Fine-Tuning the Fuzziness of Strong Fuzzy Partitions through PSO

We study the influence of fuzziness of trapezoidal fuzzy sets in the strong fuzzy partitions (SFPs) that constitute the database of a fuzzy rule-based classifier. To this end, we develop a particular representation of the trapezoidal fuzzy sets that is based on the concept of cuts, which are the cro...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 13; no. 1; pp. 1415 - 1428
Main Authors Castiello, Ciro, Mencar, Corrado
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2020
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the influence of fuzziness of trapezoidal fuzzy sets in the strong fuzzy partitions (SFPs) that constitute the database of a fuzzy rule-based classifier. To this end, we develop a particular representation of the trapezoidal fuzzy sets that is based on the concept of cuts, which are the cross-points of fuzzy sets in a SFP and fix the position of the fuzzy sets in the Universe of Discourse. In this way, it is possible to isolate the parameters that characterize the fuzziness of the fuzzy sets, which are subject to fine-tuning through particle swarm optimization (PSO). In this paper, we propose a formulation of the parameter space that enables the exploration of all possible levels of fuzziness in a SFP. The experimental results show that the impact of fuzziness is strongly dependent on the defuzzification procedure used in fuzzy rule-based classifiers. Fuzziness has little influence in the case of winner-takes-all defuzzification, while it is more influential in weighted sum defuzzification, which however may pose some interpretation problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.2991/ijcis.d.200904.002