Comparison of feature importance measures as explanations for classification models
Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature impor...
Saved in:
Published in | SN applied sciences Vol. 3; no. 2; p. 272 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature importances are being measured, most notably global and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of them. These methods are applied to two datasets from the medical domain, the openly available breast cancer data from the UCI Archive and a recently collected running injury data. Our results show that the most important features differ depending on the technique. We argue that a combination of several explanation techniques could provide more reliable and trustworthy results. In particular, local explanations should be used in the most critical cases such as false negatives. |
---|---|
AbstractList | Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature importances are being measured, most notably global and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of them. These methods are applied to two datasets from the medical domain, the openly available breast cancer data from the UCI Archive and a recently collected running injury data. Our results show that the most important features differ depending on the technique. We argue that a combination of several explanation techniques could provide more reliable and trustworthy results. In particular, local explanations should be used in the most critical cases such as false negatives. |
ArticleNumber | 272 |
Author | Saarela, Mirka Jauhiainen, Susanne |
Author_xml | – sequence: 1 givenname: Mirka orcidid: 0000-0002-1559-154X surname: Saarela fullname: Saarela, Mirka email: mirka.saarela@jyu.fi organization: Faculty of Information Technology, University of Jyvaskyla – sequence: 2 givenname: Susanne surname: Jauhiainen fullname: Jauhiainen, Susanne organization: Faculty of Information Technology, University of Jyvaskyla |
BookMark | eNp9kE1PwzAMhiM0JMbYH-AUiXMhTdI2OaKJL2kSB-AcmSxBmdqmxJ0E_56wIpA47GTL9uPXfk_JrI-9I-S8ZJclY80VSi4rXjBeFkyWUhX6iMx5xUUhdFPOfvNanJAl4pYxxhstpBJz8rSK3QApYOxp9NQ7GHfJ0dANMY3QW0c7B5hLSAGp-xha6GEMsUfqY6K2BcTgg93XaBc3rsUzcuyhRbf8iQvycnvzvLov1o93D6vrdWEl12OhufTae2l5I2pQFjjkQ6u62nhbashdbxV4DZV4tY1ivtJSyrp2GwbCey8W5GLaO6T4vnM4mm3cpT5LGt4oJbmqRJ2n-DRlU0RMzpshhQ7SpymZ-fbPTP6Z7J_Z-2d0htQ_yIZx_-OYILSHUTGhmHX6N5f-rjpAfQGENIgM |
CitedBy_id | crossref_primary_10_1016_j_compedu_2023_104897 crossref_primary_10_1007_s11042_024_19456_6 crossref_primary_10_1016_j_ecoinf_2025_103066 crossref_primary_10_1016_j_cmpb_2024_108481 crossref_primary_10_1007_s42979_024_03622_6 crossref_primary_10_1016_j_jes_2024_03_037 crossref_primary_10_1016_j_media_2025_103507 crossref_primary_10_1016_j_cmpbup_2023_100100 crossref_primary_10_3390_cli12120223 crossref_primary_10_3390_informatics8040063 crossref_primary_10_1109_TFUZZ_2023_3330883 crossref_primary_10_1016_j_istruc_2024_106206 crossref_primary_10_1038_s41598_023_33207_x crossref_primary_10_1080_21681163_2022_2063189 crossref_primary_10_1080_10543406_2022_2148162 crossref_primary_10_1002_jso_27854 crossref_primary_10_1016_j_procs_2022_09_195 crossref_primary_10_1007_s10115_022_01786_2 crossref_primary_10_1007_s10726_025_09920_5 crossref_primary_10_1007_s41870_023_01713_w crossref_primary_10_1017_S1474746424000447 crossref_primary_10_1213_ANE_0000000000005916 crossref_primary_10_1007_s00394_024_03360_8 crossref_primary_10_1016_j_compag_2023_107804 crossref_primary_10_1016_j_scitotenv_2024_176589 crossref_primary_10_52082_jssm_2024_537 crossref_primary_10_1016_j_dajour_2023_100238 crossref_primary_10_1088_1361_6463_ad2339 crossref_primary_10_1016_j_wneu_2023_10_042 crossref_primary_10_2478_bile_2022_0008 crossref_primary_10_3390_electronics11233933 crossref_primary_10_1093_mnras_stad1643 crossref_primary_10_3389_fetho_2023_1219977 crossref_primary_10_1007_s00586_022_07188_w crossref_primary_10_3389_fneur_2021_681140 crossref_primary_10_1016_j_egyai_2025_100470 crossref_primary_10_3390_biomedicines12081758 crossref_primary_10_3390_rs17050797 crossref_primary_10_1016_j_npg_2024_04_004 crossref_primary_10_1007_s12145_024_01623_w crossref_primary_10_1080_03081060_2025_2462966 crossref_primary_10_1016_j_ecmx_2023_100503 crossref_primary_10_3390_rs15194659 crossref_primary_10_1007_s13353_023_00815_2 crossref_primary_10_1016_j_eswa_2025_126575 crossref_primary_10_1016_j_ibmed_2025_100237 crossref_primary_10_23736_S0022_4707_24_15786_6 crossref_primary_10_1016_j_procs_2024_08_026 crossref_primary_10_3390_ijerph192113962 crossref_primary_10_1016_j_matchemphys_2025_130747 crossref_primary_10_3390_s24165223 crossref_primary_10_1145_3579327 crossref_primary_10_29130_dubited_1102181 crossref_primary_10_3389_fenrg_2022_944804 crossref_primary_10_2196_52310 crossref_primary_10_1016_j_fuel_2023_129265 crossref_primary_10_1021_acs_jcim_3c00999 crossref_primary_10_1016_j_imu_2024_101523 crossref_primary_10_1016_j_optmat_2025_116783 crossref_primary_10_1002_jcc_27244 crossref_primary_10_1007_s13042_022_01710_8 crossref_primary_10_1016_j_eswa_2023_121138 crossref_primary_10_1007_s00500_023_09028_5 crossref_primary_10_1177_17442591241266836 crossref_primary_10_1109_ACCESS_2023_3314380 crossref_primary_10_3390_info14120625 crossref_primary_10_1016_j_jconrel_2022_11_014 crossref_primary_10_1007_s12076_024_00387_7 crossref_primary_10_1177_00220426241274753 crossref_primary_10_3390_s24123859 crossref_primary_10_1021_acsestengg_3c00043 crossref_primary_10_1186_s12859_022_04870_0 crossref_primary_10_14801_jkiit_2022_20_12_49 crossref_primary_10_1371_journal_pone_0300447 crossref_primary_10_3390_info15100590 crossref_primary_10_3389_frsen_2025_1521958 crossref_primary_10_3390_rs16132428 crossref_primary_10_1016_j_bspc_2023_105457 crossref_primary_10_1109_ACCESS_2025_3547813 crossref_primary_10_1080_01612840_2023_2212768 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123190 crossref_primary_10_1007_s00521_024_10413_w crossref_primary_10_1007_s10115_024_02107_5 crossref_primary_10_18559_ebr_2024_2_1149 crossref_primary_10_1016_j_knosys_2025_112973 crossref_primary_10_1016_j_measen_2022_100466 crossref_primary_10_3390_healthcare10061107 crossref_primary_10_3390_jpm14050534 crossref_primary_10_1016_j_neucom_2025_129686 crossref_primary_10_1002_cai2_136 crossref_primary_10_1007_s00521_024_10383_z crossref_primary_10_1016_j_csite_2024_104049 crossref_primary_10_3390_info13070320 crossref_primary_10_1109_ACCESS_2024_3471787 crossref_primary_10_1007_s41109_022_00515_6 crossref_primary_10_1080_19479832_2024_2329563 crossref_primary_10_1097_PHH_0000000000001721 crossref_primary_10_1039_D2CP05339J crossref_primary_10_1016_j_rse_2023_113944 crossref_primary_10_3390_s23177657 crossref_primary_10_1093_bioadv_vbae049 crossref_primary_10_1016_j_jechem_2024_10_032 crossref_primary_10_1016_j_jval_2024_06_005 crossref_primary_10_1109_ACCESS_2025_3548118 crossref_primary_10_3390_vaccines12111253 crossref_primary_10_1002_jmv_28538 crossref_primary_10_1016_j_advengsoft_2022_103160 crossref_primary_10_1007_s10458_023_09634_5 crossref_primary_10_1007_s41939_024_00417_3 crossref_primary_10_1016_j_cities_2024_105631 crossref_primary_10_3389_fpubh_2023_1309490 crossref_primary_10_1093_mnras_stad3976 crossref_primary_10_1371_journal_pcbi_1011424 crossref_primary_10_1109_JBHI_2022_3187346 crossref_primary_10_1126_sciadv_adk0837 crossref_primary_10_1016_j_compag_2024_109215 crossref_primary_10_3389_frai_2021_648071 crossref_primary_10_1007_s42600_023_00335_2 crossref_primary_10_1371_journal_pone_0313592 crossref_primary_10_1051_0004_6361_202245770 crossref_primary_10_1016_j_eswa_2024_124733 crossref_primary_10_3389_fmars_2024_1493598 crossref_primary_10_1002_jeo2_70081 crossref_primary_10_1109_JSEN_2024_3464635 crossref_primary_10_1016_j_ijdrr_2024_104640 crossref_primary_10_1016_j_telpol_2024_102816 crossref_primary_10_1016_j_cmpb_2023_107990 crossref_primary_10_1016_j_pacs_2024_100675 crossref_primary_10_31083_j_jin2305095 crossref_primary_10_1016_j_eswa_2023_119729 crossref_primary_10_1007_s41748_024_00384_2 crossref_primary_10_1016_j_gexplo_2024_107478 crossref_primary_10_1016_j_pmcj_2022_101621 crossref_primary_10_1093_ehjdh_ztae010 crossref_primary_10_3390_ma18061384 crossref_primary_10_3390_inventions8050126 crossref_primary_10_1371_journal_pone_0291095 crossref_primary_10_3389_fdgth_2023_1249258 crossref_primary_10_1016_j_eswa_2025_126821 crossref_primary_10_3390_a17020085 crossref_primary_10_1080_10447318_2024_2441015 crossref_primary_10_3389_fcvm_2023_1211600 crossref_primary_10_1016_j_advengsoft_2022_103186 crossref_primary_10_15675_gepros_2965 crossref_primary_10_1016_j_ijar_2024_109215 crossref_primary_10_3390_app12199545 crossref_primary_10_1051_e3sconf_202452401010 crossref_primary_10_1115_1_4066675 crossref_primary_10_1200_CCI_22_00128 crossref_primary_10_1016_j_tifs_2025_104877 crossref_primary_10_1186_s12884_024_06980_4 crossref_primary_10_3390_app14198884 crossref_primary_10_1038_s41598_025_92577_6 crossref_primary_10_1186_s10194_024_01924_x crossref_primary_10_1007_s41870_023_01187_w crossref_primary_10_1016_j_talanta_2024_126652 crossref_primary_10_3390_cancers16193274 crossref_primary_10_1007_s12012_024_09843_8 crossref_primary_10_1136_bmjopen_2023_075095 crossref_primary_10_1007_s12559_023_10179_8 crossref_primary_10_1007_s13278_024_01389_5 crossref_primary_10_3390_diagnostics14111152 crossref_primary_10_3390_app15073552 crossref_primary_10_1109_ACCESS_2025_3543136 crossref_primary_10_3390_biomedinformatics4010018 crossref_primary_10_1088_1361_6501_ad3570 crossref_primary_10_3390_s22062079 crossref_primary_10_1016_j_procs_2022_09_199 crossref_primary_10_1016_j_ymssp_2022_109473 crossref_primary_10_3390_math12213414 crossref_primary_10_1016_j_autcon_2022_104249 crossref_primary_10_1109_ACCESS_2025_3544625 crossref_primary_10_3390_data7110146 crossref_primary_10_1155_2023_4637678 crossref_primary_10_3390_jpm14080804 crossref_primary_10_1109_ACCESS_2025_3548267 crossref_primary_10_1371_journal_pcbi_1009800 crossref_primary_10_1038_s41598_024_82062_x crossref_primary_10_1021_acs_est_4c01172 crossref_primary_10_1016_j_datak_2024_102402 crossref_primary_10_1016_j_apenergy_2023_122413 crossref_primary_10_1109_ACCESS_2024_3393423 crossref_primary_10_3390_a16020121 crossref_primary_10_1017_dap_2024_35 crossref_primary_10_1371_journal_pone_0301608 |
Cites_doi | 10.1016/j.patrec.2005.10.010 10.1016/j.jneumeth.2015.01.010 10.1016/0304-3835(94)90099-X 10.1023/A:1010933404324 10.1186/1471-2105-7-3 10.1016/j.jbiomech.2016.10.033 10.1371/journal.pone.0174944 10.1186/1758-2946-6-10 10.1016/S0031-3203(96)00142-2 10.1016/j.compbiomed.2019.103375 10.1093/bioinformatics/btm344 10.1007/978-3-030-10925-7_40 10.1007/978-3-642-04174-7_45 10.1111/j.1541-0420.2007.00843.x 10.1007/s00521-015-2103-9 10.1016/j.artmed.2020.101822 10.1371/journal.pone.0105246 10.1007/978-1-4614-6849-3 10.1038/s41467-019-08987-4 10.1093/bioinformatics/17.6.520 10.1007/s10115-012-0487-8 10.1007/978-3-030-43823-4_10 10.1214/ss/1009213726 10.1016/j.gaitpost.2010.07.020 10.1016/j.artmed.2018.09.004 10.1002/widm.1072 10.1109/DSAA.2018.00018 10.1145/2939672.2939778 10.1055/a-1231-5304 10.1109/TNNLS.2020.3027314 10.1109/HealthCom.2016.7749452 10.21105/joss.00786 10.1145/3351095.3375624 10.1007/s00521-019-04051-w |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U |
DOI | 10.1007/s42452-021-04148-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2523-3971 |
ExternalDocumentID | 10_1007_s42452_021_04148_9 |
GrantInformation_xml | – fundername: Academy of Finland grantid: 311877 |
GroupedDBID | -EM 0R~ 88I AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACULB ADKNI ADMLS ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ H13 HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ACSTC CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK D1I L6V PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c429t-924f9ff4c2736a8ca2a252565dfc19a24ffc8af9a53bc780f5944466ed0a3fff3 |
IEDL.DBID | C24 |
ISSN | 2523-3963 |
IngestDate | Wed Aug 13 04:51:39 EDT 2025 Tue Jul 01 04:23:28 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Fri Feb 21 02:49:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Explainable artificial intelligence Feature importance Logistic regression Random forest Interpretable models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-924f9ff4c2736a8ca2a252565dfc19a24ffc8af9a53bc780f5944466ed0a3fff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1559-154X |
OpenAccessLink | https://link.springer.com/10.1007/s42452-021-04148-9 |
PQID | 2788428536 |
PQPubID | 5758472 |
ParticipantIDs | proquest_journals_2788428536 crossref_primary_10_1007_s42452_021_04148_9 crossref_citationtrail_10_1007_s42452_021_04148_9 springer_journals_10_1007_s42452_021_04148_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | SN applied sciences |
PublicationTitleAbbrev | SN Appl. Sci |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (CR4) 2013; 34 Breiman (CR8) 2001; 45 Boulesteix, Janitza, Kruppa, König (CR6) 2012; 2 Breiman (CR9) 2001; 16 Zien, Krämer, Sonnenburg, Rätsch (CR44) 2009 Kuhn, Johnson (CR23) 2013 CR17 CR38 CR36 CR35 Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, Altman (CR37) 2001; 17 Saarela, Ryynänen, Äyrämö (CR33) 2019; 95 CR31 CR30 Wachter, Mittelstadt, Russell (CR39) 2017; 31 Díaz-Uriarte, De Andres (CR12) 2006; 7 Pohl, Lloyd, Ferber (CR28) 2010; 32 Fawcett (CR13) 2006; 27 Phinyomark, Hettinga, Osis, Ferber (CR27) 2014; 9 CR2 Bondell, Reich (CR5) 2008; 64 Bradley (CR7) 1997; 30 CR3 Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (CR24) 2019; 10 Wolberg, Street, Mangasarian (CR42) 1994; 77 Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (CR18) 2018; 51 Ferber, Osis, Hicks, Delp (CR14) 2016; 49 Gifi (CR16) 1990 Horn, Pack, Rieger, Cellier, Driessens (CR19) 2020 CR26 Krstajic, Buturovic, Leahy, Thomas (CR22) 2014; 6 Remeseiro, Bolon-Canedo (CR29) 2019; 112 CR45 CR21 CR43 Aličković, Subasi (CR1) 2017; 28 CR20 Saeys, Inza, Larrañaga (CR34) 2007; 23 Saarela, Kärkkäinen (CR32) 2020; 14 Weng, Reps, Kai, Garibaldi, Qureshi (CR41) 2017; 12 Fisher, Rudin, Dominici (CR15) 2019; 20 Little, Rubin (CR25) 2014 Waring, Lindvall, Umeton (CR40) 2020; 104 Casalicchio, Molnar, Bischl (CR10) 2019; 11051 Combrisson, Jerbi (CR11) 2015; 250 4148_CR21 4148_CR43 E Aličković (4148_CR1) 2017; 28 R Ferber (4148_CR14) 2016; 49 4148_CR45 AL Boulesteix (4148_CR6) 2012; 2 A Fisher (4148_CR15) 2019; 20 4148_CR20 V Bolón-Canedo (4148_CR4) 2013; 34 Y Saeys (4148_CR34) 2007; 23 A Gifi (4148_CR16) 1990 RJ Little (4148_CR25) 2014 L Breiman (4148_CR8) 2001; 45 O Troyanskaya (4148_CR37) 2001; 17 M Saarela (4148_CR33) 2019; 95 A Zien (4148_CR44) 2009 L Breiman (4148_CR9) 2001; 16 A Phinyomark (4148_CR27) 2014; 9 J Waring (4148_CR40) 2020; 104 4148_CR26 WH Wolberg (4148_CR42) 1994; 77 E Combrisson (4148_CR11) 2015; 250 4148_CR35 S Wachter (4148_CR39) 2017; 31 S Lapuschkin (4148_CR24) 2019; 10 D Krstajic (4148_CR22) 2014; 6 4148_CR31 B Remeseiro (4148_CR29) 2019; 112 4148_CR30 MB Pohl (4148_CR28) 2010; 32 R Díaz-Uriarte (4148_CR12) 2006; 7 M Saarela (4148_CR32) 2020; 14 4148_CR3 4148_CR2 T Fawcett (4148_CR13) 2006; 27 R Guidotti (4148_CR18) 2018; 51 SF Weng (4148_CR41) 2017; 12 HD Bondell (4148_CR5) 2008; 64 AP Bradley (4148_CR7) 1997; 30 M Kuhn (4148_CR23) 2013 4148_CR36 G Casalicchio (4148_CR10) 2019; 11051 4148_CR17 F Horn (4148_CR19) 2020 4148_CR38 |
References_xml | – ident: CR45 – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 ident: CR13 article-title: An introduction to roc analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – ident: CR43 – volume: 250 start-page: 126 year: 2015 end-page: 136 ident: CR11 article-title: Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2015.01.010 – volume: 77 start-page: 163 issue: 2–3 year: 1994 end-page: 171 ident: CR42 article-title: Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates publication-title: Cancer Lett doi: 10.1016/0304-3835(94)90099-X – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR8 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 7 start-page: 3 issue: 1 year: 2006 ident: CR12 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-3 – ident: CR2 – volume: 49 start-page: 3759 issue: 16 year: 2016 end-page: 3761 ident: CR14 article-title: Gait biomechanics in the era of data science publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.10.033 – volume: 12 start-page: e0174944 issue: 4 year: 2017 ident: CR41 article-title: Can machine-learning improve cardiovascular risk prediction using routine clinical data? publication-title: PLoS ONE doi: 10.1371/journal.pone.0174944 – year: 1990 ident: CR16 publication-title: Nonlinear multivariate analysis – volume: 6 start-page: 10 issue: 1 year: 2014 ident: CR22 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J Cheminform doi: 10.1186/1758-2946-6-10 – ident: CR30 – volume: 30 start-page: 1145 issue: 7 year: 1997 end-page: 1159 ident: CR7 article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn doi: 10.1016/S0031-3203(96)00142-2 – volume: 51 start-page: 1 issue: 5 year: 2018 end-page: 42 ident: CR18 article-title: A survey of methods for explaining black box models publication-title: ACM Comput surv CSUR – volume: 20 start-page: 1 issue: 177 year: 2019 end-page: 81 ident: CR15 article-title: All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously publication-title: J Mach Learn Res – volume: 112 start-page: 103375 year: 2019 ident: CR29 article-title: A review of feature selection methods in medical applications publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103375 – ident: CR35 – volume: 31 start-page: 841 year: 2017 ident: CR39 article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR publication-title: Harv. JL Tech. – volume: 23 start-page: 2507 issue: 19 year: 2007 end-page: 2517 ident: CR34 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 11051 start-page: 655 year: 2019 end-page: 670 ident: CR10 article-title: Visualizing the Feature Importance for Black Box Models publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-030-10925-7_40 – ident: CR21 – start-page: 694 year: 2009 end-page: 709 ident: CR44 article-title: The feature importance ranking measure publication-title: Joint European conference on machine learning and knowledge discovery in databases doi: 10.1007/978-3-642-04174-7_45 – volume: 64 start-page: 115 issue: 1 year: 2008 end-page: 123 ident: CR5 article-title: Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00843.x – volume: 14 start-page: 101008 issue: 2 year: 2020 ident: CR32 article-title: Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator publication-title: J Inf – volume: 28 start-page: 753 issue: 4 year: 2017 end-page: 763 ident: CR1 article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2103-9 – year: 2014 ident: CR25 publication-title: Statistical analysis with missing data – volume: 104 start-page: 101822 year: 2020 ident: CR40 article-title: Automated machine learning: Review of the state-of-the-art and opportunities for healthcare publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101822 – volume: 9 start-page: e105246 issue: 8 year: 2014 ident: CR27 article-title: Gender and age-related differences in bilateral lower extremity mechanics during treadmill running publication-title: PLoS ONE doi: 10.1371/journal.pone.0105246 – ident: CR3 – ident: CR38 – ident: CR17 – ident: CR31 – year: 2013 ident: CR23 publication-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 8 ident: CR24 article-title: Unmasking clever hans predictors and assessing what machines really learn publication-title: Nat Commun doi: 10.1038/s41467-019-08987-4 – volume: 17 start-page: 520 issue: 6 year: 2001 end-page: 525 ident: CR37 article-title: Missing value estimation methods for dna microarrays publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – volume: 34 start-page: 483 issue: 3 year: 2013 end-page: 519 ident: CR4 article-title: A review of feature selection methods on synthetic data publication-title: Knowl Inf Syst doi: 10.1007/s10115-012-0487-8 – ident: CR36 – start-page: 111 year: 2020 end-page: 120 ident: CR19 article-title: The autofeat python library for automated feature engineering and selection publication-title: Machine Learning and Knowledge Discovery in Databases doi: 10.1007/978-3-030-43823-4_10 – volume: 16 start-page: 199 issue: 3 year: 2001 end-page: 231 ident: CR9 article-title: Statistical modeling: The two cultures publication-title: Stat Sci doi: 10.1214/ss/1009213726 – ident: CR26 – volume: 32 start-page: 559 issue: 4 year: 2010 end-page: 563 ident: CR28 article-title: Can the reliability of three-dimensional running kinematics be improved using functional joint methodology? publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.020 – volume: 95 start-page: 88 year: 2019 end-page: 95 ident: CR33 article-title: Predicting hospital associated disability from imbalanced data using supervised learning publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.09.004 – volume: 2 start-page: 493 issue: 6 year: 2012 end-page: 507 ident: CR6 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics publication-title: Wiley Interdiscip Rev Data Min Knowl Discover doi: 10.1002/widm.1072 – ident: CR20 – volume: 9 start-page: e105246 issue: 8 year: 2014 ident: 4148_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0105246 – volume: 32 start-page: 559 issue: 4 year: 2010 ident: 4148_CR28 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.020 – volume: 34 start-page: 483 issue: 3 year: 2013 ident: 4148_CR4 publication-title: Knowl Inf Syst doi: 10.1007/s10115-012-0487-8 – volume: 31 start-page: 841 year: 2017 ident: 4148_CR39 publication-title: Harv. JL Tech. – ident: 4148_CR17 doi: 10.1109/DSAA.2018.00018 – volume: 14 start-page: 101008 issue: 2 year: 2020 ident: 4148_CR32 publication-title: J Inf – ident: 4148_CR30 doi: 10.1145/2939672.2939778 – volume: 12 start-page: e0174944 issue: 4 year: 2017 ident: 4148_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0174944 – ident: 4148_CR21 – volume: 49 start-page: 3759 issue: 16 year: 2016 ident: 4148_CR14 publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.10.033 – ident: 4148_CR20 doi: 10.1055/a-1231-5304 – start-page: 111 volume-title: Machine Learning and Knowledge Discovery in Databases year: 2020 ident: 4148_CR19 doi: 10.1007/978-3-030-43823-4_10 – ident: 4148_CR36 doi: 10.1109/TNNLS.2020.3027314 – ident: 4148_CR43 doi: 10.1109/HealthCom.2016.7749452 – volume: 2 start-page: 493 issue: 6 year: 2012 ident: 4148_CR6 publication-title: Wiley Interdiscip Rev Data Min Knowl Discover doi: 10.1002/widm.1072 – volume: 20 start-page: 1 issue: 177 year: 2019 ident: 4148_CR15 publication-title: J Mach Learn Res – volume: 28 start-page: 753 issue: 4 year: 2017 ident: 4148_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2103-9 – volume: 104 start-page: 101822 year: 2020 ident: 4148_CR40 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101822 – volume-title: Nonlinear multivariate analysis year: 1990 ident: 4148_CR16 – ident: 4148_CR31 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 4148_CR8 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 16 start-page: 199 issue: 3 year: 2001 ident: 4148_CR9 publication-title: Stat Sci doi: 10.1214/ss/1009213726 – volume: 64 start-page: 115 issue: 1 year: 2008 ident: 4148_CR5 publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00843.x – volume: 17 start-page: 520 issue: 6 year: 2001 ident: 4148_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – volume-title: Applied predictive modeling year: 2013 ident: 4148_CR23 doi: 10.1007/978-1-4614-6849-3 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 4148_CR7 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(96)00142-2 – ident: 4148_CR26 doi: 10.21105/joss.00786 – start-page: 694 volume-title: Joint European conference on machine learning and knowledge discovery in databases year: 2009 ident: 4148_CR44 doi: 10.1007/978-3-642-04174-7_45 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 4148_CR18 publication-title: ACM Comput surv CSUR – ident: 4148_CR35 – ident: 4148_CR3 doi: 10.1145/3351095.3375624 – volume: 77 start-page: 163 issue: 2–3 year: 1994 ident: 4148_CR42 publication-title: Cancer Lett doi: 10.1016/0304-3835(94)90099-X – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 4148_CR24 publication-title: Nat Commun doi: 10.1038/s41467-019-08987-4 – volume: 11051 start-page: 655 year: 2019 ident: 4148_CR10 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-030-10925-7_40 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 4148_CR13 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 112 start-page: 103375 year: 2019 ident: 4148_CR29 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103375 – volume: 95 start-page: 88 year: 2019 ident: 4148_CR33 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.09.004 – volume: 6 start-page: 10 issue: 1 year: 2014 ident: 4148_CR22 publication-title: J Cheminform doi: 10.1186/1758-2946-6-10 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 4148_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 7 start-page: 3 issue: 1 year: 2006 ident: 4148_CR12 publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-3 – volume-title: Statistical analysis with missing data year: 2014 ident: 4148_CR25 – ident: 4148_CR38 doi: 10.1007/s00521-019-04051-w – ident: 4148_CR2 – volume: 250 start-page: 126 year: 2015 ident: 4148_CR11 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2015.01.010 – ident: 4148_CR45 |
SSID | ssj0002793483 ssib051670015 |
Score | 2.575796 |
Snippet | Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 272 |
SubjectTerms | Applied and Technical Physics Archives & records Artificial intelligence Breast cancer Chemistry/Food Science Classification Datasets Earth Sciences Engineering Engineering: Smart Information and Communication Technologies Environment Explainable artificial intelligence Feature selection Machine learning Materials Science Medical research Regression analysis Research Article |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJQdvGtzdZB85iZaWIlhELfS2JNkElL50K_jznWSzrQr2uo_AzszOfPNG6IJLmoRhEhAjjSQslQkRaSoIpzIORCaYimw38sMg6Q_Z_Sge-YBb6csqa53oFHUxUzZGfh2BrwZQOabJzfyd2K1RNrvqV2hsoiao4Aycr-Zdd_D4VEtUHNouFG_w3lyajVPmZnNG4IERCuLnO2lcP51NA0bEVi0EzEba-G9rtYKgf7Kmzhj1dtGOR5H4tmL7HtrQ0320_WO24AF67iw3DOKZwUa7CZ74deIAN7AaT6rwYIlFifXXfCyqwGCJAcdiZVG1LSNy17BbmFMeomGv-9LpE79BgSiwMwsCzpXhxgDBU5qITIlIwHcDhiuMCrmAu0ZlwnARU6nSLDAxZzbBq4tAUGMMPUKN6WyqjxEGTcCoLoB9sWaBSbkwjAsl7fCfMJK0hcKaUrny48XtlotxvhyM7KibA3VzR92ct9Dl8p15NVxj7dPtmgG5_9HKfCUWLXRVM2V1-__TTtafdoq2IicHtnCljRqLj099BvBjIc-9jH0DLXLU0g priority: 102 providerName: ProQuest |
Title | Comparison of feature importance measures as explanations for classification models |
URI | https://link.springer.com/article/10.1007/s42452-021-04148-9 https://www.proquest.com/docview/2788428536 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoED4ikGo8qBG0Rqm_SRI0wbCIkJAZN2q5KskUB7iQ6Jn4-TtR0gQOLSQ_OQaju1HdufAc6EYnEQxD41yijKExVTmSSSCqYiX6aS69BWI98N4pshvx1Fo7IorKiy3auQpPtT18VuNkYXUptS4HN7DSYa0IrQd7dy3V1jjkeBrTwpldyLC60Jxh0eZ4heF2UocmX1zM_bftVQa7PzW6TUKaD-DmyXliO5XLF6Fzby2R5sfcIT3IfHbt1VkMwNMblD7STPU2dkI3vJdHUlWBBZkPx9MZGry8CCoO1KtLWkbeqQe0dck5ziAIb93lP3hpZdE6hG3bKk6FAZYQwSOWGxTLUMJX432m1jowMhcdToVBohI6Z0kvomEtwGdfOxL5kxhh1Cczaf5UdA8PRzlo-RZVHOfZMIabiQWlnAnyBUrA1BRalMl5DitrPFJKvBkB11M6Ru5qibiTac12sWK0CNP2d3KgZk5eEqshDddvSaIha34aJiynr4992O_zf9BDZDJxc2eaUDzeXrW36KJshSedBI-9cetK56g_sHz8mffcZdzzn1H1Fg1FY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeqgKtupQWH8qJWk38SOIDQmjLspTHpSBxS22vLbWC3aXZquVP8RsZO8kuIMFtr3HsROPPM-N5AnxWhmdpmiXUG2-oyE1GdZ5rqriRiS60sCxkI5-cZv1z8f1CXizAbZsLE8IqW54YGfVgZION_CvDuxqqypJnu-NrGrpGBe9q20KjhsWRu_mHV7Zq5_Ab7u8WY739s26fNl0FqEXeO6F44fDKe_yJnGe6sJppJlHwy4G3qdI46m2hvdKSG5sXiZdKBKenGySae-85rvsClgTnKpyoonfQ4lemIeelEa-_o1NPcRErgeIXOMUJvMnbidl7wenIaIiRSESw66mHsnGm8D7y0UbR13sDrxudlezVIFuBBTdchVf3KhmuwY_utJ8hGXniXawXSn5dRfUegUWuamNkRXRF3P_xpa7NkBVBrZnYoMOHoKX4jMT2PNVbOJ8LZd_B4nA0dO-BIN8R3A0QLNKJxOdKe6G0NaHUUMoM70DaUqq0TTHz0FPjspyWYY7ULZG6ZaRuqTqwPZ0zrkt5PPv2RrsBZXOsq3IGwg58aTdlNvz0auvPr7YJy_2zk-Py-PD06AO8ZBETIWRmAxYnf_66j6j4TMyniDYCP-cN7zsqehF1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhVJ8gBNYTfxI1gdU9bVqKawqoFJvwfZ6JFC7u5BFLX-tv65jJ9kFJHrrNU6caPxl_HmeAK-Mk0WeFxlHh46r0hXclqXlRjqd2YFVXsRs5I-jYv9YvT_RJytw2eXCxLDKTicmRT2e-mgj3xB0ViOqrGWxgW1YxNHucHP2g8cOUtHT2rXTaCByGH6f0_GtfnewS2v9Wojh3pedfd52GOCe9PCc0-EDDSJ9UCkLO_BWWKGJBOgx-txYGkU_sGisls6Xgwy1UdEBGsaZlYgoad5bsFrSqSjrwer23ujoU4dmnccMmHaz_Z5cfEaqVBeU3iG5JOi3WTwply-6IAWPEROZilY-8_dOuaS__3hs00Y4vA_3WgbLthrIPYCVMHkId_-oa_gIPu8suhuyKTIMqXoo-3aWyD7BjJ01psma2ZqFi9mpbYySNSMOzXxk9DGEKV1jqVlP_RiOb0S2T6A3mU7CU2CkhZQMY4KODirD0lhUxnoXCw_lwsk-5J2kKt-WNo8dNk6rRVHmJN2KpFsl6VamD28Wz8yawh7X3r3WLUDV_uR1tYRkH952i7Ic_v9sz66f7SXcJmhXHw5Gh8_hjkiQiPEza9Cb__wVXhALmrv1Fm4Mvt40wq8Alo8XBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+feature+importance+measures+as+explanations+for+classification+models&rft.jtitle=SN+applied+sciences&rft.au=Saarela%2C+Mirka&rft.au=Jauhiainen%2C+Susanne&rft.date=2021-02-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1007%2Fs42452-021-04148-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_021_04148_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |