Building Type Classification Using CNN-Transformer Cross-Encoder Adaptive Learning From Very High Resolution Satellite Images
Building type information indicates the functional properties of buildings and plays a crucial role in smart city development and urban socioeconomic activities. Existing methods for classifying building types often face challenges in accurately distinguishing buildings between types while maintaini...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 976 - 994 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building type information indicates the functional properties of buildings and plays a crucial role in smart city development and urban socioeconomic activities. Existing methods for classifying building types often face challenges in accurately distinguishing buildings between types while maintaining well-delineated boundaries, especially in complex urban environments. This study introduces a novel framework, i.e., CNN-Transformer cross-attention feature fusion network (CTCFNet), for building type classification from very high resolution remote sensing images. CTCFNet integrates convolutional neural networks (CNNs) and Transformers using an interactive cross-encoder fusion module that enhances semantic feature learning and improves classification accuracy in complex scenarios. We develop an adaptive collaboration optimization module that applies human visual attention mechanisms to enhance the feature representation of building types and boundaries simultaneously. To address the scarcity of datasets in building type classification, we create two new datasets, i.e., the urban building type (UBT) dataset and the town building type (TBT) dataset, for model evaluation. Extensive experiments on these datasets demonstrate that CTCFNet outperforms popular CNNs, Transformers, and dual-encoder methods in identifying building types across various regions, achieving the highest mean intersection over union of 78.20% and 77.11%, F1 scores of 86.83% and 88.22%, and overall accuracy of 95.07% and 95.73% on the UBT and TBT datasets, respectively. We conclude that CTCFNet effectively addresses the challenges of high interclass similarity and intraclass inconsistency in complex scenes, yielding results with well-delineated building boundaries and accurate building types. |
---|---|
AbstractList | Building type information indicates the functional properties of buildings and plays a crucial role in smart city development and urban socioeconomic activities. Existing methods for classifying building types often face challenges in accurately distinguishing buildings between types while maintaining well-delineated boundaries, especially in complex urban environments. This study introduces a novel framework, i.e., CNN-Transformer cross-attention feature fusion network (CTCFNet), for building type classification from very high resolution remote sensing images. CTCFNet integrates convolutional neural networks (CNNs) and Transformers using an interactive cross-encoder fusion module that enhances semantic feature learning and improves classification accuracy in complex scenarios. We develop an adaptive collaboration optimization module that applies human visual attention mechanisms to enhance the feature representation of building types and boundaries simultaneously. To address the scarcity of datasets in building type classification, we create two new datasets, i.e., the urban building type (UBT) dataset and the town building type (TBT) dataset, for model evaluation. Extensive experiments on these datasets demonstrate that CTCFNet outperforms popular CNNs, Transformers, and dual-encoder methods in identifying building types across various regions, achieving the highest mean intersection over union of 78.20% and 77.11%, F1 scores of 86.83% and 88.22%, and overall accuracy of 95.07% and 95.73% on the UBT and TBT datasets, respectively. We conclude that CTCFNet effectively addresses the challenges of high interclass similarity and intraclass inconsistency in complex scenes, yielding results with well-delineated building boundaries and accurate building types. |
Author | Li, Mengmeng Wang, Xiaoqin Zhao, Wufan Zhang, Shaofeng Wu, Qunyong |
Author_xml | – sequence: 1 givenname: Shaofeng orcidid: 0009-0001-0689-264X surname: Zhang fullname: Zhang, Shaofeng email: 225520031@fzu.edu.cn organization: Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Academy of Digital China, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Mengmeng orcidid: 0000-0002-9083-0475 surname: Li fullname: Li, Mengmeng email: mli@fzu.edu.cn organization: Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Academy of Digital China, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Wufan orcidid: 0000-0002-0265-3465 surname: Zhao fullname: Zhao, Wufan email: wufanzhao@hkust-gz.edu.cn organization: Urban Governance and Design Thrust, Society Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China – sequence: 4 givenname: Xiaoqin surname: Wang fullname: Wang, Xiaoqin email: wxq@fzu.edu.cn organization: Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Academy of Digital China, Fuzhou University, Fuzhou, China – sequence: 5 givenname: Qunyong surname: Wu fullname: Wu, Qunyong email: qywu@fzu.edu.cn organization: Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Academy of Digital China, Fuzhou University, Fuzhou, China |
BookMark | eNpNkUGP0zAQhS20SHQXfgEcLHFO8cSOHR9LtMsWVYu07XK1HGdSXKVxsdOVeuC_k2xWiNNoxu99Y827Jld96JGQj8CWAEx_-b7drR63y5zlYskLBlKVb8gihwIyKHhxRRaguc5AMPGOXKd0YEzmSvMF-fP17LvG93u6u5yQVp1Nybfe2cGHnj6l6aV6eMh20fapDfGIkVYxpJTd9i40Y7dq7Gnwz0g3aGM_6e9iONKfGC_03u9_0UdMoTu_8LZ2wK7zA9L10e4xvSdvW9sl_PBab8jT3e2uus82P76tq9UmcyLXQ2YbZ12TiwZbbJiCVkKtLFcNY6CEqyUX2GoHVpQgSlFYVpeFdiUKdE5JwW_IeuY2wR7MKfqjjRcTrDcvgxD3xsbBuw6NVlrnsi4lK2pR1mWtNObIpNCcSazdyPo8s04x_D5jGswhnGM_ft9wECABdKFGFZ9VbjpWxPbfVmBmyszMmZkpM_Oa2ej6NLs8Iv7nUIVUTPO_JGKV_A |
CODEN | IJSTHZ |
Cites_doi | 10.1109/TGRS.2023.3320146 10.1016/j.isprsjprs.2016.10.007 10.1109/LGRS.2018.2802944 10.1109/ICAS49788.2021.9551165 10.1016/j.isprsjprs.2016.10.001 10.1109/JSTARS.2020.3043442 10.1109/TGRS.2023.3290817 10.1080/15481603.2022.2101727 10.1109/TGRS.2023.3314641 10.1109/TGRS.2023.3282926 10.1109/CVPRW56347.2022.00147 10.1016/j.isprsjprs.2023.04.019 10.1016/j.isprsjprs.2013.09.004 10.1016/j.isprsjprs.2018.02.006 10.1109/ICCV48922.2021.00083 10.1016/j.scs.2022.104009 10.1080/19479832.2015.1051138 10.1016/j.isprsjprs.2024.08.008 10.1109/JSTARS.2021.3119654 10.1109/TGRS.2022.3152575 10.1007/s10489-016-0762-6 10.1016/j.rse.2019.04.014 10.1109/TGRS.2018.2858817 10.24963/ijcai.2023/80 10.1109/CVPR.2017.660 10.1016/j.media.2024.103280 10.3390/rs13214441 10.1016/j.isprsjprs.2020.01.013 10.1007/978-3-030-87193-2_2 10.1109/IGARSS.2017.8127684 10.1109/CVPR52688.2022.01170 10.1016/j.isprsjprs.2022.06.008 10.1016/j.isprsjprs.2015.03.011 10.1109/LGRS.2023.3262586 10.1109/TGRS.2022.3186634 10.1109/JSTARS.2024.3382636 10.1109/TPAMI.2020.2983686 10.1109/IGARSS52108.2023.10281473 10.1109/TGRS.2023.3329152 10.3390/rs14030564 10.1007/978-3-030-00928-1_48 10.3390/rs15163972 10.1016/j.rse.2010.12.017 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2024.3501678 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture Geology |
EISSN | 2151-1535 |
EndPage | 994 |
ExternalDocumentID | oai_doaj_org_article_979926b8605b48b8b79e2e0649306ebc 10_1109_JSTARS_2024_3501678 10756709 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42471378 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c429t-adcacd24defed071f61b7a37d00174cb634ef9c1a4814845a0b859c8e4ecc7643 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:24:25 EDT 2025 Fri Jul 25 23:07:24 EDT 2025 Tue Jul 01 03:16:38 EDT 2025 Wed Aug 27 02:33:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-adcacd24defed071f61b7a37d00174cb634ef9c1a4814845a0b859c8e4ecc7643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0265-3465 0009-0001-0689-264X 0000-0002-9083-0475 |
OpenAccessLink | https://doaj.org/article/979926b8605b48b8b79e2e0649306ebc |
PQID | 3141611957 |
PQPubID | 75722 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_979926b8605b48b8b79e2e0649306ebc ieee_primary_10756709 crossref_primary_10_1109_JSTARS_2024_3501678 proquest_journals_3141611957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Tan (ref31) 2021; 139 Weber (ref3) 2020 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref21 Etten (ref29) 2018 ref43 ref28 ref27 ref8 ref7 Xie (ref44) 2021; 34 ref9 ref4 ref6 ref5 ref40 |
References_xml | – ident: ref9 doi: 10.1109/TGRS.2023.3320146 – ident: ref14 doi: 10.1016/j.isprsjprs.2016.10.007 – ident: ref40 doi: 10.1109/LGRS.2018.2802944 – ident: ref37 doi: 10.1109/ICAS49788.2021.9551165 – ident: ref8 doi: 10.1016/j.isprsjprs.2016.10.001 – ident: ref24 doi: 10.1109/JSTARS.2020.3043442 – ident: ref39 doi: 10.1109/TGRS.2023.3290817 – ident: ref4 doi: 10.1080/15481603.2022.2101727 – ident: ref10 doi: 10.1109/TGRS.2023.3314641 – ident: ref11 doi: 10.1109/TGRS.2023.3282926 – ident: ref27 doi: 10.1109/CVPRW56347.2022.00147 – ident: ref23 doi: 10.1016/j.isprsjprs.2023.04.019 – ident: ref13 doi: 10.1016/j.isprsjprs.2013.09.004 – ident: ref16 doi: 10.1016/j.isprsjprs.2018.02.006 – ident: ref36 doi: 10.1109/ICCV48922.2021.00083 – ident: ref1 doi: 10.1016/j.scs.2022.104009 – ident: ref6 doi: 10.1080/19479832.2015.1051138 – ident: ref18 doi: 10.1016/j.isprsjprs.2024.08.008 – ident: ref21 doi: 10.1109/JSTARS.2021.3119654 – year: 2018 ident: ref29 article-title: SpaceNet: A remote sensing dataset and challenge series – ident: ref22 doi: 10.1109/TGRS.2022.3152575 – ident: ref7 doi: 10.1007/s10489-016-0762-6 – volume: 34 start-page: 12077 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. year: 2021 ident: ref44 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers – ident: ref2 doi: 10.1016/j.rse.2019.04.014 – ident: ref26 doi: 10.1109/TGRS.2018.2858817 – ident: ref35 doi: 10.24963/ijcai.2023/80 – ident: ref43 doi: 10.1109/CVPR.2017.660 – ident: ref46 doi: 10.1016/j.media.2024.103280 – ident: ref45 doi: 10.3390/rs13214441 – year: 2020 ident: ref3 article-title: Building disaster damage assessment in satellite imagery with multi-temporal fusion – ident: ref38 doi: 10.1016/j.isprsjprs.2020.01.013 – ident: ref47 doi: 10.1007/978-3-030-87193-2_2 – ident: ref28 doi: 10.1109/IGARSS.2017.8127684 – ident: ref32 doi: 10.1109/CVPR52688.2022.01170 – ident: ref41 doi: 10.1016/j.isprsjprs.2022.06.008 – ident: ref15 doi: 10.1016/j.isprsjprs.2015.03.011 – ident: ref17 doi: 10.1109/LGRS.2023.3262586 – ident: ref5 doi: 10.1109/TGRS.2022.3186634 – ident: ref30 doi: 10.1109/JSTARS.2024.3382636 – ident: ref42 doi: 10.1109/TPAMI.2020.2983686 – ident: ref19 doi: 10.1109/IGARSS52108.2023.10281473 – ident: ref20 doi: 10.1109/TGRS.2023.3329152 – ident: ref25 doi: 10.3390/rs14030564 – ident: ref34 doi: 10.1007/978-3-030-00928-1_48 – ident: ref33 doi: 10.3390/rs15163972 – volume: 139 start-page: 10096 volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref31 article-title: EfficientNetV2: Smaller models and faster training – ident: ref12 doi: 10.1016/j.rse.2010.12.017 |
SSID | ssj0062793 |
Score | 2.393226 |
Snippet | Building type information indicates the functional properties of buildings and plays a crucial role in smart city development and urban socioeconomic... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 976 |
SubjectTerms | Accuracy Architecture Artificial neural networks Attention Boundaries Building type classification Buildings Classification CNN-transformer networks Coders cross-encoder Datasets Earth Feature extraction feature interaction High resolution Image enhancement Image resolution Machine learning Modules Neural networks Optimization Remote sensing Satellite imagery Semantics Transformers Urban environments very high resolution remote sensing Visual discrimination learning Visual perception Visualization |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZNoFAKbZqmZPMoOvRYbf2Q9ThulmzTHvbQJCU3oce4h5Ld4HgPKeS_RyPLZWkp9GaMjS2-0Tw0M98Q8sE2Eq2AYuABR5j5mlkbagZKuKJxRShsqvJdiotr_vWmucnN6qkXBgBS8RlM8TLl8sPab_CoLO5w2SDf2A7ZiZHb0Kw1ql1RycSwGx0SzZAzJlMMlYX-FGV89u0yBoMVn2IiTeBQtS0zlNj683iVv3RyMjSL12Q5_uJQX_Jzuund1P_6g73xv9ewR15ll5POBhl5Q57Bap-8nG1lEPbJ889pwu_DW_J4lgdlUwxRaRqaieVECUGaKgzofLlkV6PHCx2d4xrZ-Qr74zs6C_YOlSjN3K0_6KJb39Lv0D1QLCuhmDIYBJ5e2sQI2gP9chs12_0BuV6cX80vWJ7RwHy0ZD2zwVsfKh6ghRDdlVaUTtpaBjR_3DtRc2i1Ly1XMfDijS2carRXwKPsyOgOvSO7q_UKDgn1UNVSaRe8D9Gt0aoQbelaLUpbFtaqCfk4QmbuBioOk0KYQpsBYYMIm4zwhJwhrL8fRR7tdCPCYfK2NJjUrIRTMahzXDnlpIYKopumYygFzk_IAUK49b0BvQk5GaXE5E1_b-oSo8VSN_LoH68dkxcVzg9ORzgnZLfvNnAanZrevU_C_ASXAPPe priority: 102 providerName: IEEE |
Title | Building Type Classification Using CNN-Transformer Cross-Encoder Adaptive Learning From Very High Resolution Satellite Images |
URI | https://ieeexplore.ieee.org/document/10756709 https://www.proquest.com/docview/3141611957 https://doaj.org/article/979926b8605b48b8b79e2e0649306ebc |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQEhIN4hTLJReUGHI4PsplxXIUW3CJzvIxoWJBYSko-Hc8jhetREFDG0WKNTOZeWOP3yPk2DYSq4Bi4AElzHzNrA01AyVc0bgiFDZN-U7E1QO_eWqeFqS-cCaspwfuDXeGx06VcCrCbseVU05qqCAWUh3BLjiP2TfWvHkz1edgUclEtxvRiWZIIJP5hspCn8WAH97exc6w4qd4qiZQYW2hJiXq_qy18itBp6ozXidrGS7SYb_MDbIE002ycpnkeD-3yNd5VrWm2E_SpHCJsz_J3DSNA9DRZMLu5_AUOjrCNbCLKV5m7-gw2DfMeDQTrT7Tcff6Qh-h-6Q4A0Jxf7-PTnpnE33nDOj1S0xD79vkYXxxP7piWVCB-Vh2ZswGb32oeIAWQsQWrSidtLUMWKu4d6Lm0GpfWq5il8QbWzjVaK-AR0fLiF12yPL0dQq7hHqoaqm0C96HiEG0KkRbulaL0paFtWpATuYmNW89b4ZJ_UahTe8Bgx4w2QMDco5m_3kVSa_TgxgKJoeC-SsUBmQbnbbwPdkgPd2AHMy9aPIf-m7qElu7Ujdy7z--vU9WK1QGTpszB2R51n3AYYQrM3eUIvMo3Sz8BvxQ5Ow |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qRQiExKMUESgwC9jh4LdnFizS0JDQkgVNUXfDPK67qJpUjiMUJD6FX-HbmDu2qwjEshI7y_JDHp_78r0-B-CVygqKAjxAgyRhZpJAKZsEyHMdZjq0ofJTvtN8fJJ-PM1Ot-Dn1b8wiOiHz7BPm76XbxdmRZ_KnIUXGfGNtTOUh7j-5iq05bvJe_c6X8fx6GA2HAetiEBgnKutA2WNMjZOLZZoXTwt80gXKiks-efU6DxJsRQmUil3lUGaqVDzTBiOqXu4wsVrd90bcNMlGlnc_B7WOfo8Ljynr0uBREAsNS2pURSKt86qBp-PXfkZp31q3eUk47YR-Lw-QCvo8lcU8KFtdB9-dYvSTLSc91e17pvvf_BF_rer9gDutUk1GzRW8BC2cL4DdwcbPZIduPXBaxivH8GP_VYKnFERzrwsKA1MeYwyP0PBhtNpMOtyeqzYkNY0OJgTA0DFBlZdUphgLTvtGRtViwv2Bas1o8EZRk2RxqTZsfKcpzWyyYXz3ctdOLmWpXgM2_PFHJ8AMxgnBRfaGmNd4iZ4mJeRLkUeqShUivfgTQcRedmQjUhfpIVCNoiShCjZIqoH-wSjq0OJKdzvcK9fto5HUts2zjV3ZatOuea6EBijS0SFKxZRmx7sEmQ27tegpQd7HSpl69aWMomoHo5EVjz9x2kv4fZ49ulIHk2mh8_gTkxqyf6D1R5s19UKn7sUrtYvvCEx-HrdGPwNIOdTSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Type+Classification+Using+CNN-Transformer+Cross-Encoder+Adaptive+Learning+From+Very+High+Resolution+Satellite+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Shaofeng+Zhang&rft.au=Mengmeng+Li&rft.au=Wufan+Zhao&rft.au=Xiaoqin+Wang&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=18&rft.spage=976&rft.epage=994&rft_id=info:doi/10.1109%2FJSTARS.2024.3501678&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_979926b8605b48b8b79e2e0649306ebc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |