Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding
With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of the process, we apply molecular dynamics method to simulate the melting and sintering behavior of Cu nanoparticles during the direct bon...
Saved in:
Published in | Materials & design Vol. 197; p. 109240 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of the process, we apply molecular dynamics method to simulate the melting and sintering behavior of Cu nanoparticles during the direct bonding process. The melting points of nanoparticles from 2 nm to 9 nm are simulated to be from 963 K to 1298 K. The smaller the diameter of the nanoparticle, the less stable it is. At the same sintering temperature, the sintering time for 2 nm nanoparticles is less than half of that for 8 nm nanoparticles. Based on these atomic insights, if we can synthesis Cu nanoparticles as small as 2 nm, the CuCu direct bonding temperature and time can be reduced further. |
---|---|
AbstractList | With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of the process, we apply molecular dynamics method to simulate the melting and sintering behavior of Cu nanoparticles during the direct bonding process. The melting points of nanoparticles from 2 nm to 9 nm are simulated to be from 963 K to 1298 K. The smaller the diameter of the nanoparticle, the less stable it is. At the same sintering temperature, the sintering time for 2 nm nanoparticles is less than half of that for 8 nm nanoparticles. Based on these atomic insights, if we can synthesis Cu nanoparticles as small as 2 nm, the CuCu direct bonding temperature and time can be reduced further. |
ArticleNumber | 109240 |
Author | Wu, Rui Liu, Yingxia Zhao, Xiuchen |
Author_xml | – sequence: 1 givenname: Rui surname: Wu fullname: Wu, Rui – sequence: 2 givenname: Xiuchen surname: Zhao fullname: Zhao, Xiuchen – sequence: 3 givenname: Yingxia surname: Liu fullname: Liu, Yingxia |
BookMark | eNp9kM9KAzEQxnOoYFt9Aw_7AluT2WTTeCvFPwXBi168hGySbbPsJiWJgm_vrq0XD8LAMMP8Pr75Fmjmg7cI3RC8IpjUt91qUNnYtAIM00oAxTM0x1DTkgBnl2iRUocxAK_oHL1vchicLpxPbn_IqQhtsf0ovPLhqGJ2urepGGyfnd8XypsiOZ9tnKbGHtSnC3FkJ2Qs46LVuWiCN-PBFbpoVZ_s9bkv0dvD_ev2qXx-edxtN8-lpiByyS0I27I1CALGYlI1arRZ27oCzASFyiqjCdaGKsVbXhOwa6OhZoxxvqasWqLdSdcE1cljdIOKXzIoJ38WIe7l-RMpeKW14YKTpqa8gmZUqVmDieCYQatHrbuTlo4hpWhbqV1W2QWfo3K9JFhOKctOnlKWU8rylPII0z_wr5l_sW8fRIax |
CitedBy_id | crossref_primary_10_1007_s10854_022_07771_3 crossref_primary_10_1557_s43579_023_00472_w crossref_primary_10_1016_j_matdes_2023_112502 crossref_primary_10_1016_j_msea_2023_145737 crossref_primary_10_1016_j_apcatb_2023_122839 crossref_primary_10_1016_j_apt_2023_104084 crossref_primary_10_1088_1402_4896_ad4317 crossref_primary_10_1039_D3DT03044J crossref_primary_10_1016_j_surfcoat_2022_128805 crossref_primary_10_2320_matertrans_MT_MC2022008 crossref_primary_10_1016_j_uclim_2021_101046 crossref_primary_10_1007_s10973_023_12689_x crossref_primary_10_1088_1361_6528_ac232d crossref_primary_10_1016_j_jtice_2021_10_027 crossref_primary_10_1016_j_matdes_2024_113457 crossref_primary_10_1016_j_msea_2024_146352 crossref_primary_10_1016_j_apsusc_2021_152347 crossref_primary_10_1063_5_0075748 crossref_primary_10_1063_5_0166812 crossref_primary_10_1016_j_jmrt_2024_11_241 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123456 crossref_primary_10_1016_j_jmrt_2024_03_146 crossref_primary_10_1007_s11665_023_07829_1 crossref_primary_10_1016_j_uclim_2021_100927 crossref_primary_10_1016_j_apsusc_2025_162744 crossref_primary_10_1016_j_jmrt_2023_05_279 crossref_primary_10_1016_j_ceramint_2022_06_254 crossref_primary_10_1016_j_heliyon_2022_e12624 crossref_primary_10_1002_app_52728 crossref_primary_10_1016_j_cpc_2024_109235 crossref_primary_10_1007_s00339_024_07552_1 crossref_primary_10_1016_j_chemosphere_2021_130286 crossref_primary_10_3390_coatings13061078 |
Cites_doi | 10.1063/1.3263154 10.1039/c3tc00904a 10.1063/1.5097382 10.1016/j.matlet.2016.08.085 10.1016/j.microrel.2017.07.069 10.1016/j.mtla.2020.100791 10.1016/S0026-2714(03)00039-8 10.1016/j.mee.2012.08.019 10.1016/j.jallcom.2018.09.115 10.1021/la104136w 10.1016/j.matchemphys.2014.02.045 10.1016/j.actamat.2016.07.004 10.1016/j.matlet.2018.05.037 10.1016/j.matlet.2018.07.061 10.1186/s11671-016-1773-2 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2020.109240 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_973ccd7971b64732b65565b0197052fc 10_1016_j_matdes_2020_109240 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 7-5 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC BNPGV CITATION EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSH SSM SST SSZ T5K WUQ ~G- EFKBS |
ID | FETCH-LOGICAL-c429t-7e29ef582912de013ba2756e632059423eadc10cd4aa7f7612e8dc26555778453 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:30:19 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Tue Jul 01 02:23:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-7e29ef582912de013ba2756e632059423eadc10cd4aa7f7612e8dc26555778453 |
OpenAccessLink | https://doaj.org/article/973ccd7971b64732b65565b0197052fc |
ParticipantIDs | doaj_primary_oai_doaj_org_article_973ccd7971b64732b65565b0197052fc crossref_citationtrail_10_1016_j_matdes_2020_109240 crossref_primary_10_1016_j_matdes_2020_109240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-00 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2021 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Jeong (10.1016/j.matdes.2020.109240_bb0070) 2013; 1 Kim (10.1016/j.matdes.2020.109240_bb0045) 2013; 107 Li (10.1016/j.matdes.2020.109240_bb0050) 2019; 772 Li (10.1016/j.matdes.2020.109240_bb0040) 2016; 184 Li (10.1016/j.matdes.2020.109240_bb0080) 2014; 146 Shigetou (10.1016/j.matdes.2020.109240_bb0030) 2008 Liu (10.1016/j.matdes.2020.109240_bb0010) 2016; 117 Etesami (10.1016/j.matdes.2020.109240_bb0085) 2017 Wang (10.1016/j.matdes.2020.109240_bb0035) 2003; 43 Mou (10.1016/j.matdes.2020.109240_bb0055) 2018; 227 Wang (10.1016/j.matdes.2020.109240_bb0095) 2017; 78 Ren (10.1016/j.matdes.2020.109240_bb0025) 2019; 9 Mou (10.1016/j.matdes.2020.109240_bb0060) 2018; 229 Jeong (10.1016/j.matdes.2020.109240_bb0065) 2011; 27 Tu (10.1016/j.matdes.2020.109240_bb0005) 2010; 117 Tan (10.1016/j.matdes.2020.109240_bb0020) 2009; 95 Liu (10.1016/j.matdes.2020.109240_bb0015) 2020; 12 Li (10.1016/j.matdes.2020.109240_bb0075) 2017; 12 |
References_xml | – year: 2017 ident: 10.1016/j.matdes.2020.109240_bb0085 article-title: Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method publication-title: J. Phys. Chem. Solids – volume: 117 start-page: 1 year: 2010 ident: 10.1016/j.matdes.2020.109240_bb0005 article-title: Solder joint technology: materials, properties, and reliability publication-title: Springer Ser. Mater. Sci. – volume: 95 start-page: 192108.1 year: 2009 ident: 10.1016/j.matdes.2020.109240_bb0020 article-title: Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol publication-title: Appl. Phys. Lett. doi: 10.1063/1.3263154 – volume: 1 start-page: 2704 year: 2013 ident: 10.1016/j.matdes.2020.109240_bb0070 article-title: Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors publication-title: J. Mater. Chem. C doi: 10.1039/c3tc00904a – volume: 9 year: 2019 ident: 10.1016/j.matdes.2020.109240_bb0025 article-title: Low temperature Cu bonding with large tolerance of surface oxidation publication-title: AIP Adv. doi: 10.1063/1.5097382 – volume: 184 start-page: 193 year: 2016 ident: 10.1016/j.matdes.2020.109240_bb0040 article-title: Surface effect induced Cu-Cu bonding by Cu nanosolder paste publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.08.085 – volume: 78 start-page: 17 year: 2017 ident: 10.1016/j.matdes.2020.109240_bb0095 article-title: Synthesis of SnAgCu nanoparticles with low melting point by the chemical reduction method publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.07.069 – volume: 12 start-page: 100791 year: 2020 ident: 10.1016/j.matdes.2020.109240_bb0015 article-title: Ultra-thin intermetallic compound formation in microbump technology by the control of a low Zn concentration in solder publication-title: Materialia doi: 10.1016/j.mtla.2020.100791 – volume: 43 start-page: 751 year: 2003 ident: 10.1016/j.matdes.2020.109240_bb0035 article-title: Reliability of Au bump-Cu direct interconnections fabricated by means of surface activated bonding method publication-title: Microelectron. Reliab. doi: 10.1016/S0026-2714(03)00039-8 – start-page: 1045 year: 2008 ident: 10.1016/j.matdes.2020.109240_bb0030 article-title: Bumpless interconnect of 6-μm pitch Cu electrodes at room temperature – volume: 107 start-page: 121 year: 2013 ident: 10.1016/j.matdes.2020.109240_bb0045 article-title: The characteristics of Cu nanopaste sintered by atmospheric-pressure plasma publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2012.08.019 – volume: 772 start-page: 793 year: 2019 ident: 10.1016/j.matdes.2020.109240_bb0050 article-title: Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.115 – volume: 27 start-page: 3144 year: 2011 ident: 10.1016/j.matdes.2020.109240_bb0065 article-title: Stable aqueous based cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate publication-title: Langmuir doi: 10.1021/la104136w – volume: 146 start-page: 82 year: 2014 ident: 10.1016/j.matdes.2020.109240_bb0080 article-title: Preparation of conductive Cu patterns by directly writing using nano-Cu ink publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.02.045 – volume: 117 start-page: 146 year: 2016 ident: 10.1016/j.matdes.2020.109240_bb0010 article-title: Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.004 – volume: 227 start-page: 179 year: 2018 ident: 10.1016/j.matdes.2020.109240_bb0055 article-title: Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.05.037 – volume: 229 start-page: 353 year: 2018 ident: 10.1016/j.matdes.2020.109240_bb0060 article-title: Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.07.061 – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.matdes.2020.109240_bb0075 article-title: Low-temperature and low-pressure cu–cu bonding by highly sinterable cu nanoparticle paste publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1773-2 |
SSID | ssj0022734 |
Score | 2.4916782 |
Snippet | With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 109240 |
SubjectTerms | Cu nanoparticles Cucu direct bonding Molecular dynamics Phase transformation |
Title | Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding |
URI | https://doaj.org/article/973ccd7971b64732b65565b0197052fc |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF6kJz2Iv1j_2IPXxWSTzSbHWixF0JOFHoRld7MBpaZi02fpq_hUPoMzu0nJrRevYSeEL0Pmm8nMN4TcWW2NcYmDN8A1S10as8KIjBU6KuNMF3nufxc8v2TTWfo0F_Peqi_sCQvywAG4-0Im1paykLHJUplwkwngIAaYiYwEryx-fSHmdclUm2qhaEuorqAqnxTd0Jzv7AIqWDqU6uZeTYlj4aMXlHra_T7ITI7IYcsO6Sg81THZc_UJOehpBp6St1GDg8T0vV5hXr2iy4qO17TWNaS_bZcb_XQLbGemui7pChUh0JZ2I_lgCya_mx-wCyGNmqWfbjkjs8nj63jK2hUJzEIgaZh0vHCVyHkR89IBnTMa9dxdlnAUYuEJOIqNI1umWstKAp1xeWk5YCikzFORnJNBvazdBaERYIvqXHGlgVVkQnNbgaU0OWQtNs6HJOkwUrbVD8c1FgvVNYp9qICsQmRVQHZI2NbqK-hn7Dj_gPBvz6L6tb8APqFaFNUun7j8j5tckX2O_Su-3HJNBs332t0AAWnMrfe1Pyz41WE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+insights+of+Cu+nanoparticles+melting+and+sintering+behavior+in+Cu%EE%97%B8Cu+direct+bonding&rft.jtitle=Materials+%26+design&rft.au=Rui+Wu&rft.au=Xiuchen+Zhao&rft.au=Yingxia+Liu&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=197&rft.spage=109240&rft_id=info:doi/10.1016%2Fj.matdes.2020.109240&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_973ccd7971b64732b65565b0197052fc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |