Surmounting the instability of atomically precise metal nanoclusters towards boosted photoredox organic transformation
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately r...
Saved in:
Published in | Chemical science (Cambridge) Vol. 16; no. 6; pp. 2661 - 2672 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
05.02.2025
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au
25
(GSH)
18
NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.
Self-transformation of atomically precise metal nanoclusters into metal nanocrystals is utilized to surmount the intrinsic instability of metal nanoclusters for photoactivity enhancement. |
---|---|
AbstractList | Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au
25
(GSH)
18
NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au25(GSH)18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au 25 (GSH) 18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. Self-transformation of atomically precise metal nanoclusters into metal nanocrystals is utilized to surmount the intrinsic instability of metal nanoclusters for photoactivity enhancement. Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au25(GSH)18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au25(GSH)18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au (GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. |
Author | Li, Yu-Bing Xiao, Fang-Xing |
AuthorAffiliation | Fuzhou University College of Materials Science and Engineering |
AuthorAffiliation_xml | – name: College of Materials Science and Engineering – name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Yu-Bing surname: Li fullname: Li, Yu-Bing – sequence: 2 givenname: Fang-Xing surname: Xiao fullname: Xiao, Fang-Xing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39802696$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9vFCEUx4lpY2vtxbuGpBdjsgrDDDOcjFmtNmnioXomDD92aRjeCkzr_vfSbl21kQsEPu_7vu89nqGDCNEi9IKSt5Qw8c60WRPedNw9QccNaemCd0wc7M8NOUKnOV-TuhijXdM_RUdMDKThgh-jm6s5TTDH4uMKl7XFPuaiRh982WJwWBWYvFYhbPEmWe2zxZMtKuCoIugw52JTxgVuVTIZjwD1wuDNGgoka-AnhrRS0WtckorZQZpU8RCfo0OnQranD_sJ-n7-6dvyy-Ly6-eL5YfLhW4bURaKCU1Mr5lhjnSK96rrO2Ep06YVPRcDFczZxurRmEELMjpLSat6Po5KONexE_R-p7uZx8kabWP1EeQm-UmlrQTl5b8v0a_lCm4kpT1txNBUhdcPCgl-zDYXOfmsbQgqWpizrC1tB0F4d5fs7BF6DXOKtb5KccZ6SgSp1Ku_Le29_J5JBd7sAJ0g52TdHqFE3s1cfmyvlvczP68weQRrX-5bXMvx4f8hL3chKeu99J9vxH4BjyW8Kw |
CitedBy_id | crossref_primary_10_1016_j_mcat_2025_114955 crossref_primary_10_1016_j_mcat_2025_114977 crossref_primary_10_1039_D5TA01006C crossref_primary_10_1016_j_mcat_2025_115017 crossref_primary_10_1016_j_mcat_2025_114957 crossref_primary_10_1016_j_mcat_2025_115041 |
Cites_doi | 10.1021/acs.jpcc.1c08675 10.1002/anie.202317471 10.1002/adfm.202106338 10.1021/jacs.7b00668 10.1021/acs.jpcc.8b11363 10.1021/acs.inorgchem.3c03283 10.1016/j.cclet.2022.107901 10.1039/D0TA02122A 10.1021/acsmaterialslett.9b00164 10.1021/jacs.5b06323 10.1016/j.jcat.2021.09.001 10.1021/acs.jpcc.9b01403 10.1039/D2TA07813A 10.1021/acs.jpclett.0c02460 10.1021/acs.inorgchem.0c00229 10.1002/cjoc.202300434 10.1039/C9CC04562G 10.1021/acscatal.1c05447 10.1021/acsnano.3c02092 10.1016/j.jcat.2022.10.026 10.1038/s41467-019-13755-5 10.1021/jacs.8b06723 10.1021/acs.inorgchem.3c00295 10.1016/j.apcatb.2021.120020 10.1021/acs.jpcc.1c07629 10.1007/s11426-020-9902-4 10.1021/acsami.9b14543 10.1021/ja5017365 10.1002/adfm.202303737 10.1021/acscatal.2c00841 10.1021/jacs.8b04257 10.1021/ja411651e 10.1039/C9TA07569K 10.1039/D2CY01577C 10.1021/acs.chemrev.5b00703 10.1021/jacs.0c11057 10.1039/C9TA01144G 10.1021/acsenergylett.0c02306 10.1021/acsmaterialslett.0c00060 10.1002/ange.201411494 10.1039/D0TA05297C 10.1021/jz3004206 10.1016/j.jcat.2022.04.006 10.1021/acsmaterialslett.4c00622 10.1021/acs.inorgchem.3c02700 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2025 This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2025 – notice: This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d4sc06256f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 2672 |
ExternalDocumentID | PMC11712982 39802696 10_1039_D4SC06256F d4sc06256f |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 21703038; 22072025 |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH AAYXX ABIQK CITATION -JG AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c429t-a39c0d7c3d3f05a67a5759e13cd497698193fe2ecbdd8c90bfe104a76bba9ff53 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:29:07 EDT 2025 Fri Jul 11 05:40:43 EDT 2025 Fri Jul 25 22:14:49 EDT 2025 Fri Feb 07 01:37:51 EST 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 02:52:02 EDT 2025 Tue May 27 12:02:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-a39c0d7c3d3f05a67a5759e13cd497698193fe2ecbdd8c90bfe104a76bba9ff53 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4sc06256f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5673-5362 |
OpenAccessLink | http://dx.doi.org/10.1039/d4sc06256f |
PMID | 39802696 |
PQID | 3163371090 |
PQPubID | 2047492 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d4sc06256f proquest_miscellaneous_3154890655 crossref_primary_10_1039_D4SC06256F pubmedcentral_primary_oai_pubmedcentral_nih_gov_11712982 pubmed_primary_39802696 crossref_citationtrail_10_1039_D4SC06256F proquest_journals_3163371090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-05 |
PublicationDateYYYYMMDD | 2025-02-05 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Huang (D4SC06256F/cit38/1) 2019; 123 Li (D4SC06256F/cit22/1) 2019; 7 Xu (D4SC06256F/cit36/1) 2023; 17 Li (D4SC06256F/cit43/1) 2021; 289 Huang (D4SC06256F/cit18/1) 2019; 55 Mo (D4SC06256F/cit13/1) 2020; 8 Wei (D4SC06256F/cit23/1) 2020; 142 Xu (D4SC06256F/cit44/1) 2020; 8 Wei (D4SC06256F/cit40/1) 2022; 32 Li (D4SC06256F/cit24/1) 2020; 12 Chen (D4SC06256F/cit8/1) 2014; 136 Li (D4SC06256F/cit42/1) 2023; 62 Khan (D4SC06256F/cit10/1) 2020; 6 Tan (D4SC06256F/cit31/1) 2024; 63 Liu (D4SC06256F/cit11/1) 2022; 126 Wang (D4SC06256F/cit25/1) 2022; 416 Wei (D4SC06256F/cit26/1) 2023; 62 Oshima (D4SC06256F/cit2/1) 2015; 127 Lightcap (D4SC06256F/cit16/1) 2012; 3 Li (D4SC06256F/cit20/1) 2019; 7 Liang (D4SC06256F/cit6/1) 2022; 12 Cui (D4SC06256F/cit7/1) 2018; 140 Mo (D4SC06256F/cit32/1) 2023; 34 Yang (D4SC06256F/cit29/1) 2018; 140 Lin (D4SC06256F/cit34/1) 2020; 59 Zhu (D4SC06256F/cit37/1) 2021; 404 Wang (D4SC06256F/cit45/1) 2022; 12 Jin (D4SC06256F/cit17/1) 2016; 116 Fu (D4SC06256F/cit5/1) 2020; 11 Yan (D4SC06256F/cit21/1) 2023; 33 Ge (D4SC06256F/cit28/1) 2023; 13 Xiao (D4SC06256F/cit39/1) 2014; 136 Chen (D4SC06256F/cit27/1) 2023; 62 Yang (D4SC06256F/cit30/1) 2017; 139 Sun (D4SC06256F/cit9/1) 2021; 64 Liu (D4SC06256F/cit19/1) 2019; 10 Mo (D4SC06256F/cit3/1) 2021; 125 Li (D4SC06256F/cit35/1) 2019; 123 Li (D4SC06256F/cit12/1) 2024; 42 Gharib (D4SC06256F/cit14/1) 2019; 1 Huang (D4SC06256F/cit15/1) 2020; 2 Mo (D4SC06256F/cit33/1) 2022; 410 Li (D4SC06256F/cit41/1) 2023; 11 Xiao (D4SC06256F/cit1/1) 2015; 137 Liu (D4SC06256F/cit4/1) 2024; 6 |
References_xml | – volume: 126 start-page: 1778 year: 2022 ident: D4SC06256F/cit11/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c08675 – volume: 63 start-page: e202317471 year: 2024 ident: D4SC06256F/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202317471 – volume: 32 start-page: 2106338 year: 2022 ident: D4SC06256F/cit40/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106338 – volume: 139 start-page: 5668 year: 2017 ident: D4SC06256F/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00668 – volume: 123 start-page: 4701 year: 2019 ident: D4SC06256F/cit35/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11363 – volume: 62 start-page: 19358 year: 2023 ident: D4SC06256F/cit27/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c03283 – volume: 34 start-page: 107901 year: 2023 ident: D4SC06256F/cit32/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.107901 – volume: 8 start-page: 8360 year: 2020 ident: D4SC06256F/cit44/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02122A – volume: 1 start-page: 310 year: 2019 ident: D4SC06256F/cit14/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00164 – volume: 137 start-page: 10735 year: 2015 ident: D4SC06256F/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06323 – volume: 404 start-page: 56 year: 2021 ident: D4SC06256F/cit37/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2021.09.001 – volume: 123 start-page: 9721 year: 2019 ident: D4SC06256F/cit38/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01403 – volume: 11 start-page: 589 year: 2023 ident: D4SC06256F/cit41/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07813A – volume: 11 start-page: 9138 year: 2020 ident: D4SC06256F/cit5/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02460 – volume: 59 start-page: 4129 year: 2020 ident: D4SC06256F/cit34/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00229 – volume: 42 start-page: 73 year: 2024 ident: D4SC06256F/cit12/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202300434 – volume: 55 start-page: 10591 year: 2019 ident: D4SC06256F/cit18/1 publication-title: Chem. Commun. doi: 10.1039/C9CC04562G – volume: 12 start-page: 2770 year: 2022 ident: D4SC06256F/cit45/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05447 – volume: 17 start-page: 11655 year: 2023 ident: D4SC06256F/cit36/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c02092 – volume: 416 start-page: 92 year: 2022 ident: D4SC06256F/cit25/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2022.10.026 – volume: 10 start-page: 5790 year: 2019 ident: D4SC06256F/cit19/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13755-5 – volume: 140 start-page: 16514 year: 2018 ident: D4SC06256F/cit7/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06723 – volume: 62 start-page: 6138 year: 2023 ident: D4SC06256F/cit26/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00295 – volume: 289 start-page: 120020 year: 2021 ident: D4SC06256F/cit43/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120020 – volume: 125 start-page: 22421 year: 2021 ident: D4SC06256F/cit3/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07629 – volume: 64 start-page: 1065 year: 2021 ident: D4SC06256F/cit9/1 publication-title: Sci. China:Chem. doi: 10.1007/s11426-020-9902-4 – volume: 12 start-page: 4373 year: 2020 ident: D4SC06256F/cit24/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14543 – volume: 136 start-page: 6075 year: 2014 ident: D4SC06256F/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5017365 – volume: 33 start-page: 2303737 year: 2023 ident: D4SC06256F/cit21/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303737 – volume: 12 start-page: 4216 year: 2022 ident: D4SC06256F/cit6/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c00841 – volume: 140 start-page: 10988 year: 2018 ident: D4SC06256F/cit29/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04257 – volume: 136 start-page: 1559 year: 2014 ident: D4SC06256F/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411651e – volume: 7 start-page: 21182 year: 2019 ident: D4SC06256F/cit22/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07569K – volume: 13 start-page: 479 year: 2023 ident: D4SC06256F/cit28/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D2CY01577C – volume: 116 start-page: 10346 year: 2016 ident: D4SC06256F/cit17/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00703 – volume: 142 start-page: 21899 year: 2020 ident: D4SC06256F/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11057 – volume: 7 start-page: 8938 year: 2019 ident: D4SC06256F/cit20/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01144G – volume: 6 start-page: 24 year: 2020 ident: D4SC06256F/cit10/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02306 – volume: 2 start-page: 409 year: 2020 ident: D4SC06256F/cit15/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00060 – volume: 127 start-page: 2736 year: 2015 ident: D4SC06256F/cit2/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201411494 – volume: 8 start-page: 16392 year: 2020 ident: D4SC06256F/cit13/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05297C – volume: 3 start-page: 1453 year: 2012 ident: D4SC06256F/cit16/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3004206 – volume: 410 start-page: 31 year: 2022 ident: D4SC06256F/cit33/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2022.04.006 – volume: 6 start-page: 2995 year: 2024 ident: D4SC06256F/cit4/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.4c00622 – volume: 62 start-page: 16965 year: 2023 ident: D4SC06256F/cit42/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c02700 |
SSID | ssj0000331527 |
Score | 2.574222 |
Snippet | Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2661 |
SubjectTerms | Alcohols Aldehydes Aromatic compounds Charge efficiency Charge transfer Chemistry Glutathione Gold Light irradiation Nanoclusters Nanomaterials Nitro compounds Oxidation Photocatalysis Photoredox catalysis Solar energy conversion |
Title | Surmounting the instability of atomically precise metal nanoclusters towards boosted photoredox organic transformation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39802696 https://www.proquest.com/docview/3163371090 https://www.proquest.com/docview/3154890655 https://pubmed.ncbi.nlm.nih.gov/PMC11712982 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gAXxK9BYUxGcEFTwIkTJznCWDWhMiTWouwUOY5DK41kahs08dfz7DhOok4IuESV4yaRvy_xe8_P30PotRsJmFil6-QyzBy1bdaJozxyfCbikIiQi0LFIT-fs7OF_ykJktHoppe1VG-zt-LXrftK_gdVaANc1S7Zf0DWXhQa4DfgC0dAGI5_hfFFvf5haz0slfwH2Ho621Wvm4M_rcUAVABDiVhspCoYDZiUvKzEVa00EpTAg0qc3RyDua1Cn8fXywr8cJlXN6bkk1B1JKx1a2BsxQ1avYF2e5BaFG63gfWiDJe188FUT5mtLGd4-d1JTHOy4lU_BOHpLd0ksKRpAh1tlqnOIjG16rqPmUd812GB16zByH5bI2Zkv8asx7rBp5U1qu1mmvZYU_JnZwogVCmo5v5GEPDtWNFNdO3i_vmXdLqYzdL5aTLfQ_seOBjeGO1__bZILm18jlBqKv7aR2_VbWn8rrv80J7ZcVJ2c2331m1pGW3CzO-je8b3wO8bIj1AI1k-RHfsMD5CP3uEwkAo3CMUrgrcEQobQmFNKNwnFDaEwoZQuCMUNoTCQ0I9Rovp6fzkzDGFORwB5svW4TQWJA8FzWlBAs5Crsq8SpeK3AfzNgYrkxbSkyLL80jEJCskeP08ZFnG46II6AEal1UpnyLsZkLIkIY8k9TPI8lpToogktAeZp5LJuhNO7ypMKr1qnjKVaqzJ2icfvQvTjQU0wl6ZfteN1ott_Y6bFFKzbu8SSm4JVSlJcMNX9rTMPpq-YyXsqpVH_DuYzDZgwl60oBqb0PjiHgsZhMUDeC2HZSK-_BMuVpqNXfXDcHmjrwJOgBm2D90DHv25wd-ju527-QhGm_XtXwBhvI2O9IBpiPD7N9k4spM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surmounting+the+instability+of+atomically+precise+metal+nanoclusters+towards+boosted+photoredox+organic+transformation&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Yu-Bing%2C+Li&rft.au=Fang-Xing%2C+Xiao&rft.date=2025-02-05&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=16&rft.issue=6&rft.spage=2661&rft.epage=2672&rft_id=info:doi/10.1039%2Fd4sc06256f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |