 10.1103/PhysRevLett.54.551
– ident: ref55
  doi: 10.1103/PhysRevA.88.062311
– year: 2001
  ident: ref16
  contributor:
    fullname: Scully
– ident: ref42
  doi: 10.1103/PhysRev.170.379
– ident: ref46
  doi: 10.1103/PhysRevLett.92.153601
– ident: ref7
  doi: 10.1103/PhysRevLett.58.353
– ident: ref57
  doi: 10.1103/PhysRevX.6.011032
– ident: ref52
  doi: 10.1103/PhysRev.93.99
– ident: ref8
  doi: 10.1103/PhysRevLett.82.3795
– ident: ref20
  doi: 10.1103/PhysRevE.89.052132
– ident: ref24
  doi: 10.1103/PhysRevE.86.051105
– ident: ref19
  doi: 10.1209/0295-5075/88/50003
– ident: ref15
  doi: 10.1103/PhysRevA.46.5913
– year: 2002
  ident: ref45
  contributor:
    fullname: Breuer
– year: 2010
  ident: ref51
  contributor:
    fullname: Nielsen
– ident: ref23
  doi: 10.1103/PhysRevE.84.051122
– year: 2007
  ident: ref41
  contributor:
    fullname: Meystre
– volume: 643
  start-page: 83
  year: 2002
  ident: ref17
  article-title: Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence II: Microscopic Model
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1523786
  contributor:
    fullname: Scully
– ident: ref59
  doi: 10.1103/PhysRevA.36.90
– year: 2000
  ident: ref44
  contributor:
    fullname: Gardiner
– volume: 49
  start-page: 2933
  year: 1994
  ident: ref11
  article-title: Quantum cooperative effects in a micromaser
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.2933
  contributor:
    fullname: Orszag
– ident: ref22
  doi: 10.1103/PhysRevE.73.036122
– ident: ref48
  doi: 10.1103/PhysRevLett.104.251102
– ident: ref28
  doi: 10.1103/PhysRevE.93.012145
– ident: ref56
  doi: 10.1038/srep16245
– ident: ref14
  doi: 10.1103/PhysRevA.65.023809
– ident: ref25
  doi: 10.1209/0295-5075/106/20001
– year: 1995
  ident: ref53
  contributor:
    fullname: Mandel
– ident: ref49
  doi: 10.1103/PhysRev.159.208
– year: 2006
  ident: ref37
  contributor:
    fullname: Schwabl
– ident: ref5
  doi: 10.1103/PhysRevA.34.3077
– ident: ref58
  doi: 10.1103/PhysRevA.75.022327
– ident: ref13
  doi: 10.1103/PhysRevA.34.2032
– ident: ref33
  doi: 10.1103/PhysRevE.91.032119
– volume: 403
  start-page: 743
  year: 2000
  ident: ref6
  article-title: Preparing pure photon number states of the radiation field
  publication-title: Nature
  doi: 10.1038/35001526
  contributor:
    fullname: Varcoe
– year: 2014
  ident: ref43
  contributor:
    fullname: Schaller
– ident: ref61
  doi: 10.1103/PhysRevA.87.033831
– ident: ref34
  doi: 10.1209/0295-5075/103/60005
– ident: ref26
  doi: 10.1103/PhysRevLett.112.030602
– ident: ref60
  doi: 10.1103/PhysRevLett.83.714
– ident: ref50
  doi: 10.1103/RevModPhys.68.127
SSID ssj0023216
Score 2.500046
Snippet In this paper, we address the question: To what extent is the quantum state preparation of multiatom clusters (before they are injected into the microwave...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 244
SubjectTerms Activation
Atomic states
Clusters
Coherence
Entropy
Fuels
Holes
micromaser
Nuclear fuels
quantum coherence
quantum thermodynamics
Title Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines
URI https://search.proquest.com/docview/1825563423
https://doaj.org/article/ead5d443b718493c9cd52781e4414c68
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86X3wRRcX5MaL4WtYsaZo8OtkHwoaKw72VpElAmJ3Y9v_3knZD8cEXXwoNhTZ3l7vfL727IHQruGDSSR1JbmTElFGRTqhfeAAvTMzyJGzmzOZ8umAPy2T57agvnxPWtAduBNeHmSaGMarBiTJJc5mbZJAKYiGOs5w3Zb6x3JCplmrRAeFNHyEKpL5viQDThkj2I_qEJv2_fHAILONDdNAiQnzXfMkR2rHFMXoNhbFAiN_xUw2Tr9-xL6QIpXklfivwLCTSKV8riVWJx7VdYcCfGNQOrnaFVWHwfF1U7e0s5Eza8gQtxqOX-2nUnoEQ5RApqkhZy01CtZOOU0JScEcCGIAWAIucFQOjHWWOayVU7ADb5YlTwjoNg0RZQ-kp6hTrwp4h7ETOTAqrwuScGUm0SrnzECJ2sQE_00U3G9lkH02riwwoghdgthVgFw291LYP-O7UYQB0lrU6y_7SWRddb2SegTX7XxSqsOu6zIDt-I5lgPHO_-NFF2gfAA5v0msvUaf6rO0VgIhK99CuGE96aG84mj8-94L1wHWyJF8m_8in
link.rule.ids 315,783,787,867,2109,27936,27937,33386,33757
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiatom+Quantum+Coherences+in+Micromasers+as+Fuel+for+Thermal+and+Nonthermal+Machines&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Ceren+B.+Da%C4%9F&rft.au=Wolfgang+Niedenzu&rft.au=%C3%96zg%C3%BCr+E.+M%C3%BCstecapl%C4%B1o%C4%9Flu&rft.au=Gershon+Kurizki&rft.date=2016-07-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=18&rft.issue=7&rft.spage=244&rft_id=info:doi/10.3390%2Fe18070244&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ead5d443b718493c9cd52781e4414c68
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon