The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin

(−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has...

Full description

Saved in:
Bibliographic Details
Published inArchives of biochemistry and biophysics Vol. 692; p. 108511
Main Authors Chang, Yun-Ching, Liu, Hung-Wen, Chan, Yin-Ching, Hu, Shu-Hui, Liu, Ming-Yi, Chang, Sue-Joan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling. [Display omitted] •EGCG attenuated age-associated muscle loss via upregulating miR-486-5p and modulating AKT/FoxO1/MuRF1 axis.
AbstractList (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.
(−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling. [Display omitted] •EGCG attenuated age-associated muscle loss via upregulating miR-486-5p and modulating AKT/FoxO1/MuRF1 axis.
ArticleNumber 108511
Author Chang, Yun-Ching
Hu, Shu-Hui
Chang, Sue-Joan
Liu, Ming-Yi
Chan, Yin-Ching
Liu, Hung-Wen
Author_xml – sequence: 1
  givenname: Yun-Ching
  surname: Chang
  fullname: Chang, Yun-Ching
  email: ychang@ms.szmc.edu.tw
  organization: Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
– sequence: 2
  givenname: Hung-Wen
  surname: Liu
  fullname: Liu, Hung-Wen
  email: hwliu@ntnu.edu.tw
  organization: Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
– sequence: 3
  givenname: Yin-Ching
  surname: Chan
  fullname: Chan, Yin-Ching
  email: ycchan@pu.edu.tw
  organization: Department of Food and Nutrition, Providence University, Taichung, Taiwan
– sequence: 4
  givenname: Shu-Hui
  surname: Hu
  fullname: Hu, Shu-Hui
  email: suhuhu@cc.kmu.edu.tw
  organization: Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
– sequence: 5
  givenname: Ming-Yi
  surname: Liu
  fullname: Liu, Ming-Yi
  email: liumiyi@gmail.com
  organization: Department of Long Term Care, Wu Feng University, Chiayi County, Taiwan
– sequence: 6
  givenname: Sue-Joan
  surname: Chang
  fullname: Chang, Sue-Joan
  email: sjchang@mail.ncku.edu.tw
  organization: Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
BookMark eNqFkc2KFDEUhYOMYM_oA7jL0k3a_FSSCq5k0FEYGJBxHVKpW91pqpMySQ_03gc3Zbuaxbi6OeR8F8491-gqpggIvWd0yyhTHw9bNwxbTvmqe8nYK7Rh1ChCRd9doQ2lVBDTK_YGXZdyoJSxTvEN-v24B7zLABFXcHhJ83nZQ0wzhiXs3Dwn7yr4fYhEkFU3hV2tEE_tVbDbAXGlJB-aHPHxVPwMeE6l4KfgcIbdqSEhRZwmfAw_SNcrIhfsYjOfU6ntM75Fryc3F3j3b96gn1-_PN5-I_cPd99vP98T33FTiWZu0k4NwzQyMRmtDO3VyDvZwSQd1Ub0ApSUk-yNGhQYITTTkjvg1BnpxQ36cNm75PTrBKXaYygeWqgI6VQsl5JTIbVS_7d2XHMjNF2t-mL1ucXOMFkf6t_MNbswW0btWpE92FaRXSuyl4oayZ6RSw5Hl88vMp8uDLRDPQXItvgA0cMYMvhqxxReoP8AycqrFw
CitedBy_id crossref_primary_10_1016_j_fbio_2023_102983
crossref_primary_10_3803_EnM_2020_405
crossref_primary_10_1016_j_mad_2024_112020
crossref_primary_10_3389_fmolb_2023_1308274
crossref_primary_10_1016_j_abb_2020_108678
crossref_primary_10_3390_nu13113895
crossref_primary_10_3389_fcimb_2024_1432111
crossref_primary_10_3389_fendo_2021_681267
crossref_primary_10_2174_0113895575331878240924035332
crossref_primary_10_2174_0115734021334958240903072642
crossref_primary_10_3390_ijms22041539
crossref_primary_10_1155_2024_7134404
crossref_primary_10_1016_j_ejphar_2023_175511
crossref_primary_10_3390_molecules26164887
crossref_primary_10_3390_cells13191620
crossref_primary_10_3390_antiox12051063
crossref_primary_10_3390_antiox11071224
crossref_primary_10_3389_fnut_2024_1445080
crossref_primary_10_3390_nu16213621
crossref_primary_10_1016_j_cbi_2023_110465
crossref_primary_10_2174_1874467216666230308142137
crossref_primary_10_3390_ijms252111549
crossref_primary_10_1007_s10068_024_01610_3
crossref_primary_10_3390_biomedicines10102557
crossref_primary_10_1007_s13105_024_01043_w
crossref_primary_10_3389_fnut_2022_1013449
crossref_primary_10_3390_nu16091302
crossref_primary_10_7759_cureus_76212
crossref_primary_10_3390_nu14061197
crossref_primary_10_1080_87559129_2022_2087669
crossref_primary_10_3390_ijms22115722
crossref_primary_10_1155_2022_6316611
crossref_primary_10_3390_genes15030359
crossref_primary_10_3390_ijms23063232
crossref_primary_10_51847_kHmOBKWWfH
crossref_primary_10_1016_j_exger_2025_112720
crossref_primary_10_1021_acs_jafc_3c02023
crossref_primary_10_1371_journal_pone_0280527
crossref_primary_10_7600_jspfsm_72_335
Cites_doi 10.1016/j.biocel.2013.12.003
10.1161/CIRCULATIONAHA.109.879429
10.1007/s00394-016-1375-x
10.1002/jcp.20757
10.1093/nar/gky1141
10.1093/ageing/afz091
10.1016/j.ydbio.2015.12.013
10.1152/ajpcell.00542.2005
10.1172/JCI73579
10.1083/jcb.200911036
10.1073/pnas.1000300107
10.1038/s41467-019-08481-x
10.3390/ijms19020405
10.1016/S0092-8674(04)00400-3
10.1128/MCB.01009-10
10.1242/jeb.205.15.2143
10.1038/srep19225
10.1093/ageing/afy169
10.3390/nu9111168
10.1038/387083a0
10.1016/0022-510X(88)90132-3
10.1007/s003359900843
10.32098/mltj.04.2013.17
10.1038/s41598-019-39873-0
10.1021/acs.jafc.5b02501
10.1002/jcsm.12384
10.1016/j.bbrc.2010.08.079
10.1016/j.cmet.2017.04.021
10.1089/rej.2007.0588
10.2741/4298
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.abb.2020.108511
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1096-0384
ExternalDocumentID 10_1016_j_abb_2020_108511
S0003986120305208
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABPPZ
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLW
IH2
IHE
J1W
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
~02
~G-
.55
.GJ
.HR
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
K-O
MVM
NEJ
OHT
R2-
RIG
SBG
SEW
SSH
UQL
VH1
WUQ
X7M
XOL
XPP
YYP
ZGI
ZMT
ZXP
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c429t-71af7a6bbfd13f9769086d2454ef5a079383e655f5896b6e93371752ae20a95c3
IEDL.DBID .~1
ISSN 0003-9861
1096-0384
IngestDate Fri Jul 11 03:40:42 EDT 2025
Fri Jul 11 03:45:57 EDT 2025
Tue Jul 01 03:48:16 EDT 2025
Thu Apr 24 22:55:58 EDT 2025
Fri Feb 23 02:43:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Myostatin
miRNA-486-5p
EGCG
Muscle loss
SAMP8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-71af7a6bbfd13f9769086d2454ef5a079383e655f5896b6e93371752ae20a95c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2427293706
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552035766
proquest_miscellaneous_2427293706
crossref_citationtrail_10_1016_j_abb_2020_108511
crossref_primary_10_1016_j_abb_2020_108511
elsevier_sciencedirect_doi_10_1016_j_abb_2020_108511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Archives of biochemistry and biophysics
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Chang, Chan, Hu, Liu, Chang (bib32) 2020
Yamada, Tsukamoto, Huang, Makio, Kumazoe, Yamashita, Tachibana (bib19) 2016; 6
Rasheed, Rasheed, Al-Shaya (bib18) 2018; 57
Kirby, Chaillou, McCarthy (bib14) 2015; 20
Yarasheski, Bhasin, Sinha-Hikim, Pak-Loduca, Gonzalez-Cadavid (bib31) 2002; 6
Tezze, Romanello, Desbats, Fadini, Albiero, Favaro, Ciciliot, Soriano, Morbidoni, Cerqua, Loefler, Kern, Franceschi, Salvioli, Conte, Blaauw, Zampieri, Salviati, Scorrano, Sandri (bib1) 2017; 25
Zhang, Chen (bib11) 2018; 19
Leger, Derave, De Bock, Hespel, Russell (bib30) 2008; 11
Dey, Gagan, Dutta (bib26) 2011; 31
Elia, Contu, Quintavalle, Varrone, Chimenti, Russo, Cimino, De Marinis, Frustaci, Catalucci, Condorelli (bib13) 2009; 120
Chen, Tao, Li, Deng, Yan, Xiao, Wang (bib12) 2010; 190
Small, O'Rourke, Moresi, Sutherland, McAnally, Gerard, Richardson, Olson (bib15) 2010; 107
Alexander, Casar, Motohashi, Vieira, Eisenberg, Marshall, Gasperini, Lek, Myers, Estrella, Kang, Shapiro, Rahimov, Kawahara, Widrick, Kunkel (bib16) 2014; 124
Ong, Woldhuis, Boudewijn, van den Berg, Kluiver, Kok, Terpstra, Guryev, de Vries, Vermeulen, Timens, van den Berge, Brandsma (bib23) 2019; 9
Hitachi, Nakatani, Tsuchida (bib33) 2014; 47
Keller, Engelhardt (bib6) 2013; 3
Kim, Won (bib7) 2019; 48
Allen, Unterman (bib29) 2007; 292
Rosenberg (bib4) 1989; 50
Horak, Novak, Bienertova-Vasku (bib25) 2016; 410
Hoppeler, Fluck (bib2) 2002; 205
Sandri, Sandri, Gilbert, Skurk, Calabria, Picard, Walsh, Schiaffino, Lecker, Goldberg (bib21) 2004; 117
Park, Yao, Xia, Setijono, Kim, Vila, Chiu, Wu, Billalabeitia, Lee, Kalb, Hung, Pandolfi, Song, Song (bib20) 2019; 10
Lexell, Taylor, Sjostrom (bib3) 1988; 84
Hamrick, Herberg, Arounleut, He, Shiver, Qi, Zhou, Isales, Mi (bib24) 2010; 400
Suzuki, Springer (bib10) 2018; 9
McPherron, Lawler, Lee (bib22) 1997; 387
McFarlane, Plummer, Thomas, Hennebry, Ashby, Ling, Smith, Sharma, Kambadur (bib28) 2006; 209
Szabo, Dallmann, Muller, Patthy, Soller, Varga (bib27) 1998; 9
Cruz-Jentoft, Bahat, Bauer, Boirie, Bruyere, Cederholm, Cooper, Landi, Rolland, Sayer, Schneider, Sieber, Topinkova, Vandewoude, Visser, Zamboni, Writing (bib5) 2019; 48
Santilli, Bernetti, Mangone, Paoloni (bib8) 2014; 11
Liu, Chan, Wang, Wei, Chang (bib17) 2015; 63
Kozomara, Birgaoanu, Griffiths-Jones (bib9) 2019; 47
Quintanilha, Reis, Duarte, Cozzolino, Rogero (bib34) 2017; 9
Allen (10.1016/j.abb.2020.108511_bib29) 2007; 292
Liu (10.1016/j.abb.2020.108511_bib32) 2020
Keller (10.1016/j.abb.2020.108511_bib6) 2013; 3
Chen (10.1016/j.abb.2020.108511_bib12) 2010; 190
Elia (10.1016/j.abb.2020.108511_bib13) 2009; 120
Yarasheski (10.1016/j.abb.2020.108511_bib31) 2002; 6
Hitachi (10.1016/j.abb.2020.108511_bib33) 2014; 47
Kirby (10.1016/j.abb.2020.108511_bib14) 2015; 20
Alexander (10.1016/j.abb.2020.108511_bib16) 2014; 124
Small (10.1016/j.abb.2020.108511_bib15) 2010; 107
Sandri (10.1016/j.abb.2020.108511_bib21) 2004; 117
Hamrick (10.1016/j.abb.2020.108511_bib24) 2010; 400
Suzuki (10.1016/j.abb.2020.108511_bib10) 2018; 9
Rasheed (10.1016/j.abb.2020.108511_bib18) 2018; 57
Szabo (10.1016/j.abb.2020.108511_bib27) 1998; 9
Lexell (10.1016/j.abb.2020.108511_bib3) 1988; 84
McFarlane (10.1016/j.abb.2020.108511_bib28) 2006; 209
Zhang (10.1016/j.abb.2020.108511_bib11) 2018; 19
Rosenberg (10.1016/j.abb.2020.108511_bib4) 1989; 50
Cruz-Jentoft (10.1016/j.abb.2020.108511_bib5) 2019; 48
Hoppeler (10.1016/j.abb.2020.108511_bib2) 2002; 205
Kim (10.1016/j.abb.2020.108511_bib7) 2019; 48
Leger (10.1016/j.abb.2020.108511_bib30) 2008; 11
Horak (10.1016/j.abb.2020.108511_bib25) 2016; 410
Dey (10.1016/j.abb.2020.108511_bib26) 2011; 31
Park (10.1016/j.abb.2020.108511_bib20) 2019; 10
Quintanilha (10.1016/j.abb.2020.108511_bib34) 2017; 9
Liu (10.1016/j.abb.2020.108511_bib17) 2015; 63
Kozomara (10.1016/j.abb.2020.108511_bib9) 2019; 47
Ong (10.1016/j.abb.2020.108511_bib23) 2019; 9
Santilli (10.1016/j.abb.2020.108511_bib8) 2014; 11
Yamada (10.1016/j.abb.2020.108511_bib19) 2016; 6
McPherron (10.1016/j.abb.2020.108511_bib22) 1997; 387
Tezze (10.1016/j.abb.2020.108511_bib1) 2017; 25
References_xml – volume: 9
  year: 2017
  ident: bib34
  article-title: Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases
  publication-title: Nutrients
– volume: 25
  start-page: 1374
  year: 2017
  end-page: 1389 e6
  ident: bib1
  article-title: Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence
  publication-title: Cell Metabol.
– volume: 84
  start-page: 275
  year: 1988
  end-page: 294
  ident: bib3
  article-title: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men
  publication-title: J. Neurol. Sci.
– volume: 10
  start-page: 636
  year: 2019
  ident: bib20
  article-title: PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression
  publication-title: Nat. Commun.
– volume: 209
  start-page: 501
  year: 2006
  end-page: 514
  ident: bib28
  article-title: Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism
  publication-title: J. Cell. Physiol.
– volume: 6
  start-page: 343
  year: 2002
  end-page: 348
  ident: bib31
  article-title: Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting
  publication-title: J. Nutr. Health Aging
– year: 2020
  ident: bib32
  article-title: Dysregulations of Mitochondrial Quality Control and Autophagic Flux at an Early Age Lead to Progression of Sarcopenia in SAMP8 Mice, Biogerontology
– volume: 47
  start-page: 93
  year: 2014
  end-page: 103
  ident: bib33
  article-title: Myostatin signaling regulates Akt activity via the regulation of miR-486 expression
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 20
  start-page: 37
  year: 2015
  end-page: 77
  ident: bib14
  article-title: The role of microRNAs in skeletal muscle health and disease
  publication-title: Front. Biosci.
– volume: 11
  start-page: 163
  year: 2008
  end-page: 175B
  ident: bib30
  article-title: Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation
  publication-title: Rejuvenation Res.
– volume: 31
  start-page: 203
  year: 2011
  end-page: 214
  ident: bib26
  article-title: miR-206 and -486 induce myoblast differentiation by downregulating Pax7
  publication-title: Mol. Cell Biol.
– volume: 9
  start-page: 1209
  year: 2018
  end-page: 1212
  ident: bib10
  article-title: MicroRNAs in muscle wasting
  publication-title: J. Cachexia, Sarcopenia Muscle
– volume: 48
  start-page: 910
  year: 2019
  end-page: 916
  ident: bib7
  article-title: Prevalence of sarcopenia in community-dwelling older adults using the definition of the European working group on sarcopenia in older People 2: findings from the Korean frailty and aging cohort study
  publication-title: Age Ageing
– volume: 120
  start-page: 2377
  year: 2009
  end-page: 2385
  ident: bib13
  article-title: Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
  publication-title: Circulation
– volume: 9
  start-page: 671
  year: 1998
  end-page: 672
  ident: bib27
  article-title: A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice
  publication-title: Mamm. Genome
– volume: 124
  start-page: 2651
  year: 2014
  end-page: 2667
  ident: bib16
  article-title: MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms
  publication-title: J. Clin. Invest.
– volume: 205
  start-page: 2143
  year: 2002
  end-page: 2152
  ident: bib2
  article-title: Normal mammalian skeletal muscle and its phenotypic plasticity
  publication-title: J. Exp. Biol.
– volume: 47
  start-page: D155
  year: 2019
  end-page: D162
  ident: bib9
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
– volume: 107
  start-page: 4218
  year: 2010
  end-page: 4223
  ident: bib15
  article-title: Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 48
  start-page: 16
  year: 2019
  end-page: 31
  ident: bib5
  article-title: Group for the European working group on sarcopenia in older, E. The extended group for, sarcopenia: revised European consensus on definition and diagnosis
  publication-title: Age Ageing
– volume: 292
  start-page: C188
  year: 2007
  end-page: C199
  ident: bib29
  article-title: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 50
  start-page: 1121
  year: 1989
  end-page: 1235
  ident: bib4
  article-title: Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19-21, 1988
  publication-title: Am. J. Clin. Nutr.
– volume: 117
  start-page: 399
  year: 2004
  end-page: 412
  ident: bib21
  article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
  publication-title: Cell
– volume: 190
  start-page: 867
  year: 2010
  end-page: 879
  ident: bib12
  article-title: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
  publication-title: J. Cell Biol.
– volume: 57
  start-page: 917
  year: 2018
  end-page: 928
  ident: bib18
  article-title: Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5
  publication-title: Eur. J. Nutr.
– volume: 19
  year: 2018
  ident: bib11
  article-title: Regulatory role of MicroRNAs in muscle atrophy during exercise intervention
  publication-title: Int. J. Mol. Sci.
– volume: 11
  start-page: 177
  year: 2014
  end-page: 180
  ident: bib8
  article-title: Clinical definition of sarcopenia
  publication-title: Clin. Cases Miner. Bone Metabol.: Off. J. Ital. Soc. Osteoporos., Miner. Metabol. Skeletal Dis.
– volume: 9
  start-page: 3765
  year: 2019
  ident: bib23
  article-title: Age-related gene and miRNA expression changes in airways of healthy individuals
  publication-title: Sci. Rep.
– volume: 63
  start-page: 8407
  year: 2015
  end-page: 8417
  ident: bib17
  article-title: Dietary (-)-Epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse
  publication-title: J. Agric. Food Chem.
– volume: 3
  start-page: 346
  year: 2013
  end-page: 350
  ident: bib6
  article-title: Strength and muscle mass loss with aging process
  publication-title: Age Strength Loss, Muscles, Ligaments Tendons J.
– volume: 400
  start-page: 379
  year: 2010
  end-page: 383
  ident: bib24
  article-title: The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 387
  start-page: 83
  year: 1997
  end-page: 90
  ident: bib22
  article-title: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member
  publication-title: Nature
– volume: 6
  start-page: 19225
  year: 2016
  ident: bib19
  article-title: Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells
  publication-title: Sci. Rep.
– volume: 410
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib25
  article-title: Muscle-specific microRNAs in skeletal muscle development
  publication-title: Dev. Biol.
– volume: 47
  start-page: 93
  year: 2014
  ident: 10.1016/j.abb.2020.108511_bib33
  article-title: Myostatin signaling regulates Akt activity via the regulation of miR-486 expression
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2013.12.003
– year: 2020
  ident: 10.1016/j.abb.2020.108511_bib32
– volume: 120
  start-page: 2377
  issue: 23
  year: 2009
  ident: 10.1016/j.abb.2020.108511_bib13
  article-title: Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.879429
– volume: 57
  start-page: 917
  issue: 3
  year: 2018
  ident: 10.1016/j.abb.2020.108511_bib18
  article-title: Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-016-1375-x
– volume: 209
  start-page: 501
  issue: 2
  year: 2006
  ident: 10.1016/j.abb.2020.108511_bib28
  article-title: Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20757
– volume: 47
  start-page: D155
  issue: D1
  year: 2019
  ident: 10.1016/j.abb.2020.108511_bib9
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1141
– volume: 48
  start-page: 910
  issue: 6
  year: 2019
  ident: 10.1016/j.abb.2020.108511_bib7
  article-title: Prevalence of sarcopenia in community-dwelling older adults using the definition of the European working group on sarcopenia in older People 2: findings from the Korean frailty and aging cohort study
  publication-title: Age Ageing
  doi: 10.1093/ageing/afz091
– volume: 410
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.abb.2020.108511_bib25
  article-title: Muscle-specific microRNAs in skeletal muscle development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2015.12.013
– volume: 292
  start-page: C188
  issue: 1
  year: 2007
  ident: 10.1016/j.abb.2020.108511_bib29
  article-title: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00542.2005
– volume: 124
  start-page: 2651
  issue: 6
  year: 2014
  ident: 10.1016/j.abb.2020.108511_bib16
  article-title: MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73579
– volume: 190
  start-page: 867
  issue: 5
  year: 2010
  ident: 10.1016/j.abb.2020.108511_bib12
  article-title: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911036
– volume: 107
  start-page: 4218
  issue: 9
  year: 2010
  ident: 10.1016/j.abb.2020.108511_bib15
  article-title: Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1000300107
– volume: 10
  start-page: 636
  issue: 1
  year: 2019
  ident: 10.1016/j.abb.2020.108511_bib20
  article-title: PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08481-x
– volume: 50
  start-page: 1121
  issue: 5 Suppl
  year: 1989
  ident: 10.1016/j.abb.2020.108511_bib4
  article-title: Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19-21, 1988
  publication-title: Am. J. Clin. Nutr.
– volume: 19
  issue: 2
  year: 2018
  ident: 10.1016/j.abb.2020.108511_bib11
  article-title: Regulatory role of MicroRNAs in muscle atrophy during exercise intervention
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19020405
– volume: 117
  start-page: 399
  issue: 3
  year: 2004
  ident: 10.1016/j.abb.2020.108511_bib21
  article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00400-3
– volume: 31
  start-page: 203
  issue: 1
  year: 2011
  ident: 10.1016/j.abb.2020.108511_bib26
  article-title: miR-206 and -486 induce myoblast differentiation by downregulating Pax7
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01009-10
– volume: 205
  start-page: 2143
  issue: Pt 15
  year: 2002
  ident: 10.1016/j.abb.2020.108511_bib2
  article-title: Normal mammalian skeletal muscle and its phenotypic plasticity
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.15.2143
– volume: 6
  start-page: 19225
  year: 2016
  ident: 10.1016/j.abb.2020.108511_bib19
  article-title: Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep19225
– volume: 48
  start-page: 16
  issue: 1
  year: 2019
  ident: 10.1016/j.abb.2020.108511_bib5
  article-title: Group for the European working group on sarcopenia in older, E. The extended group for, sarcopenia: revised European consensus on definition and diagnosis
  publication-title: Age Ageing
  doi: 10.1093/ageing/afy169
– volume: 9
  issue: 11
  year: 2017
  ident: 10.1016/j.abb.2020.108511_bib34
  article-title: Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases
  publication-title: Nutrients
  doi: 10.3390/nu9111168
– volume: 387
  start-page: 83
  issue: 6628
  year: 1997
  ident: 10.1016/j.abb.2020.108511_bib22
  article-title: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member
  publication-title: Nature
  doi: 10.1038/387083a0
– volume: 84
  start-page: 275
  issue: 2–3
  year: 1988
  ident: 10.1016/j.abb.2020.108511_bib3
  article-title: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(88)90132-3
– volume: 9
  start-page: 671
  issue: 8
  year: 1998
  ident: 10.1016/j.abb.2020.108511_bib27
  article-title: A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice
  publication-title: Mamm. Genome
  doi: 10.1007/s003359900843
– volume: 3
  start-page: 346
  issue: 4
  year: 2013
  ident: 10.1016/j.abb.2020.108511_bib6
  article-title: Strength and muscle mass loss with aging process
  publication-title: Age Strength Loss, Muscles, Ligaments Tendons J.
  doi: 10.32098/mltj.04.2013.17
– volume: 9
  start-page: 3765
  issue: 1
  year: 2019
  ident: 10.1016/j.abb.2020.108511_bib23
  article-title: Age-related gene and miRNA expression changes in airways of healthy individuals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39873-0
– volume: 63
  start-page: 8407
  issue: 38
  year: 2015
  ident: 10.1016/j.abb.2020.108511_bib17
  article-title: Dietary (-)-Epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b02501
– volume: 9
  start-page: 1209
  issue: 7
  year: 2018
  ident: 10.1016/j.abb.2020.108511_bib10
  article-title: MicroRNAs in muscle wasting
  publication-title: J. Cachexia, Sarcopenia Muscle
  doi: 10.1002/jcsm.12384
– volume: 11
  start-page: 177
  issue: 3
  year: 2014
  ident: 10.1016/j.abb.2020.108511_bib8
  article-title: Clinical definition of sarcopenia
  publication-title: Clin. Cases Miner. Bone Metabol.: Off. J. Ital. Soc. Osteoporos., Miner. Metabol. Skeletal Dis.
– volume: 400
  start-page: 379
  issue: 3
  year: 2010
  ident: 10.1016/j.abb.2020.108511_bib24
  article-title: The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.08.079
– volume: 25
  start-page: 1374
  issue: 6
  year: 2017
  ident: 10.1016/j.abb.2020.108511_bib1
  article-title: Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2017.04.021
– volume: 6
  start-page: 343
  issue: 5
  year: 2002
  ident: 10.1016/j.abb.2020.108511_bib31
  article-title: Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting
  publication-title: J. Nutr. Health Aging
– volume: 11
  start-page: 163
  issue: 1
  year: 2008
  ident: 10.1016/j.abb.2020.108511_bib30
  article-title: Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2007.0588
– volume: 20
  start-page: 37
  year: 2015
  ident: 10.1016/j.abb.2020.108511_bib14
  article-title: The role of microRNAs in skeletal muscle health and disease
  publication-title: Front. Biosci.
  doi: 10.2741/4298
SSID ssj0011462
Score 2.506393
Snippet (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance,...
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108511
SubjectTerms biophysics
catechin
diet
EGCG
epigallocatechin gallate
green tea
inflammation
insulin resistance
lipogenesis
microRNA
miRNA-486-5p
Muscle loss
muscles
Myostatin
oxidative stress
phosphorylation
polyphenols
SAMP8
skeletal muscle
Title The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin
URI https://dx.doi.org/10.1016/j.abb.2020.108511
https://www.proquest.com/docview/2427293706
https://www.proquest.com/docview/2552035766
Volume 692
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB9KRfQi2irWj_IE8SCMTTKZSea4LpZVsQex0Nswk0wkZTcJ7a6wl576h_veJFNQcA_eMmFCkvm9vI_M773H2FslXVrrzPEyTRqeW9FwV3iJR0WF9tXpsqId3W9nanGef7mQF3tsHnNhiFY56f5RpwdtPZ05mVbzZGhbyvFNhC7RQpPMZiHhN88LkvIPN3c0D0q6zWLXPJoddzYDx8s6hyFiFph2Mk3_ZZv-0tLB9Jw-Zo8mnxFm42M9YXu-O2CHsw7j5dUW3kFgcYbf4wfs_sd49GAee7kdsluUBvhJFBtAUGHol1vidvVL8EMb9t6JGEW0Si44jXEEVHmz25AvCqh0uJ2A9DWsNtf4ILDEl4BfrYWrsaE9Qgx9A6v2O89LxeUAtsPJ256yltruKTs__fRjvuBT_wVeoZVa8yK1TWGVc02digb9Fo3xT53lMveNtFRZrxReSdnIUiunvBYCg0OZWZ8lVstKPGP7Xd_55wyo-KisSpd5SwVpnFVWKy8q_OhtnZb6iCVx5U01FSenHhlLE1lolwbBMgSWGcE6Yu_vLhnGyhy7JucRTvOHeBm0HLsuexOhN4gY7aXYzveba4OeDYYlokjUjjkSxVJgQKde_N_tX7KHNCJTmcpXbH99tfGv0Qdau-Mg5Mfs3uzz18XZbyloBHw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXBC2I8jQScEAyTezYcQ4cSqHa0scBtVJvxk6cKmg3ibq7oL1w4h_xB5nJ2pVAYg9IvdmJnTie8TzizzOEvFTSpVXBHdNpUrPMipq53Eso5SXoV1foEnd0j0_U6Cz7dC7P18iveBYGYZVB9i9l-iCtw5WdMJs7fdPgGd9EFBo0NPIsT3RAVh76xXfw26bvDj4AkV9xvv_xdG_EQmoBVoIAnrE8tXVulXN1lYoaVHIBpn3FM5n5WloMGqeFV1LWUhfKKQ9uP_g9klvPE1vIUsBzb5CbGYgLTJvw9scVrgRP-fKYpg-HF7dSB1CZdQ58Uj5A-2Sa_ksZ_qUWBl23f5fcCUYq3V3Owz2y5ttNsrXbgoM-WdDXdICNDv_jN8mt97G0sReTx22Rn8B-9AIxPRS4iPbdeIFgsm5Mfd8Mm_2IxEIcJxMM61CjGOqznaPxS0HKMRs4x1d0Mp_CQOgYPoJ-ayy99Bch7RjtajppPrNMKyZ7altovOjwmFTT3idn10KVB2S97Vr_kFCMdipL7bi3GAHHWWUL5UUJUsZWqS62SRJn3pQhGjom5RibCHv7aoBYBolllsTaJm-uuvTLUCCrGmeRnOYPfjagqlZ1exFJb4BiuHljW9_NpwZMKfCDRJ6oFW0krAMBHqR69H-vf042RqfHR-bo4OTwMbmNd1BPp_IJWZ9dzv1TMMBm7tnA8JR8ue4V9huaIj6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+green+tea+polyphenol+epigallocatechin-3-gallate+attenuates+age-associated+muscle+loss+via+regulation+of+miR-486-5p+and+myostatin&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Chang%2C+Yun-Ching&rft.au=Liu%2C+Hung-Wen&rft.au=Chan%2C+Yin-Ching&rft.au=Hu%2C+Shu-Hui&rft.date=2020-10-15&rft.issn=0003-9861&rft.volume=692&rft.spage=108511&rft_id=info:doi/10.1016%2Fj.abb.2020.108511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_abb_2020_108511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon