Ratiometric near-infrared fluorescent probe for nitroreductase activity enables 3D imaging of hypoxic cells within intact tumor spheroids

Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophili...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 15; no. 1; pp. 3633 - 3639
Main Authors Morsby, Janeala J, Zhang, Zhumin, Burchett, Alice, Datta, Meenal, Smith, Bradley D
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.03.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells ( i.e. , cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. A ratiometric, near-infrared fluorescent molecular probe reports nitroreductase activity and enables three-dimensional optical sectioning of intact tumor spheroids with visualization of individual hypoxic cells.
AbstractList Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a “first-in-class” ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells ( i.e. , cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.
Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells ( , cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.
Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.
Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a “first-in-class” ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells ( i.e. , cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. A ratiometric, near-infrared fluorescent molecular probe reports nitroreductase activity and enables three-dimensional optical sectioning of intact tumor spheroids with visualization of individual hypoxic cells.
Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a “first-in-class” ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.
Author Morsby, Janeala J
Burchett, Alice
Zhang, Zhumin
Smith, Bradley D
Datta, Meenal
AuthorAffiliation Department of Chemistry and Biochemistry
Department of Aerospace and Mechanical Engineering
University of Notre Dame
AuthorAffiliation_xml – sequence: 0
  name: Department of Aerospace and Mechanical Engineering
– sequence: 0
  name: Department of Chemistry and Biochemistry
– sequence: 0
  name: University of Notre Dame
Author_xml – sequence: 1
  givenname: Janeala J
  surname: Morsby
  fullname: Morsby, Janeala J
– sequence: 2
  givenname: Zhumin
  surname: Zhang
  fullname: Zhang, Zhumin
– sequence: 3
  givenname: Alice
  surname: Burchett
  fullname: Burchett, Alice
– sequence: 4
  givenname: Meenal
  surname: Datta
  fullname: Datta, Meenal
– sequence: 5
  givenname: Bradley D
  surname: Smith
  fullname: Smith, Bradley D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38455008$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhS1UREvphj3IEhtUKeDkxomzQmhKW6RKSDzWluPHjKvEDrZTmJ_Av8bptANUeGPr-rtH5-jep-jAeacRel6SNyWB7q2CKElDKDOP0FFF6rJoKHQH-3dFDtFJjNckH4CSVu0TdAisppQQdoR-fRbJ-lGnYCV2WoTCOhNE0AqbYfZBR6ldwlPwvcbGB-xsCrmsZplE1FjIZG9s2mLtRD_oiOEM21GsrVtjb_BmO_mfWVnqYYj4h00b67B1KbfhNI9ZL04bHbxV8Rl6bMQQ9cndfYy-nX_4urosrj5dfFy9vypkXXWpEJJQwmhpTFOKBjqoNWnqvjYgFAHaswYUVcCMZJqUdUeUEMpUlQSojQEDx-jdTnea-1GrJV4QA59Cth223AvL__1xdsPX_oaXpCspoywrvL5TCP77rGPio41LQuG0nyOvOlq3LWmbNqOvHqDXfg4u58sUtJS1HdBMvfzb0t7L_ZgyQHaADD7GoA2XNi2DWxzaIVvjyzLwM_iyul2G89xy-qDlXvW_8IsdHKLcc382C34D8xTBgA
CitedBy_id crossref_primary_10_1016_j_snb_2024_136458
crossref_primary_10_1016_j_crmeth_2025_100987
crossref_primary_10_1016_j_talanta_2024_126019
crossref_primary_10_1039_D4CC06218C
crossref_primary_10_1002_smtd_202400132
crossref_primary_10_1360_SSC_2024_0106
crossref_primary_10_1016_j_saa_2024_125506
crossref_primary_10_1016_j_talanta_2024_126277
crossref_primary_10_1021_acsami_4c22228
crossref_primary_10_1016_j_dyepig_2025_112712
crossref_primary_10_1016_j_talanta_2024_127392
crossref_primary_10_1016_j_microc_2024_111605
Cites_doi 10.1038/srep19103
10.1039/C8SC01684D
10.1172/JCI84427
10.1002/bit.26845
10.3389/fdgth.2021.668390
10.1111/j.1749-6632.2009.05027.x
10.1016/j.ccr.2020.213460
10.1002/cnr2.1384
10.1002/anie.201909690
10.1021/acssensors.0c01989
10.1039/D1OB00426C
10.1002/slct.202102895
10.1002/anie.202107076
10.3390/molecules26041088
10.1021/acscentsci.6b00276
10.14814/phy2.14541
10.1158/0008-5472.CAN-12-2969
10.1186/s12951-021-01184-w
10.3389/fmolb.2020.00020
10.3390/cancers14112686
10.1186/s12885-017-3319-0
10.1002/ejoc.202200270
10.1021/ja105937q
10.1186/bcr3373
10.1021/acscentsci.3c00261
10.1016/j.slasd.2021.10.008
10.1021/acschembio.6b01094
10.1098/rsta.2021.0109
10.3390/cells11040686
10.1016/j.freeradbiomed.2018.08.019
10.1016/j.jconrel.2017.12.006
10.1021/acs.jmedchem.0c02250
10.1021/acs.bioconjchem.9b00734
10.1016/j.snb.2015.08.093
10.3389/fimmu.2020.613114
10.1021/ol102975t
10.1021/acs.analchem.2c04764
10.7150/thno.20678
10.1021/jacs.2c12493
10.3390/ijms22041966
10.1039/C9TB01581G
10.1039/C8AY02638F
10.21769/BioProtoc.4469
10.1039/C9CS00318E
10.1089/ten.tec.2015.0280
10.1016/j.snb.2020.128257
10.1016/j.ejpb.2019.06.019
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d3sc06058f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3639
ExternalDocumentID PMC10915858
38455008
10_1039_D3SC06058F
d3sc06058f
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: K22CA258410
– fundername: ;
  grantid: R35GM136212; T32GM075762
– fundername: ;
  grantid: IITP Fellowship
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c429t-ac050851ff61a63934e064b4f3ad035b863d5d38fc8e01490daadf22c334ff3f3
ISSN 2041-6520
IngestDate Thu Aug 21 18:35:23 EDT 2025
Fri Jul 11 16:36:26 EDT 2025
Mon Jul 14 08:15:56 EDT 2025
Mon Jul 21 06:05:25 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Tue Jul 01 01:30:58 EDT 2025
Tue Dec 17 20:58:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-ac050851ff61a63934e064b4f3ad035b863d5d38fc8e01490daadf22c334ff3f3
Notes https://doi.org/10.1039/d3sc06058f
Electronic supplementary information (ESI) available: Synthesis and compound characterization, enzyme kinetic profiles, imaging and immunohistochemistry data, mp4 movies showing rotating Z-stack images of tumor spheroid sections. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0700-5969
0000-0003-3751-3478
0000-0001-5727-8992
0000-0002-9780-5571
0000-0003-4120-3210
OpenAccessLink http://dx.doi.org/10.1039/d3sc06058f
PMID 38455008
PQID 2937587935
PQPubID 2047492
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10915858
proquest_journals_2937587935
proquest_miscellaneous_2954770767
crossref_citationtrail_10_1039_D3SC06058F
pubmed_primary_38455008
crossref_primary_10_1039_D3SC06058F
rsc_primary_d3sc06058f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-06
PublicationDateYYYYMMDD 2024-03-06
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Swartz (D3SC06058F/cit3/1) 2020; 8
Ware (D3SC06058F/cit41/1) 2016; 22
Close (D3SC06058F/cit38/1) 2022; 27
Chen (D3SC06058F/cit6/1) 2020; 31
Kim (D3SC06058F/cit14/1) 2021; 26
Wen (D3SC06058F/cit15/1) 2023; 95
O'Connor (D3SC06058F/cit32/1) 2017; 3
Atkinson (D3SC06058F/cit27/1) 2021; 19
Bonnitcha (D3SC06058F/cit10/1) 2018; 126
Cui (D3SC06058F/cit13/1) 2011; 13
Bruemmer (D3SC06058F/cit5/1) 2020; 59
Das (D3SC06058F/cit9/1) 2022; 7
Tanaka (D3SC06058F/cit39/1) 2018; 270
Liu (D3SC06058F/cit40/1) 2019; 11
Yang (D3SC06058F/cit45/1) 2009; 1177
Feng (D3SC06058F/cit26/1) 2022; 20
Savariar (D3SC06058F/cit21/1) 2013; 73
Zhu (D3SC06058F/cit18/1) 2016; 222
Janczy-Cempa (D3SC06058F/cit8/1) 2022; 14
Zhang (D3SC06058F/cit12/1) 2022; 61
Wallabregue (D3SC06058F/cit37/1) 2023; 145
Henze (D3SC06058F/cit1/1) 2016; 126
Sarkar (D3SC06058F/cit17/1) 2021; 6
Morsby (D3SC06058F/cit28/1) 2022
Zanoni (D3SC06058F/cit34/1) 2016; 6
Kiyose (D3SC06058F/cit25/1) 2010; 132
Nürnberg (D3SC06058F/cit46/1) 2020; 7
Kong (D3SC06058F/cit30/1) 2019; 7
Abou Khouzam (D3SC06058F/cit2/1) 2021; 11
Zhang (D3SC06058F/cit23/1) 2017; 17
Lazzari (D3SC06058F/cit35/1) 2019; 142
Van Zundert (D3SC06058F/cit47/1) 2022; 12
Hettie (D3SC06058F/cit29/1) 2021; 4
Qi (D3SC06058F/cit7/1) 2020; 421
Liu (D3SC06058F/cit16/1) 2018; 9
Egloff-Juras (D3SC06058F/cit48/1) 2021; 22
Shen (D3SC06058F/cit43/1) 2017; 12
Riffle (D3SC06058F/cit42/1) 2017; 17
Chen (D3SC06058F/cit11/1) 2021; 64
Faucher (D3SC06058F/cit24/1) 2023; 9
Nagelkerke (D3SC06058F/cit31/1) 2013; 15
Nunes (D3SC06058F/cit33/1) 2019; 116
Zhang (D3SC06058F/cit19/1) 2020; 318
Manton (D3SC06058F/cit44/1) 2022; 380
Doctorman (D3SC06058F/cit4/1) 2022; 11
Miampamba (D3SC06058F/cit22/1) 2017; 7
Spoerri (D3SC06058F/cit36/1) 2021; 3
Wu (D3SC06058F/cit20/1) 2020; 49
References_xml – volume: 6
  start-page: 1
  year: 2016
  ident: D3SC06058F/cit34/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep19103
– volume: 9
  start-page: 5347
  year: 2018
  ident: D3SC06058F/cit16/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01684D
– volume: 17
  start-page: 1
  year: 2017
  ident: D3SC06058F/cit23/1
  publication-title: Macromol. Biosci.
– volume: 126
  start-page: 3672
  year: 2016
  ident: D3SC06058F/cit1/1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84427
– volume: 116
  start-page: 206
  year: 2019
  ident: D3SC06058F/cit33/1
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26845
– volume: 3
  start-page: 668390
  year: 2021
  ident: D3SC06058F/cit36/1
  publication-title: Front. Digit. Heal
  doi: 10.3389/fdgth.2021.668390
– volume: 1177
  start-page: 185
  year: 2009
  ident: D3SC06058F/cit45/1
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.05027.x
– volume: 421
  start-page: 213460
  year: 2020
  ident: D3SC06058F/cit7/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213460
– volume: 4
  start-page: e1384
  year: 2021
  ident: D3SC06058F/cit29/1
  publication-title: Cancer Rep.
  doi: 10.1002/cnr2.1384
– volume: 59
  start-page: 13734
  year: 2020
  ident: D3SC06058F/cit5/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909690
– volume: 6
  start-page: 148
  year: 2021
  ident: D3SC06058F/cit17/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c01989
– volume: 19
  start-page: 4100
  year: 2021
  ident: D3SC06058F/cit27/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D1OB00426C
– volume: 7
  start-page: e202102895
  year: 2022
  ident: D3SC06058F/cit9/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202102895
– volume: 61
  start-page: e202107076
  year: 2022
  ident: D3SC06058F/cit12/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107076
– volume: 26
  start-page: 1088
  year: 2021
  ident: D3SC06058F/cit14/1
  publication-title: Molecules
  doi: 10.3390/molecules26041088
– volume: 3
  start-page: 20
  year: 2017
  ident: D3SC06058F/cit32/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00276
– volume: 8
  start-page: 1
  year: 2020
  ident: D3SC06058F/cit3/1
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.14541
– volume: 73
  start-page: 855
  year: 2013
  ident: D3SC06058F/cit21/1
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2969
– volume: 20
  start-page: 1
  year: 2022
  ident: D3SC06058F/cit26/1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-021-01184-w
– volume: 7
  start-page: 1
  year: 2020
  ident: D3SC06058F/cit46/1
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00020
– volume: 14
  start-page: 2686
  year: 2022
  ident: D3SC06058F/cit8/1
  publication-title: Cancers
  doi: 10.3390/cancers14112686
– volume: 17
  start-page: 1
  year: 2017
  ident: D3SC06058F/cit42/1
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3319-0
– start-page: e202200270
  year: 2022
  ident: D3SC06058F/cit28/1
  publication-title: Eur. J. Org Chem.
  doi: 10.1002/ejoc.202200270
– volume: 132
  start-page: 15846
  year: 2010
  ident: D3SC06058F/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105937q
– volume: 15
  start-page: R2
  year: 2013
  ident: D3SC06058F/cit31/1
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr3373
– volume: 9
  start-page: 1059
  year: 2023
  ident: D3SC06058F/cit24/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.3c00261
– volume: 27
  start-page: 39
  year: 2022
  ident: D3SC06058F/cit38/1
  publication-title: SLAS Discovery
  doi: 10.1016/j.slasd.2021.10.008
– volume: 12
  start-page: 1121
  year: 2017
  ident: D3SC06058F/cit43/1
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b01094
– volume: 380
  start-page: 20210109
  year: 2022
  ident: D3SC06058F/cit44/1
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2021.0109
– volume: 11
  start-page: 686
  year: 2022
  ident: D3SC06058F/cit4/1
  publication-title: Cells
  doi: 10.3390/cells11040686
– volume: 126
  start-page: 296
  year: 2018
  ident: D3SC06058F/cit10/1
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.08.019
– volume: 270
  start-page: 177
  year: 2018
  ident: D3SC06058F/cit39/1
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.12.006
– volume: 64
  start-page: 3381
  year: 2021
  ident: D3SC06058F/cit11/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.0c02250
– volume: 31
  start-page: 276
  year: 2020
  ident: D3SC06058F/cit6/1
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.9b00734
– volume: 222
  start-page: 419
  year: 2016
  ident: D3SC06058F/cit18/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.08.093
– volume: 11
  start-page: 1
  year: 2021
  ident: D3SC06058F/cit2/1
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.613114
– volume: 13
  start-page: 928
  year: 2011
  ident: D3SC06058F/cit13/1
  publication-title: Org. Lett.
  doi: 10.1021/ol102975t
– volume: 95
  start-page: 2478
  year: 2023
  ident: D3SC06058F/cit15/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04764
– volume: 7
  start-page: 3369
  year: 2017
  ident: D3SC06058F/cit22/1
  publication-title: Theranostics
  doi: 10.7150/thno.20678
– volume: 145
  start-page: 2572
  year: 2023
  ident: D3SC06058F/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12493
– volume: 22
  start-page: 1
  year: 2021
  ident: D3SC06058F/cit48/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22041966
– volume: 7
  start-page: 6822
  year: 2019
  ident: D3SC06058F/cit30/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB01581G
– volume: 11
  start-page: 421
  year: 2019
  ident: D3SC06058F/cit40/1
  publication-title: Anal. Methods
  doi: 10.1039/C8AY02638F
– volume: 12
  start-page: 1
  year: 2022
  ident: D3SC06058F/cit47/1
  publication-title: Bio-Protoc.
  doi: 10.21769/BioProtoc.4469
– volume: 49
  start-page: 5110
  year: 2020
  ident: D3SC06058F/cit20/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00318E
– volume: 22
  start-page: 312
  year: 2016
  ident: D3SC06058F/cit41/1
  publication-title: Tissue Eng., Part C
  doi: 10.1089/ten.tec.2015.0280
– volume: 318
  start-page: 128257
  year: 2020
  ident: D3SC06058F/cit19/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.128257
– volume: 142
  start-page: 195
  year: 2019
  ident: D3SC06058F/cit35/1
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2019.06.019
SSID ssj0000331527
Score 2.5094643
Snippet Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3633
SubjectTerms Chemistry
Dyes
Energy transfer
Fluorescent indicators
Hypoxia
Infrared imaging
Molecular structure
Optical sectioning
Spheroids
Tumors
Title Ratiometric near-infrared fluorescent probe for nitroreductase activity enables 3D imaging of hypoxic cells within intact tumor spheroids
URI https://www.ncbi.nlm.nih.gov/pubmed/38455008
https://www.proquest.com/docview/2937587935
https://www.proquest.com/docview/2954770767
https://pubmed.ncbi.nlm.nih.gov/PMC10915858
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67QFeEP8GgTEZwQuqMrw4TtPH0TJNk4rQWFHhpXISR6vUNlObSMA34IPxvbizHSdV-wB7iVrHdSrfz_bd5e53hLxlOZd5mpz6kUylHyopfNnLmC_6UZilKlVCkySNPkUX4_ByIiadzp9W1FJVJifpr515JXeRKrSBXDFL9j8k6waFBvgM8oUrSBiu_yTjK5zWBdbESrtLgKwPg650RHk-r4qVYWrCEKzEUHvD8l1BM1K8wuGleTR06QilE6jWXT7szha2bBHokD9vix8wMvr2TRLcDMMiS8yqLKsFjLdGToJiZnKFHd9BTUFQZwzhe-I6M6zleBgVNa3npVxihGX38mTLjf39plrMHH4_YOUqG1h8Np81oBzK0mjBIzDL7axZV0YQ6liuyIEPF4ZxmtQRqzoixda9azbGgIWALRGY9zmq3WaIkdzOLtoIZq19mkeGfsOe-fC1v_M8YRzpWDO-Thm-P86bU9PFMn4eDZBcFcyueI8cBGCtwHZ7cPV1PPnmnH2Mc1s-2P33miqX9983w28qR1sWz3bg7t6qrlOj9aHrh-SBNWTomUHlI9JRy8fknpvHJ-R3C510A520hU6q0UkBnXQTnbRGJ7XopHxILTppkVOLTqrRSQ06qUEn1eikDp1Pyfj84_XgwreFP_wU1KPSlykTaArkeXQqQTQ8VKA5JyHsKxnjIokjnomMx3kaKzTxWSZllgdBynmY5zznh2R_WSzVc0KDGH0cIsDCCaFKEqnCJOORYkEkZNxXHnlXz_g0taz4WJxlPtXRGbw_HfIvAy2dc4-8cX1vDRfMzl5HteCmdq9YT0GpBsMczkLhkdfuNggEJwkWWVFhHxH2eqwX9TzyzMjZPYbHyD7AYo_EGwhwHZAlfvPOcnaj2eJrcHrkEMDiftCA7sXdx3xJ7jfr-Ijsl6tKvQIlvUyOtXPr2C6Evy2z9TM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ratiometric+near-infrared+fluorescent+probe+for+nitroreductase+activity+enables+3D+imaging+of+hypoxic+cells+within+intact+tumor+spheroids&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Morsby%2C+Janeala+J.&rft.au=Zhang%2C+Zhumin&rft.au=Burchett%2C+Alice&rft.au=Datta%2C+Meenal&rft.date=2024-03-06&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=10&rft.spage=3633&rft.epage=3639&rft_id=info:doi/10.1039%2Fd3sc06058f&rft.externalDocID=PMC10915858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon