There is no EPTAS for two-dimensional knapsack

In the d-dimensional ( vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a subset of the items of maximum total profit such that the sum of all vectors is bounded by the bin capacity in each dimensio...

Full description

Saved in:
Bibliographic Details
Published inInformation processing letters Vol. 110; no. 16; pp. 707 - 710
Main Authors Kulik, Ariel, Shachnai, Hadas
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 31.07.2010
Elsevier
Elsevier Sequoia S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the d-dimensional ( vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a subset of the items of maximum total profit such that the sum of all vectors is bounded by the bin capacity in each dimension. It is well known that, unless P = NP , there is no fully polynomial-time approximation scheme for d-dimensional knapsack, already for d = 2 . The best known result is a polynomial-time approximation scheme ( PTAS) due to Frieze and Clarke [A.M. Frieze, M. Clarke, Approximation algorithms for the m-dimensional 0–1 knapsack problem: worst-case and probabilistic analyses, European J. Operat. Res. 15 (1) (1984) 100–109] for the case where d ⩾ 2 is some fixed constant. A fundamental open question is whether the problem admits an efficient PTAS ( EPTAS). In this paper we resolve this question by showing that there is no EPTAS for d-dimensional knapsack, already for d = 2 , unless W [ 1 ] = FPT . Furthermore, we show that unless all problems in SNP are solvable in sub-exponential time, there is no approximation scheme for two-dimensional knapsack whose running time is f ( 1 / ε ) | I | o ( 1 / ε ) , for any function f. Together, the two results suggest that a significant improvement over the running time of the scheme of Frieze and Clarke is unlikely to exist.
AbstractList In the d-dimensional (vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a subset of the items of maximum total profit such that the sum of all vectors is bounded by the bin capacity in each dimension. It is well known that, unless P=NP, there is no fully polynomial-time approximation scheme for d-dimensional knapsack, already for d=2. The best known result is a polynomial-time approximation scheme (PTAS) due to Frieze and Clarke [A.M. Frieze, M. Clarke, Approximation algorithms for the m-dimensional 0-1 knapsack problem: worst-case and probabilistic analyses, European J. Operat. Res. 15 (1) (1984) 100-109] for the case where d[greater-or-equal, slanted]2 is some fixed constant. A fundamental open question is whether the problem admits an efficient PTAS (EPTAS). In this paper we resolve this question by showing that there is no EPTAS for d-dimensional knapsack, already for d=2, unless W[1]=FPT. Furthermore, we show that unless all problems in SNP are solvable in sub-exponential time, there is no approximation scheme for two-dimensional knapsack whose running time is [MathML equation], for any function f. Together, the two results suggest that a significant improvement over the running time of the scheme of Frieze and Clarke is unlikely to exist.
In the d-dimensional (vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a subset of the items of maximum total profit such that the sum of all vectors is bounded by the bin capacity in each dimension. It is well known that, unless P=NP, there is no fully polynomial-time approximation scheme for d-dimensional knapsack, already for d=2. The best known result is a polynomial-time approximation scheme (PTAS) due to Frieze and Clarke [A.M. Frieze, M. Clarke, Approximation algorithms for the m-dimensional 0-1 knapsack problem: worst-case and probabilistic analyses, European J. Operat. Res. 15 (1) (1984) 100-109] for the case where d≥2 is some fixed constant. A fundamental open question is whether the problem admits an efficient PTAS (EPTAS). In this paper the authors resolve this question by showing that there is no EPTAS for d-dimensional knapsack, already for d=2, unless W[1]=FPT. Furthermore, they show that unless all problems in SNP are solvable in sub-exponential time, there is no approximation scheme for two-dimensional knapsack whose running time is ..., for any function f. Together, the two results suggest that a significant improvement over the running time of the scheme of Frieze and Clarke is unlikely to exist. (ProQuest: ... denotes formulae/symbols omitted.)
In the d-dimensional ( vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a subset of the items of maximum total profit such that the sum of all vectors is bounded by the bin capacity in each dimension. It is well known that, unless P = NP , there is no fully polynomial-time approximation scheme for d-dimensional knapsack, already for d = 2 . The best known result is a polynomial-time approximation scheme ( PTAS) due to Frieze and Clarke [A.M. Frieze, M. Clarke, Approximation algorithms for the m-dimensional 0–1 knapsack problem: worst-case and probabilistic analyses, European J. Operat. Res. 15 (1) (1984) 100–109] for the case where d ⩾ 2 is some fixed constant. A fundamental open question is whether the problem admits an efficient PTAS ( EPTAS). In this paper we resolve this question by showing that there is no EPTAS for d-dimensional knapsack, already for d = 2 , unless W [ 1 ] = FPT . Furthermore, we show that unless all problems in SNP are solvable in sub-exponential time, there is no approximation scheme for two-dimensional knapsack whose running time is f ( 1 / ε ) | I | o ( 1 / ε ) , for any function f. Together, the two results suggest that a significant improvement over the running time of the scheme of Frieze and Clarke is unlikely to exist.
Author Kulik, Ariel
Shachnai, Hadas
Author_xml – sequence: 1
  givenname: Ariel
  surname: Kulik
  fullname: Kulik, Ariel
  email: kulik@cs.technion.ac.il
– sequence: 2
  givenname: Hadas
  surname: Shachnai
  fullname: Shachnai, Hadas
  email: hadas@cs.technion.ac.il
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23000079$$DView record in Pascal Francis
BookMark eNp9kF1LwzAUhoMouE1_gHdFEK9aT5K2afBqjPkBAwV7H7I0xXRdUpNO8d-bseGFF169HHjOOS_PFJ1aZzVCVxgyDLi86zIz9BmBOEORAcUnaIIrRtISY36KJgAEUsAcztE0hA4AypyyCcrqd-11YkJiXbJ8redvSet8Mn65tDFbbYNxVvbJxsohSLW5QGet7IO-POYM1Q_LevGUrl4enxfzVapywseUr9U6Z5i1MoakHNqqLdRa8pwBlViVFJeFKpnSnAOmkjdc501BqqrlJOd0hm4PZwfvPnY6jGJrgtJ9L612uyBYQcuKViSP5PUfsnM7HysHURBMoAJMIoQPkPIuBK9bMXizlf5bYBB7faITUZ_Y6xNQiKgv7twcD8ugZN96aZUJv4uERoXA9lXvD5yOOj6N9iIoo63SjfFajaJx5p8vP3REg38
CODEN IFPLAT
CitedBy_id crossref_primary_10_1103_PhysRevA_98_012325
crossref_primary_10_1016_j_cosrev_2016_12_001
crossref_primary_10_1287_mnsc_2022_4465
crossref_primary_10_1109_TNET_2018_2863647
crossref_primary_10_1109_TCIAIG_2016_2573199
crossref_primary_10_1109_TNET_2020_3028704
crossref_primary_10_1016_j_orl_2021_06_017
crossref_primary_10_1109_TNET_2014_2341734
crossref_primary_10_1016_j_jpdc_2018_02_031
crossref_primary_10_1287_ijoc_2022_1189
crossref_primary_10_1016_j_jcss_2017_11_001
crossref_primary_10_1007_s11590_020_01611_1
crossref_primary_10_1007_s00453_018_0435_4
crossref_primary_10_1109_TNSM_2019_2920012
crossref_primary_10_1016_j_tcs_2016_02_025
crossref_primary_10_1016_j_tcs_2018_12_019
crossref_primary_10_1109_TVT_2018_2793186
crossref_primary_10_1287_moor_2013_0592
crossref_primary_10_1002_nem_1948
crossref_primary_10_1016_j_jcss_2018_03_005
crossref_primary_10_1142_S0217595912500297
crossref_primary_10_1007_s10288_014_0274_3
crossref_primary_10_1109_TWC_2017_2765309
crossref_primary_10_1145_3653458
crossref_primary_10_1016_j_tcs_2011_09_018
crossref_primary_10_1016_j_neucom_2014_04_069
crossref_primary_10_1007_s11786_017_0297_1
crossref_primary_10_1002_ppp3_10379
crossref_primary_10_1137_140952636
Cites_doi 10.1287/moor.9.2.244
10.1023/A:1009813105532
10.1016/S0377-2217(99)00261-1
10.1016/0304-3975(94)00097-3
10.1007/978-1-4612-0515-9
10.1145/1008861.1008867
10.1016/0377-2217(84)90053-5
10.1016/0022-0000(91)90023-X
10.1023/B:JOCO.0000021934.29833.6b
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jul 31, 2010
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jul 31, 2010
DBID IQODW
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ipl.2010.05.031
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1872-6119
EndPage 710
ExternalDocumentID 2067087221
10_1016_j_ipl_2010_05_031
23000079
S0020019010001626
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
ABPIF
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-9bcb4717fab47a390f8f5cba94703a1c63165c67ce99013a9d9e4d5288f92493
IEDL.DBID .~1
ISSN 0020-0190
IngestDate Fri Oct 25 06:19:01 EDT 2024
Thu Oct 10 19:26:20 EDT 2024
Thu Sep 26 18:31:32 EDT 2024
Sun Oct 22 16:06:39 EDT 2023
Fri Feb 23 02:30:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Theory of computation
Efficient polynomial-time approximation schemes
Two-dimensional knapsack
Parameterized complexity
Computer theory
Polynomial approximation
Approximation algorithm
Complexity
Knapsack problem
Polynomial time
Maximum
Information processing
Two-dimensional calculations
Vector
Algorithm analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-9bcb4717fab47a390f8f5cba94703a1c63165c67ce99013a9d9e4d5288f92493
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.cs.technion.ac.il/~hadas/PUB/multi_knap.pdf
PQID 521208012
PQPubID 45522
PageCount 4
ParticipantIDs proquest_miscellaneous_753683824
proquest_journals_521208012
crossref_primary_10_1016_j_ipl_2010_05_031
pascalfrancis_primary_23000079
elsevier_sciencedirect_doi_10_1016_j_ipl_2010_05_031
PublicationCentury 2000
PublicationDate 2010-07-31
PublicationDateYYYYMMDD 2010-07-31
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-31
  day: 31
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information processing letters
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Jansen (bib009) 2009
Frieze, Clarke (bib006) 1984; 15
Caprara, Kellerer, Pferschy, Pisinger (bib001) 2000; 123
Chen, Huang, Kanj, Xia (bib002) 2004
Downey, Fellows (bib003) 1999
Vazirani (bib016) 2001
Magazine, Chern (bib014) 1984; 9
Kellerer, Pferschy, Pisinger (bib012) October 2004
Kellerer, Pferschy (bib011) 2004; 8
Kellerer, Pferschy (bib010) 1999; 3
Flum, Grohe (bib005) 2006
Gens, Levner (bib007) 1980; 12
Korte, Schrader (bib013) 1981; 4
Papadimitriou, Yannakakis (bib015) 1991; 43
Downey, Fellows (bib004) 1995; 141
(bib008) 1996
Kellerer (10.1016/j.ipl.2010.05.031_bib010) 1999; 3
Caprara (10.1016/j.ipl.2010.05.031_bib001) 2000; 123
Jansen (10.1016/j.ipl.2010.05.031_bib009) 2009
Kellerer (10.1016/j.ipl.2010.05.031_bib012) 2004
Downey (10.1016/j.ipl.2010.05.031_bib003) 1999
Flum (10.1016/j.ipl.2010.05.031_bib005) 2006
Kellerer (10.1016/j.ipl.2010.05.031_bib011) 2004; 8
Chen (10.1016/j.ipl.2010.05.031_bib002) 2004
Korte (10.1016/j.ipl.2010.05.031_bib013) 1981; 4
Vazirani (10.1016/j.ipl.2010.05.031_bib016) 2001
Magazine (10.1016/j.ipl.2010.05.031_bib014) 1984; 9
Papadimitriou (10.1016/j.ipl.2010.05.031_bib015) 1991; 43
Downey (10.1016/j.ipl.2010.05.031_bib004) 1995; 141
(10.1016/j.ipl.2010.05.031_bib008) 1996
Gens (10.1016/j.ipl.2010.05.031_bib007) 1980; 12
Frieze (10.1016/j.ipl.2010.05.031_bib006) 1984; 15
References_xml – volume: 8
  start-page: 5
  year: 2004
  end-page: 11
  ident: bib011
  article-title: Improved dynamic programming in connection with an FPTAS for the knapsack problem
  publication-title: J. Comb. Optim.
  contributor:
    fullname: Pferschy
– start-page: 212
  year: 2004
  end-page: 221
  ident: bib002
  article-title: Linear FPT reductions and computational lower bounds
  publication-title: STOC '04: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing
  contributor:
    fullname: Xia
– volume: 43
  start-page: 425
  year: 1991
  end-page: 440
  ident: bib015
  article-title: Optimization, approximation, and complexity classes
  publication-title: J. Comput. System Sci.
  contributor:
    fullname: Yannakakis
– year: 1999
  ident: bib003
  article-title: Parameterized Complexity
  publication-title: Monogr. Comput. Sci.
  contributor:
    fullname: Fellows
– volume: 4
  start-page: 415
  year: 1981
  end-page: 437
  ident: bib013
  article-title: On the existence of fast approximation schemes
  publication-title: Nonlinear Programming
  contributor:
    fullname: Schrader
– volume: 123
  start-page: 333
  year: 2000
  end-page: 345
  ident: bib001
  article-title: Approximation algorithms for knapsack problems with cardinality constraints
  publication-title: European J. Oper. Res.
  contributor:
    fullname: Pisinger
– year: 1996
  ident: bib008
  publication-title: Approximation Algorithms for NP-Hard Problems
– volume: 141
  start-page: 109
  year: 1995
  end-page: 131
  ident: bib004
  article-title: Fixed-parameter tractability and completeness II: On completeness for
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Fellows
– volume: 9
  start-page: 244
  year: 1984
  end-page: 247
  ident: bib014
  article-title: A note on approximation schemes for multidimensional knapsack problems
  publication-title: Math. Oper. Res.
  contributor:
    fullname: Chern
– year: 2001
  ident: bib016
  article-title: Approximation Algorithms
  contributor:
    fullname: Vazirani
– volume: 12
  start-page: 52
  year: 1980
  end-page: 65
  ident: bib007
  article-title: Complexity of approximation algorithms for combinatorial problems: a survey
  publication-title: SIGACT News
  contributor:
    fullname: Levner
– year: October 2004
  ident: bib012
  article-title: Knapsack Problems
  contributor:
    fullname: Pisinger
– year: 2006
  ident: bib005
  article-title: Parameterized Complexity Theory
  publication-title: Texts Theoret. Comput. Sci. EATCS Ser.
  contributor:
    fullname: Grohe
– start-page: 665
  year: 2009
  end-page: 674
  ident: bib009
  article-title: Parameterized approximation scheme for the multiple knapsack problem
  publication-title: Proceedings of the Twentieth Annual ACM–SIAM Symposium on Discrete Algorithms (SODA)
  contributor:
    fullname: Jansen
– volume: 3
  start-page: 59
  year: 1999
  end-page: 71
  ident: bib010
  article-title: A new fully polynomial approximation scheme for the knapsack problem
  publication-title: J. Comb. Optim.
  contributor:
    fullname: Pferschy
– volume: 15
  start-page: 100
  year: 1984
  end-page: 109
  ident: bib006
  article-title: Approximation algorithms for the
  publication-title: European J. Oper. Res.
  contributor:
    fullname: Clarke
– volume: 9
  start-page: 244
  issue: 2
  year: 1984
  ident: 10.1016/j.ipl.2010.05.031_bib014
  article-title: A note on approximation schemes for multidimensional knapsack problems
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.9.2.244
  contributor:
    fullname: Magazine
– year: 2001
  ident: 10.1016/j.ipl.2010.05.031_bib016
  contributor:
    fullname: Vazirani
– volume: 3
  start-page: 59
  year: 1999
  ident: 10.1016/j.ipl.2010.05.031_bib010
  article-title: A new fully polynomial approximation scheme for the knapsack problem
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009813105532
  contributor:
    fullname: Kellerer
– year: 2004
  ident: 10.1016/j.ipl.2010.05.031_bib012
  contributor:
    fullname: Kellerer
– volume: 123
  start-page: 333
  issue: 2
  year: 2000
  ident: 10.1016/j.ipl.2010.05.031_bib001
  article-title: Approximation algorithms for knapsack problems with cardinality constraints
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00261-1
  contributor:
    fullname: Caprara
– volume: 141
  start-page: 109
  issue: 1–2
  year: 1995
  ident: 10.1016/j.ipl.2010.05.031_bib004
  article-title: Fixed-parameter tractability and completeness II: On completeness for W[1]
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(94)00097-3
  contributor:
    fullname: Downey
– year: 2006
  ident: 10.1016/j.ipl.2010.05.031_bib005
  article-title: Parameterized Complexity Theory
  contributor:
    fullname: Flum
– volume: 4
  start-page: 415
  year: 1981
  ident: 10.1016/j.ipl.2010.05.031_bib013
  article-title: On the existence of fast approximation schemes
  publication-title: Nonlinear Programming
  contributor:
    fullname: Korte
– year: 1999
  ident: 10.1016/j.ipl.2010.05.031_bib003
  article-title: Parameterized Complexity
  doi: 10.1007/978-1-4612-0515-9
  contributor:
    fullname: Downey
– volume: 12
  start-page: 52
  issue: 3
  year: 1980
  ident: 10.1016/j.ipl.2010.05.031_bib007
  article-title: Complexity of approximation algorithms for combinatorial problems: a survey
  publication-title: SIGACT News
  doi: 10.1145/1008861.1008867
  contributor:
    fullname: Gens
– volume: 15
  start-page: 100
  issue: 1
  year: 1984
  ident: 10.1016/j.ipl.2010.05.031_bib006
  article-title: Approximation algorithms for the m-dimensional 0–1 knapsack problem: worst-case and probabilistic analyses
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(84)90053-5
  contributor:
    fullname: Frieze
– volume: 43
  start-page: 425
  issue: 3
  year: 1991
  ident: 10.1016/j.ipl.2010.05.031_bib015
  article-title: Optimization, approximation, and complexity classes
  publication-title: J. Comput. System Sci.
  doi: 10.1016/0022-0000(91)90023-X
  contributor:
    fullname: Papadimitriou
– start-page: 212
  year: 2004
  ident: 10.1016/j.ipl.2010.05.031_bib002
  article-title: Linear FPT reductions and computational lower bounds
  contributor:
    fullname: Chen
– volume: 8
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.ipl.2010.05.031_bib011
  article-title: Improved dynamic programming in connection with an FPTAS for the knapsack problem
  publication-title: J. Comb. Optim.
  doi: 10.1023/B:JOCO.0000021934.29833.6b
  contributor:
    fullname: Kellerer
– start-page: 665
  year: 2009
  ident: 10.1016/j.ipl.2010.05.031_bib009
  article-title: Parameterized approximation scheme for the multiple knapsack problem
  contributor:
    fullname: Jansen
– year: 1996
  ident: 10.1016/j.ipl.2010.05.031_bib008
SSID ssj0006437
Score 2.1874654
Snippet In the d-dimensional ( vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The...
In the d-dimensional (vector) knapsack problem given is a set of items, each having a d-dimensional size vector and a profit, and a d-dimensional bin. The goal...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 707
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Approximations and expansions
Computer science; control theory; systems
Efficient polynomial-time approximation schemes
Exact sciences and technology
Knapsack problem
Mail order
Mathematical analysis
Mathematics
Miscellaneous
Parameterized complexity
Probabilistic analysis
Problem solving
Running
Sciences and techniques of general use
Studies
Theoretical computing
Theory of computation
Two dimensional
Two-dimensional knapsack
Vectors (mathematics)
Title There is no EPTAS for two-dimensional knapsack
URI https://dx.doi.org/10.1016/j.ipl.2010.05.031
https://www.proquest.com/docview/521208012
https://search.proquest.com/docview/753683824
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_IvAjitzg_Rg6ehM52TdPmOESZiiI4YbeQpgnMSVfWiTf_dt9b28kQPXgqtLQNv-R95f3eC8B5IJJAGBd7XOI08MBIT_KA2mtbaxKZCW4oo_vwKAYv_G4UjdbgqqmFIVplrfsrnb7Q1vWdyxrNy2I8phpf4gMRvYD8lh613aZmW7imu5_fNA9KTFU0DyJgyWVmc8HxGhdvNbsr6vph8Jtt2ix0iYi56qiLH1p7YYpudmCr9iFZvxrmLqzZfA-2m_MZWC2u-9DFNTCzbFyyfMqun4b9Z4YuKpt_TL2MmvpXDTnYJNdFqc3kAIY318OrgVefj-AZtCJzT6YmRdsSO40XHUrfJS4yqZYcxVgHRoSBiIyIjaXkV6hlJi3Pol6SOIq6wkNo5dPcHgFzQuOHRGZi4zjaK4l-gOg5DKaczpKYt-GiAUYVVRcM1dDDXhWiqAhF5UcKUWwDb6BTK1OpUEv_9VpnBebljzBIIk9GtuGkwV3VglYqKj32ycq2gS2fooRQ2kPndvpeKgzIRBImPX78v4GdwEZFGaAN3VNozWfv9gw9kXnaWSy1Dqz3b-8Hj19FLdl-
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HhTEt1ife_AkpDbNZpM9FrHUJ4IVvC3bzS7UShqaFm_-dmeapFJED54CCUmWb3deO9_MApz7IvaFcZHHJU4D9430JPepvba1JpaJ4IYyug-PovvCb1_D1yW4qmphiFZZ6v5Cp8-0dXnnskTzMhsMqMaX-EBELyC_pSWWYYVT_yxc1I3Pb54HZaYKngcxsOQ8tTkjeQ2y95LeFTaagf-bcVrPdI6QueKsix9qe2aLOluwUTqRrF2McxuWbLoDm9UBDayU111o4CIYWzbIWTpi10-99jNDH5VNPkZeQl39i44cbJjqLNdmuAe9znXvquuVByR4Bs3IxJN900fjEjmNFx3IpotdaPpacpRj7RsR-CI0IjKWsl-Blom0PAlbcewo7Ar2oZaOUnsAzAmNHxKJiYzjaLAkOgKi5TCacjqJI16HiwoYlRVtMFTFD3tTiKIiFFUzVIhiHXgFnVqYS4Vq-q_XThdgnv8IoyRyZWQdjircVSlpuaLa4yaZ2Tqw-VMUEcp76NSOprnCiEzEQdzih_8b2BmsdnsP9-r-5vHuCNYK_gDt7h5DbTKe2hN0Syb909my-wKSmtsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=There+is+no+EPTAS+for+two-dimensional+knapsack&rft.jtitle=Information+processing+letters&rft.au=Kulik%2C+Ariel&rft.au=Shachnai%2C+Hadas&rft.date=2010-07-31&rft.pub=Elsevier+B.V&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=110&rft.issue=16&rft.spage=707&rft.epage=710&rft_id=info:doi/10.1016%2Fj.ipl.2010.05.031&rft.externalDocID=S0020019010001626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon