Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding

With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of the process, we apply molecular dynamics method to simulate the melting and sintering behavior of Cu nanoparticles during the direct bon...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 197; p. 109240
Main Authors Wu, Rui, Zhao, Xiuchen, Liu, Yingxia
Format Journal Article
LanguageEnglish
Published Elsevier 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of the process, we apply molecular dynamics method to simulate the melting and sintering behavior of Cu nanoparticles during the direct bonding process. The melting points of nanoparticles from 2 nm to 9 nm are simulated to be from 963 K to 1298 K. The smaller the diameter of the nanoparticle, the less stable it is. At the same sintering temperature, the sintering time for 2 nm nanoparticles is less than half of that for 8 nm nanoparticles. Based on these atomic insights, if we can synthesis Cu nanoparticles as small as 2 nm, the CuCu direct bonding temperature and time can be reduced further.
AbstractList With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of the process, we apply molecular dynamics method to simulate the melting and sintering behavior of Cu nanoparticles during the direct bonding process. The melting points of nanoparticles from 2 nm to 9 nm are simulated to be from 963 K to 1298 K. The smaller the diameter of the nanoparticle, the less stable it is. At the same sintering temperature, the sintering time for 2 nm nanoparticles is less than half of that for 8 nm nanoparticles. Based on these atomic insights, if we can synthesis Cu nanoparticles as small as 2 nm, the CuCu direct bonding temperature and time can be reduced further.
ArticleNumber 109240
Author Wu, Rui
Liu, Yingxia
Zhao, Xiuchen
Author_xml – sequence: 1
  givenname: Rui
  surname: Wu
  fullname: Wu, Rui
– sequence: 2
  givenname: Xiuchen
  surname: Zhao
  fullname: Zhao, Xiuchen
– sequence: 3
  givenname: Yingxia
  surname: Liu
  fullname: Liu, Yingxia
BookMark eNp9kM9KAzEQxnOoYFt9Aw_7AluT2WTTeCvFPwXBi168hGySbbPsJiWJgm_vrq0XD8LAMMP8Pr75Fmjmg7cI3RC8IpjUt91qUNnYtAIM00oAxTM0x1DTkgBnl2iRUocxAK_oHL1vchicLpxPbn_IqQhtsf0ovPLhqGJ2urepGGyfnd8XypsiOZ9tnKbGHtSnC3FkJ2Qs46LVuWiCN-PBFbpoVZ_s9bkv0dvD_ev2qXx-edxtN8-lpiByyS0I27I1CALGYlI1arRZ27oCzASFyiqjCdaGKsVbXhOwa6OhZoxxvqasWqLdSdcE1cljdIOKXzIoJ38WIe7l-RMpeKW14YKTpqa8gmZUqVmDieCYQatHrbuTlo4hpWhbqV1W2QWfo3K9JFhOKctOnlKWU8rylPII0z_wr5l_sW8fRIax
CitedBy_id crossref_primary_10_1007_s10854_022_07771_3
crossref_primary_10_1557_s43579_023_00472_w
crossref_primary_10_1016_j_matdes_2023_112502
crossref_primary_10_1016_j_msea_2023_145737
crossref_primary_10_1016_j_apcatb_2023_122839
crossref_primary_10_1016_j_apt_2023_104084
crossref_primary_10_1088_1402_4896_ad4317
crossref_primary_10_1039_D3DT03044J
crossref_primary_10_1016_j_surfcoat_2022_128805
crossref_primary_10_2320_matertrans_MT_MC2022008
crossref_primary_10_1016_j_uclim_2021_101046
crossref_primary_10_1007_s10973_023_12689_x
crossref_primary_10_1088_1361_6528_ac232d
crossref_primary_10_1016_j_jtice_2021_10_027
crossref_primary_10_1016_j_matdes_2024_113457
crossref_primary_10_1016_j_msea_2024_146352
crossref_primary_10_1016_j_apsusc_2021_152347
crossref_primary_10_1063_5_0075748
crossref_primary_10_1063_5_0166812
crossref_primary_10_1016_j_jmrt_2024_11_241
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123456
crossref_primary_10_1016_j_jmrt_2024_03_146
crossref_primary_10_1007_s11665_023_07829_1
crossref_primary_10_1016_j_uclim_2021_100927
crossref_primary_10_1016_j_apsusc_2025_162744
crossref_primary_10_1016_j_jmrt_2023_05_279
crossref_primary_10_1016_j_ceramint_2022_06_254
crossref_primary_10_1016_j_heliyon_2022_e12624
crossref_primary_10_1002_app_52728
crossref_primary_10_1016_j_cpc_2024_109235
crossref_primary_10_1007_s00339_024_07552_1
crossref_primary_10_1016_j_chemosphere_2021_130286
crossref_primary_10_3390_coatings13061078
Cites_doi 10.1063/1.3263154
10.1039/c3tc00904a
10.1063/1.5097382
10.1016/j.matlet.2016.08.085
10.1016/j.microrel.2017.07.069
10.1016/j.mtla.2020.100791
10.1016/S0026-2714(03)00039-8
10.1016/j.mee.2012.08.019
10.1016/j.jallcom.2018.09.115
10.1021/la104136w
10.1016/j.matchemphys.2014.02.045
10.1016/j.actamat.2016.07.004
10.1016/j.matlet.2018.05.037
10.1016/j.matlet.2018.07.061
10.1186/s11671-016-1773-2
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2020.109240
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_973ccd7971b64732b65565b0197052fc
10_1016_j_matdes_2020_109240
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
7-5
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSH
SSM
SST
SSZ
T5K
WUQ
~G-
EFKBS
ID FETCH-LOGICAL-c429t-7e29ef582912de013ba2756e632059423eadc10cd4aa7f7612e8dc26555778453
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:30:19 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Tue Jul 01 02:23:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-7e29ef582912de013ba2756e632059423eadc10cd4aa7f7612e8dc26555778453
OpenAccessLink https://doaj.org/article/973ccd7971b64732b65565b0197052fc
ParticipantIDs doaj_primary_oai_doaj_org_article_973ccd7971b64732b65565b0197052fc
crossref_citationtrail_10_1016_j_matdes_2020_109240
crossref_primary_10_1016_j_matdes_2020_109240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-00
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-00
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier
Publisher_xml – name: Elsevier
References Jeong (10.1016/j.matdes.2020.109240_bb0070) 2013; 1
Kim (10.1016/j.matdes.2020.109240_bb0045) 2013; 107
Li (10.1016/j.matdes.2020.109240_bb0050) 2019; 772
Li (10.1016/j.matdes.2020.109240_bb0040) 2016; 184
Li (10.1016/j.matdes.2020.109240_bb0080) 2014; 146
Shigetou (10.1016/j.matdes.2020.109240_bb0030) 2008
Liu (10.1016/j.matdes.2020.109240_bb0010) 2016; 117
Etesami (10.1016/j.matdes.2020.109240_bb0085) 2017
Wang (10.1016/j.matdes.2020.109240_bb0035) 2003; 43
Mou (10.1016/j.matdes.2020.109240_bb0055) 2018; 227
Wang (10.1016/j.matdes.2020.109240_bb0095) 2017; 78
Ren (10.1016/j.matdes.2020.109240_bb0025) 2019; 9
Mou (10.1016/j.matdes.2020.109240_bb0060) 2018; 229
Jeong (10.1016/j.matdes.2020.109240_bb0065) 2011; 27
Tu (10.1016/j.matdes.2020.109240_bb0005) 2010; 117
Tan (10.1016/j.matdes.2020.109240_bb0020) 2009; 95
Liu (10.1016/j.matdes.2020.109240_bb0015) 2020; 12
Li (10.1016/j.matdes.2020.109240_bb0075) 2017; 12
References_xml – year: 2017
  ident: 10.1016/j.matdes.2020.109240_bb0085
  article-title: Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method
  publication-title: J. Phys. Chem. Solids
– volume: 117
  start-page: 1
  year: 2010
  ident: 10.1016/j.matdes.2020.109240_bb0005
  article-title: Solder joint technology: materials, properties, and reliability
  publication-title: Springer Ser. Mater. Sci.
– volume: 95
  start-page: 192108.1
  year: 2009
  ident: 10.1016/j.matdes.2020.109240_bb0020
  article-title: Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3263154
– volume: 1
  start-page: 2704
  year: 2013
  ident: 10.1016/j.matdes.2020.109240_bb0070
  article-title: Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00904a
– volume: 9
  year: 2019
  ident: 10.1016/j.matdes.2020.109240_bb0025
  article-title: Low temperature Cu bonding with large tolerance of surface oxidation
  publication-title: AIP Adv.
  doi: 10.1063/1.5097382
– volume: 184
  start-page: 193
  year: 2016
  ident: 10.1016/j.matdes.2020.109240_bb0040
  article-title: Surface effect induced Cu-Cu bonding by Cu nanosolder paste
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.08.085
– volume: 78
  start-page: 17
  year: 2017
  ident: 10.1016/j.matdes.2020.109240_bb0095
  article-title: Synthesis of SnAgCu nanoparticles with low melting point by the chemical reduction method
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.07.069
– volume: 12
  start-page: 100791
  year: 2020
  ident: 10.1016/j.matdes.2020.109240_bb0015
  article-title: Ultra-thin intermetallic compound formation in microbump technology by the control of a low Zn concentration in solder
  publication-title: Materialia
  doi: 10.1016/j.mtla.2020.100791
– volume: 43
  start-page: 751
  year: 2003
  ident: 10.1016/j.matdes.2020.109240_bb0035
  article-title: Reliability of Au bump-Cu direct interconnections fabricated by means of surface activated bonding method
  publication-title: Microelectron. Reliab.
  doi: 10.1016/S0026-2714(03)00039-8
– start-page: 1045
  year: 2008
  ident: 10.1016/j.matdes.2020.109240_bb0030
  article-title: Bumpless interconnect of 6-μm pitch Cu electrodes at room temperature
– volume: 107
  start-page: 121
  year: 2013
  ident: 10.1016/j.matdes.2020.109240_bb0045
  article-title: The characteristics of Cu nanopaste sintered by atmospheric-pressure plasma
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2012.08.019
– volume: 772
  start-page: 793
  year: 2019
  ident: 10.1016/j.matdes.2020.109240_bb0050
  article-title: Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.115
– volume: 27
  start-page: 3144
  year: 2011
  ident: 10.1016/j.matdes.2020.109240_bb0065
  article-title: Stable aqueous based cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate
  publication-title: Langmuir
  doi: 10.1021/la104136w
– volume: 146
  start-page: 82
  year: 2014
  ident: 10.1016/j.matdes.2020.109240_bb0080
  article-title: Preparation of conductive Cu patterns by directly writing using nano-Cu ink
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.02.045
– volume: 117
  start-page: 146
  year: 2016
  ident: 10.1016/j.matdes.2020.109240_bb0010
  article-title: Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.004
– volume: 227
  start-page: 179
  year: 2018
  ident: 10.1016/j.matdes.2020.109240_bb0055
  article-title: Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.05.037
– volume: 229
  start-page: 353
  year: 2018
  ident: 10.1016/j.matdes.2020.109240_bb0060
  article-title: Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.07.061
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.matdes.2020.109240_bb0075
  article-title: Low-temperature and low-pressure cu–cu bonding by highly sinterable cu nanoparticle paste
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1773-2
SSID ssj0022734
Score 2.4916782
Snippet With a layer of Cu nanoparticle slurry, it's promising to achieve fast CuCu direct bonding at low temperature. To have a deeper insight and better control of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 109240
SubjectTerms Cu nanoparticles
Cucu direct bonding
Molecular dynamics
Phase transformation
Title Atomic insights of Cu nanoparticles melting and sintering behavior in Cu Cu direct bonding
URI https://doaj.org/article/973ccd7971b64732b65565b0197052fc
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF6kJz2Iv1j_2IPXxWSTzSbHWixF0JOFHoRld7MBpaZi02fpq_hUPoMzu0nJrRevYSeEL0Pmm8nMN4TcWW2NcYmDN8A1S10as8KIjBU6KuNMF3nufxc8v2TTWfo0F_Peqi_sCQvywAG4-0Im1paykLHJUplwkwngIAaYiYwEryx-fSHmdclUm2qhaEuorqAqnxTd0Jzv7AIqWDqU6uZeTYlj4aMXlHra_T7ITI7IYcsO6Sg81THZc_UJOehpBp6St1GDg8T0vV5hXr2iy4qO17TWNaS_bZcb_XQLbGemui7pChUh0JZ2I_lgCya_mx-wCyGNmqWfbjkjs8nj63jK2hUJzEIgaZh0vHCVyHkR89IBnTMa9dxdlnAUYuEJOIqNI1umWstKAp1xeWk5YCikzFORnJNBvazdBaERYIvqXHGlgVVkQnNbgaU0OWQtNs6HJOkwUrbVD8c1FgvVNYp9qICsQmRVQHZI2NbqK-hn7Dj_gPBvz6L6tb8APqFaFNUun7j8j5tckX2O_Su-3HJNBs332t0AAWnMrfe1Pyz41WE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+insights+of+Cu+nanoparticles+melting+and+sintering+behavior+in+Cu%EE%97%B8Cu+direct+bonding&rft.jtitle=Materials+%26+design&rft.au=Rui+Wu&rft.au=Xiuchen+Zhao&rft.au=Yingxia+Liu&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=197&rft.spage=109240&rft_id=info:doi/10.1016%2Fj.matdes.2020.109240&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_973ccd7971b64732b65565b0197052fc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon