Ratiometric near-infrared fluorescent probe for nitroreductase activity enables 3D imaging of hypoxic cells within intact tumor spheroids
Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophili...
Saved in:
Published in | Chemical science (Cambridge) Vol. 15; no. 1; pp. 3633 - 3639 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.03.2024
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (
i.e.
, cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.
A ratiometric, near-infrared fluorescent molecular probe reports nitroreductase activity and enables three-dimensional optical sectioning of intact tumor spheroids with visualization of individual hypoxic cells. |
---|---|
AbstractList | Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a “first-in-class” ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (
i.e.
, cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells ( , cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a “first-in-class” ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells ( i.e. , cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. A ratiometric, near-infrared fluorescent molecular probe reports nitroreductase activity and enables three-dimensional optical sectioning of intact tumor spheroids with visualization of individual hypoxic cells. Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a “first-in-class” ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects. |
Author | Morsby, Janeala J Burchett, Alice Zhang, Zhumin Smith, Bradley D Datta, Meenal |
AuthorAffiliation | Department of Chemistry and Biochemistry Department of Aerospace and Mechanical Engineering University of Notre Dame |
AuthorAffiliation_xml | – sequence: 0 name: Department of Aerospace and Mechanical Engineering – sequence: 0 name: Department of Chemistry and Biochemistry – sequence: 0 name: University of Notre Dame |
Author_xml | – sequence: 1 givenname: Janeala J surname: Morsby fullname: Morsby, Janeala J – sequence: 2 givenname: Zhumin surname: Zhang fullname: Zhang, Zhumin – sequence: 3 givenname: Alice surname: Burchett fullname: Burchett, Alice – sequence: 4 givenname: Meenal surname: Datta fullname: Datta, Meenal – sequence: 5 givenname: Bradley D surname: Smith fullname: Smith, Bradley D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38455008$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAUhS1UREvphj3IEhtUKeDkxomzQmhKW6RKSDzWluPHjKvEDrZTmJ_Av8bptANUeGPr-rtH5-jep-jAeacRel6SNyWB7q2CKElDKDOP0FFF6rJoKHQH-3dFDtFJjNckH4CSVu0TdAisppQQdoR-fRbJ-lGnYCV2WoTCOhNE0AqbYfZBR6ldwlPwvcbGB-xsCrmsZplE1FjIZG9s2mLtRD_oiOEM21GsrVtjb_BmO_mfWVnqYYj4h00b67B1KbfhNI9ZL04bHbxV8Rl6bMQQ9cndfYy-nX_4urosrj5dfFy9vypkXXWpEJJQwmhpTFOKBjqoNWnqvjYgFAHaswYUVcCMZJqUdUeUEMpUlQSojQEDx-jdTnea-1GrJV4QA59Cth223AvL__1xdsPX_oaXpCspoywrvL5TCP77rGPio41LQuG0nyOvOlq3LWmbNqOvHqDXfg4u58sUtJS1HdBMvfzb0t7L_ZgyQHaADD7GoA2XNi2DWxzaIVvjyzLwM_iyul2G89xy-qDlXvW_8IsdHKLcc382C34D8xTBgA |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_136458 crossref_primary_10_1016_j_crmeth_2025_100987 crossref_primary_10_1016_j_talanta_2024_126019 crossref_primary_10_1039_D4CC06218C crossref_primary_10_1002_smtd_202400132 crossref_primary_10_1360_SSC_2024_0106 crossref_primary_10_1016_j_saa_2024_125506 crossref_primary_10_1016_j_talanta_2024_126277 crossref_primary_10_1021_acsami_4c22228 crossref_primary_10_1016_j_dyepig_2025_112712 crossref_primary_10_1016_j_talanta_2024_127392 crossref_primary_10_1016_j_microc_2024_111605 |
Cites_doi | 10.1038/srep19103 10.1039/C8SC01684D 10.1172/JCI84427 10.1002/bit.26845 10.3389/fdgth.2021.668390 10.1111/j.1749-6632.2009.05027.x 10.1016/j.ccr.2020.213460 10.1002/cnr2.1384 10.1002/anie.201909690 10.1021/acssensors.0c01989 10.1039/D1OB00426C 10.1002/slct.202102895 10.1002/anie.202107076 10.3390/molecules26041088 10.1021/acscentsci.6b00276 10.14814/phy2.14541 10.1158/0008-5472.CAN-12-2969 10.1186/s12951-021-01184-w 10.3389/fmolb.2020.00020 10.3390/cancers14112686 10.1186/s12885-017-3319-0 10.1002/ejoc.202200270 10.1021/ja105937q 10.1186/bcr3373 10.1021/acscentsci.3c00261 10.1016/j.slasd.2021.10.008 10.1021/acschembio.6b01094 10.1098/rsta.2021.0109 10.3390/cells11040686 10.1016/j.freeradbiomed.2018.08.019 10.1016/j.jconrel.2017.12.006 10.1021/acs.jmedchem.0c02250 10.1021/acs.bioconjchem.9b00734 10.1016/j.snb.2015.08.093 10.3389/fimmu.2020.613114 10.1021/ol102975t 10.1021/acs.analchem.2c04764 10.7150/thno.20678 10.1021/jacs.2c12493 10.3390/ijms22041966 10.1039/C9TB01581G 10.1039/C8AY02638F 10.21769/BioProtoc.4469 10.1039/C9CS00318E 10.1089/ten.tec.2015.0280 10.1016/j.snb.2020.128257 10.1016/j.ejpb.2019.06.019 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2024 This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2024 – notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d3sc06058f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 3639 |
ExternalDocumentID | PMC10915858 38455008 10_1039_D3SC06058F d3sc06058f |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: K22CA258410 – fundername: ; grantid: R35GM136212; T32GM075762 – fundername: ; grantid: IITP Fellowship |
GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c429t-ac050851ff61a63934e064b4f3ad035b863d5d38fc8e01490daadf22c334ff3f3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:35:23 EDT 2025 Fri Jul 11 16:36:26 EDT 2025 Mon Jul 14 08:15:56 EDT 2025 Mon Jul 21 06:05:25 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Tue Jul 01 01:30:58 EDT 2025 Tue Dec 17 20:58:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-ac050851ff61a63934e064b4f3ad035b863d5d38fc8e01490daadf22c334ff3f3 |
Notes | https://doi.org/10.1039/d3sc06058f Electronic supplementary information (ESI) available: Synthesis and compound characterization, enzyme kinetic profiles, imaging and immunohistochemistry data, mp4 movies showing rotating Z-stack images of tumor spheroid sections. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0700-5969 0000-0003-3751-3478 0000-0001-5727-8992 0000-0002-9780-5571 0000-0003-4120-3210 |
OpenAccessLink | http://dx.doi.org/10.1039/d3sc06058f |
PMID | 38455008 |
PQID | 2937587935 |
PQPubID | 2047492 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10915858 proquest_journals_2937587935 proquest_miscellaneous_2954770767 crossref_citationtrail_10_1039_D3SC06058F pubmed_primary_38455008 crossref_primary_10_1039_D3SC06058F rsc_primary_d3sc06058f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-06 |
PublicationDateYYYYMMDD | 2024-03-06 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Swartz (D3SC06058F/cit3/1) 2020; 8 Ware (D3SC06058F/cit41/1) 2016; 22 Close (D3SC06058F/cit38/1) 2022; 27 Chen (D3SC06058F/cit6/1) 2020; 31 Kim (D3SC06058F/cit14/1) 2021; 26 Wen (D3SC06058F/cit15/1) 2023; 95 O'Connor (D3SC06058F/cit32/1) 2017; 3 Atkinson (D3SC06058F/cit27/1) 2021; 19 Bonnitcha (D3SC06058F/cit10/1) 2018; 126 Cui (D3SC06058F/cit13/1) 2011; 13 Bruemmer (D3SC06058F/cit5/1) 2020; 59 Das (D3SC06058F/cit9/1) 2022; 7 Tanaka (D3SC06058F/cit39/1) 2018; 270 Liu (D3SC06058F/cit40/1) 2019; 11 Yang (D3SC06058F/cit45/1) 2009; 1177 Feng (D3SC06058F/cit26/1) 2022; 20 Savariar (D3SC06058F/cit21/1) 2013; 73 Zhu (D3SC06058F/cit18/1) 2016; 222 Janczy-Cempa (D3SC06058F/cit8/1) 2022; 14 Zhang (D3SC06058F/cit12/1) 2022; 61 Wallabregue (D3SC06058F/cit37/1) 2023; 145 Henze (D3SC06058F/cit1/1) 2016; 126 Sarkar (D3SC06058F/cit17/1) 2021; 6 Morsby (D3SC06058F/cit28/1) 2022 Zanoni (D3SC06058F/cit34/1) 2016; 6 Kiyose (D3SC06058F/cit25/1) 2010; 132 Nürnberg (D3SC06058F/cit46/1) 2020; 7 Kong (D3SC06058F/cit30/1) 2019; 7 Abou Khouzam (D3SC06058F/cit2/1) 2021; 11 Zhang (D3SC06058F/cit23/1) 2017; 17 Lazzari (D3SC06058F/cit35/1) 2019; 142 Van Zundert (D3SC06058F/cit47/1) 2022; 12 Hettie (D3SC06058F/cit29/1) 2021; 4 Qi (D3SC06058F/cit7/1) 2020; 421 Liu (D3SC06058F/cit16/1) 2018; 9 Egloff-Juras (D3SC06058F/cit48/1) 2021; 22 Shen (D3SC06058F/cit43/1) 2017; 12 Riffle (D3SC06058F/cit42/1) 2017; 17 Chen (D3SC06058F/cit11/1) 2021; 64 Faucher (D3SC06058F/cit24/1) 2023; 9 Nagelkerke (D3SC06058F/cit31/1) 2013; 15 Nunes (D3SC06058F/cit33/1) 2019; 116 Zhang (D3SC06058F/cit19/1) 2020; 318 Manton (D3SC06058F/cit44/1) 2022; 380 Doctorman (D3SC06058F/cit4/1) 2022; 11 Miampamba (D3SC06058F/cit22/1) 2017; 7 Spoerri (D3SC06058F/cit36/1) 2021; 3 Wu (D3SC06058F/cit20/1) 2020; 49 |
References_xml | – volume: 6 start-page: 1 year: 2016 ident: D3SC06058F/cit34/1 publication-title: Sci. Rep. doi: 10.1038/srep19103 – volume: 9 start-page: 5347 year: 2018 ident: D3SC06058F/cit16/1 publication-title: Chem. Sci. doi: 10.1039/C8SC01684D – volume: 17 start-page: 1 year: 2017 ident: D3SC06058F/cit23/1 publication-title: Macromol. Biosci. – volume: 126 start-page: 3672 year: 2016 ident: D3SC06058F/cit1/1 publication-title: J. Clin. Invest. doi: 10.1172/JCI84427 – volume: 116 start-page: 206 year: 2019 ident: D3SC06058F/cit33/1 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26845 – volume: 3 start-page: 668390 year: 2021 ident: D3SC06058F/cit36/1 publication-title: Front. Digit. Heal doi: 10.3389/fdgth.2021.668390 – volume: 1177 start-page: 185 year: 2009 ident: D3SC06058F/cit45/1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.05027.x – volume: 421 start-page: 213460 year: 2020 ident: D3SC06058F/cit7/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213460 – volume: 4 start-page: e1384 year: 2021 ident: D3SC06058F/cit29/1 publication-title: Cancer Rep. doi: 10.1002/cnr2.1384 – volume: 59 start-page: 13734 year: 2020 ident: D3SC06058F/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909690 – volume: 6 start-page: 148 year: 2021 ident: D3SC06058F/cit17/1 publication-title: ACS Sens. doi: 10.1021/acssensors.0c01989 – volume: 19 start-page: 4100 year: 2021 ident: D3SC06058F/cit27/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D1OB00426C – volume: 7 start-page: e202102895 year: 2022 ident: D3SC06058F/cit9/1 publication-title: ChemistrySelect doi: 10.1002/slct.202102895 – volume: 61 start-page: e202107076 year: 2022 ident: D3SC06058F/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107076 – volume: 26 start-page: 1088 year: 2021 ident: D3SC06058F/cit14/1 publication-title: Molecules doi: 10.3390/molecules26041088 – volume: 3 start-page: 20 year: 2017 ident: D3SC06058F/cit32/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00276 – volume: 8 start-page: 1 year: 2020 ident: D3SC06058F/cit3/1 publication-title: Physiol. Rep. doi: 10.14814/phy2.14541 – volume: 73 start-page: 855 year: 2013 ident: D3SC06058F/cit21/1 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2969 – volume: 20 start-page: 1 year: 2022 ident: D3SC06058F/cit26/1 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-01184-w – volume: 7 start-page: 1 year: 2020 ident: D3SC06058F/cit46/1 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00020 – volume: 14 start-page: 2686 year: 2022 ident: D3SC06058F/cit8/1 publication-title: Cancers doi: 10.3390/cancers14112686 – volume: 17 start-page: 1 year: 2017 ident: D3SC06058F/cit42/1 publication-title: BMC Cancer doi: 10.1186/s12885-017-3319-0 – start-page: e202200270 year: 2022 ident: D3SC06058F/cit28/1 publication-title: Eur. J. Org Chem. doi: 10.1002/ejoc.202200270 – volume: 132 start-page: 15846 year: 2010 ident: D3SC06058F/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105937q – volume: 15 start-page: R2 year: 2013 ident: D3SC06058F/cit31/1 publication-title: Breast Cancer Res. doi: 10.1186/bcr3373 – volume: 9 start-page: 1059 year: 2023 ident: D3SC06058F/cit24/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.3c00261 – volume: 27 start-page: 39 year: 2022 ident: D3SC06058F/cit38/1 publication-title: SLAS Discovery doi: 10.1016/j.slasd.2021.10.008 – volume: 12 start-page: 1121 year: 2017 ident: D3SC06058F/cit43/1 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b01094 – volume: 380 start-page: 20210109 year: 2022 ident: D3SC06058F/cit44/1 publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2021.0109 – volume: 11 start-page: 686 year: 2022 ident: D3SC06058F/cit4/1 publication-title: Cells doi: 10.3390/cells11040686 – volume: 126 start-page: 296 year: 2018 ident: D3SC06058F/cit10/1 publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2018.08.019 – volume: 270 start-page: 177 year: 2018 ident: D3SC06058F/cit39/1 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.12.006 – volume: 64 start-page: 3381 year: 2021 ident: D3SC06058F/cit11/1 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c02250 – volume: 31 start-page: 276 year: 2020 ident: D3SC06058F/cit6/1 publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.9b00734 – volume: 222 start-page: 419 year: 2016 ident: D3SC06058F/cit18/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.08.093 – volume: 11 start-page: 1 year: 2021 ident: D3SC06058F/cit2/1 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.613114 – volume: 13 start-page: 928 year: 2011 ident: D3SC06058F/cit13/1 publication-title: Org. Lett. doi: 10.1021/ol102975t – volume: 95 start-page: 2478 year: 2023 ident: D3SC06058F/cit15/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04764 – volume: 7 start-page: 3369 year: 2017 ident: D3SC06058F/cit22/1 publication-title: Theranostics doi: 10.7150/thno.20678 – volume: 145 start-page: 2572 year: 2023 ident: D3SC06058F/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12493 – volume: 22 start-page: 1 year: 2021 ident: D3SC06058F/cit48/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22041966 – volume: 7 start-page: 6822 year: 2019 ident: D3SC06058F/cit30/1 publication-title: J. Mater. Chem. B doi: 10.1039/C9TB01581G – volume: 11 start-page: 421 year: 2019 ident: D3SC06058F/cit40/1 publication-title: Anal. Methods doi: 10.1039/C8AY02638F – volume: 12 start-page: 1 year: 2022 ident: D3SC06058F/cit47/1 publication-title: Bio-Protoc. doi: 10.21769/BioProtoc.4469 – volume: 49 start-page: 5110 year: 2020 ident: D3SC06058F/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00318E – volume: 22 start-page: 312 year: 2016 ident: D3SC06058F/cit41/1 publication-title: Tissue Eng., Part C doi: 10.1089/ten.tec.2015.0280 – volume: 318 start-page: 128257 year: 2020 ident: D3SC06058F/cit19/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.128257 – volume: 142 start-page: 195 year: 2019 ident: D3SC06058F/cit35/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2019.06.019 |
SSID | ssj0000331527 |
Score | 2.5094643 |
Snippet | Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3633 |
SubjectTerms | Chemistry Dyes Energy transfer Fluorescent indicators Hypoxia Infrared imaging Molecular structure Optical sectioning Spheroids Tumors |
Title | Ratiometric near-infrared fluorescent probe for nitroreductase activity enables 3D imaging of hypoxic cells within intact tumor spheroids |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38455008 https://www.proquest.com/docview/2937587935 https://www.proquest.com/docview/2954770767 https://pubmed.ncbi.nlm.nih.gov/PMC10915858 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67QFeEP8GgTEZwQuqMrw4TtPH0TJNk4rQWFHhpXISR6vUNlObSMA34IPxvbizHSdV-wB7iVrHdSrfz_bd5e53hLxlOZd5mpz6kUylHyopfNnLmC_6UZilKlVCkySNPkUX4_ByIiadzp9W1FJVJifpr515JXeRKrSBXDFL9j8k6waFBvgM8oUrSBiu_yTjK5zWBdbESrtLgKwPg650RHk-r4qVYWrCEKzEUHvD8l1BM1K8wuGleTR06QilE6jWXT7szha2bBHokD9vix8wMvr2TRLcDMMiS8yqLKsFjLdGToJiZnKFHd9BTUFQZwzhe-I6M6zleBgVNa3npVxihGX38mTLjf39plrMHH4_YOUqG1h8Np81oBzK0mjBIzDL7axZV0YQ6liuyIEPF4ZxmtQRqzoixda9azbGgIWALRGY9zmq3WaIkdzOLtoIZq19mkeGfsOe-fC1v_M8YRzpWDO-Thm-P86bU9PFMn4eDZBcFcyueI8cBGCtwHZ7cPV1PPnmnH2Mc1s-2P33miqX9983w28qR1sWz3bg7t6qrlOj9aHrh-SBNWTomUHlI9JRy8fknpvHJ-R3C510A520hU6q0UkBnXQTnbRGJ7XopHxILTppkVOLTqrRSQ06qUEn1eikDp1Pyfj84_XgwreFP_wU1KPSlykTaArkeXQqQTQ8VKA5JyHsKxnjIokjnomMx3kaKzTxWSZllgdBynmY5zznh2R_WSzVc0KDGH0cIsDCCaFKEqnCJOORYkEkZNxXHnlXz_g0taz4WJxlPtXRGbw_HfIvAy2dc4-8cX1vDRfMzl5HteCmdq9YT0GpBsMczkLhkdfuNggEJwkWWVFhHxH2eqwX9TzyzMjZPYbHyD7AYo_EGwhwHZAlfvPOcnaj2eJrcHrkEMDiftCA7sXdx3xJ7jfr-Ijsl6tKvQIlvUyOtXPr2C6Evy2z9TM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ratiometric+near-infrared+fluorescent+probe+for+nitroreductase+activity+enables+3D+imaging+of+hypoxic+cells+within+intact+tumor+spheroids&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Morsby%2C+Janeala+J.&rft.au=Zhang%2C+Zhumin&rft.au=Burchett%2C+Alice&rft.au=Datta%2C+Meenal&rft.date=2024-03-06&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=10&rft.spage=3633&rft.epage=3639&rft_id=info:doi/10.1039%2Fd3sc06058f&rft.externalDocID=PMC10915858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |