AlphaMat: a material informatics hub connecting data, features, models and applications
The development of modern civil industry, energy and information technology is inseparable from the rapid explorations of new materials. However, only a small fraction of materials being experimentally/computationally studied in a vast chemical space. Artificial intelligence (AI) is promising to add...
Saved in:
Published in | npj computational materials Vol. 9; no. 1; pp. 130 - 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.07.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of modern civil industry, energy and information technology is inseparable from the rapid explorations of new materials. However, only a small fraction of materials being experimentally/computationally studied in a vast chemical space. Artificial intelligence (AI) is promising to address this gap, but faces many challenges, such as data scarcity and inaccurate material descriptors. Here, we develop an AI platform, AlphaMat, that can complete data preprocessing and downstream AI models. With high efficiency and accuracy, AlphaMat exhibits strong powers to model typical 12 material attributes (formation energy, band gap, ionic conductivity, magnetism, bulk modulus, etc.). AlphaMat’s capabilities are further demonstrated to discover thousands of new materials for use in specific domains. AlphaMat does not require users to have strong programming experience, and its effective use will facilitate the development of materials informatics, which is of great significance for the implementation of AI for Science (AI4S). |
---|---|
AbstractList | Abstract The development of modern civil industry, energy and information technology is inseparable from the rapid explorations of new materials. However, only a small fraction of materials being experimentally/computationally studied in a vast chemical space. Artificial intelligence (AI) is promising to address this gap, but faces many challenges, such as data scarcity and inaccurate material descriptors. Here, we develop an AI platform, AlphaMat, that can complete data preprocessing and downstream AI models. With high efficiency and accuracy, AlphaMat exhibits strong powers to model typical 12 material attributes (formation energy, band gap, ionic conductivity, magnetism, bulk modulus, etc.). AlphaMat’s capabilities are further demonstrated to discover thousands of new materials for use in specific domains. AlphaMat does not require users to have strong programming experience, and its effective use will facilitate the development of materials informatics, which is of great significance for the implementation of AI for Science (AI4S). The development of modern civil industry, energy and information technology is inseparable from the rapid explorations of new materials. However, only a small fraction of materials being experimentally/computationally studied in a vast chemical space. Artificial intelligence (AI) is promising to address this gap, but faces many challenges, such as data scarcity and inaccurate material descriptors. Here, we develop an AI platform, AlphaMat, that can complete data preprocessing and downstream AI models. With high efficiency and accuracy, AlphaMat exhibits strong powers to model typical 12 material attributes (formation energy, band gap, ionic conductivity, magnetism, bulk modulus, etc.). AlphaMat’s capabilities are further demonstrated to discover thousands of new materials for use in specific domains. AlphaMat does not require users to have strong programming experience, and its effective use will facilitate the development of materials informatics, which is of great significance for the implementation of AI for Science (AI4S). |
ArticleNumber | 130 |
Author | Cai, Junfei Tao, Kehao Wang, Zhilong Wang, Shiwei Han, Yanqiang Gao, Jing Ali, Imran Chen, An Ye, Simin Li, Jinjin |
Author_xml | – sequence: 1 givenname: Zhilong orcidid: 0000-0002-1910-3654 surname: Wang fullname: Wang, Zhilong organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 2 givenname: An surname: Chen fullname: Chen, An organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 3 givenname: Kehao surname: Tao fullname: Tao, Kehao organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 4 givenname: Junfei surname: Cai fullname: Cai, Junfei organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 5 givenname: Yanqiang orcidid: 0000-0001-5454-0617 surname: Han fullname: Han, Yanqiang organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 6 givenname: Jing surname: Gao fullname: Gao, Jing organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 7 givenname: Simin surname: Ye fullname: Ye, Simin organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 8 givenname: Shiwei surname: Wang fullname: Wang, Shiwei organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 9 givenname: Imran surname: Ali fullname: Ali, Imran organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University – sequence: 10 givenname: Jinjin orcidid: 0000-0003-4661-4051 surname: Li fullname: Li, Jinjin email: lijinjin@sjtu.edu.cn organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University |
BookMark | eNp9kU1PHSEUhkmjSf36A12RdOu0wAAD3Rmj1UTjRtMlOReYKzdzYQTuwn9fvNPYpgtXHE7O856P9xgdxBQ9Ql8o-UZJr74XTgXjHWF9RyhRshOf0BEjYuh6LcnBP_FndFbKhhBCNVOMkyP062Kan-Ee6g8MeAvV5wATDnFMuf2CLfh5t8I2xehtDXGNHVQ4x6OHusu-nONtcn4qGKLDMM9TsI1KsZyiwxGm4s_-vCfo6frq8fKmu3v4eXt5cddZznTtBi6FWvE2mwLtHGHWr9w4CKlHzRyTtJfOtcCPwjrlpVeaewAq_eBUL3R_gm4XXZdgY-YctpBfTYJg9omU1wZy22PyxtlR6TdBRTVv-4OSg2syblhJBtI2ra-L1pzTy86XajZpl2Mb3zDFWbuYoLJVsaXK5lRK9uN7V0rMmx9m8cM0P8zeDyMapP6DbKj7S9UMYfoY7Re0tD5x7fPfqT6gfgOtVqCP |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2024_129999 crossref_primary_10_1021_acsnano_4c12166 crossref_primary_10_1016_j_commatsci_2024_113247 crossref_primary_10_1016_j_jechem_2024_06_013 crossref_primary_10_1016_j_commatsci_2024_113366 crossref_primary_10_1002_adma_202306733 crossref_primary_10_1038_s41467_024_52550_9 crossref_primary_10_1002_smll_202402756 crossref_primary_10_1016_j_ensm_2024_103555 crossref_primary_10_1007_s11030_024_11100_7 crossref_primary_10_1016_j_commatsci_2024_113600 crossref_primary_10_1002_adts_202400652 crossref_primary_10_1080_07373937_2024_2422486 crossref_primary_10_1038_s41524_024_01243_4 crossref_primary_10_1039_D4NR02114B crossref_primary_10_1063_5_0226151 crossref_primary_10_1007_s13538_025_01732_x crossref_primary_10_1016_j_joule_2025_101878 crossref_primary_10_1002_smll_202305918 crossref_primary_10_1360_TB_2024_0404 |
Cites_doi | 10.1021/acsami.1c10749 10.1002/wcms.1411 10.1016/j.joule.2021.10.010 10.1038/s41586-022-04599-z 10.1016/j.cossms.2014.02.003 10.1063/1.4812323 10.1038/s41560-020-00759-5 10.1021/acs.jpclett.8b00124 10.1557/mrs.2018.208 10.1038/s41578-021-00376-y 10.1016/j.cpc.2021.108171 10.1038/s41578-021-00345-5 10.1039/D1EE01170G 10.1039/D1EE00442E 10.1021/acsami.0c15728 10.1038/s41586-018-0337-2 10.1016/j.commatsci.2018.05.018 10.1038/sdata.2016.134 10.1038/s41563-021-01015-1 10.1016/j.scib.2021.06.011 10.1103/PhysRev.136.B864 10.1021/acsenergylett.9b00549 10.1016/j.cpc.2012.05.008 10.1088/1674-4926/43/4/042101 10.1021/acs.jpclett.1c03526 10.1146/annurev-matsci-070218-010015 10.1103/PhysRevB.89.094104 10.1016/j.cpc.2021.108033 10.1016/j.jechem.2022.03.052 10.1038/s41578-020-00255-y 10.1016/j.joule.2018.05.009 10.1021/acs.jctc.9b00322 10.1016/j.commatsci.2020.109544 10.1016/j.commatsci.2012.10.028 10.1002/inf2.12094 10.1038/s41524-021-00596-4 10.1038/sdata.2018.65 10.1038/s41524-020-00406-3 10.1063/1.4946894 10.1021/acsaem.0c00230 10.1088/0953-8984/21/39/395502 10.1021/acsenergylett.1c00332 10.1038/s41524-020-00360-0 10.1038/s41467-022-29904-2 10.1038/npjcompumats.2015.10 10.1016/j.commatsci.2022.111187 10.1016/j.nanoen.2020.105665 10.1038/s41563-021-01013-3 10.1038/s41597-020-00723-8 10.1038/s42254-022-00423-9 10.1016/j.commatsci.2020.110064 10.1016/j.physrep.2021.08.002 10.1021/acs.chemmater.9b04066 10.1103/PhysRevB.54.11169 10.1038/s41560-021-00827-4 10.1002/adfm.202003087 10.1038/s41524-019-0173-4 10.1016/j.nanoen.2021.106337 10.1038/s41524-022-00935-z 10.1038/s41597-019-0097-3 10.1103/PhysRev.140.A1133 10.1038/s41597-020-0474-y 10.1103/PhysRevB.82.094116 10.1021/acs.jpcc.7b00810 10.1021/jacs.1c05441 10.1145/2939672.2939785 10.1007/s11837-014-0888-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41524-023-01086-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2057-3960 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_dcf89136d8194928a867d7d8d7b62a6c 10_1038_s41524_023_01086_5 |
GrantInformation_xml | – fundername: Our work is supported by the National Key R&D Program of China (No. 2021YFC2100100), the Shanghai Science and Technology Project (No. 21JC1403400). |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-74658b43968a9dd02cebdf7569f92d26136dd2d2ef5cd8e6e894eaa16e7d83593 |
IEDL.DBID | DOA |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:24:36 EDT 2025 Wed Aug 13 05:15:04 EDT 2025 Tue Jul 01 01:41:30 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:40:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-74658b43968a9dd02cebdf7569f92d26136dd2d2ef5cd8e6e894eaa16e7d83593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1910-3654 0000-0001-5454-0617 0000-0003-4661-4051 |
OpenAccessLink | https://doaj.org/article/dcf89136d8194928a867d7d8d7b62a6c |
PQID | 2842282516 |
PQPubID | 2041924 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dcf89136d8194928a867d7d8d7b62a6c proquest_journals_2842282516 crossref_primary_10_1038_s41524_023_01086_5 crossref_citationtrail_10_1038_s41524_023_01086_5 springer_journals_10_1038_s41524_023_01086_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-26 |
PublicationDateYYYYMMDD | 2023-07-26 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | de Pablo (CR23) 2019; 5 Wang, Zhang, Li (CR49) 2021; 81 Kim (CR18) 2020; 7 Zheng (CR11) 2019; 9 Zhang (CR71) 2020; 30 Zhang, Wang, Ren, Liu, Li (CR30) 2021; 35 Borlido (CR59) 2019; 15 Wang (CR51) 2021; 89 Huang (CR12) 2022; 43 He (CR54) 2021; 6 Wang, Lv, Zhu, Ma (CR9) 2010; 82 Morgan, Jacobs (CR43) 2020; 50 de Pablo, Jones, Kovacs, Ozolins, Ramirez (CR19) 2014; 18 Meredig (CR48) 2014; 89 Giannozzi (CR8) 2009; 21 Petretto (CR69) 2018; 5 Kohn, Sham (CR15) 1965; 140 Sbailò, Fekete, Ghiringhelli, Scheffler (CR42) 2022; 8 Jain (CR16) 2013; 1 Thompson (CR7) 2022; 271 CR47 CR46 Draxl, Scheffler (CR22) 2018; 43 Lu (CR36) 2022; 604 Zhou, Dong, Hsieh, Goncharov, Chen (CR64) 2022; 4 Jacobs (CR41) 2020; 176 Kresse, Furthmüller (CR6) 1996; 54 Wang, Schwartz, Gim, Hovden, Mi (CR52) 2019; 4 Wang, Lv, Zhu, Ma (CR10) 2012; 183 Zhang, Wang, Cai, Wu, Li (CR66) 2021; 13 Lyu, Moore, Liu, Yu, Wu (CR32) 2021; 143 Zhang (CR53) 2020; 3 Petousis (CR70) 2017; 4 Borlido (CR58) 2020; 6 Louie, Chan, da Jornada, Li, Qiu (CR3) 2021; 20 Wang, Han, Cai, Chen, Li (CR28) 2022; 71 Ong (CR44) 2013; 68 Chen (CR57) 2021; 6 Kim, Drakopoulos, Ronca, Minnich (CR63) 2022; 13 Hammes-Schiffer, Galli (CR5) 2021; 6 Zhou (CR67) 2019; 6 Han (CR27) 2021; 934 Jiang (CR31) 2021; 5 He (CR17) 2020; 7 Agrawal, Choudhary (CR24) 2016; 4 Pedregosa (CR45) 2011; 12 Wang (CR60) 2021; 39 Kirklin (CR21) 2015; 1 Chen, Zhang, Zhou (CR26) 2020; 2 Dunn, Wang, Ganose, Dopp, Jain (CR40) 2020; 6 Balaish (CR56) 2021; 6 Wang, Xu, Liu, Tang, Geng (CR13) 2021; 267 Zhuo, Mansouri Tehrani, Brgoch (CR68) 2018; 9 Miyake, Saeki (CR34) 2021; 12 Zhao (CR38) 2021; 66 Sun, Zhao (CR61) 2017; 121 Hohenberg, Kohn (CR14) 1964; 136 Marzari, Ferretti, Wolverton (CR2) 2021; 20 Yu (CR73) 2020; 12 Cai, Wang, Wu, Han, Li (CR50) 2021; 42 Butler, Davies, Cartwright, Isayev, Walsh (CR25) 2018; 559 CR20 Zhu (CR72) 2021; 14 Ward (CR39) 2018; 152 Daehn (CR1) 2021; 7 Wang (CR37) 2021; 186 Correa-Baena (CR4) 2018; 2 Wang (CR55) 2022; 204 Wang, Cai, Wang, Wu, Li (CR33) 2021; 7 Wang (CR65) 2023; 59 Zou (CR29) 2021; 14 Batra, Song, Ramprasad (CR35) 2021; 6 Chakraborty (CR62) 2020; 32 Y Han (1086_CR27) 2021; 934 X-G Zhao (1086_CR38) 2021; 66 Q Zheng (1086_CR11) 2019; 9 Y Wang (1086_CR10) 2012; 183 M Balaish (1086_CR56) 2021; 6 Z Wang (1086_CR33) 2021; 7 F Pedregosa (1086_CR45) 2011; 12 X Zou (1086_CR29) 2021; 14 J Yu (1086_CR73) 2020; 12 R Jacobs (1086_CR41) 2020; 176 B Meredig (1086_CR48) 2014; 89 A Chakraborty (1086_CR62) 2020; 32 B He (1086_CR17) 2020; 7 Z Wang (1086_CR55) 2022; 204 A Chen (1086_CR26) 2020; 2 P Giannozzi (1086_CR8) 2009; 21 JJ de Pablo (1086_CR23) 2019; 5 P Borlido (1086_CR58) 2020; 6 Z Wang (1086_CR51) 2021; 89 Y Zhuo (1086_CR68) 2018; 9 A Jain (1086_CR16) 2013; 1 1086_CR20 H Zhang (1086_CR66) 2021; 13 G Petretto (1086_CR69) 2018; 5 G Kresse (1086_CR6) 1996; 54 J Cai (1086_CR50) 2021; 42 P Borlido (1086_CR59) 2019; 15 Y-T Chen (1086_CR57) 2021; 6 Y Zhou (1086_CR64) 2022; 4 Z Wang (1086_CR65) 2023; 59 Y Wang (1086_CR9) 2010; 82 Y Zhang (1086_CR53) 2020; 3 P Hohenberg (1086_CR14) 1964; 136 Y Miyake (1086_CR34) 2021; 12 M Huang (1086_CR12) 2022; 43 R Lyu (1086_CR32) 2021; 143 T Kim (1086_CR63) 2022; 13 L Zhang (1086_CR71) 2020; 30 S Hammes-Schiffer (1086_CR5) 2021; 6 S Kim (1086_CR18) 2020; 7 AP Thompson (1086_CR7) 2022; 271 H Lu (1086_CR36) 2022; 604 L Ward (1086_CR39) 2018; 152 Z Wang (1086_CR49) 2021; 81 B Jiang (1086_CR31) 2021; 5 H Sun (1086_CR61) 2017; 121 C Draxl (1086_CR22) 2018; 43 Z Wang (1086_CR60) 2021; 39 JJ de Pablo (1086_CR19) 2014; 18 G Wang (1086_CR37) 2021; 186 V Wang (1086_CR13) 2021; 267 R Batra (1086_CR35) 2021; 6 J-P Correa-Baena (1086_CR4) 2018; 2 Z Wang (1086_CR28) 2022; 71 SG Louie (1086_CR3) 2021; 20 A Agrawal (1086_CR24) 2016; 4 W Kohn (1086_CR15) 1965; 140 I Petousis (1086_CR70) 2017; 4 Y Wang (1086_CR52) 2019; 4 X He (1086_CR54) 2021; 6 J Zhou (1086_CR67) 2019; 6 K Daehn (1086_CR1) 2021; 7 H Zhang (1086_CR30) 2021; 35 L Sbailò (1086_CR42) 2022; 8 N Marzari (1086_CR2) 2021; 20 A Dunn (1086_CR40) 2020; 6 KT Butler (1086_CR25) 2018; 559 T Zhu (1086_CR72) 2021; 14 SP Ong (1086_CR44) 2013; 68 1086_CR47 S Kirklin (1086_CR21) 2015; 1 1086_CR46 D Morgan (1086_CR43) 2020; 50 |
References_xml | – volume: 13 start-page: 53388 year: 2021 end-page: 53397 ident: CR66 article-title: Machine-learning-enabled tricks of the trade for rapid host material discovery in Li–S battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10749 – volume: 9 start-page: e1411 year: 2019 ident: CR11 article-title: Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1411 – volume: 5 start-page: 3187 year: 2021 end-page: 3203 ident: CR31 article-title: Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols publication-title: Joule doi: 10.1016/j.joule.2021.10.010 – volume: 604 start-page: 662 year: 2022 end-page: 667 ident: CR36 article-title: Machine learning-aided engineering of hydrolases for PET depolymerization publication-title: Nature doi: 10.1038/s41586-022-04599-z – volume: 18 start-page: 99 year: 2014 end-page: 117 ident: CR19 article-title: The Materials Genome Initiative, the interplay of experiment, theory and computation publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2014.02.003 – volume: 59 start-page: 102781 year: 2023 ident: CR65 article-title: IonML: A physically inspired machine learning platform to directed design superionic conductors publication-title: Energy Stor. Mater. – volume: 39 start-page: 45 year: 2021 end-page: 53 ident: CR60 article-title: Deep learning for ultra-fast and high precision screening of energy materials publication-title: Energy Stor. Mater. – volume: 1 start-page: 011002 year: 2013 ident: CR16 article-title: The Materials Project: a materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 42 start-page: 277 year: 2021 end-page: 285 ident: CR50 article-title: A machine learning shortcut for screening the spinel structures of Mg/Zn ion battery cathodes with a high conductivity and rapid ion kinetics publication-title: Energy Stor. Mater. – volume: 6 start-page: 227 year: 2021 end-page: 239 ident: CR56 article-title: Processing thin but robust electrolytes for solid-state batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-00759-5 – volume: 9 start-page: 1668 year: 2018 end-page: 1673 ident: CR68 article-title: Predicting the band gaps of inorganic solids by machine learning publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00124 – volume: 43 start-page: 676 year: 2018 end-page: 682 ident: CR22 article-title: NOMAD: The FAIR concept for big data-driven materials science publication-title: MRS Bull. doi: 10.1557/mrs.2018.208 – volume: 7 start-page: 275 year: 2021 end-page: 294 ident: CR1 article-title: Innovations to decarbonize materials industries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00376-y – volume: 271 start-page: 108171 year: 2022 ident: CR7 article-title: LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 6 start-page: 1036 year: 2021 end-page: 1052 ident: CR54 article-title: The passivity of lithium electrodes in liquid electrolytes for secondary batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00345-5 – volume: 14 start-page: 3965 year: 2021 end-page: 3975 ident: CR29 article-title: Machine learning analysis and prediction models of alkaline anion exchange membranes for fuel cells publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01170G – volume: 14 start-page: 3559 year: 2021 end-page: 3566 ident: CR72 article-title: Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00442E – volume: 12 start-page: 45023 year: 2020 end-page: 45035 ident: CR73 article-title: Finding optimal mid-infrared nonlinear optical materials in germanates by first-principles high-throughput screening and experimental verification publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15728 – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: CR25 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 152 start-page: 60 year: 2018 end-page: 69 ident: CR39 article-title: Matminer: An open source toolkit for materials data mining publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.05.018 – ident: CR46 – volume: 4 year: 2017 ident: CR70 article-title: High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials publication-title: Sci. Data doi: 10.1038/sdata.2016.134 – volume: 20 start-page: 728 year: 2021 end-page: 735 ident: CR3 article-title: Discovering and understanding materials through computation publication-title: Nat. Mater. doi: 10.1038/s41563-021-01015-1 – volume: 66 start-page: 1973 year: 2021 end-page: 1985 ident: CR38 article-title: JAMIP: an artificial-intelligence aided data-driven infrastructure for computational materials informatics publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.06.011 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR45 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 136 start-page: B864 year: 1964 end-page: B871 ident: CR14 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 4 start-page: 1541 year: 2019 end-page: 1548 ident: CR52 article-title: Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00549 – volume: 183 start-page: 2063 year: 2012 end-page: 2070 ident: CR10 article-title: CALYPSO: A method for crystal structure prediction publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 43 start-page: 042101 year: 2022 ident: CR12 article-title: DASP: defect and dopant ab-initio simulation package publication-title: J. Semicond. doi: 10.1088/1674-4926/43/4/042101 – volume: 12 start-page: 12391 year: 2021 end-page: 12401 ident: CR34 article-title: Machine learning-assisted development of organic solar cell materials: issues, analyses, and outlooks publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03526 – volume: 50 start-page: 71 year: 2020 end-page: 103 ident: CR43 article-title: Opportunities and Challenges for Machine Learning in Materials Science publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070218-010015 – volume: 89 start-page: 094104 year: 2014 ident: CR48 article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.094104 – volume: 267 start-page: 108033 year: 2021 ident: CR13 article-title: VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 71 start-page: 56 year: 2022 end-page: 62 ident: CR28 article-title: Vision for energy material design: a roadmap for integrated data-driven modeling publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.03.052 – volume: 6 start-page: 655 year: 2021 end-page: 678 ident: CR35 article-title: Emerging materials intelligence ecosystems propelled by machine learning publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00255-y – volume: 2 start-page: 1410 year: 2018 end-page: 1420 ident: CR4 article-title: Accelerating materials development via automation, machine learning, and high-performance computing publication-title: Joule doi: 10.1016/j.joule.2018.05.009 – volume: 15 start-page: 5069 year: 2019 end-page: 5079 ident: CR59 article-title: Large-scale benchmark of exchange–correlation functionals for the determination of electronic band gaps of solids publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00322 – volume: 176 start-page: 109544 year: 2020 ident: CR41 article-title: The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109544 – volume: 68 start-page: 314 year: 2013 end-page: 319 ident: CR44 article-title: Python materials genomics (pymatgen): a robust, open-source python library for materials analysis publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.028 – volume: 2 start-page: 553 year: 2020 end-page: 576 ident: CR26 article-title: Machine learning: Accelerating materials development for energy storage and conversion publication-title: InfoMat doi: 10.1002/inf2.12094 – ident: CR47 – volume: 7 start-page: 128 year: 2021 ident: CR33 article-title: Unsupervised discovery of thin-film photovoltaic materials from unlabeled data publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00596-4 – volume: 5 year: 2018 ident: CR69 article-title: High-throughput density-functional perturbation theory phonons for inorganic materials publication-title: Sci. Data doi: 10.1038/sdata.2018.65 – volume: 6 start-page: 138 year: 2020 ident: CR40 article-title: Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00406-3 – volume: 4 start-page: 053208 year: 2016 ident: CR24 article-title: Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science publication-title: APL Mater. doi: 10.1063/1.4946894 – volume: 3 start-page: 3755 year: 2020 end-page: 3769 ident: CR53 article-title: Synthesis and characterization of spinel cobaltite (Co O ) thin films for function as hole transport materials in organometallic halide perovskite solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00230 – volume: 21 start-page: 395502 year: 2009 ident: CR8 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 6 start-page: 1639 year: 2021 end-page: 1648 ident: CR57 article-title: Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00332 – volume: 6 start-page: 96 year: 2020 ident: CR58 article-title: Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00360-0 – volume: 13 year: 2022 ident: CR63 article-title: Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals publication-title: Nat. Commun. doi: 10.1038/s41467-022-29904-2 – volume: 1 start-page: 15010 year: 2015 ident: CR21 article-title: The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2015.10 – volume: 35 start-page: 88 year: 2021 end-page: 98 ident: CR30 article-title: Ultra-fast and accurate binding energy prediction of shuttle effect-suppressive sulfur hosts for lithium-sulfur batteries using machine learning publication-title: Energy Stor. Mater. – volume: 204 start-page: 111187 year: 2022 ident: CR55 article-title: Computational screening of spinel structure cathodes for Li-ion battery with low expansion and rapid ion kinetics publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111187 – volume: 81 start-page: 105665 year: 2021 ident: CR49 article-title: Accelerated discovery of stable spinels in energy systems via machine learning publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105665 – volume: 20 start-page: 736 year: 2021 end-page: 749 ident: CR2 article-title: Electronic-structure methods for materials design publication-title: Nat. Mater. doi: 10.1038/s41563-021-01013-3 – volume: 7 year: 2020 ident: CR18 article-title: A band-gap database for semiconducting inorganic materials calculated with hybrid functional publication-title: Sci. Data doi: 10.1038/s41597-020-00723-8 – volume: 4 start-page: 319 year: 2022 end-page: 335 ident: CR64 article-title: Thermal conductivity of materials under pressure publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-022-00423-9 – volume: 186 start-page: 110064 year: 2021 ident: CR37 article-title: ALKEMIE: An intelligent computational platform for accelerating materials discovery and design publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.110064 – volume: 934 start-page: 1 year: 2021 end-page: 71 ident: CR27 article-title: Machine learning accelerates quantum mechanics predictions of molecular crystals publication-title: Phys. Rep. doi: 10.1016/j.physrep.2021.08.002 – volume: 32 start-page: 915 year: 2020 end-page: 952 ident: CR62 article-title: Layered cathode materials for lithium-ion batteries: review of computational studies on LiNi Co Mn O and LiNi Co Al O publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04066 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR6 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 6 start-page: 700 year: 2021 end-page: 705 ident: CR5 article-title: Integration of theory and experiment in the modelling of heterogeneous electrocatalysis publication-title: Nat. Energy doi: 10.1038/s41560-021-00827-4 – volume: 30 start-page: 2003087 year: 2020 ident: CR71 article-title: A database of ionic transport characteristics for over 29 000 inorganic compounds publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003087 – volume: 5 start-page: 41 year: 2019 ident: CR23 article-title: New frontiers for the materials genome initiative publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0173-4 – volume: 89 start-page: 106337 year: 2021 ident: CR51 article-title: Harnessing artificial intelligence to holistic design and identification for solid electrolytes publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106337 – volume: 8 start-page: 250 year: 2022 ident: CR42 article-title: The NOMAD Artificial-Intelligence Toolkit: turning materials-science data into knowledge and understanding publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00935-z – volume: 6 year: 2019 ident: CR67 article-title: 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches publication-title: Sci. Data doi: 10.1038/s41597-019-0097-3 – volume: 140 start-page: A1133 year: 1965 end-page: A1138 ident: CR15 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 7 year: 2020 ident: CR17 article-title: High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms publication-title: Sci. Data doi: 10.1038/s41597-020-0474-y – volume: 82 start-page: 094116 year: 2010 ident: CR9 article-title: Crystal structure prediction via particle-swarm optimization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.094116 – volume: 121 start-page: 6002 year: 2017 end-page: 6010 ident: CR61 article-title: Electronic structure and comparative properties of LiNi Mn Co O cathode materials publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b00810 – ident: CR20 – volume: 143 start-page: 12766 year: 2021 end-page: 12776 ident: CR32 article-title: Predictive design model for low-dimensional organic–inorganic halide perovskites assisted by machine learning publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05441 – volume: 6 start-page: 1639 year: 2021 ident: 1086_CR57 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00332 – volume: 68 start-page: 314 year: 2013 ident: 1086_CR44 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.028 – volume: 14 start-page: 3559 year: 2021 ident: 1086_CR72 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00442E – volume: 42 start-page: 277 year: 2021 ident: 1086_CR50 publication-title: Energy Stor. Mater. – volume: 82 start-page: 094116 year: 2010 ident: 1086_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.094116 – volume: 136 start-page: B864 year: 1964 ident: 1086_CR14 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 50 start-page: 71 year: 2020 ident: 1086_CR43 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070218-010015 – volume: 4 start-page: 053208 year: 2016 ident: 1086_CR24 publication-title: APL Mater. doi: 10.1063/1.4946894 – volume: 5 start-page: 3187 year: 2021 ident: 1086_CR31 publication-title: Joule doi: 10.1016/j.joule.2021.10.010 – volume: 15 start-page: 5069 year: 2019 ident: 1086_CR59 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00322 – volume: 7 start-page: 128 year: 2021 ident: 1086_CR33 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00596-4 – volume: 9 start-page: 1668 year: 2018 ident: 1086_CR68 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00124 – volume: 6 start-page: 700 year: 2021 ident: 1086_CR5 publication-title: Nat. Energy doi: 10.1038/s41560-021-00827-4 – volume: 204 start-page: 111187 year: 2022 ident: 1086_CR55 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111187 – volume: 152 start-page: 60 year: 2018 ident: 1086_CR39 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.05.018 – volume: 183 start-page: 2063 year: 2012 ident: 1086_CR10 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 143 start-page: 12766 year: 2021 ident: 1086_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05441 – ident: 1086_CR46 doi: 10.1145/2939672.2939785 – volume: 9 start-page: e1411 year: 2019 ident: 1086_CR11 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1411 – volume: 1 start-page: 011002 year: 2013 ident: 1086_CR16 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 66 start-page: 1973 year: 2021 ident: 1086_CR38 publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.06.011 – volume: 59 start-page: 102781 year: 2023 ident: 1086_CR65 publication-title: Energy Stor. Mater. – volume: 6 year: 2019 ident: 1086_CR67 publication-title: Sci. Data doi: 10.1038/s41597-019-0097-3 – volume: 6 start-page: 655 year: 2021 ident: 1086_CR35 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00255-y – volume: 12 start-page: 2825 year: 2011 ident: 1086_CR45 publication-title: J. Mach. Learn. Res. – volume: 89 start-page: 094104 year: 2014 ident: 1086_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.094104 – volume: 121 start-page: 6002 year: 2017 ident: 1086_CR61 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b00810 – volume: 13 year: 2022 ident: 1086_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29904-2 – volume: 7 year: 2020 ident: 1086_CR17 publication-title: Sci. Data doi: 10.1038/s41597-020-0474-y – volume: 43 start-page: 676 year: 2018 ident: 1086_CR22 publication-title: MRS Bull. doi: 10.1557/mrs.2018.208 – volume: 4 start-page: 1541 year: 2019 ident: 1086_CR52 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00549 – volume: 54 start-page: 11169 year: 1996 ident: 1086_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – ident: 1086_CR20 doi: 10.1007/s11837-014-0888-0 – volume: 5 year: 2018 ident: 1086_CR69 publication-title: Sci. Data doi: 10.1038/sdata.2018.65 – volume: 7 start-page: 275 year: 2021 ident: 1086_CR1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00376-y – volume: 934 start-page: 1 year: 2021 ident: 1086_CR27 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2021.08.002 – ident: 1086_CR47 – volume: 6 start-page: 138 year: 2020 ident: 1086_CR40 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00406-3 – volume: 43 start-page: 042101 year: 2022 ident: 1086_CR12 publication-title: J. Semicond. doi: 10.1088/1674-4926/43/4/042101 – volume: 71 start-page: 56 year: 2022 ident: 1086_CR28 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.03.052 – volume: 271 start-page: 108171 year: 2022 ident: 1086_CR7 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 30 start-page: 2003087 year: 2020 ident: 1086_CR71 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003087 – volume: 6 start-page: 1036 year: 2021 ident: 1086_CR54 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00345-5 – volume: 32 start-page: 915 year: 2020 ident: 1086_CR62 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04066 – volume: 7 year: 2020 ident: 1086_CR18 publication-title: Sci. Data doi: 10.1038/s41597-020-00723-8 – volume: 81 start-page: 105665 year: 2021 ident: 1086_CR49 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105665 – volume: 12 start-page: 45023 year: 2020 ident: 1086_CR73 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15728 – volume: 20 start-page: 736 year: 2021 ident: 1086_CR2 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01013-3 – volume: 18 start-page: 99 year: 2014 ident: 1086_CR19 publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2014.02.003 – volume: 14 start-page: 3965 year: 2021 ident: 1086_CR29 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01170G – volume: 21 start-page: 395502 year: 2009 ident: 1086_CR8 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 89 start-page: 106337 year: 2021 ident: 1086_CR51 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106337 – volume: 5 start-page: 41 year: 2019 ident: 1086_CR23 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0173-4 – volume: 35 start-page: 88 year: 2021 ident: 1086_CR30 publication-title: Energy Stor. Mater. – volume: 12 start-page: 12391 year: 2021 ident: 1086_CR34 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03526 – volume: 2 start-page: 1410 year: 2018 ident: 1086_CR4 publication-title: Joule doi: 10.1016/j.joule.2018.05.009 – volume: 176 start-page: 109544 year: 2020 ident: 1086_CR41 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109544 – volume: 559 start-page: 547 year: 2018 ident: 1086_CR25 publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 39 start-page: 45 year: 2021 ident: 1086_CR60 publication-title: Energy Stor. Mater. – volume: 4 year: 2017 ident: 1086_CR70 publication-title: Sci. Data doi: 10.1038/sdata.2016.134 – volume: 2 start-page: 553 year: 2020 ident: 1086_CR26 publication-title: InfoMat doi: 10.1002/inf2.12094 – volume: 6 start-page: 96 year: 2020 ident: 1086_CR58 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00360-0 – volume: 186 start-page: 110064 year: 2021 ident: 1086_CR37 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.110064 – volume: 6 start-page: 227 year: 2021 ident: 1086_CR56 publication-title: Nat. Energy doi: 10.1038/s41560-020-00759-5 – volume: 267 start-page: 108033 year: 2021 ident: 1086_CR13 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 140 start-page: A1133 year: 1965 ident: 1086_CR15 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 20 start-page: 728 year: 2021 ident: 1086_CR3 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01015-1 – volume: 8 start-page: 250 year: 2022 ident: 1086_CR42 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00935-z – volume: 4 start-page: 319 year: 2022 ident: 1086_CR64 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-022-00423-9 – volume: 1 start-page: 15010 year: 2015 ident: 1086_CR21 publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2015.10 – volume: 13 start-page: 53388 year: 2021 ident: 1086_CR66 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10749 – volume: 3 start-page: 3755 year: 2020 ident: 1086_CR53 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00230 – volume: 604 start-page: 662 year: 2022 ident: 1086_CR36 publication-title: Nature doi: 10.1038/s41586-022-04599-z |
SSID | ssj0001928240 |
Score | 2.356661 |
Snippet | The development of modern civil industry, energy and information technology is inseparable from the rapid explorations of new materials. However, only a small... Abstract The development of modern civil industry, energy and information technology is inseparable from the rapid explorations of new materials. However, only... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130 |
SubjectTerms | 639/301/1034/1035 639/301/1034/1037 Artificial intelligence Bulk modulus Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Computer science Conductivity Data processing Design Efficiency Energy Energy gap Experiments Free energy Heat of formation Informatics Information technology Interdisciplinary subjects Ion currents Machine learning Materials information Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Proprietary Research methodology Simulation Theoretical |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVauNAD5aMV20LlQ2-sxW7ijJ1eKopAqBI9FbE3y7HH7aHaBbL8_854HRYqlVuU2FEyY3uePTNvhPjsocU6Iaq6qlHpaWqUB4jK1hY0Jk87aE4UvvoBl9f6-6yZlQO3voRVDmtiXqjjIvAZ-Qkto1XOs4Svt3eKq0axd7WU0HgtNpm6jEO6zMysz1ha6qEnJVdmUtuTnu2VVmSoaA9NaF41z-xRpu1_hjX_cY9mq3OxI7YLXJSnK_3uilc43xNvh1IMsszMPfHmCa_gvrg55QzaK7_8Ir0kSJpHmSwcqczLLH8_dDJwjEvgsGfJcaJjmTCzfPZjmevj9NLPo3zq4X4nri_Of55dqlJBQQWyM0tlNAGMjjAHWN_GOKkCdjGZBtrUVpE2TzXESBeYmCMAAW2r0fspoIkEzdr6vdiYL-Z4ICQEIDASg_UEWUilHm2HfpJCp43xyYzEdJCjC4VenKtc_HHZzV1bt5K9I9m7LHvXjMTxY5_bFbnGi62_sXoeWzIxdr6xuP_lyjxzMSR2vEIkpKNJ_d6CifQz0XRQeQgjcTgo15XZ2rv12BqJ8aDw9eP_f9KHl9_2UWxVeagZVcGh2FjeP-ARYZhl9ykP1L8-Ye1k priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RuJRDxUcrUijygVvX6m7ijB1usAIhJDh1xd4sxx63hypU7PL_O_YmLFu1lXqLEluyZyaZN5mZZ4Azhw1VkUhWZUVSTWItHWKQpjKoKDqOoFOj8N093szU7byeb0E59MLkov1MaZk_00N12JdFcjRKsofh4JdhuKzfwE6ibk9WPcXp-r9Kw0GEGvf9MePK_GHqhg_KVP0b-PK3lGj2NNd78K6HiOJitah92KLuAHZfEQcewsNFapG9c8tz4QRjzmxGoidBTcTL4vtzK3wqYvGprlmkQtCRiJT3vBiJfADOQrguiNcp7Pcwu776Or2R_REJ0rMjWUqtGEG0DCrQuCaEcempDVHX2MSmDBwdVRgCX1BMJACEZBpFzk2QdGDs1VQfYLt77OgIBHpktBG8cYxJWGeOTEtuHH2rtHZRFzAZhGZ9zx-ejrH4YXMeuzJ2JWjLgrZZ0LYu4PPLnJ8r9ox_jr5MungZmZiv843Hp2-2twQbfEyZVQwMZRTr2hnUgTcTdIulQ1_AyaBJ27-OC8s-uMxNuljAaNDu-vHfl_Tx_4Yfw9sy25mWJZ7A9vLpmT4xaFm2p9lKfwGIueTO priority: 102 providerName: Springer Nature |
Title | AlphaMat: a material informatics hub connecting data, features, models and applications |
URI | https://link.springer.com/article/10.1038/s41524-023-01086-5 https://www.proquest.com/docview/2842282516 https://doaj.org/article/dcf89136d8194928a867d7d8d7b62a6c |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxEB1RuLQHBLRV00LkA7fGItmPsbe3EBFQJBBqQc3N8tpjVQgF1IT_z9i7gYAEXLjsrry7kjUzu--NPPMMsG-xojwQyTzLSRaDUEqL6KXONRYULGfQsVH49AxPLovJtJyubPUVa8IaeeDGcAfehbiShp6hq6gybTUqr7z2qsbMoot_X8a8lWTqquEtmrGq7ZLp5_pgHpGqkAxRnD0zj5flEyRKgv1PWOazhdGEN-Mt2GyJohg2E9yGNZrtwKcV-cDP8HcYG2VP7eKXsIKZZwom0UqhRvll8e-uFi6WsrhY3SxiOWhPBEpinvOeSNvgzIWdebG6kP0FLsdHF6MT2W6UIB3DyUKqgnlEzdQCta2872eOah9UiVWoMs85EpvP8wWFKAVASLoqyNoBEhsyL6v8K6zPbmb0DQQ6ZM7hnbbMTNhzlnRNth9cXShlg-rAYGk041oV8biZxbVJq9m5No2hDRvaJEObsgM_H965bTQ0Xn36MPri4cmof50GOCpMGxXmrajowO7Sk6b9KOeGkThLrbrYgd7Su4-3X57S9_eY0g_4mKXoUzLDXVhf_L-jPSY0i7oLH9RU8VGPj7uwMRxO_kz4fHh0dv6bR0c46qbovgd5iPVf |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcKBRQlxbwAU6s1V3HGTtICJXHsqXdnlrRm3H8gAPaLc1WqH-qv5GxN-m2SPTWW5Q4VjIznofH8w3AK4tVKGIIvBBF4HIYS24RPdeFRhmipQg6FQpPDnB8JL8el8crcNHVwqRjlZ1OzIraz1zaI98mNSpynSW-P_nNU9eolF3tWmgsxGIvnP-hkK15t_uJ-PtaiNHnw49j3nYV4I5075wrSUa3JjuM2lbeD4QLtY-qxCpWwlNAUaD3dBFiqpsPGHQlg7VDDMqTu5LAl0jl35EFzZAq00dflns6FX2hHLS1OYNCbzfJPkpOhpFidooeeHnN_uU2Add823_SsdnKjR7Cg9Y9ZTsLeXoEK2G6Dmtd6wfWaoJ1uH8Fx_AxfNtJFbsTO3_LLCMXOEs1azFZEw40-3lWM5fO1Lh0zJqlc6l9FkNGFW36LPfjaZidenY1o_4Ejm6Ftk9hdTqbhg1g6JCcH--0JReJRMgGXQc7iK6WStmoejDs6GhcC2eeumr8MjmtXmizoL0h2ptMe1P24M3lOycLMI8bR39I7LkcmYC4843Z6Q_TrmvjXUyJXvTkWUliv9WoPP2MVzUKi64HWx1zTasdGrOU5R70O4YvH___k57dPNtLuDs-nOyb_d2DvU24J7LYKS5wC1bnp2fhOflP8_pFFloG3297lfwFLmwq3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NTxQx9IVgYvSAihoXQXvQk9vsbmem7ZgYguIGRIgHiXurnX7Igewis8T41_x1vtftsGAiN26Tmc6k875f3xfAKyvrUMQQeCGKwMtRrLiV0nNdaFmGaNGDpkLhwyO5d1x-mlSTFfjT1cJQWmUnE5Og9jNHZ-QDFKMi1VnKQcxpEV92x9tnPzlNkKJIazdOY0EiB-H3L3Tf2nf7u4jr10KMP379sMfzhAHuUA7PuSpRATeok6W2tfdD4ULjo6pkHWvh0bkopPd4ESLV0AcZdF0Ga0cyKI-mCzViQvF_RxXViHhMTdTyfKfG3ZbDXKczLPSgJV1ZclSS6L-jJ8Gra7owjQy4Zuf-E5pNGm_8ENayqcp2FrT1CFbCdB0edGMgWJYK63D_Sk_Dx_Bth6p3D-38LbMMzeFE4Sz3Z6We0OzkomGO8mscpVwzylHtsxhSh9G2z9JsnpbZqWdXo-tP4PhWYPsUVqezaXgGTDqJhpB32qK5hORkg26CHUbXlErZqHow6uBoXG5tThM2Tk0KsRfaLGBvEPYmwd5UPXhz-c7ZorHHjavfE3ouV1JT7nRjdv7DZB433kUK-kqPVlaJ6LdaKo8_41UjhZWuB5sdck2WFK1Z0nUP-h3Cl4__v6WNm7_2Eu4if5jP-0cHz-GeSFSnuJCbsDo_vwhbaErNmxeJZhl8v20m-Qv6ti8K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AlphaMat%3A+a+material+informatics+hub+connecting+data%2C+features%2C+models+and+applications&rft.jtitle=npj+computational+materials&rft.au=Zhilong+Wang&rft.au=An+Chen&rft.au=Kehao+Tao&rft.au=Junfei+Cai&rft.date=2023-07-26&rft.pub=Nature+Portfolio&rft.eissn=2057-3960&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41524-023-01086-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dcf89136d8194928a867d7d8d7b62a6c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |