Surmounting the instability of atomically precise metal nanoclusters towards boosted photoredox organic transformation

Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately r...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 16; no. 6; pp. 2661 - 2672
Main Authors Li, Yu-Bing, Xiao, Fang-Xing
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 05.02.2025
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au 25 (GSH) 18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. Self-transformation of atomically precise metal nanoclusters into metal nanocrystals is utilized to surmount the intrinsic instability of metal nanoclusters for photoactivity enhancement.
AbstractList Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au 25 (GSH) 18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au25(GSH)18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au 25 (GSH) 18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion. Self-transformation of atomically precise metal nanoclusters into metal nanocrystals is utilized to surmount the intrinsic instability of metal nanoclusters for photoactivity enhancement.
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au25(GSH)18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au25(GSH)18 NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au (GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation. This work strategically provides new insights into the inherent instability of metal NCs utilized for photocatalysis and reinforces our fundamental understanding on metal NC-based artificial photosystems for solar energy conversion.
Author Li, Yu-Bing
Xiao, Fang-Xing
AuthorAffiliation Fuzhou University
College of Materials Science and Engineering
AuthorAffiliation_xml – name: College of Materials Science and Engineering
– name: Fuzhou University
Author_xml – sequence: 1
  givenname: Yu-Bing
  surname: Li
  fullname: Li, Yu-Bing
– sequence: 2
  givenname: Fang-Xing
  surname: Xiao
  fullname: Xiao, Fang-Xing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39802696$$D View this record in MEDLINE/PubMed
BookMark eNptks9vFCEUx4lpY2vtxbuGpBdjsgrDDDOcjFmtNmnioXomDD92aRjeCkzr_vfSbl21kQsEPu_7vu89nqGDCNEi9IKSt5Qw8c60WRPedNw9QccNaemCd0wc7M8NOUKnOV-TuhijXdM_RUdMDKThgh-jm6s5TTDH4uMKl7XFPuaiRh982WJwWBWYvFYhbPEmWe2zxZMtKuCoIugw52JTxgVuVTIZjwD1wuDNGgoka-AnhrRS0WtckorZQZpU8RCfo0OnQranD_sJ-n7-6dvyy-Ly6-eL5YfLhW4bURaKCU1Mr5lhjnSK96rrO2Ep06YVPRcDFczZxurRmEELMjpLSat6Po5KONexE_R-p7uZx8kabWP1EeQm-UmlrQTl5b8v0a_lCm4kpT1txNBUhdcPCgl-zDYXOfmsbQgqWpizrC1tB0F4d5fs7BF6DXOKtb5KccZ6SgSp1Ku_Le29_J5JBd7sAJ0g52TdHqFE3s1cfmyvlvczP68weQRrX-5bXMvx4f8hL3chKeu99J9vxH4BjyW8Kw
CitedBy_id crossref_primary_10_1016_j_mcat_2025_114955
crossref_primary_10_1016_j_mcat_2025_114977
crossref_primary_10_1039_D5TA01006C
crossref_primary_10_1016_j_mcat_2025_115017
crossref_primary_10_1016_j_mcat_2025_114957
crossref_primary_10_1016_j_mcat_2025_115041
Cites_doi 10.1021/acs.jpcc.1c08675
10.1002/anie.202317471
10.1002/adfm.202106338
10.1021/jacs.7b00668
10.1021/acs.jpcc.8b11363
10.1021/acs.inorgchem.3c03283
10.1016/j.cclet.2022.107901
10.1039/D0TA02122A
10.1021/acsmaterialslett.9b00164
10.1021/jacs.5b06323
10.1016/j.jcat.2021.09.001
10.1021/acs.jpcc.9b01403
10.1039/D2TA07813A
10.1021/acs.jpclett.0c02460
10.1021/acs.inorgchem.0c00229
10.1002/cjoc.202300434
10.1039/C9CC04562G
10.1021/acscatal.1c05447
10.1021/acsnano.3c02092
10.1016/j.jcat.2022.10.026
10.1038/s41467-019-13755-5
10.1021/jacs.8b06723
10.1021/acs.inorgchem.3c00295
10.1016/j.apcatb.2021.120020
10.1021/acs.jpcc.1c07629
10.1007/s11426-020-9902-4
10.1021/acsami.9b14543
10.1021/ja5017365
10.1002/adfm.202303737
10.1021/acscatal.2c00841
10.1021/jacs.8b04257
10.1021/ja411651e
10.1039/C9TA07569K
10.1039/D2CY01577C
10.1021/acs.chemrev.5b00703
10.1021/jacs.0c11057
10.1039/C9TA01144G
10.1021/acsenergylett.0c02306
10.1021/acsmaterialslett.0c00060
10.1002/ange.201411494
10.1039/D0TA05297C
10.1021/jz3004206
10.1016/j.jcat.2022.04.006
10.1021/acsmaterialslett.4c00622
10.1021/acs.inorgchem.3c02700
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2025
This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2025
– notice: This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d4sc06256f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 2672
ExternalDocumentID PMC11712982
39802696
10_1039_D4SC06256F
d4sc06256f
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 21703038; 22072025
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
AAYXX
ABIQK
CITATION
-JG
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c429t-a39c0d7c3d3f05a67a5759e13cd497698193fe2ecbdd8c90bfe104a76bba9ff53
ISSN 2041-6520
IngestDate Thu Aug 21 18:29:07 EDT 2025
Fri Jul 11 05:40:43 EDT 2025
Fri Jul 25 22:14:49 EDT 2025
Fri Feb 07 01:37:51 EST 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 02:52:02 EDT 2025
Tue May 27 12:02:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-a39c0d7c3d3f05a67a5759e13cd497698193fe2ecbdd8c90bfe104a76bba9ff53
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4sc06256f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5673-5362
OpenAccessLink http://dx.doi.org/10.1039/d4sc06256f
PMID 39802696
PQID 3163371090
PQPubID 2047492
PageCount 12
ParticipantIDs rsc_primary_d4sc06256f
proquest_miscellaneous_3154890655
crossref_primary_10_1039_D4SC06256F
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11712982
pubmed_primary_39802696
crossref_citationtrail_10_1039_D4SC06256F
proquest_journals_3163371090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-05
PublicationDateYYYYMMDD 2025-02-05
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2025
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Huang (D4SC06256F/cit38/1) 2019; 123
Li (D4SC06256F/cit22/1) 2019; 7
Xu (D4SC06256F/cit36/1) 2023; 17
Li (D4SC06256F/cit43/1) 2021; 289
Huang (D4SC06256F/cit18/1) 2019; 55
Mo (D4SC06256F/cit13/1) 2020; 8
Wei (D4SC06256F/cit23/1) 2020; 142
Xu (D4SC06256F/cit44/1) 2020; 8
Wei (D4SC06256F/cit40/1) 2022; 32
Li (D4SC06256F/cit24/1) 2020; 12
Chen (D4SC06256F/cit8/1) 2014; 136
Li (D4SC06256F/cit42/1) 2023; 62
Khan (D4SC06256F/cit10/1) 2020; 6
Tan (D4SC06256F/cit31/1) 2024; 63
Liu (D4SC06256F/cit11/1) 2022; 126
Wang (D4SC06256F/cit25/1) 2022; 416
Wei (D4SC06256F/cit26/1) 2023; 62
Oshima (D4SC06256F/cit2/1) 2015; 127
Lightcap (D4SC06256F/cit16/1) 2012; 3
Li (D4SC06256F/cit20/1) 2019; 7
Liang (D4SC06256F/cit6/1) 2022; 12
Cui (D4SC06256F/cit7/1) 2018; 140
Mo (D4SC06256F/cit32/1) 2023; 34
Yang (D4SC06256F/cit29/1) 2018; 140
Lin (D4SC06256F/cit34/1) 2020; 59
Zhu (D4SC06256F/cit37/1) 2021; 404
Wang (D4SC06256F/cit45/1) 2022; 12
Jin (D4SC06256F/cit17/1) 2016; 116
Fu (D4SC06256F/cit5/1) 2020; 11
Yan (D4SC06256F/cit21/1) 2023; 33
Ge (D4SC06256F/cit28/1) 2023; 13
Xiao (D4SC06256F/cit39/1) 2014; 136
Chen (D4SC06256F/cit27/1) 2023; 62
Yang (D4SC06256F/cit30/1) 2017; 139
Sun (D4SC06256F/cit9/1) 2021; 64
Liu (D4SC06256F/cit19/1) 2019; 10
Mo (D4SC06256F/cit3/1) 2021; 125
Li (D4SC06256F/cit35/1) 2019; 123
Li (D4SC06256F/cit12/1) 2024; 42
Gharib (D4SC06256F/cit14/1) 2019; 1
Huang (D4SC06256F/cit15/1) 2020; 2
Mo (D4SC06256F/cit33/1) 2022; 410
Li (D4SC06256F/cit41/1) 2023; 11
Xiao (D4SC06256F/cit1/1) 2015; 137
Liu (D4SC06256F/cit4/1) 2024; 6
References_xml – volume: 126
  start-page: 1778
  year: 2022
  ident: D4SC06256F/cit11/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c08675
– volume: 63
  start-page: e202317471
  year: 2024
  ident: D4SC06256F/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202317471
– volume: 32
  start-page: 2106338
  year: 2022
  ident: D4SC06256F/cit40/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106338
– volume: 139
  start-page: 5668
  year: 2017
  ident: D4SC06256F/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00668
– volume: 123
  start-page: 4701
  year: 2019
  ident: D4SC06256F/cit35/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11363
– volume: 62
  start-page: 19358
  year: 2023
  ident: D4SC06256F/cit27/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c03283
– volume: 34
  start-page: 107901
  year: 2023
  ident: D4SC06256F/cit32/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.107901
– volume: 8
  start-page: 8360
  year: 2020
  ident: D4SC06256F/cit44/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02122A
– volume: 1
  start-page: 310
  year: 2019
  ident: D4SC06256F/cit14/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00164
– volume: 137
  start-page: 10735
  year: 2015
  ident: D4SC06256F/cit1/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06323
– volume: 404
  start-page: 56
  year: 2021
  ident: D4SC06256F/cit37/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2021.09.001
– volume: 123
  start-page: 9721
  year: 2019
  ident: D4SC06256F/cit38/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01403
– volume: 11
  start-page: 589
  year: 2023
  ident: D4SC06256F/cit41/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07813A
– volume: 11
  start-page: 9138
  year: 2020
  ident: D4SC06256F/cit5/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02460
– volume: 59
  start-page: 4129
  year: 2020
  ident: D4SC06256F/cit34/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00229
– volume: 42
  start-page: 73
  year: 2024
  ident: D4SC06256F/cit12/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202300434
– volume: 55
  start-page: 10591
  year: 2019
  ident: D4SC06256F/cit18/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04562G
– volume: 12
  start-page: 2770
  year: 2022
  ident: D4SC06256F/cit45/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05447
– volume: 17
  start-page: 11655
  year: 2023
  ident: D4SC06256F/cit36/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c02092
– volume: 416
  start-page: 92
  year: 2022
  ident: D4SC06256F/cit25/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2022.10.026
– volume: 10
  start-page: 5790
  year: 2019
  ident: D4SC06256F/cit19/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13755-5
– volume: 140
  start-page: 16514
  year: 2018
  ident: D4SC06256F/cit7/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06723
– volume: 62
  start-page: 6138
  year: 2023
  ident: D4SC06256F/cit26/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00295
– volume: 289
  start-page: 120020
  year: 2021
  ident: D4SC06256F/cit43/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120020
– volume: 125
  start-page: 22421
  year: 2021
  ident: D4SC06256F/cit3/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07629
– volume: 64
  start-page: 1065
  year: 2021
  ident: D4SC06256F/cit9/1
  publication-title: Sci. China:Chem.
  doi: 10.1007/s11426-020-9902-4
– volume: 12
  start-page: 4373
  year: 2020
  ident: D4SC06256F/cit24/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14543
– volume: 136
  start-page: 6075
  year: 2014
  ident: D4SC06256F/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5017365
– volume: 33
  start-page: 2303737
  year: 2023
  ident: D4SC06256F/cit21/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303737
– volume: 12
  start-page: 4216
  year: 2022
  ident: D4SC06256F/cit6/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00841
– volume: 140
  start-page: 10988
  year: 2018
  ident: D4SC06256F/cit29/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04257
– volume: 136
  start-page: 1559
  year: 2014
  ident: D4SC06256F/cit39/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411651e
– volume: 7
  start-page: 21182
  year: 2019
  ident: D4SC06256F/cit22/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07569K
– volume: 13
  start-page: 479
  year: 2023
  ident: D4SC06256F/cit28/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D2CY01577C
– volume: 116
  start-page: 10346
  year: 2016
  ident: D4SC06256F/cit17/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00703
– volume: 142
  start-page: 21899
  year: 2020
  ident: D4SC06256F/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11057
– volume: 7
  start-page: 8938
  year: 2019
  ident: D4SC06256F/cit20/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01144G
– volume: 6
  start-page: 24
  year: 2020
  ident: D4SC06256F/cit10/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02306
– volume: 2
  start-page: 409
  year: 2020
  ident: D4SC06256F/cit15/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00060
– volume: 127
  start-page: 2736
  year: 2015
  ident: D4SC06256F/cit2/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201411494
– volume: 8
  start-page: 16392
  year: 2020
  ident: D4SC06256F/cit13/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05297C
– volume: 3
  start-page: 1453
  year: 2012
  ident: D4SC06256F/cit16/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3004206
– volume: 410
  start-page: 31
  year: 2022
  ident: D4SC06256F/cit33/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2022.04.006
– volume: 6
  start-page: 2995
  year: 2024
  ident: D4SC06256F/cit4/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.4c00622
– volume: 62
  start-page: 16965
  year: 2023
  ident: D4SC06256F/cit42/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c02700
SSID ssj0000331527
Score 2.574222
Snippet Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2661
SubjectTerms Alcohols
Aldehydes
Aromatic compounds
Charge efficiency
Charge transfer
Chemistry
Glutathione
Gold
Light irradiation
Nanoclusters
Nanomaterials
Nitro compounds
Oxidation
Photocatalysis
Photoredox catalysis
Solar energy conversion
Title Surmounting the instability of atomically precise metal nanoclusters towards boosted photoredox organic transformation
URI https://www.ncbi.nlm.nih.gov/pubmed/39802696
https://www.proquest.com/docview/3163371090
https://www.proquest.com/docview/3154890655
https://pubmed.ncbi.nlm.nih.gov/PMC11712982
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gAXxK9BYUxGcEFTwIkTJznCWDWhMiTWouwUOY5DK41kahs08dfz7DhOok4IuESV4yaRvy_xe8_P30PotRsJmFil6-QyzBy1bdaJozxyfCbikIiQi0LFIT-fs7OF_ykJktHoppe1VG-zt-LXrftK_gdVaANc1S7Zf0DWXhQa4DfgC0dAGI5_hfFFvf5haz0slfwH2Ho621Wvm4M_rcUAVABDiVhspCoYDZiUvKzEVa00EpTAg0qc3RyDua1Cn8fXywr8cJlXN6bkk1B1JKx1a2BsxQ1avYF2e5BaFG63gfWiDJe188FUT5mtLGd4-d1JTHOy4lU_BOHpLd0ksKRpAh1tlqnOIjG16rqPmUd812GB16zByH5bI2Zkv8asx7rBp5U1qu1mmvZYU_JnZwogVCmo5v5GEPDtWNFNdO3i_vmXdLqYzdL5aTLfQ_seOBjeGO1__bZILm18jlBqKv7aR2_VbWn8rrv80J7ZcVJ2c2331m1pGW3CzO-je8b3wO8bIj1AI1k-RHfsMD5CP3uEwkAo3CMUrgrcEQobQmFNKNwnFDaEwoZQuCMUNoTCQ0I9Rovp6fzkzDGFORwB5svW4TQWJA8FzWlBAs5Crsq8SpeK3AfzNgYrkxbSkyLL80jEJCskeP08ZFnG46II6AEal1UpnyLsZkLIkIY8k9TPI8lpToogktAeZp5LJuhNO7ypMKr1qnjKVaqzJ2icfvQvTjQU0wl6ZfteN1ott_Y6bFFKzbu8SSm4JVSlJcMNX9rTMPpq-YyXsqpVH_DuYzDZgwl60oBqb0PjiHgsZhMUDeC2HZSK-_BMuVpqNXfXDcHmjrwJOgBm2D90DHv25wd-ju527-QhGm_XtXwBhvI2O9IBpiPD7N9k4spM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surmounting+the+instability+of+atomically+precise+metal+nanoclusters+towards+boosted+photoredox+organic+transformation&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Yu-Bing%2C+Li&rft.au=Fang-Xing%2C+Xiao&rft.date=2025-02-05&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=16&rft.issue=6&rft.spage=2661&rft.epage=2672&rft_id=info:doi/10.1039%2Fd4sc06256f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon