Comparison of feature importance measures as explanations for classification models

Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature impor...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 3; no. 2; p. 272
Main Authors Saarela, Mirka, Jauhiainen, Susanne
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature importances are being measured, most notably global and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of them. These methods are applied to two datasets from the medical domain, the openly available breast cancer data from the UCI Archive and a recently collected running injury data. Our results show that the most important features differ depending on the technique. We argue that a combination of several explanation techniques could provide more reliable and trustworthy results. In particular, local explanations should be used in the most critical cases such as false negatives.
AbstractList Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature importances are being measured, most notably global and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of them. These methods are applied to two datasets from the medical domain, the openly available breast cancer data from the UCI Archive and a recently collected running injury data. Our results show that the most important features differ depending on the technique. We argue that a combination of several explanation techniques could provide more reliable and trustworthy results. In particular, local explanations should be used in the most critical cases such as false negatives.
ArticleNumber 272
Author Saarela, Mirka
Jauhiainen, Susanne
Author_xml – sequence: 1
  givenname: Mirka
  orcidid: 0000-0002-1559-154X
  surname: Saarela
  fullname: Saarela, Mirka
  email: mirka.saarela@jyu.fi
  organization: Faculty of Information Technology, University of Jyvaskyla
– sequence: 2
  givenname: Susanne
  surname: Jauhiainen
  fullname: Jauhiainen, Susanne
  organization: Faculty of Information Technology, University of Jyvaskyla
BookMark eNp9kE1PwzAMhiM0JMbYH-AUiXMhTdI2OaKJL2kSB-AcmSxBmdqmxJ0E_56wIpA47GTL9uPXfk_JrI-9I-S8ZJclY80VSi4rXjBeFkyWUhX6iMx5xUUhdFPOfvNanJAl4pYxxhstpBJz8rSK3QApYOxp9NQ7GHfJ0dANMY3QW0c7B5hLSAGp-xha6GEMsUfqY6K2BcTgg93XaBc3rsUzcuyhRbf8iQvycnvzvLov1o93D6vrdWEl12OhufTae2l5I2pQFjjkQ6u62nhbashdbxV4DZV4tY1ivtJSyrp2GwbCey8W5GLaO6T4vnM4mm3cpT5LGt4oJbmqRJ2n-DRlU0RMzpshhQ7SpymZ-fbPTP6Z7J_Z-2d0htQ_yIZx_-OYILSHUTGhmHX6N5f-rjpAfQGENIgM
CitedBy_id crossref_primary_10_1016_j_compedu_2023_104897
crossref_primary_10_1007_s11042_024_19456_6
crossref_primary_10_1016_j_ecoinf_2025_103066
crossref_primary_10_1016_j_cmpb_2024_108481
crossref_primary_10_1007_s42979_024_03622_6
crossref_primary_10_1016_j_jes_2024_03_037
crossref_primary_10_1016_j_media_2025_103507
crossref_primary_10_1016_j_cmpbup_2023_100100
crossref_primary_10_3390_cli12120223
crossref_primary_10_3390_informatics8040063
crossref_primary_10_1109_TFUZZ_2023_3330883
crossref_primary_10_1016_j_istruc_2024_106206
crossref_primary_10_1038_s41598_023_33207_x
crossref_primary_10_1080_21681163_2022_2063189
crossref_primary_10_1080_10543406_2022_2148162
crossref_primary_10_1002_jso_27854
crossref_primary_10_1016_j_procs_2022_09_195
crossref_primary_10_1007_s10115_022_01786_2
crossref_primary_10_1007_s10726_025_09920_5
crossref_primary_10_1007_s41870_023_01713_w
crossref_primary_10_1017_S1474746424000447
crossref_primary_10_1213_ANE_0000000000005916
crossref_primary_10_1007_s00394_024_03360_8
crossref_primary_10_1016_j_compag_2023_107804
crossref_primary_10_1016_j_scitotenv_2024_176589
crossref_primary_10_52082_jssm_2024_537
crossref_primary_10_1016_j_dajour_2023_100238
crossref_primary_10_1088_1361_6463_ad2339
crossref_primary_10_1016_j_wneu_2023_10_042
crossref_primary_10_2478_bile_2022_0008
crossref_primary_10_3390_electronics11233933
crossref_primary_10_1093_mnras_stad1643
crossref_primary_10_3389_fetho_2023_1219977
crossref_primary_10_1007_s00586_022_07188_w
crossref_primary_10_3389_fneur_2021_681140
crossref_primary_10_1016_j_egyai_2025_100470
crossref_primary_10_3390_biomedicines12081758
crossref_primary_10_3390_rs17050797
crossref_primary_10_1016_j_npg_2024_04_004
crossref_primary_10_1007_s12145_024_01623_w
crossref_primary_10_1080_03081060_2025_2462966
crossref_primary_10_1016_j_ecmx_2023_100503
crossref_primary_10_3390_rs15194659
crossref_primary_10_1007_s13353_023_00815_2
crossref_primary_10_1016_j_eswa_2025_126575
crossref_primary_10_1016_j_ibmed_2025_100237
crossref_primary_10_23736_S0022_4707_24_15786_6
crossref_primary_10_1016_j_procs_2024_08_026
crossref_primary_10_3390_ijerph192113962
crossref_primary_10_1016_j_matchemphys_2025_130747
crossref_primary_10_3390_s24165223
crossref_primary_10_1145_3579327
crossref_primary_10_29130_dubited_1102181
crossref_primary_10_3389_fenrg_2022_944804
crossref_primary_10_2196_52310
crossref_primary_10_1016_j_fuel_2023_129265
crossref_primary_10_1021_acs_jcim_3c00999
crossref_primary_10_1016_j_imu_2024_101523
crossref_primary_10_1016_j_optmat_2025_116783
crossref_primary_10_1002_jcc_27244
crossref_primary_10_1007_s13042_022_01710_8
crossref_primary_10_1016_j_eswa_2023_121138
crossref_primary_10_1007_s00500_023_09028_5
crossref_primary_10_1177_17442591241266836
crossref_primary_10_1109_ACCESS_2023_3314380
crossref_primary_10_3390_info14120625
crossref_primary_10_1016_j_jconrel_2022_11_014
crossref_primary_10_1007_s12076_024_00387_7
crossref_primary_10_1177_00220426241274753
crossref_primary_10_3390_s24123859
crossref_primary_10_1021_acsestengg_3c00043
crossref_primary_10_1186_s12859_022_04870_0
crossref_primary_10_14801_jkiit_2022_20_12_49
crossref_primary_10_1371_journal_pone_0300447
crossref_primary_10_3390_info15100590
crossref_primary_10_3389_frsen_2025_1521958
crossref_primary_10_3390_rs16132428
crossref_primary_10_1016_j_bspc_2023_105457
crossref_primary_10_1109_ACCESS_2025_3547813
crossref_primary_10_1080_01612840_2023_2212768
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123190
crossref_primary_10_1007_s00521_024_10413_w
crossref_primary_10_1007_s10115_024_02107_5
crossref_primary_10_18559_ebr_2024_2_1149
crossref_primary_10_1016_j_knosys_2025_112973
crossref_primary_10_1016_j_measen_2022_100466
crossref_primary_10_3390_healthcare10061107
crossref_primary_10_3390_jpm14050534
crossref_primary_10_1016_j_neucom_2025_129686
crossref_primary_10_1002_cai2_136
crossref_primary_10_1007_s00521_024_10383_z
crossref_primary_10_1016_j_csite_2024_104049
crossref_primary_10_3390_info13070320
crossref_primary_10_1109_ACCESS_2024_3471787
crossref_primary_10_1007_s41109_022_00515_6
crossref_primary_10_1080_19479832_2024_2329563
crossref_primary_10_1097_PHH_0000000000001721
crossref_primary_10_1039_D2CP05339J
crossref_primary_10_1016_j_rse_2023_113944
crossref_primary_10_3390_s23177657
crossref_primary_10_1093_bioadv_vbae049
crossref_primary_10_1016_j_jechem_2024_10_032
crossref_primary_10_1016_j_jval_2024_06_005
crossref_primary_10_1109_ACCESS_2025_3548118
crossref_primary_10_3390_vaccines12111253
crossref_primary_10_1002_jmv_28538
crossref_primary_10_1016_j_advengsoft_2022_103160
crossref_primary_10_1007_s10458_023_09634_5
crossref_primary_10_1007_s41939_024_00417_3
crossref_primary_10_1016_j_cities_2024_105631
crossref_primary_10_3389_fpubh_2023_1309490
crossref_primary_10_1093_mnras_stad3976
crossref_primary_10_1371_journal_pcbi_1011424
crossref_primary_10_1109_JBHI_2022_3187346
crossref_primary_10_1126_sciadv_adk0837
crossref_primary_10_1016_j_compag_2024_109215
crossref_primary_10_3389_frai_2021_648071
crossref_primary_10_1007_s42600_023_00335_2
crossref_primary_10_1371_journal_pone_0313592
crossref_primary_10_1051_0004_6361_202245770
crossref_primary_10_1016_j_eswa_2024_124733
crossref_primary_10_3389_fmars_2024_1493598
crossref_primary_10_1002_jeo2_70081
crossref_primary_10_1109_JSEN_2024_3464635
crossref_primary_10_1016_j_ijdrr_2024_104640
crossref_primary_10_1016_j_telpol_2024_102816
crossref_primary_10_1016_j_cmpb_2023_107990
crossref_primary_10_1016_j_pacs_2024_100675
crossref_primary_10_31083_j_jin2305095
crossref_primary_10_1016_j_eswa_2023_119729
crossref_primary_10_1007_s41748_024_00384_2
crossref_primary_10_1016_j_gexplo_2024_107478
crossref_primary_10_1016_j_pmcj_2022_101621
crossref_primary_10_1093_ehjdh_ztae010
crossref_primary_10_3390_ma18061384
crossref_primary_10_3390_inventions8050126
crossref_primary_10_1371_journal_pone_0291095
crossref_primary_10_3389_fdgth_2023_1249258
crossref_primary_10_1016_j_eswa_2025_126821
crossref_primary_10_3390_a17020085
crossref_primary_10_1080_10447318_2024_2441015
crossref_primary_10_3389_fcvm_2023_1211600
crossref_primary_10_1016_j_advengsoft_2022_103186
crossref_primary_10_15675_gepros_2965
crossref_primary_10_1016_j_ijar_2024_109215
crossref_primary_10_3390_app12199545
crossref_primary_10_1051_e3sconf_202452401010
crossref_primary_10_1115_1_4066675
crossref_primary_10_1200_CCI_22_00128
crossref_primary_10_1016_j_tifs_2025_104877
crossref_primary_10_1186_s12884_024_06980_4
crossref_primary_10_3390_app14198884
crossref_primary_10_1038_s41598_025_92577_6
crossref_primary_10_1186_s10194_024_01924_x
crossref_primary_10_1007_s41870_023_01187_w
crossref_primary_10_1016_j_talanta_2024_126652
crossref_primary_10_3390_cancers16193274
crossref_primary_10_1007_s12012_024_09843_8
crossref_primary_10_1136_bmjopen_2023_075095
crossref_primary_10_1007_s12559_023_10179_8
crossref_primary_10_1007_s13278_024_01389_5
crossref_primary_10_3390_diagnostics14111152
crossref_primary_10_3390_app15073552
crossref_primary_10_1109_ACCESS_2025_3543136
crossref_primary_10_3390_biomedinformatics4010018
crossref_primary_10_1088_1361_6501_ad3570
crossref_primary_10_3390_s22062079
crossref_primary_10_1016_j_procs_2022_09_199
crossref_primary_10_1016_j_ymssp_2022_109473
crossref_primary_10_3390_math12213414
crossref_primary_10_1016_j_autcon_2022_104249
crossref_primary_10_1109_ACCESS_2025_3544625
crossref_primary_10_3390_data7110146
crossref_primary_10_1155_2023_4637678
crossref_primary_10_3390_jpm14080804
crossref_primary_10_1109_ACCESS_2025_3548267
crossref_primary_10_1371_journal_pcbi_1009800
crossref_primary_10_1038_s41598_024_82062_x
crossref_primary_10_1021_acs_est_4c01172
crossref_primary_10_1016_j_datak_2024_102402
crossref_primary_10_1016_j_apenergy_2023_122413
crossref_primary_10_1109_ACCESS_2024_3393423
crossref_primary_10_3390_a16020121
crossref_primary_10_1017_dap_2024_35
crossref_primary_10_1371_journal_pone_0301608
Cites_doi 10.1016/j.patrec.2005.10.010
10.1016/j.jneumeth.2015.01.010
10.1016/0304-3835(94)90099-X
10.1023/A:1010933404324
10.1186/1471-2105-7-3
10.1016/j.jbiomech.2016.10.033
10.1371/journal.pone.0174944
10.1186/1758-2946-6-10
10.1016/S0031-3203(96)00142-2
10.1016/j.compbiomed.2019.103375
10.1093/bioinformatics/btm344
10.1007/978-3-030-10925-7_40
10.1007/978-3-642-04174-7_45
10.1111/j.1541-0420.2007.00843.x
10.1007/s00521-015-2103-9
10.1016/j.artmed.2020.101822
10.1371/journal.pone.0105246
10.1007/978-1-4614-6849-3
10.1038/s41467-019-08987-4
10.1093/bioinformatics/17.6.520
10.1007/s10115-012-0487-8
10.1007/978-3-030-43823-4_10
10.1214/ss/1009213726
10.1016/j.gaitpost.2010.07.020
10.1016/j.artmed.2018.09.004
10.1002/widm.1072
10.1109/DSAA.2018.00018
10.1145/2939672.2939778
10.1055/a-1231-5304
10.1109/TNNLS.2020.3027314
10.1109/HealthCom.2016.7749452
10.21105/joss.00786
10.1145/3351095.3375624
10.1007/s00521-019-04051-w
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOI 10.1007/s42452-021-04148-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10_1007_s42452_021_04148_9
GrantInformation_xml – fundername: Academy of Finland
  grantid: 311877
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
D1I
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c429t-924f9ff4c2736a8ca2a252565dfc19a24ffc8af9a53bc780f5944466ed0a3fff3
IEDL.DBID C24
ISSN 2523-3963
IngestDate Wed Aug 13 04:51:39 EDT 2025
Tue Jul 01 04:23:28 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
Fri Feb 21 02:49:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Explainable artificial intelligence
Feature importance
Logistic regression
Random forest
Interpretable models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-924f9ff4c2736a8ca2a252565dfc19a24ffc8af9a53bc780f5944466ed0a3fff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1559-154X
OpenAccessLink https://link.springer.com/10.1007/s42452-021-04148-9
PQID 2788428536
PQPubID 5758472
ParticipantIDs proquest_journals_2788428536
crossref_primary_10_1007_s42452_021_04148_9
crossref_citationtrail_10_1007_s42452_021_04148_9
springer_journals_10_1007_s42452_021_04148_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (CR4) 2013; 34
Breiman (CR8) 2001; 45
Boulesteix, Janitza, Kruppa, König (CR6) 2012; 2
Breiman (CR9) 2001; 16
Zien, Krämer, Sonnenburg, Rätsch (CR44) 2009
Kuhn, Johnson (CR23) 2013
CR17
CR38
CR36
CR35
Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, Altman (CR37) 2001; 17
Saarela, Ryynänen, Äyrämö (CR33) 2019; 95
CR31
CR30
Wachter, Mittelstadt, Russell (CR39) 2017; 31
Díaz-Uriarte, De Andres (CR12) 2006; 7
Pohl, Lloyd, Ferber (CR28) 2010; 32
Fawcett (CR13) 2006; 27
Phinyomark, Hettinga, Osis, Ferber (CR27) 2014; 9
CR2
Bondell, Reich (CR5) 2008; 64
Bradley (CR7) 1997; 30
CR3
Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (CR24) 2019; 10
Wolberg, Street, Mangasarian (CR42) 1994; 77
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (CR18) 2018; 51
Ferber, Osis, Hicks, Delp (CR14) 2016; 49
Gifi (CR16) 1990
Horn, Pack, Rieger, Cellier, Driessens (CR19) 2020
CR26
Krstajic, Buturovic, Leahy, Thomas (CR22) 2014; 6
Remeseiro, Bolon-Canedo (CR29) 2019; 112
CR45
CR21
CR43
Aličković, Subasi (CR1) 2017; 28
CR20
Saeys, Inza, Larrañaga (CR34) 2007; 23
Saarela, Kärkkäinen (CR32) 2020; 14
Weng, Reps, Kai, Garibaldi, Qureshi (CR41) 2017; 12
Fisher, Rudin, Dominici (CR15) 2019; 20
Little, Rubin (CR25) 2014
Waring, Lindvall, Umeton (CR40) 2020; 104
Casalicchio, Molnar, Bischl (CR10) 2019; 11051
Combrisson, Jerbi (CR11) 2015; 250
4148_CR21
4148_CR43
E Aličković (4148_CR1) 2017; 28
R Ferber (4148_CR14) 2016; 49
4148_CR45
AL Boulesteix (4148_CR6) 2012; 2
A Fisher (4148_CR15) 2019; 20
4148_CR20
V Bolón-Canedo (4148_CR4) 2013; 34
Y Saeys (4148_CR34) 2007; 23
A Gifi (4148_CR16) 1990
RJ Little (4148_CR25) 2014
L Breiman (4148_CR8) 2001; 45
O Troyanskaya (4148_CR37) 2001; 17
M Saarela (4148_CR33) 2019; 95
A Zien (4148_CR44) 2009
L Breiman (4148_CR9) 2001; 16
A Phinyomark (4148_CR27) 2014; 9
J Waring (4148_CR40) 2020; 104
4148_CR26
WH Wolberg (4148_CR42) 1994; 77
E Combrisson (4148_CR11) 2015; 250
4148_CR35
S Wachter (4148_CR39) 2017; 31
S Lapuschkin (4148_CR24) 2019; 10
D Krstajic (4148_CR22) 2014; 6
4148_CR31
B Remeseiro (4148_CR29) 2019; 112
4148_CR30
MB Pohl (4148_CR28) 2010; 32
R Díaz-Uriarte (4148_CR12) 2006; 7
M Saarela (4148_CR32) 2020; 14
4148_CR3
4148_CR2
T Fawcett (4148_CR13) 2006; 27
R Guidotti (4148_CR18) 2018; 51
SF Weng (4148_CR41) 2017; 12
HD Bondell (4148_CR5) 2008; 64
AP Bradley (4148_CR7) 1997; 30
M Kuhn (4148_CR23) 2013
4148_CR36
G Casalicchio (4148_CR10) 2019; 11051
4148_CR17
F Horn (4148_CR19) 2020
4148_CR38
References_xml – ident: CR45
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  ident: CR13
  article-title: An introduction to roc analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– ident: CR43
– volume: 250
  start-page: 126
  year: 2015
  end-page: 136
  ident: CR11
  article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2015.01.010
– volume: 77
  start-page: 163
  issue: 2–3
  year: 1994
  end-page: 171
  ident: CR42
  article-title: Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates
  publication-title: Cancer Lett
  doi: 10.1016/0304-3835(94)90099-X
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR8
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 7
  start-page: 3
  issue: 1
  year: 2006
  ident: CR12
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-3
– ident: CR2
– volume: 49
  start-page: 3759
  issue: 16
  year: 2016
  end-page: 3761
  ident: CR14
  article-title: Gait biomechanics in the era of data science
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.10.033
– volume: 12
  start-page: e0174944
  issue: 4
  year: 2017
  ident: CR41
  article-title: Can machine-learning improve cardiovascular risk prediction using routine clinical data?
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0174944
– year: 1990
  ident: CR16
  publication-title: Nonlinear multivariate analysis
– volume: 6
  start-page: 10
  issue: 1
  year: 2014
  ident: CR22
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-6-10
– ident: CR30
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  end-page: 1159
  ident: CR7
  article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  end-page: 42
  ident: CR18
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput surv CSUR
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  end-page: 81
  ident: CR15
  article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: J Mach Learn Res
– volume: 112
  start-page: 103375
  year: 2019
  ident: CR29
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103375
– ident: CR35
– volume: 31
  start-page: 841
  year: 2017
  ident: CR39
  article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR
  publication-title: Harv. JL Tech.
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  end-page: 2517
  ident: CR34
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 11051
  start-page: 655
  year: 2019
  end-page: 670
  ident: CR10
  article-title: Visualizing the Feature Importance for Black Box Models
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-030-10925-7_40
– ident: CR21
– start-page: 694
  year: 2009
  end-page: 709
  ident: CR44
  article-title: The feature importance ranking measure
  publication-title: Joint European conference on machine learning and knowledge discovery in databases
  doi: 10.1007/978-3-642-04174-7_45
– volume: 64
  start-page: 115
  issue: 1
  year: 2008
  end-page: 123
  ident: CR5
  article-title: Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00843.x
– volume: 14
  start-page: 101008
  issue: 2
  year: 2020
  ident: CR32
  article-title: Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator
  publication-title: J Inf
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  end-page: 763
  ident: CR1
  article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2103-9
– year: 2014
  ident: CR25
  publication-title: Statistical analysis with missing data
– volume: 104
  start-page: 101822
  year: 2020
  ident: CR40
  article-title: Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101822
– volume: 9
  start-page: e105246
  issue: 8
  year: 2014
  ident: CR27
  article-title: Gender and age-related differences in bilateral lower extremity mechanics during treadmill running
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105246
– ident: CR3
– ident: CR38
– ident: CR17
– ident: CR31
– year: 2013
  ident: CR23
  publication-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  ident: CR24
  article-title: Unmasking clever hans predictors and assessing what machines really learn
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08987-4
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  end-page: 525
  ident: CR37
  article-title: Missing value estimation methods for dna microarrays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 34
  start-page: 483
  issue: 3
  year: 2013
  end-page: 519
  ident: CR4
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-012-0487-8
– ident: CR36
– start-page: 111
  year: 2020
  end-page: 120
  ident: CR19
  article-title: The autofeat python library for automated feature engineering and selection
  publication-title: Machine Learning and Knowledge Discovery in Databases
  doi: 10.1007/978-3-030-43823-4_10
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  end-page: 231
  ident: CR9
  article-title: Statistical modeling: The two cultures
  publication-title: Stat Sci
  doi: 10.1214/ss/1009213726
– ident: CR26
– volume: 32
  start-page: 559
  issue: 4
  year: 2010
  end-page: 563
  ident: CR28
  article-title: Can the reliability of three-dimensional running kinematics be improved using functional joint methodology?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.07.020
– volume: 95
  start-page: 88
  year: 2019
  end-page: 95
  ident: CR33
  article-title: Predicting hospital associated disability from imbalanced data using supervised learning
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.09.004
– volume: 2
  start-page: 493
  issue: 6
  year: 2012
  end-page: 507
  ident: CR6
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discover
  doi: 10.1002/widm.1072
– ident: CR20
– volume: 9
  start-page: e105246
  issue: 8
  year: 2014
  ident: 4148_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105246
– volume: 32
  start-page: 559
  issue: 4
  year: 2010
  ident: 4148_CR28
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.07.020
– volume: 34
  start-page: 483
  issue: 3
  year: 2013
  ident: 4148_CR4
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-012-0487-8
– volume: 31
  start-page: 841
  year: 2017
  ident: 4148_CR39
  publication-title: Harv. JL Tech.
– ident: 4148_CR17
  doi: 10.1109/DSAA.2018.00018
– volume: 14
  start-page: 101008
  issue: 2
  year: 2020
  ident: 4148_CR32
  publication-title: J Inf
– ident: 4148_CR30
  doi: 10.1145/2939672.2939778
– volume: 12
  start-page: e0174944
  issue: 4
  year: 2017
  ident: 4148_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0174944
– ident: 4148_CR21
– volume: 49
  start-page: 3759
  issue: 16
  year: 2016
  ident: 4148_CR14
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.10.033
– ident: 4148_CR20
  doi: 10.1055/a-1231-5304
– start-page: 111
  volume-title: Machine Learning and Knowledge Discovery in Databases
  year: 2020
  ident: 4148_CR19
  doi: 10.1007/978-3-030-43823-4_10
– ident: 4148_CR36
  doi: 10.1109/TNNLS.2020.3027314
– ident: 4148_CR43
  doi: 10.1109/HealthCom.2016.7749452
– volume: 2
  start-page: 493
  issue: 6
  year: 2012
  ident: 4148_CR6
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discover
  doi: 10.1002/widm.1072
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 4148_CR15
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: 4148_CR1
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2103-9
– volume: 104
  start-page: 101822
  year: 2020
  ident: 4148_CR40
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101822
– volume-title: Nonlinear multivariate analysis
  year: 1990
  ident: 4148_CR16
– ident: 4148_CR31
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 4148_CR8
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 4148_CR9
  publication-title: Stat Sci
  doi: 10.1214/ss/1009213726
– volume: 64
  start-page: 115
  issue: 1
  year: 2008
  ident: 4148_CR5
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00843.x
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 4148_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume-title: Applied predictive modeling
  year: 2013
  ident: 4148_CR23
  doi: 10.1007/978-1-4614-6849-3
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 4148_CR7
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(96)00142-2
– ident: 4148_CR26
  doi: 10.21105/joss.00786
– start-page: 694
  volume-title: Joint European conference on machine learning and knowledge discovery in databases
  year: 2009
  ident: 4148_CR44
  doi: 10.1007/978-3-642-04174-7_45
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 4148_CR18
  publication-title: ACM Comput surv CSUR
– ident: 4148_CR35
– ident: 4148_CR3
  doi: 10.1145/3351095.3375624
– volume: 77
  start-page: 163
  issue: 2–3
  year: 1994
  ident: 4148_CR42
  publication-title: Cancer Lett
  doi: 10.1016/0304-3835(94)90099-X
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 4148_CR24
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08987-4
– volume: 11051
  start-page: 655
  year: 2019
  ident: 4148_CR10
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-030-10925-7_40
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 4148_CR13
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 112
  start-page: 103375
  year: 2019
  ident: 4148_CR29
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103375
– volume: 95
  start-page: 88
  year: 2019
  ident: 4148_CR33
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.09.004
– volume: 6
  start-page: 10
  issue: 1
  year: 2014
  ident: 4148_CR22
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-6-10
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 4148_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 7
  start-page: 3
  issue: 1
  year: 2006
  ident: 4148_CR12
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-3
– volume-title: Statistical analysis with missing data
  year: 2014
  ident: 4148_CR25
– ident: 4148_CR38
  doi: 10.1007/s00521-019-04051-w
– ident: 4148_CR2
– volume: 250
  start-page: 126
  year: 2015
  ident: 4148_CR11
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2015.01.010
– ident: 4148_CR45
SSID ssj0002793483
ssib051670015
Score 2.575796
Snippet Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 272
SubjectTerms Applied and Technical Physics
Archives & records
Artificial intelligence
Breast cancer
Chemistry/Food Science
Classification
Datasets
Earth Sciences
Engineering
Engineering: Smart Information and Communication Technologies
Environment
Explainable artificial intelligence
Feature selection
Machine learning
Materials Science
Medical research
Regression analysis
Research Article
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJQdvGtzdZB85iZaWIlhELfS2JNkElL50K_jznWSzrQr2uo_AzszOfPNG6IJLmoRhEhAjjSQslQkRaSoIpzIORCaYimw38sMg6Q_Z_Sge-YBb6csqa53oFHUxUzZGfh2BrwZQOabJzfyd2K1RNrvqV2hsoiao4Aycr-Zdd_D4VEtUHNouFG_w3lyajVPmZnNG4IERCuLnO2lcP51NA0bEVi0EzEba-G9rtYKgf7Kmzhj1dtGOR5H4tmL7HtrQ0320_WO24AF67iw3DOKZwUa7CZ74deIAN7AaT6rwYIlFifXXfCyqwGCJAcdiZVG1LSNy17BbmFMeomGv-9LpE79BgSiwMwsCzpXhxgDBU5qITIlIwHcDhiuMCrmAu0ZlwnARU6nSLDAxZzbBq4tAUGMMPUKN6WyqjxEGTcCoLoB9sWaBSbkwjAsl7fCfMJK0hcKaUrny48XtlotxvhyM7KibA3VzR92ct9Dl8p15NVxj7dPtmgG5_9HKfCUWLXRVM2V1-__TTtafdoq2IicHtnCljRqLj099BvBjIc-9jH0DLXLU0g
  priority: 102
  providerName: ProQuest
Title Comparison of feature importance measures as explanations for classification models
URI https://link.springer.com/article/10.1007/s42452-021-04148-9
https://www.proquest.com/docview/2788428536
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoED4ikGo8qBG0Rqm_SRI0wbCIkJAZN2q5KskUB7iQ6Jn4-TtR0gQOLSQ_OQaju1HdufAc6EYnEQxD41yijKExVTmSSSCqYiX6aS69BWI98N4pshvx1Fo7IorKiy3auQpPtT18VuNkYXUptS4HN7DSYa0IrQd7dy3V1jjkeBrTwpldyLC60Jxh0eZ4heF2UocmX1zM_bftVQa7PzW6TUKaD-DmyXliO5XLF6Fzby2R5sfcIT3IfHbt1VkMwNMblD7STPU2dkI3vJdHUlWBBZkPx9MZGry8CCoO1KtLWkbeqQe0dck5ziAIb93lP3hpZdE6hG3bKk6FAZYQwSOWGxTLUMJX432m1jowMhcdToVBohI6Z0kvomEtwGdfOxL5kxhh1Cczaf5UdA8PRzlo-RZVHOfZMIabiQWlnAnyBUrA1BRalMl5DitrPFJKvBkB11M6Ru5qibiTac12sWK0CNP2d3KgZk5eEqshDddvSaIha34aJiynr4992O_zf9BDZDJxc2eaUDzeXrW36KJshSedBI-9cetK56g_sHz8mffcZdzzn1H1Fg1FY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeqgKtupQWH8qJWk38SOIDQmjLspTHpSBxS22vLbWC3aXZquVP8RsZO8kuIMFtr3HsROPPM-N5AnxWhmdpmiXUG2-oyE1GdZ5rqriRiS60sCxkI5-cZv1z8f1CXizAbZsLE8IqW54YGfVgZION_CvDuxqqypJnu-NrGrpGBe9q20KjhsWRu_mHV7Zq5_Ab7u8WY739s26fNl0FqEXeO6F44fDKe_yJnGe6sJppJlHwy4G3qdI46m2hvdKSG5sXiZdKBKenGySae-85rvsClgTnKpyoonfQ4lemIeelEa-_o1NPcRErgeIXOMUJvMnbidl7wenIaIiRSESw66mHsnGm8D7y0UbR13sDrxudlezVIFuBBTdchVf3KhmuwY_utJ8hGXniXawXSn5dRfUegUWuamNkRXRF3P_xpa7NkBVBrZnYoMOHoKX4jMT2PNVbOJ8LZd_B4nA0dO-BIN8R3A0QLNKJxOdKe6G0NaHUUMoM70DaUqq0TTHz0FPjspyWYY7ULZG6ZaRuqTqwPZ0zrkt5PPv2RrsBZXOsq3IGwg58aTdlNvz0auvPr7YJy_2zk-Py-PD06AO8ZBETIWRmAxYnf_66j6j4TMyniDYCP-cN7zsqehF1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhVJ8gBNYTfxI1gdU9bVqKawqoFJvwfZ6JFC7u5BFLX-tv65jJ9kFJHrrNU6caPxl_HmeAK-Mk0WeFxlHh46r0hXclqXlRjqd2YFVXsRs5I-jYv9YvT_RJytw2eXCxLDKTicmRT2e-mgj3xB0ViOqrGWxgW1YxNHucHP2g8cOUtHT2rXTaCByGH6f0_GtfnewS2v9Wojh3pedfd52GOCe9PCc0-EDDSJ9UCkLO_BWWKGJBOgx-txYGkU_sGisls6Xgwy1UdEBGsaZlYgoad5bsFrSqSjrwer23ujoU4dmnccMmHaz_Z5cfEaqVBeU3iG5JOi3WTwply-6IAWPEROZilY-8_dOuaS__3hs00Y4vA_3WgbLthrIPYCVMHkId_-oa_gIPu8suhuyKTIMqXoo-3aWyD7BjJ01psma2ZqFi9mpbYySNSMOzXxk9DGEKV1jqVlP_RiOb0S2T6A3mU7CU2CkhZQMY4KODirD0lhUxnoXCw_lwsk-5J2kKt-WNo8dNk6rRVHmJN2KpFsl6VamD28Wz8yawh7X3r3WLUDV_uR1tYRkH952i7Ic_v9sz66f7SXcJmhXHw5Gh8_hjkiQiPEza9Cb__wVXhALmrv1Fm4Mvt40wq8Alo8XBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+feature+importance+measures+as+explanations+for+classification+models&rft.jtitle=SN+applied+sciences&rft.au=Saarela%2C+Mirka&rft.au=Jauhiainen%2C+Susanne&rft.date=2021-02-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1007%2Fs42452-021-04148-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_021_04148_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon