3D double-reinforced graphene oxide - nanocellulose biomaterial inks for tissue engineered constructs

The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical stren...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 13; no. 34; pp. 2453 - 2463
Main Authors Cernencu, Alexandra I, Vlasceanu, George M, Serafim, Andrada, Pircalabioru, Gratiela, Ionita, Mariana
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.08.2023
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications. The advent of 3D printing technology has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing.
AbstractList The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications. The advent of 3D printing technology has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing.
The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of tissue models for testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
Author Pircalabioru, Gratiela
Cernencu, Alexandra I
Vlasceanu, George M
Serafim, Andrada
Ionita, Mariana
AuthorAffiliation University of Bucharest
Faculty of Medical Engineering
Academy of Romanian Scientists
University "Politehnica" of Bucharest
eBio-hub Research-Center
Research Institute of University of Bucharest
Advanced Polymer Materials Group
University Politehnica of Bucharest
AuthorAffiliation_xml – name: University of Bucharest
– name: Advanced Polymer Materials Group
– name: University "Politehnica" of Bucharest
– name: eBio-hub Research-Center
– name: Academy of Romanian Scientists
– name: University Politehnica of Bucharest
– name: Faculty of Medical Engineering
– name: Research Institute of University of Bucharest
Author_xml – sequence: 1
  givenname: Alexandra I
  surname: Cernencu
  fullname: Cernencu, Alexandra I
– sequence: 2
  givenname: George M
  surname: Vlasceanu
  fullname: Vlasceanu, George M
– sequence: 3
  givenname: Andrada
  surname: Serafim
  fullname: Serafim, Andrada
– sequence: 4
  givenname: Gratiela
  surname: Pircalabioru
  fullname: Pircalabioru, Gratiela
– sequence: 5
  givenname: Mariana
  surname: Ionita
  fullname: Ionita, Mariana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37577089$$D View this record in MEDLINE/PubMed
BookMark eNpdkstLxDAQh4Movi_elYAXEap5tEl7EnF9gSCInkOaTNdoN1mTVvS_t-vq-sglgfnyMcNvNtCyDx4Q2qHkiBJeHVseNWGyFHYJrTOSi4wRUS3_eq-h7ZSeyHBEQZmgq2iNy0JKUlbrCPgI29DXLWQRnG9CNGDxOOrpI3jA4c1ZwBn22gcDbdu3IQGuXZjoDqLTLXb-OeHhG-5cSj1g8GPnAeJgMcGnLvamS1topdFtgu2vexM9XJzfn11lN7eX12enN5nJWdVlkgEQTSgrqcyBNEQKSjkYbhuhjdVlw2hTVwJYCVXNGqC1KWWtc1PwQuaWb6KTuXfa1xOwBnwXdaum0U10fFdBO_W34t2jGodXRUlOc0LLwXDwZYjhpYfUqYlLs8m1h9AnxcqCSFoJIQd0_x_6FProh_k-qUIQxmfCwzllYkgpQrPohhI1S1CN-N3pZ4KjAd773f8C_c5rAHbnQExmUf1ZAf4BYWGj0Q
CitedBy_id crossref_primary_10_1016_j_carbon_2024_118970
crossref_primary_10_1039_D4RA01514B
crossref_primary_10_1089_ten_tea_2023_0239
Cites_doi 10.3389/fbioe.2020.00001
10.1016/j.compositesb.2019.01.010
10.1016/j.matdes.2018.09.040
10.1021/acsami.9b00154
10.3390/coatings10020189
10.1021/acsbiomaterials.1c00875
10.1016/j.compositesb.2020.108493
10.1016/j.compositesb.2020.108578
10.1016/j.compositesb.2016.01.012
10.3390/bioengineering7020040
10.1039/C9RA02695A
10.1016/j.carbpol.2013.10.085
10.1016/j.compositesb.2018.02.012
10.3390/ma14174891
10.1016/j.matdes.2020.108791
10.1016/j.compositesb.2020.108445
10.1088/1758-5090/ab063f
10.1021/bm101110x
10.1088/1758-5090/8/3/035003
10.1039/D2BM01507B
10.1016/j.compositesb.2022.109863
10.1039/C8MH00525G
10.1016/j.mattod.2013.09.004
10.1039/D2BM00709F
10.1016/j.cobme.2017.06.002
10.3390/ijms23126564
10.1016/j.ijbiomac.2021.06.162
10.1016/j.compositesb.2017.03.031
10.1016/j.bioactmat.2022.04.008
10.1016/j.ijbiomac.2012.07.002
10.1038/s41578-020-0204-2
10.1016/j.carbpol.2019.115144
10.1016/j.carbpol.2019.05.026
10.1016/j.compositesb.2013.11.018
10.1186/s42252-021-00020-6
10.1016/j.matdes.2020.109200
10.3390/molecules24030392
10.1039/D2BM00035K
10.1186/s40824-018-0153-7
10.1088/1757-899X/440/1/012042
10.1016/j.compositesb.2018.01.013
10.1039/D1BM01756J
10.1016/j.compositesb.2022.109895
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d3ra02786d
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database


MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 2463
ExternalDocumentID 10_1039_D3RA02786D
37577089
d3ra02786d
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: PCE 103/2022
– fundername: ;
  grantid: Project No. 154/25.11.2016, P_37_221/2015, SMIS co
GroupedDBID -JG
0-7
0R~
AAFWJ
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFPKN
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
53G
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AHGCF
AKBGW
APEMP
NPM
PGMZT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c429t-72ee0a0128174e0f076113ec3df6acda8f21fb96e28e9b2fe1bc87ba4c53574d3
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Sep 17 21:31:42 EDT 2024
Mon Sep 30 16:31:15 EDT 2024
Fri Sep 13 02:52:51 EDT 2024
Fri Aug 23 01:52:27 EDT 2024
Wed Oct 02 05:22:07 EDT 2024
Wed Aug 16 04:19:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-72ee0a0128174e0f076113ec3df6acda8f21fb96e28e9b2fe1bc87ba4c53574d3
Notes https://doi.org/10.1039/d3ra02786d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9563-7148
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414018/
PMID 37577089
PQID 2850560238
PQPubID 2047525
PageCount 11
ParticipantIDs crossref_primary_10_1039_D3RA02786D
rsc_primary_d3ra02786d
proquest_miscellaneous_2850719667
proquest_journals_2850560238
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10414018
pubmed_primary_37577089
PublicationCentury 2000
PublicationDate 2023-08-04
PublicationDateYYYYMMDD 2023-08-04
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2023
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Mehrali (D3RA02786D/cit31/1) 2019; 11
Pacheco (D3RA02786D/cit41/1) 2019; 24
Pereira (D3RA02786D/cit35/1) 2018; 5
Cao (D3RA02786D/cit28/1) 2020; 202
Huang (D3RA02786D/cit11/1) 2023; 11
Zhang (D3RA02786D/cit19/1) 2020; 193
Teixeira (D3RA02786D/cit24/1) 2022; 23
Mohan (D3RA02786D/cit10/1) 2018; 142
Ionita (D3RA02786D/cit17/1) 2014; 59
Ioniţă (D3RA02786D/cit9/1) 2017; 121
Dong (D3RA02786D/cit29/1) 2019; 9
Wang (D3RA02786D/cit20/1) 2020; 7
Silva (D3RA02786D/cit14/1) 2021; 2
Unnithan (D3RA02786D/cit18/1) 2016; 90
Li (D3RA02786D/cit7/1) 2021; 7
Zhou (D3RA02786D/cit40/1) 2019; 11
Munarin (D3RA02786D/cit25/1) 2012; 51
Lungu (D3RA02786D/cit36/1) 2021; 197
Pandele (D3RA02786D/cit45/1) 2014; 102
Sultan (D3RA02786D/cit22/1) 2017; 2
Luo (D3RA02786D/cit21/1) 2019; 224
Echave (D3RA02786D/cit23/1) 2017; 42
Lungu (D3RA02786D/cit12/1) 2021; 207
Zieliński (D3RA02786D/cit30/1) 2023; 19
Munarin (D3RA02786D/cit26/1) 2011; 12
Vlasceanu (D3RA02786D/cit38/1) 2020; 10
Mouser (D3RA02786D/cit42/1) 2016; 8
Fakhruddin (D3RA02786D/cit43/1) 2018; 440
Wu (D3RA02786D/cit44/1) 2018; 160
Koons (D3RA02786D/cit1/1) 2020; 5
Cernencu (D3RA02786D/cit37/1) 2019; 81
Ansari (D3RA02786D/cit2/1) 2022; 10
Vlăsceanu (D3RA02786D/cit16/1) 2019; 162
Ngo (D3RA02786D/cit5/1) 2018; 143
Li (D3RA02786D/cit8/1) 2022; 10
Ponnamma (D3RA02786D/cit13/1) 2021; 204
Sahebalzamani (D3RA02786D/cit3/1) 2022; 10
Cernencu (D3RA02786D/cit39/1) 2019; 220
Li (D3RA02786D/cit15/1) 2020; 8
Zhang (D3RA02786D/cit4/1) 2022; 238
Yang (D3RA02786D/cit6/1) 2013; 16
Choi (D3RA02786D/cit33/1) 2019; 23
Wang (D3RA02786D/cit32/1) 2021; 185
Cernencu (D3RA02786D/cit34/1) 2021; 14
Yang (D3RA02786D/cit27/1) 2022; 237
References_xml – volume: 8
  start-page: 1
  year: 2020
  ident: D3RA02786D/cit15/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00001
  contributor:
    fullname: Li
– volume: 162
  start-page: 712
  year: 2019
  ident: D3RA02786D/cit16/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2019.01.010
  contributor:
    fullname: Vlăsceanu
– volume: 160
  start-page: 486
  year: 2018
  ident: D3RA02786D/cit44/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.09.040
  contributor:
    fullname: Wu
– volume: 11
  start-page: 12283
  year: 2019
  ident: D3RA02786D/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00154
  contributor:
    fullname: Mehrali
– volume: 10
  start-page: 189
  year: 2020
  ident: D3RA02786D/cit38/1
  publication-title: Coatings
  doi: 10.3390/coatings10020189
  contributor:
    fullname: Vlasceanu
– volume: 7
  start-page: 5363
  issue: 12
  year: 2021
  ident: D3RA02786D/cit7/1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c00875
  contributor:
    fullname: Li
– volume: 204
  start-page: 108493
  year: 2021
  ident: D3RA02786D/cit13/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2020.108493
  contributor:
    fullname: Ponnamma
– volume: 207
  start-page: 108578
  year: 2021
  ident: D3RA02786D/cit12/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2020.108578
  contributor:
    fullname: Lungu
– volume: 90
  start-page: 503
  year: 2016
  ident: D3RA02786D/cit18/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2016.01.012
  contributor:
    fullname: Unnithan
– volume: 7
  start-page: 40
  year: 2020
  ident: D3RA02786D/cit20/1
  publication-title: Bioengineering
  doi: 10.3390/bioengineering7020040
  contributor:
    fullname: Wang
– volume: 9
  start-page: 17737
  year: 2019
  ident: D3RA02786D/cit29/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA02695A
  contributor:
    fullname: Dong
– volume: 81
  start-page: 175
  year: 2019
  ident: D3RA02786D/cit37/1
  publication-title: Sci. Bull.–Univ. Politeh. Bucharest, Ser. B
  contributor:
    fullname: Cernencu
– volume: 102
  start-page: 813
  year: 2014
  ident: D3RA02786D/cit45/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.10.085
  contributor:
    fullname: Pandele
– volume: 143
  start-page: 172
  year: 2018
  ident: D3RA02786D/cit5/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2018.02.012
  contributor:
    fullname: Ngo
– volume: 14
  start-page: 4891
  year: 2021
  ident: D3RA02786D/cit34/1
  publication-title: Materials
  doi: 10.3390/ma14174891
  contributor:
    fullname: Cernencu
– volume: 193
  start-page: 108791
  year: 2020
  ident: D3RA02786D/cit19/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108791
  contributor:
    fullname: Zhang
– volume: 202
  start-page: 108445
  year: 2020
  ident: D3RA02786D/cit28/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.108445
  contributor:
    fullname: Cao
– volume: 11
  start-page: 025011
  issue: 2
  year: 2019
  ident: D3RA02786D/cit40/1
  publication-title: Biofabricationm
  doi: 10.1088/1758-5090/ab063f
  contributor:
    fullname: Zhou
– volume: 12
  start-page: 568
  year: 2011
  ident: D3RA02786D/cit26/1
  publication-title: Biomacromolecules
  doi: 10.1021/bm101110x
  contributor:
    fullname: Munarin
– volume: 8
  start-page: 1
  year: 2016
  ident: D3RA02786D/cit42/1
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035003
  contributor:
    fullname: Mouser
– volume: 11
  start-page: 380
  year: 2023
  ident: D3RA02786D/cit11/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM01507B
  contributor:
    fullname: Huang
– volume: 237
  start-page: 109863
  year: 2022
  ident: D3RA02786D/cit27/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2022.109863
  contributor:
    fullname: Yang
– volume: 5
  start-page: 1100
  year: 2018
  ident: D3RA02786D/cit35/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00525G
  contributor:
    fullname: Pereira
– volume: 16
  start-page: 365
  issue: 10
  year: 2013
  ident: D3RA02786D/cit6/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.09.004
  contributor:
    fullname: Yang
– volume: 10
  start-page: 5430
  year: 2022
  ident: D3RA02786D/cit8/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00709F
  contributor:
    fullname: Li
– volume: 2
  start-page: 29
  year: 2017
  ident: D3RA02786D/cit22/1
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.06.002
  contributor:
    fullname: Sultan
– volume: 23
  start-page: 6564
  year: 2022
  ident: D3RA02786D/cit24/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23126564
  contributor:
    fullname: Teixeira
– volume: 185
  start-page: 441
  year: 2021
  ident: D3RA02786D/cit32/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.06.162
  contributor:
    fullname: Wang
– volume: 121
  start-page: 34
  year: 2017
  ident: D3RA02786D/cit9/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2017.03.031
  contributor:
    fullname: Ioniţă
– volume: 19
  start-page: 292
  year: 2023
  ident: D3RA02786D/cit30/1
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2022.04.008
  contributor:
    fullname: Zieliński
– volume: 51
  start-page: 681
  year: 2012
  ident: D3RA02786D/cit25/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2012.07.002
  contributor:
    fullname: Munarin
– volume: 5
  start-page: 584
  year: 2020
  ident: D3RA02786D/cit1/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0204-2
  contributor:
    fullname: Koons
– volume: 224
  start-page: 115144
  year: 2019
  ident: D3RA02786D/cit21/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.115144
  contributor:
    fullname: Luo
– volume: 220
  start-page: 12
  year: 2019
  ident: D3RA02786D/cit39/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.05.026
  contributor:
    fullname: Cernencu
– volume: 59
  start-page: 133
  year: 2014
  ident: D3RA02786D/cit17/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2013.11.018
  contributor:
    fullname: Ionita
– volume: 2
  start-page: 8
  year: 2021
  ident: D3RA02786D/cit14/1
  publication-title: Funct. Compos. Mater.
  doi: 10.1186/s42252-021-00020-6
  contributor:
    fullname: Silva
– volume: 197
  start-page: 109200
  year: 2021
  ident: D3RA02786D/cit36/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109200
  contributor:
    fullname: Lungu
– volume: 24
  start-page: 392
  issue: 3
  year: 2019
  ident: D3RA02786D/cit41/1
  publication-title: Molecules
  doi: 10.3390/molecules24030392
  contributor:
    fullname: Pacheco
– volume: 10
  start-page: 2789
  year: 2022
  ident: D3RA02786D/cit2/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00035K
  contributor:
    fullname: Ansari
– volume: 23
  start-page: 1
  year: 2019
  ident: D3RA02786D/cit33/1
  publication-title: Biomater. Res.
  doi: 10.1186/s40824-018-0153-7
  contributor:
    fullname: Choi
– volume: 440
  year: 2018
  ident: D3RA02786D/cit43/1
  publication-title: IOP Conf. Ser.:Mater. Sci. Eng.
  doi: 10.1088/1757-899X/440/1/012042
  contributor:
    fullname: Fakhruddin
– volume: 142
  start-page: 200
  year: 2018
  ident: D3RA02786D/cit10/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2018.01.013
  contributor:
    fullname: Mohan
– volume: 10
  start-page: 2734
  year: 2022
  ident: D3RA02786D/cit3/1
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM01756J
  contributor:
    fullname: Sahebalzamani
– volume: 42
  start-page: 108791
  year: 2017
  ident: D3RA02786D/cit23/1
  publication-title: J. Drug Deliv. Sci. Technol.
  contributor:
    fullname: Echave
– volume: 238
  start-page: 109895
  year: 2022
  ident: D3RA02786D/cit4/1
  publication-title: Composites, B Eng.
  doi: 10.1016/j.compositesb.2022.109895
  contributor:
    fullname: Zhang
SSID ssj0000651261
Score 2.4446099
Snippet The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the...
SourceID pubmedcentral
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2453
SubjectTerms 3-D printers
Accuracy
Addition polymerization
Biomedical materials
Bones
Chemistry
Gelatin
Graphene
Hydrogels
Inks
Modulus of elasticity
Natural polymers
Pectin
Scaffolds
Three dimensional printing
Tissue engineering
Title 3D double-reinforced graphene oxide - nanocellulose biomaterial inks for tissue engineered constructs
URI https://www.ncbi.nlm.nih.gov/pubmed/37577089
https://www.proquest.com/docview/2850560238/abstract/
https://www.proquest.com/docview/2850719667/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC10414018
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB415QCXilfBUKJFcHUTe9e79rFKqCqkIlQRFE7WPsYQKbWrPKQe-Q_9h_0lzK7tQNQb533Ympmdx87sNwAf6ZAZnVN0okWiY5EZ0oPG8Jh4rXkiNfnw_jXy5Rd5MROf59n8AGT_FiYU7VuzOK2X16f14leorby5tqO-Tmz09XJCIYSPC_LRAAaK839i9Fb_khGTSY9FyouR4yvtM2zS7VufBy7lw8rIwapvBBIMzvlTOOo8RXbW_tEzOMD6OTye9A3aXsBPPmWu2ZolxisMAKgWHQsI1KTAWHO7cMjuf9-xWteNv6DfLps1Mv_gXm-C4DGfvWW0kG0C_Rl26IS0j206bNn1S5idf_o2uYi7vgmxJeuyiVWKONYhR6YEjit_VZFwtNxVUlun8ypNKlNITHMsTFphYmyujBY245kSjh_DYd3U-BqYEuQuSTrjGaLgNi_I4iuhMXW64AmaCD709CxvWniMMqS1eVFO-dVZoPo0gpOe1GV3RNZlmnvny7sMEbzfDRMJPUF0jc22naNIR0gVwauWM7vPcJUpNc6LCPI9nu0meODs_RGSpwCg3ctPBMfE3t2Cv2Ly5v_3fAtPfEf6UCMoTuCQOIXvyG_ZmGGI94dBWIfw6Or7bP7jD8le9LA
link.rule.ids 230,315,733,786,790,870,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB615VAu_BcCBYzgmt1N7MTOsdqlWqBbIdSK3iLbmcCKbVLtZiXEiXfgDXkSxk6ysPQEZ_8k9jczHnvGnwFekZIZrWh3okWkQ5EYsoPG8JCw1jxKNfnw7jby7DSdnou3F8nFDqT9XRiftG_NfFAtLgfV_LPPrby6tMM-T2z4fjamLYTbF6jhLtwghY3lH7v01gLTMpZGPRspz4YFX2oXY0uL7fXnmlN5PTdyd9k_BeKXnOPb8LH_2TbT5Mtg3ZiB_fYXj-O_j-YO3Oq8UHbUlt-FHazuwf64f_ztPnziE1bUa7PAcImeXNViwTy7NRlHVn-dF8h-fv_BKl3V7vB_vahXyNxlft14oWYuMsyoIWs8tgw75kPqx9Ydb-3qAZwfvz4bT8PuTYbQ0srVhDJGHGkff5MCR6U7Bok4Wl6UqbaFVmUclSZLMVaYmbjEyFgljRY24YkUBT-Avaqu8BEwKcgVS8l-JIiCW5WRNyGFxrjQGY_QBPCyRyq_aqk3ch8y51k-4R-OPJ6TAA57EPNO_VZ5rJxj59yRAF5simkK3YToCut1W0eS_UllAA9bzDef4TKRcqSyANSWNGwqOFLu7RJC15Nz92gGcECCs2nwWwAf_3-fz2F_ejY7yU_enL57AjdjGqDPRRSHsEeo4VPyjxrzzCvDLwRtFBU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgGX8iwEChjBNZtN7MTJsdplVR6tKkSlShwiPyawYpus9iFVnPgP_EN-CWMnWVh66zm2E_ublzPjzwBvSMm0yml3okSsQpFqsoNa85CwVjzOFMXw7jTy8Ul2dCben6fnXVXlsiurrI2eDurZxaCefvO1lfMLE_V1YtHp8Yi2EG5fkEdzW0U7cJOUNin-2am3VphcWRb3jKS8iCxfKJdny-y2D7oSWF6tj9xZ9NeBeLczuQtf-g9uq02-D9YrPTA__uNyvN6M7sFeF42yw7bNfbiB9QO4PeovgXsIX_mY2WatZxgu0JOsGrTMs1yTkWTN5dQi-_3zF6tV3bgkwHrWLJG5Q_1q5YWbuQwxo45s5TFm2DEg0jim6fhrl4_gbPL28-go7O5mCA15sFUoE8Sh8nk4KXBYud8hMUfDbZUpY1VeJXGliwyTHAudVBhrk0uthEl5KoXl-7BbNzU-ASYFhWQZ2ZEUUXCTFxRVSKEwsargMeoAXvdolfOWgqP0qXNelGP-6dBjOg7goAey7NRwWSa5C_BcWBLAq81jWkK3IKrGZt22kWSHMhnA4xb3zWu4TKUc5kUA-ZZEbBo4cu7tJ4SwJ-nuEQ1gn4Rn0-GvED69_pgv4dbpeFJ-fHfy4RncSWh-viRRHMAugYbPKUxa6RdeH_4AjigWlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+double-reinforced+graphene+oxide+%E2%80%93+nanocellulose+biomaterial+inks+for+tissue+engineered+constructs&rft.jtitle=RSC+advances&rft.au=Cernencu%2C+Alexandra+I.&rft.au=Vlasceanu%2C+George+M.&rft.au=Serafim%2C+Andrada&rft.au=Pircalabioru%2C+Gratiela&rft.date=2023-08-04&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=13&rft.issue=34&rft.spage=24053&rft.epage=24063&rft_id=info:doi/10.1039%2FD3RA02786D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3RA02786D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon