Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods
•We performed a comparative study on cyanobacterial risk monitoring methods.•Fluorometry and microscopy overestimated health risks associated to toxins.•qPCR and toxin analyses best captured health risks associated to toxins.•Toxin analyses provide the best public health risk assessment.•A two-tiere...
Saved in:
Published in | Harmful algae Vol. 138; p. 102683 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-9883 1878-1470 1878-1470 |
DOI | 10.1016/j.hal.2024.102683 |
Cover
Abstract | •We performed a comparative study on cyanobacterial risk monitoring methods.•Fluorometry and microscopy overestimated health risks associated to toxins.•qPCR and toxin analyses best captured health risks associated to toxins.•Toxin analyses provide the best public health risk assessment.•A two-tiered approach using multiple methods might be most cost-effective.
Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed ‘golden standard’), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 – 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses. |
---|---|
AbstractList | Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed 'golden standard'), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 - 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses. •We performed a comparative study on cyanobacterial risk monitoring methods.•Fluorometry and microscopy overestimated health risks associated to toxins.•qPCR and toxin analyses best captured health risks associated to toxins.•Toxin analyses provide the best public health risk assessment.•A two-tiered approach using multiple methods might be most cost-effective. Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed ‘golden standard’), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 – 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses. Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed 'golden standard'), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 - 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses.Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed 'golden standard'), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 - 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses. |
ArticleNumber | 102683 |
Author | Van de Waal, Dedmer B. Sollie, Susan Visser, Petra M. van der Oost, Ron Schürmann, Quirijn J.F. Kardinaal, W. Edwin A. Faassen, Elisabeth J. Lokmani, Ridouan |
Author_xml | – sequence: 1 givenname: Quirijn J.F. surname: Schürmann fullname: Schürmann, Quirijn J.F. organization: Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands – sequence: 2 givenname: Petra M. surname: Visser fullname: Visser, Petra M. organization: Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands – sequence: 3 givenname: Susan surname: Sollie fullname: Sollie, Susan organization: Water consultancy, TAUW, Australiëlaan 5, P.O. Box 3015, 3526 AB, Utrecht, The Netherlands – sequence: 4 givenname: W. Edwin A. orcidid: 0009-0006-0420-0722 surname: Kardinaal fullname: Kardinaal, W. Edwin A. organization: Waardenburg Ecology, Varkensmarkt 9, 4101 CK, Culemborg, The Netherlands – sequence: 5 givenname: Elisabeth J. surname: Faassen fullname: Faassen, Elisabeth J. organization: Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands – sequence: 6 givenname: Ridouan surname: Lokmani fullname: Lokmani, Ridouan organization: AQUON Wateronderzoek en advies, Voorschoterweg 18H, 2324 AB, Leiden, The Netherlands – sequence: 7 givenname: Ron surname: van der Oost fullname: van der Oost, Ron organization: Waternet Institute for the Urban Water Cycle, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, The Netherlands – sequence: 8 givenname: Dedmer B. orcidid: 0000-0001-8803-1247 surname: Van de Waal fullname: Van de Waal, Dedmer B. email: d.vandewaal@nioo.knaw.nl organization: Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39244242$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctuFDEQRS0URB7wAWyQl2x68KvHblhFES8pElIU1pbbriEeuu3B5UmYv8fDBBZZRNnYrvI9JdW9p-Qo5QSEvOZswRlfvlsvbty0EEyoVoulkc_ICTfadFxpdtTe_dJ0gzHymJwirhkTnDH2ghzLQSgllDghm6uIP6lDBMQZUqV5RWv-HT31O5fy6HyFEt1ExynnGWlMtIAv4GrMqbXvXPvH9_Sc-jxvXGn9W6BYt2G3HzXnFGsuMf2gM9SbHPAleb5yE8Kr-_uMfP_08friS3f57fPXi_PLzisx1E4bZtoWvmdK6aAkk20xMFIMRvWrwPt2St6D4oExcIqbQY-gAGQ_BiGVPCNvD3M3Jf_aAlY7R_QwTS5B3qJtsNTMaD48Qcq4HpZS8CZ9cy_djjMEuylxdmVn_xnaBPwg8CUjFlj9l3Bm96HZtW2h2X1o9hBaY_QDxsf61-BaXJweJT8cSGhO3kYoFn2E5CHEllK1IcdH6D9O1bAZ |
CitedBy_id | crossref_primary_10_2174_0126661217305048240902060516 crossref_primary_10_1016_j_jenvman_2025_124362 crossref_primary_10_1016_j_hal_2025_102809 crossref_primary_10_1016_j_hal_2025_102807 crossref_primary_10_3390_pathogens13121047 crossref_primary_10_3390_toxins17030126 |
Cites_doi | 10.1111/j.1462-2920.2008.01730.x 10.1111/j.1365-2486.2007.01412.x 10.1038/ismej.2008.121 10.1007/s00248-001-0039-3 10.1007/s00204-016-1913-6 10.1016/j.ecoenv.2012.10.008 10.4236/aim.2016.65038 10.1016/j.jclepro.2022.133335 10.1016/j.hal.2013.11.004 10.1016/j.hal.2006.08.003 10.1016/j.etap.2023.104342 10.1007/s10452-016-9571-6 10.1111/j.1461-0248.2009.01383.x 10.1016/j.tox.2019.04.013 10.1128/AEM.71.9.5177-5181.2005 10.4319/lo.2013.58.5.1736 10.1139/f01-143 10.1016/j.watres.2017.04.025 10.2166/aqua.2005.0045 10.1002/etc.3819 10.1023/A:1003001713560 10.1016/j.hal.2020.101970 10.1093/toxsci/kfaa178 10.1007/s10750-013-1776-2 10.1016/j.watres.2023.120817 10.1093/jaoac/84.4.1035 10.4319/lo.1996.41.5.1136 10.1371/journal.pone.0125353 10.3390/toxins11010013 10.1128/AEM.02343-07 10.2166/wh.2011.206 10.1038/s41579-018-0040-1 10.3390/toxins13020086 10.3390/toxins8060172 10.3390/toxins12100629 10.3354/ame048001 10.1021/es2041288 10.1016/j.watres.2019.115262 10.1111/j.1462-2920.2004.00626.x 10.1127/0003-9136/2003/0157-0227 10.3390/toxins12060403 10.1016/S0021-9673(03)00428-X 10.1111/j.1758-2229.2008.00004.x 10.1016/j.hal.2015.06.007 10.1021/acs.est.6b01604 10.3390/toxins11120698 10.1016/j.hal.2011.10.027 10.1002/mbo3.173 10.1080/10408440701749454 10.1038/ismej.2011.28 10.1127/archiv-hydrobiol/155/2002/383 10.1016/j.hal.2014.10.002 10.1016/j.watres.2014.11.015 10.3390/toxins10040156 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier B.V. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.hal.2024.102683 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1878-1470 |
ExternalDocumentID | 39244242 10_1016_j_hal_2024_102683 S1568988324001173 |
Genre | Journal Article Comparative Study |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSZ T5K UHS UNMZH ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c429t-7808147c50447d4303187e8329845fd1545f315e41d00ea41897be4ee35bd2343 |
IEDL.DBID | AIKHN |
ISSN | 1568-9883 1878-1470 |
IngestDate | Fri Sep 05 17:29:35 EDT 2025 Thu Sep 04 22:11:52 EDT 2025 Thu Apr 03 06:54:04 EDT 2025 Tue Jul 01 04:21:31 EDT 2025 Thu Apr 24 22:50:33 EDT 2025 Sat Feb 15 15:52:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microcystin LC-MS/MS fluorometry qPCR, ELISA microscopy |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-7808147c50447d4303187e8329845fd1545f315e41d00ea41897be4ee35bd2343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0006-0420-0722 0000-0001-8803-1247 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568988324001173 |
PMID | 39244242 |
PQID | 3101796321 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153708719 proquest_miscellaneous_3101796321 pubmed_primary_39244242 crossref_primary_10_1016_j_hal_2024_102683 crossref_citationtrail_10_1016_j_hal_2024_102683 elsevier_sciencedirect_doi_10_1016_j_hal_2024_102683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 2024-Sep 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Harmful algae |
PublicationTitleAlternate | Harmful Algae |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lawrence, Niedzwiadek, Menard, Lau, Lewis, Kuper-Goodman (bib0033) 2001; 84 Martin, Bereman, Marsden (bib0038) 2021; 197 Puddick, Prinsep, Wood, Cary, Hamilton (bib0051) 2016; 50 Lawton, Metcalf, Žegura, Junek, Welker, Törökné, Bláha (bib0034) 2021 Zhang, Lou, Ung, Kong, Mok (bib0069) 2014; 741 Welker, Von Döhren, Täuscher, Steinberg, Erhard (bib0066) 2003; 157 Kurmayer, Dittmann, Fastner, Chorus (bib0032) 2002; 43 Briand, Yéprémian, Humbert, Quiblier (bib0009) 2008; 10 Johansson, Legrand, Björnerås, Godhe, Mazur-Marzec, Säll, Rengefors (bib0029) 2019; 11 Scott, Ramaswamy, Lawson (bib0056) 2016 Wiedner, Nixdorf, Heinze, Wirsing, Neumann, Weckesser (bib0068) 2002; 155 (bib0017) 2006 Ngwa, Madramootoo, Jabaji (bib0044) 2014; 3 Beaulieu, Pick, Gregory-Eaves (bib0001) 2013; 58 Paerl, Huisman (bib0049) 2009; 1 Ferrão-Filho, Silva, Oliviera, Magalhães, Pflugmacher, Silva (bib0018) 2017; 36 Hawkins, Novic, Cox, Neilan, Burns, Shaw, Wickramasinghe, Peerapornpisal, Ruangyuttikarn, Itayama, Saitou, Mizuochi, Inamori (bib0025) 2005; 54 Lu, Struewing, Wymer, Tettenhorst, Shoemaker, Allen (bib0035) 2020; 170 O'Neill, Davis, Burford, Gobler (bib0045) 2012; 14 Van de Waal, Verspagen, Finke, Vournazou, Immers, Kardinaal, Tonk, Becker, Van Donk, Visser, Huisman (bib0062) 2011; 5 Marcé, George, Buscarinu, Deidda, Dunalska, de Eyto, Flaim, Grossart, Istvanovics, Lenhardt, Moreno-Ostos, Obrador, Ostrovsky, Pierson, Potužák, Poikane, Rinke, Rodríguez-Mozaz, Staehr, Šumberová, Waajen, Weyhenmeyer, Weathers, Zion, Ibelings, Jennings (bib0037) 2016; 50 Chernoff, Hill, Lang, Schmid, Le, Farthing, Huang (bib0011) 2020; 12 (bib0042) 2006 Briand, Escoffier, Straub, Sabart, Quiblier, Humbert (bib0007) 2009; 3 Paerl, Huisman (bib0048) 2008; 320 Hautala, Lamminmäki, Spoof, Nybom, Meriluoto, Vehniäinen (bib0024) 2013; 87 Schets, van der Oost, Van de Waal (bib0055) 2020 Kardinaal, Janse, Kamst-Van Agterveld, Meima, Snoek, Mur, Huisman, Zwart, Visser (bib0030) 2007; 48 Freitas, Pinheiro, Rhoda, Loureiro (bib0019) 2014; 31 Song, Wang, Qiu, Zheng, Li (bib0059) 2022; 369 Funari, Testai (bib0020) 2008; 38 Van de Waal, Verspagen, Lürling, Van Donk, Visser, Huisman (bib0061) 2009; 12 (bib0052) 2022 Pacheco, Guedes, Azevedo (bib0047) 2016; 8 Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (bib0027) 2018; 16 Birbeck, Westrick, O'Neill, Spies, Szlag (bib0005) 2019; 11 Gaget, Lau, Scendall, Froscio, Humpage (bib0021) 2017; 118 Downing, Watson, McCauley (bib0016) 2001; 58 Singh, Rai, Chau, Ravi, Neilan, Asthana (bib0057) 2015; 69 Chorus, Welker (bib0014) 2021 Brandenburg, Krock, Klip, Sluijs, Garbeva, Van de Waal (bib0006) 2021; 101 Berg, Lyra, Niemi, Heens, Hoppu, Erkomaa, Sivonen, Rapala (bib0003) 2011; 9 Beversdorf, Chaston, Miller, McMahon (bib0002) 2015; 10 Gobler, Davis, Coyne, Boyer (bib0023) 2007; 6 Buratti, Manganelli, Vichi, Stefanelli, Scardala, Testai, Funari (bib0010) 2017; 91 Bijkerk (bib0004) 2014 De Stasio Jr, Hill, Kleinhans, Nibbelink, Magnuson (bib0015) 1996; 41 Raptová, Skočková, Babica, Sovadinová, Sychrová, Vídeňská, Šplíchalová, Vašíček, Šindlerová (bib0053) 2024; 105 Mantzouki, Lürling, Fastner, de Senerpont Domis, Wilk-Woźniak, Koreivienė (bib0036) 2018; 10 Ibelings, Backer, Kardinaal, Chorus (bib0028) 2014; 40 Briand, Gugger, François, Bernard, Humbert, Quiblier (bib0008) 2008; 74 Tonk, Visser, Christiansen, Dittmann, Snelder, Wiedner, Mur, Huisman (bib0060) 2005; 71 Peeters, Straile, Lorke, Livingstone (bib0050) 2007; 13 Van de Waal, Gsell, Harris, Paerl, de Senerpont Domis, Huisman (bib0063) 2024; 249 Meriluoto, Spoof, Codd (bib0040) 2017 (bib0067) 1998 Martin, Stallrich, Bereman (bib0039) 2019; 421 Van Dorland, R., Beersma, J., Bessembinder, J., Bloemendaal, N., Van den Brink, H., Brotons Blanes, M., Drijfhout, S., Groenland, R., Haarsma, R., Homan, C., Keizer, I., Krikken, F., Le Bars, D., Lenderink, G., Van Meijgaard., E., Meirink, J.F., Overbeek, B., Reerink, T., Selten, F., Severijns, C., Siegmund, P., Sterl, A., De Valk, C., Van Velthoven, P., De Vries, H., Van Weele, M., Wichers Schreur, B., Van der Wiel, K., 2023. KNMI National Climate Scenarios 2023 for the Netherlands. Royal Netherlands Meteorological Institute, De Bilt. Scientific report: WR-23-02. Kurmayer, Christiansen, Fastner, Börner (bib0031) 2004; 6 Sabart, Crenn, Perrière, Abila, Leremboure, Colombet, Jousse, Latour (bib0054) 2015; 48 Chernoff, Hill, Lang, Schmid, Farthing, Huang (bib0012) 2021; 13 Metcalf, Codd (bib0041) 2020; 12 Spoof, Vesterkvist, Lindholm, Meriluoto (bib70) 2003; 1020 Gemma, Molteni, Rossetti (bib0022) 2016; 6 (bib0043) 2012 Silvonen, Jones (bib0058) 1999 Visser, Passarge, Mur (bib0065) 1997; 349 Hilborn, Roberts, Backer, DeConno, Egan, Hyde, Nicholas, Wiegert, Billing, DiOrio, Mohr, Joan Hardy, Wade, Yoder, Hlavsa (bib0026) 2016; 63 Otten, Xu, Qin, Zhu, Paerl (bib0046) 2012; 46 Kurmayer (10.1016/j.hal.2024.102683_bib0032) 2002; 43 Downing (10.1016/j.hal.2024.102683_bib0016) 2001; 58 Birbeck (10.1016/j.hal.2024.102683_bib0005) 2019; 11 Briand (10.1016/j.hal.2024.102683_bib0008) 2008; 74 Martin (10.1016/j.hal.2024.102683_bib0038) 2021; 197 (10.1016/j.hal.2024.102683_bib0052) 2022 Meriluoto (10.1016/j.hal.2024.102683_bib0040) 2017 Mantzouki (10.1016/j.hal.2024.102683_bib0036) 2018; 10 Paerl (10.1016/j.hal.2024.102683_bib0049) 2009; 1 Lawrence (10.1016/j.hal.2024.102683_bib0033) 2001; 84 Johansson (10.1016/j.hal.2024.102683_bib0029) 2019; 11 Zhang (10.1016/j.hal.2024.102683_bib0069) 2014; 741 Gaget (10.1016/j.hal.2024.102683_bib0021) 2017; 118 Ferrão-Filho (10.1016/j.hal.2024.102683_bib0018) 2017; 36 Briand (10.1016/j.hal.2024.102683_bib0007) 2009; 3 Schets (10.1016/j.hal.2024.102683_bib0055) 2020 Ibelings (10.1016/j.hal.2024.102683_bib0028) 2014; 40 Berg (10.1016/j.hal.2024.102683_bib0003) 2011; 9 Chernoff (10.1016/j.hal.2024.102683_bib0012) 2021; 13 (10.1016/j.hal.2024.102683_bib0017) 2006 Tonk (10.1016/j.hal.2024.102683_bib0060) 2005; 71 Huisman (10.1016/j.hal.2024.102683_bib0027) 2018; 16 Kardinaal (10.1016/j.hal.2024.102683_bib0030) 2007; 48 Kurmayer (10.1016/j.hal.2024.102683_bib0031) 2004; 6 Funari (10.1016/j.hal.2024.102683_bib0020) 2008; 38 Bijkerk (10.1016/j.hal.2024.102683_bib0004) 2014 Gemma (10.1016/j.hal.2024.102683_bib0022) 2016; 6 Wiedner (10.1016/j.hal.2024.102683_bib0068) 2002; 155 Hautala (10.1016/j.hal.2024.102683_bib0024) 2013; 87 Song (10.1016/j.hal.2024.102683_bib0059) 2022; 369 Singh (10.1016/j.hal.2024.102683_bib0057) 2015; 69 10.1016/j.hal.2024.102683_bib0064 De Stasio Jr (10.1016/j.hal.2024.102683_bib0015) 1996; 41 Sabart (10.1016/j.hal.2024.102683_bib0054) 2015; 48 Visser (10.1016/j.hal.2024.102683_bib0065) 1997; 349 Puddick (10.1016/j.hal.2024.102683_bib0051) 2016; 50 Paerl (10.1016/j.hal.2024.102683_bib0048) 2008; 320 Lu (10.1016/j.hal.2024.102683_bib0035) 2020; 170 (10.1016/j.hal.2024.102683_bib0043) 2012 Silvonen (10.1016/j.hal.2024.102683_bib0058) 1999 Gobler (10.1016/j.hal.2024.102683_bib0023) 2007; 6 (10.1016/j.hal.2024.102683_bib0042) 2006 Freitas (10.1016/j.hal.2024.102683_bib0019) 2014; 31 Hawkins (10.1016/j.hal.2024.102683_bib0025) 2005; 54 Hilborn (10.1016/j.hal.2024.102683_bib0026) 2016; 63 Beaulieu (10.1016/j.hal.2024.102683_bib0001) 2013; 58 Ngwa (10.1016/j.hal.2024.102683_bib0044) 2014; 3 Pacheco (10.1016/j.hal.2024.102683_bib0047) 2016; 8 Beversdorf (10.1016/j.hal.2024.102683_bib0002) 2015; 10 Brandenburg (10.1016/j.hal.2024.102683_bib0006) 2021; 101 Welker (10.1016/j.hal.2024.102683_bib0066) 2003; 157 O'Neill (10.1016/j.hal.2024.102683_bib0045) 2012; 14 Otten (10.1016/j.hal.2024.102683_bib0046) 2012; 46 Lawton (10.1016/j.hal.2024.102683_bib0034) 2021 Scott (10.1016/j.hal.2024.102683_bib0056) 2016 Peeters (10.1016/j.hal.2024.102683_bib0050) 2007; 13 Van de Waal (10.1016/j.hal.2024.102683_bib0063) 2024; 249 Raptová (10.1016/j.hal.2024.102683_bib0053) 2024; 105 Buratti (10.1016/j.hal.2024.102683_bib0010) 2017; 91 Marcé (10.1016/j.hal.2024.102683_bib0037) 2016; 50 Spoof (10.1016/j.hal.2024.102683_bib70) 2003; 1020 Metcalf (10.1016/j.hal.2024.102683_bib0041) 2020; 12 Van de Waal (10.1016/j.hal.2024.102683_bib0061) 2009; 12 Martin (10.1016/j.hal.2024.102683_bib0039) 2019; 421 Chorus (10.1016/j.hal.2024.102683_bib0014) 2021 (10.1016/j.hal.2024.102683_bib0067) 1998 Chernoff (10.1016/j.hal.2024.102683_bib0011) 2020; 12 Van de Waal (10.1016/j.hal.2024.102683_bib0062) 2011; 5 Briand (10.1016/j.hal.2024.102683_bib0009) 2008; 10 |
References_xml | – volume: 41 start-page: 11149 year: 1996 end-page: 11336 ident: bib0015 article-title: Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton publication-title: Limnol. Oceanogr. – volume: 421 start-page: 74 year: 2019 end-page: 83 ident: bib0039 article-title: Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins publication-title: Toxicol – volume: 40 start-page: 63 year: 2014 end-page: 74 ident: bib0028 article-title: Current approaches to cyanotoxin risk assessment and risk management around the globe publication-title: Harmful. Algae – volume: 11 start-page: 13 year: 2019 ident: bib0005 article-title: Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration LC/MS/MS and ELISA publication-title: Toxins. (Basel) – volume: 48 start-page: 12 year: 2015 end-page: 20 ident: bib0054 article-title: Co-occurrence of microcystin and anatoxin-a in the freshwater lake Aydat (France): Analytical and molecular approaches during a three-year survey publication-title: Harmful. Algae – volume: 58 start-page: 1736 year: 2013 end-page: 1746 ident: bib0001 article-title: Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set publication-title: Limnol. Oceanogr. – volume: 10 year: 2015 ident: bib0002 article-title: Microcystin publication-title: PLoS. One – volume: 249 year: 2024 ident: bib0063 article-title: Hot summers raise public awareness of toxic cyanobacterial blooms publication-title: Water. Res. – volume: 12 start-page: 403 year: 2020 ident: bib0011 article-title: The comparative toxicity of 10 microcystin congeners administered orally to mice: Clinical effects and organ toxicity publication-title: Toxins. (Basel) – volume: 3 start-page: 419 year: 2009 end-page: 429 ident: bib0007 article-title: Spatiotemporal changes in the genetic diversity of a bloom-forming publication-title: ISMe J. – year: 2020 ident: bib0055 publication-title: Cyanobacteria Protocol 2020 – volume: 54 start-page: 509 year: 2005 end-page: 518 ident: bib0025 article-title: A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment publication-title: J. Water Supply: Res. Technol. – AQUA – start-page: 745 year: 2021 end-page: 800 ident: bib0034 article-title: Laboratory analysis of cyanobacterial toxins and bioassays publication-title: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management – reference: Van Dorland, R., Beersma, J., Bessembinder, J., Bloemendaal, N., Van den Brink, H., Brotons Blanes, M., Drijfhout, S., Groenland, R., Haarsma, R., Homan, C., Keizer, I., Krikken, F., Le Bars, D., Lenderink, G., Van Meijgaard., E., Meirink, J.F., Overbeek, B., Reerink, T., Selten, F., Severijns, C., Siegmund, P., Sterl, A., De Valk, C., Van Velthoven, P., De Vries, H., Van Weele, M., Wichers Schreur, B., Van der Wiel, K., 2023. KNMI National Climate Scenarios 2023 for the Netherlands. Royal Netherlands Meteorological Institute, De Bilt. Scientific report: WR-23-02. – volume: 1 start-page: 27 year: 2009 end-page: 37 ident: bib0049 article-title: Climate change: A catalyst for global expansion of harmful cyanobacterial blooms publication-title: Environ. Microbiol. Rep. – volume: 101 year: 2021 ident: bib0006 article-title: Intraspecific variation in multiple trait responses of publication-title: Harmful. Algae – volume: 71 start-page: 5177 year: 2005 end-page: 5181 ident: bib0060 article-title: The Microcystin Composition of the Cyanobacterium publication-title: Appl. Environ. Microbiol. – volume: 91 start-page: 1049 year: 2017 end-page: 1130 ident: bib0010 article-title: Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation publication-title: Arch. Toxicol. – start-page: 391 year: 2016 end-page: 397 ident: bib0056 article-title: CyanoTRACKER: A Citizen Science Project for Reporting Harmful Algal Blooms publication-title: IEEE 2 – volume: 50 start-page: 10780 year: 2016 end-page: 10794 ident: bib0037 article-title: Automatic High Frequency Monitoring for Improved Lake and Reservoir Management publication-title: Environ. Sci. Technol. – volume: 349 start-page: 99 year: 1997 end-page: 109 ident: bib0065 article-title: Modelling vertical migration of the cyanobacterium publication-title: Hydrobiol – volume: 741 start-page: 41 year: 2014 end-page: 68 ident: bib0069 article-title: Analysis of cylindrospermopsin- and microcystin-producing genotypes and cyanotoxin concentrations in the Macau storage reservoir publication-title: Hydrobiol – volume: 6 start-page: 391 year: 2016 end-page: 397 ident: bib0022 article-title: Lipopolysaccharides in Cyanobacteria: A Brief Overview publication-title: Adv. Microbiol. – start-page: 400 year: 1999 ident: bib0058 article-title: Cyanobacterial toxins publication-title: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences – volume: 13 start-page: 86 year: 2021 ident: bib0012 article-title: Dose-response study of microcystin congeners MCLA, MCLR, MCLY, MCRR, and MCYR administered orally to mice publication-title: Toxins. (Basel) – volume: 8 start-page: 172 year: 2016 ident: bib0047 article-title: Is qPCR a reliable indicator of cyanotoxin risk in freshwater? publication-title: Toxins. (Basel) – year: 2022 ident: bib0052 article-title: R: A language and environment for statistical computing – volume: 31 start-page: 143 year: 2014 end-page: 152 ident: bib0019 article-title: Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of publication-title: Harmful. Algae – year: 2017 ident: bib0040 article-title: Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis – volume: 12 start-page: 1326 year: 2009 end-page: 1335 ident: bib0061 article-title: The ecological stoichiometry of toxins produced by harmful cyanobacteria: An experimental test of the carbon-nutrient balance hypothesis publication-title: Ecol. Lett. – volume: 6 start-page: 831 year: 2004 end-page: 841 ident: bib0031 article-title: Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium publication-title: Environ. Microbiol. – volume: 10 start-page: 1 year: 2018 end-page: 24 ident: bib0036 article-title: Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins publication-title: Toxins. (Basel) – volume: 63 start-page: 145 year: 2016 end-page: 156 ident: bib0026 article-title: Algal bloom-associated disease outbreaks among users of freshwater lakes – United States, 2009-2010 publication-title: Morb. Mortal. Wkly. Rep. – year: 2006 ident: bib0017 article-title: Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC publication-title: Off. J. Eur. Un. – year: 2014 ident: bib0004 article-title: Handboek hydrobiologie. Biologisch onderzoek voor de ecologische beoordeling van Nederlandse zoete en brakke oppervlaktewateren – Rapport 2014-02 – volume: 3 start-page: 411 year: 2014 end-page: 425 ident: bib0044 article-title: Comparison of cyanobacterial microcystin synthetase ( publication-title: Microbiologyopen. – volume: 69 start-page: 131 year: 2015 end-page: 142 ident: bib0057 article-title: Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds publication-title: Water. Res. – volume: 36 start-page: 2689 year: 2017 end-page: 2697 ident: bib0018 article-title: Single and combined effects of microcystin- and saxitoxin-producing cyanobacteria on the fitness and antioxidant defenses of cladocerans publication-title: Environ. Toxicol. Chem. – year: 1998 ident: bib0067 article-title: Guidelines for drinking-water quality, Second Edition, Addendum to Volume 2, Health criteria and other supporting information – volume: 105 year: 2024 ident: bib0053 article-title: Cyanobacterial bloom-associated lipopolysaccharides induce pro-inflammatory processes in keratinocytes in vitro publication-title: Environ. Toxicol. Pharmacol. – volume: 11 start-page: 698 year: 2019 ident: bib0029 article-title: High Diversity of Microcystin Chemotypes within a Summer Bloom of the Cyanobacterium publication-title: Toxins. (Basel) – volume: 50 start-page: 235 year: 2016 end-page: 246 ident: bib0051 article-title: Modulation of microcystin congener abundance following nitrogen depletion of a publication-title: Aquat. Ecol. – volume: 118 start-page: 227 year: 2017 end-page: 238 ident: bib0021 article-title: Cyanotoxins: Which detection technique for an optimum risk assessment? publication-title: Water. Res. – volume: 170 year: 2020 ident: bib0035 article-title: Use of qPCR and RT-qPCR for monitoring of microcystin producers and as an early warning system to predict toxin production in an Ohio inland lake publication-title: Water. Res. – volume: 84 start-page: 1035 year: 2001 end-page: 1044 ident: bib0033 article-title: Comparison of Liquid Chromatography/Mass Spectrometry, ELISA, and Phosphatase Assay for the Determination of Microcystins in Blue-Green Algae Products publication-title: J. AOAC Int. – year: 2012 ident: bib0043 article-title: NEN-EN 6254:2012 Water – Detectie en kwantificering van – volume: 320 start-page: 57 year: 2008 end-page: 58 ident: bib0048 article-title: Climate: Blooms like it hot publication-title: Science (1979) – volume: 1020 start-page: 105 year: 2003 end-page: 119 ident: bib70 article-title: Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry publication-title: J. Chromatogr. A – volume: 43 start-page: 107 year: 2002 end-page: 118 ident: bib0032 article-title: Diversity of Microcystin Genes within a Population of the Toxic Cyanobacterium publication-title: Microb. Ecol. – volume: 13 start-page: 1898 year: 2007 end-page: 1909 ident: bib0050 article-title: Earlier onset of spring phytoplankton blooms in lakes of the temperate zone in a warmer climate publication-title: Glob. Chang. Biol. – volume: 9 start-page: 670 year: 2011 end-page: 679 ident: bib0003 article-title: Virulence genes of publication-title: J. Water Health. – volume: 197 start-page: 251 year: 2021 end-page: 261 ident: bib0038 article-title: BMAA and MCLR Interact to Modulate Behavior and Exacerbate Molecular Changes Related to Neurodegeneration in Larval Zebrafish publication-title: Toxicol. Sci. – volume: 12 start-page: 629 year: 2020 ident: bib0041 article-title: Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications publication-title: Toxins. (Basel) – volume: 155 start-page: 383 year: 2002 end-page: 400 ident: bib0068 article-title: Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes publication-title: Arch. Hydrobiol. – volume: 58 start-page: 1905 year: 2001 end-page: 1908 ident: bib0016 article-title: Predicting Cyanobacteria dominance in lakes publication-title: Can. J. Fish. Aquat. Sci. – volume: 157 start-page: 227 year: 2003 end-page: 248 ident: bib0066 article-title: Toxic publication-title: Arch. Hydrobiol. – volume: 48 start-page: 1 year: 2007 end-page: 12 ident: bib0030 article-title: genotype succession in relation to microcystin concentrations in freshwater lakes publication-title: Aquat. Microb. Ecol. – volume: 369 year: 2022 ident: bib0059 article-title: Evaluating the effectiveness of various biochemical and molecular techniques to assess microcystin risk during the onset process of publication-title: J. Clean. Production – volume: 10 start-page: 3337 year: 2008 end-page: 3348 ident: bib0009 article-title: Competition between microcystin- and non-microcystin-producing publication-title: Environ. Microbiol. – volume: 6 start-page: 119 year: 2007 end-page: 133 ident: bib0023 article-title: Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake publication-title: Harmful. Algae – volume: 5 start-page: 1438 year: 2011 end-page: 1450 ident: bib0062 article-title: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO publication-title: ISMe J. – volume: 74 start-page: 3839 year: 2008 end-page: 3848 ident: bib0008 article-title: Temporal Variations in the Dynamics of Potentially Microcystin-Producing Strains in a Bloom-Forming publication-title: Appl. Environ. Microbiol. – start-page: 858 year: 2021 ident: bib0014 article-title: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management – volume: 46 start-page: 3480 year: 2012 end-page: 3488 ident: bib0046 article-title: Spatiotemporal Patterns and Ecophysiology of Toxigenic publication-title: Environ. Sci. Technol. – year: 2006 ident: bib0042 article-title: NEN-EN 15204:2006 Water quality – Guidance standard on the enumeration of phytoplankton using inverted microscopy – volume: 16 start-page: 471 year: 2018 end-page: 483 ident: bib0027 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. – volume: 87 start-page: 49 year: 2013 end-page: 56 ident: bib0024 article-title: Quantitative PCR detection and improved sample preparation of microcystin-producing publication-title: Ecotoxicol. Environ. Saf. – volume: 38 start-page: 97 year: 2008 end-page: 125 ident: bib0020 article-title: Human Health Risk Assessment Related to Cyanotoxins Exposure publication-title: Crit. Rev. Toxicol. – volume: 14 start-page: 313 year: 2012 end-page: 334 ident: bib0045 article-title: The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change publication-title: Harmful. Algae – ident: 10.1016/j.hal.2024.102683_bib0064 – volume: 10 start-page: 3337 issue: 12 year: 2008 ident: 10.1016/j.hal.2024.102683_bib0009 article-title: Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (cyanobacteria) strains under different environmental conditions publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01730.x – year: 1998 ident: 10.1016/j.hal.2024.102683_bib0067 – volume: 13 start-page: 1898 issue: 9 year: 2007 ident: 10.1016/j.hal.2024.102683_bib0050 article-title: Earlier onset of spring phytoplankton blooms in lakes of the temperate zone in a warmer climate publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2007.01412.x – volume: 3 start-page: 419 issue: 4 year: 2009 ident: 10.1016/j.hal.2024.102683_bib0007 article-title: Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population publication-title: ISMe J. doi: 10.1038/ismej.2008.121 – volume: 43 start-page: 107 issue: 1 year: 2002 ident: 10.1016/j.hal.2024.102683_bib0032 article-title: Diversity of Microcystin Genes within a Population of the Toxic Cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany) publication-title: Microb. Ecol. doi: 10.1007/s00248-001-0039-3 – volume: 91 start-page: 1049 issue: 3 year: 2017 ident: 10.1016/j.hal.2024.102683_bib0010 article-title: Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation publication-title: Arch. Toxicol. doi: 10.1007/s00204-016-1913-6 – volume: 87 start-page: 49 year: 2013 ident: 10.1016/j.hal.2024.102683_bib0024 article-title: Quantitative PCR detection and improved sample preparation of microcystin-producing Anabaena, Microcystis, and Planktothrix publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2012.10.008 – volume: 6 start-page: 391 issue: 5 year: 2016 ident: 10.1016/j.hal.2024.102683_bib0022 article-title: Lipopolysaccharides in Cyanobacteria: A Brief Overview publication-title: Adv. Microbiol. doi: 10.4236/aim.2016.65038 – volume: 369 year: 2022 ident: 10.1016/j.hal.2024.102683_bib0059 article-title: Evaluating the effectiveness of various biochemical and molecular techniques to assess microcystin risk during the onset process of Microcystis blooms (delay-development stages) publication-title: J. Clean. Production doi: 10.1016/j.jclepro.2022.133335 – volume: 31 start-page: 143 year: 2014 ident: 10.1016/j.hal.2024.102683_bib0019 article-title: Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of Daphnia magna Straus exposed to hepatotoxic and neurotoxic cyanobacterial extracts publication-title: Harmful. Algae doi: 10.1016/j.hal.2013.11.004 – volume: 6 start-page: 119 issue: 1 year: 2007 ident: 10.1016/j.hal.2024.102683_bib0023 article-title: Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake publication-title: Harmful. Algae doi: 10.1016/j.hal.2006.08.003 – volume: 105 year: 2024 ident: 10.1016/j.hal.2024.102683_bib0053 article-title: Cyanobacterial bloom-associated lipopolysaccharides induce pro-inflammatory processes in keratinocytes in vitro publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2023.104342 – year: 2012 ident: 10.1016/j.hal.2024.102683_bib0043 – volume: 320 start-page: 57 issue: 5872 year: 2008 ident: 10.1016/j.hal.2024.102683_bib0048 article-title: Climate: Blooms like it hot publication-title: Science (1979) – volume: 50 start-page: 235 issue: 2 year: 2016 ident: 10.1016/j.hal.2024.102683_bib0051 article-title: Modulation of microcystin congener abundance following nitrogen depletion of a Microcystis batch culture publication-title: Aquat. Ecol. doi: 10.1007/s10452-016-9571-6 – volume: 12 start-page: 1326 issue: 12 year: 2009 ident: 10.1016/j.hal.2024.102683_bib0061 article-title: The ecological stoichiometry of toxins produced by harmful cyanobacteria: An experimental test of the carbon-nutrient balance hypothesis publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01383.x – start-page: 858 year: 2021 ident: 10.1016/j.hal.2024.102683_bib0014 – volume: 421 start-page: 74 year: 2019 ident: 10.1016/j.hal.2024.102683_bib0039 article-title: Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins publication-title: Toxicol doi: 10.1016/j.tox.2019.04.013 – volume: 71 start-page: 5177 issue: 9 year: 2005 ident: 10.1016/j.hal.2024.102683_bib0060 article-title: The Microcystin Composition of the Cyanobacterium Planktothrix agardhii Changes toward a More Toxic Variant with Increasing Light Intensity publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.9.5177-5181.2005 – volume: 58 start-page: 1736 issue: 5 year: 2013 ident: 10.1016/j.hal.2024.102683_bib0001 article-title: Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2013.58.5.1736 – year: 2022 ident: 10.1016/j.hal.2024.102683_bib0052 – volume: 58 start-page: 1905 issue: 10 year: 2001 ident: 10.1016/j.hal.2024.102683_bib0016 article-title: Predicting Cyanobacteria dominance in lakes publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f01-143 – year: 2006 ident: 10.1016/j.hal.2024.102683_bib0017 article-title: Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC publication-title: Off. J. Eur. Un. – volume: 118 start-page: 227 year: 2017 ident: 10.1016/j.hal.2024.102683_bib0021 article-title: Cyanotoxins: Which detection technique for an optimum risk assessment? publication-title: Water. Res. doi: 10.1016/j.watres.2017.04.025 – volume: 54 start-page: 509 issue: 8 year: 2005 ident: 10.1016/j.hal.2024.102683_bib0025 article-title: A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment publication-title: J. Water Supply: Res. Technol. – AQUA doi: 10.2166/aqua.2005.0045 – volume: 36 start-page: 2689 issue: 10 year: 2017 ident: 10.1016/j.hal.2024.102683_bib0018 article-title: Single and combined effects of microcystin- and saxitoxin-producing cyanobacteria on the fitness and antioxidant defenses of cladocerans publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3819 – year: 2020 ident: 10.1016/j.hal.2024.102683_bib0055 – volume: 349 start-page: 99 issue: 1 year: 1997 ident: 10.1016/j.hal.2024.102683_bib0065 article-title: Modelling vertical migration of the cyanobacterium Microcystis publication-title: Hydrobiol doi: 10.1023/A:1003001713560 – volume: 63 start-page: 145 issue: 1 year: 2016 ident: 10.1016/j.hal.2024.102683_bib0026 article-title: Algal bloom-associated disease outbreaks among users of freshwater lakes – United States, 2009-2010 publication-title: Morb. Mortal. Wkly. Rep. – volume: 101 year: 2021 ident: 10.1016/j.hal.2024.102683_bib0006 article-title: Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO2 publication-title: Harmful. Algae doi: 10.1016/j.hal.2020.101970 – volume: 197 start-page: 251 issue: 2 year: 2021 ident: 10.1016/j.hal.2024.102683_bib0038 article-title: BMAA and MCLR Interact to Modulate Behavior and Exacerbate Molecular Changes Related to Neurodegeneration in Larval Zebrafish publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfaa178 – volume: 741 start-page: 41 issue: 1 year: 2014 ident: 10.1016/j.hal.2024.102683_bib0069 article-title: Analysis of cylindrospermopsin- and microcystin-producing genotypes and cyanotoxin concentrations in the Macau storage reservoir publication-title: Hydrobiol doi: 10.1007/s10750-013-1776-2 – start-page: 745 year: 2021 ident: 10.1016/j.hal.2024.102683_bib0034 article-title: Laboratory analysis of cyanobacterial toxins and bioassays – volume: 249 year: 2024 ident: 10.1016/j.hal.2024.102683_bib0063 article-title: Hot summers raise public awareness of toxic cyanobacterial blooms publication-title: Water. Res. doi: 10.1016/j.watres.2023.120817 – volume: 84 start-page: 1035 issue: 4 year: 2001 ident: 10.1016/j.hal.2024.102683_bib0033 article-title: Comparison of Liquid Chromatography/Mass Spectrometry, ELISA, and Phosphatase Assay for the Determination of Microcystins in Blue-Green Algae Products publication-title: J. AOAC Int. doi: 10.1093/jaoac/84.4.1035 – volume: 41 start-page: 11149 issue: 5 year: 1996 ident: 10.1016/j.hal.2024.102683_bib0015 article-title: Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1996.41.5.1136 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.hal.2024.102683_bib0002 article-title: Microcystin mcyA and mcyE gene abundances are not appropriate indicators of microcystin concentrations in lakes publication-title: PLoS. One doi: 10.1371/journal.pone.0125353 – volume: 11 start-page: 13 issue: 1 year: 2019 ident: 10.1016/j.hal.2024.102683_bib0005 article-title: Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration LC/MS/MS and ELISA publication-title: Toxins. (Basel) doi: 10.3390/toxins11010013 – volume: 74 start-page: 3839 issue: 12 year: 2008 ident: 10.1016/j.hal.2024.102683_bib0008 article-title: Temporal Variations in the Dynamics of Potentially Microcystin-Producing Strains in a Bloom-Forming Planktothrix agardhii (Cyanobacterium) Population publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02343-07 – volume: 9 start-page: 670 issue: 4 year: 2011 ident: 10.1016/j.hal.2024.102683_bib0003 article-title: Virulence genes of Aeromonas isolates, bacterial endotoxins and cyanobacterial toxins from recreational water samples associated with human health symptoms publication-title: J. Water Health. doi: 10.2166/wh.2011.206 – volume: 16 start-page: 471 issue: 8 year: 2018 ident: 10.1016/j.hal.2024.102683_bib0027 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0040-1 – volume: 13 start-page: 86 issue: 2 year: 2021 ident: 10.1016/j.hal.2024.102683_bib0012 article-title: Dose-response study of microcystin congeners MCLA, MCLR, MCLY, MCRR, and MCYR administered orally to mice publication-title: Toxins. (Basel) doi: 10.3390/toxins13020086 – volume: 8 start-page: 172 issue: 6 year: 2016 ident: 10.1016/j.hal.2024.102683_bib0047 article-title: Is qPCR a reliable indicator of cyanotoxin risk in freshwater? publication-title: Toxins. (Basel) doi: 10.3390/toxins8060172 – start-page: 391 year: 2016 ident: 10.1016/j.hal.2024.102683_bib0056 article-title: CyanoTRACKER: A Citizen Science Project for Reporting Harmful Algal Blooms – volume: 12 start-page: 629 issue: 10 year: 2020 ident: 10.1016/j.hal.2024.102683_bib0041 article-title: Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications publication-title: Toxins. (Basel) doi: 10.3390/toxins12100629 – volume: 48 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.hal.2024.102683_bib0030 article-title: Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame048001 – volume: 46 start-page: 3480 issue: 6 year: 2012 ident: 10.1016/j.hal.2024.102683_bib0046 article-title: Spatiotemporal Patterns and Ecophysiology of Toxigenic Microcystis Blooms in Lake Taihu, China: Implications for Water Quality Management publication-title: Environ. Sci. Technol. doi: 10.1021/es2041288 – volume: 170 year: 2020 ident: 10.1016/j.hal.2024.102683_bib0035 article-title: Use of qPCR and RT-qPCR for monitoring of microcystin producers and as an early warning system to predict toxin production in an Ohio inland lake publication-title: Water. Res. doi: 10.1016/j.watres.2019.115262 – volume: 6 start-page: 831 issue: 8 year: 2004 ident: 10.1016/j.hal.2024.102683_bib0031 article-title: Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2004.00626.x – volume: 157 start-page: 227 issue: 2 year: 2003 ident: 10.1016/j.hal.2024.102683_bib0066 article-title: Toxic Microcystis in shallow lake Müggelsee (Germany) – Dynamics, distribution, diversity publication-title: Arch. Hydrobiol. doi: 10.1127/0003-9136/2003/0157-0227 – volume: 12 start-page: 403 issue: 6 year: 2020 ident: 10.1016/j.hal.2024.102683_bib0011 article-title: The comparative toxicity of 10 microcystin congeners administered orally to mice: Clinical effects and organ toxicity publication-title: Toxins. (Basel) doi: 10.3390/toxins12060403 – volume: 1020 start-page: 105 year: 2003 ident: 10.1016/j.hal.2024.102683_bib70 article-title: Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(03)00428-X – volume: 1 start-page: 27 issue: 1 year: 2009 ident: 10.1016/j.hal.2024.102683_bib0049 article-title: Climate change: A catalyst for global expansion of harmful cyanobacterial blooms publication-title: Environ. Microbiol. Rep. doi: 10.1111/j.1758-2229.2008.00004.x – volume: 48 start-page: 12 year: 2015 ident: 10.1016/j.hal.2024.102683_bib0054 article-title: Co-occurrence of microcystin and anatoxin-a in the freshwater lake Aydat (France): Analytical and molecular approaches during a three-year survey publication-title: Harmful. Algae doi: 10.1016/j.hal.2015.06.007 – volume: 50 start-page: 10780 year: 2016 ident: 10.1016/j.hal.2024.102683_bib0037 article-title: Automatic High Frequency Monitoring for Improved Lake and Reservoir Management publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01604 – year: 2006 ident: 10.1016/j.hal.2024.102683_bib0042 – volume: 11 start-page: 698 issue: 12 year: 2019 ident: 10.1016/j.hal.2024.102683_bib0029 article-title: High Diversity of Microcystin Chemotypes within a Summer Bloom of the Cyanobacterium Microcystis botrys publication-title: Toxins. (Basel) doi: 10.3390/toxins11120698 – volume: 14 start-page: 313 year: 2012 ident: 10.1016/j.hal.2024.102683_bib0045 article-title: The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change publication-title: Harmful. Algae doi: 10.1016/j.hal.2011.10.027 – volume: 3 start-page: 411 issue: 4 year: 2014 ident: 10.1016/j.hal.2024.102683_bib0044 article-title: Comparison of cyanobacterial microcystin synthetase (mcy) E gene transcript levels, mcy E gene copies, and biomass as indicators of microcystin risk under laboratory and field conditions publication-title: Microbiologyopen. doi: 10.1002/mbo3.173 – year: 2014 ident: 10.1016/j.hal.2024.102683_bib0004 – volume: 38 start-page: 97 issue: 2 year: 2008 ident: 10.1016/j.hal.2024.102683_bib0020 article-title: Human Health Risk Assessment Related to Cyanotoxins Exposure publication-title: Crit. Rev. Toxicol. doi: 10.1080/10408440701749454 – volume: 5 start-page: 1438 issue: 9 year: 2011 ident: 10.1016/j.hal.2024.102683_bib0062 article-title: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2 publication-title: ISMe J. doi: 10.1038/ismej.2011.28 – volume: 155 start-page: 383 issue: 3 year: 2002 ident: 10.1016/j.hal.2024.102683_bib0068 article-title: Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes publication-title: Arch. Hydrobiol. doi: 10.1127/archiv-hydrobiol/155/2002/383 – year: 2017 ident: 10.1016/j.hal.2024.102683_bib0040 – start-page: 400 year: 1999 ident: 10.1016/j.hal.2024.102683_bib0058 article-title: Cyanobacterial toxins – volume: 40 start-page: 63 year: 2014 ident: 10.1016/j.hal.2024.102683_bib0028 article-title: Current approaches to cyanotoxin risk assessment and risk management around the globe publication-title: Harmful. Algae doi: 10.1016/j.hal.2014.10.002 – volume: 69 start-page: 131 year: 2015 ident: 10.1016/j.hal.2024.102683_bib0057 article-title: Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds publication-title: Water. Res. doi: 10.1016/j.watres.2014.11.015 – volume: 10 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.hal.2024.102683_bib0036 article-title: Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins publication-title: Toxins. (Basel) doi: 10.3390/toxins10040156 |
SSID | ssj0021000 |
Score | 2.440627 |
Snippet | •We performed a comparative study on cyanobacterial risk monitoring methods.•Fluorometry and microscopy overestimated health risks associated to toxins.•qPCR... Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102683 |
SubjectTerms | biomass Chromatography, Liquid comparative study cost effectiveness Cyanobacteria Environmental Monitoring - methods Enzyme-Linked Immunosorbent Assay fluorescence fluorometry genes Harmful Algal Bloom Lakes - chemistry Lakes - microbiology LC-MS/MS Microcystin microcystins Microcystins - analysis microscopy Netherlands qPCR, ELISA risk Risk Assessment risk estimate Tandem Mass Spectrometry - methods toxicity |
Title | Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods |
URI | https://dx.doi.org/10.1016/j.hal.2024.102683 https://www.ncbi.nlm.nih.gov/pubmed/39244242 https://www.proquest.com/docview/3101796321 https://www.proquest.com/docview/3153708719 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B0kMviFfb5bFyJU5I6SaxnTi9LSvQlgJCUCRuVh6OSFuSFbsIuPS3M-M8EAf20GMcO7LGnplv7Mk3APs8j2OpTIQqLoSD_pg7Cv2c48pUUcQhjc12PzsPJtfi5EbeLMG4_ReG0iob21_bdGutm5ZhI83htCiGVxh5qEgpYpQjYjO-DCs-jwLZg5XRj5-T8y7uoiNsS5saoG7jgPZy06Z53cZ0AeEL4jAIFH_PPb0HP60bOl6D1QY_slE9xXVYMuUGfDisEOM9b8L0spj9YXHHtsmqnM2rpyJl6XNcoupaamYcT_nqdzNWlOy-w43Y_BgT2eZ3NmLpKys4sxS09Kk7awDoJJDVladnW3B9fPRrPHGamgpOip5n7oRUaUOEqcSlCTPBSadDg0KMlJB5RoAq57hCwstc18TCU1GYGGEMl0nmc8E_Qa-sSvMFWGD8REV5hu8whvMyFSJ6427uu1T6RiR9cFtR6rQhHKe6F391m1n2W6P0NUlf19Lvw0E3ZFqzbSzqLNr10W-2jEZvsGjY13YtNaoS3Y_EpakeZppb8xRw31vUR_LQxSgz6sPneiN0M0WoKQRCnu3_m9gOfKSnOoFtF3rz-wezh4hnngxg-ds_b4D7enx5ejFo9vcL3bL9nw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsQwDLXYJLggdoY1SJyQynSatE25AQIN64FF4hZ1SUWBaUfMIODCt2OnC-LAHLhmqSIntp8T9xlgl6dh6EodoIoLYaE_5pZEP2fZbiwp4nC1yXa_uva69-L8wX0Yg-P6XxhKq6xsf2nTjbWuWtqVNNv9LGvfYuQhAymJUY6Izfg4TAqX-5TXt__V5Hk4dIFtSFM91GwcXj9tmiSvx5CeHxxBDAae5H85p7_Ap3FCp3MwW6FHdlgucB7GdL4AU0cFIrzPRejfZINnFjZcm6xI2bD4yGIWf4Y5Kq4hZsb5lK3eG7AsZ68NasTm95CoNg_YIYt_OMGZIaClT_WM-tM9ICvrTg-W4P705O64a1UVFawY_c7Q8qnOhvBjFzfGTwQnjfY1ijCQwk0TglMpx_0RncS2dSg6MvAjLbTmbpQ4XPBlmMiLXK8C87QTySBNsA8juE4ifcRu3E4dmwrfiKgFdi1KFVd041T14kXVeWVPCqWvSPqqlH4L9pop_ZJrY9RgUe-P-nVgFPqCUdN26r1UqEj0OhLmungbKG6Mk8edzqgxeMBsjDGDFqyUB6FZKQJNIRDwrP1vYdsw3b27ulSXZ9cX6zBDPWUq2wZMDF_f9CZin2G0Zc72NxWV_NU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+assessment+of+toxic+cyanobacterial+blooms+in+recreational+waters%3A+A+comparative+study+of+monitoring+methods&rft.jtitle=Harmful+algae&rft.au=Sch%C3%BCrmann%2C+Quirijn+J.F.&rft.au=Visser%2C+Petra+M.&rft.au=Sollie%2C+Susan&rft.au=Kardinaal%2C+W.+Edwin+A.&rft.date=2024-09-01&rft.issn=1568-9883&rft.volume=138&rft.spage=102683&rft_id=info:doi/10.1016%2Fj.hal.2024.102683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_hal_2024_102683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-9883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-9883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-9883&client=summon |