The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin
(−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has...
Saved in:
Published in | Archives of biochemistry and biophysics Vol. 692; p. 108511 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.
[Display omitted]
•EGCG attenuated age-associated muscle loss via upregulating miR-486-5p and modulating AKT/FoxO1/MuRF1 axis. |
---|---|
AbstractList | (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling. (-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling. (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling. [Display omitted] •EGCG attenuated age-associated muscle loss via upregulating miR-486-5p and modulating AKT/FoxO1/MuRF1 axis. |
ArticleNumber | 108511 |
Author | Chang, Yun-Ching Hu, Shu-Hui Chang, Sue-Joan Liu, Ming-Yi Chan, Yin-Ching Liu, Hung-Wen |
Author_xml | – sequence: 1 givenname: Yun-Ching surname: Chang fullname: Chang, Yun-Ching email: ychang@ms.szmc.edu.tw organization: Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan – sequence: 2 givenname: Hung-Wen surname: Liu fullname: Liu, Hung-Wen email: hwliu@ntnu.edu.tw organization: Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan – sequence: 3 givenname: Yin-Ching surname: Chan fullname: Chan, Yin-Ching email: ycchan@pu.edu.tw organization: Department of Food and Nutrition, Providence University, Taichung, Taiwan – sequence: 4 givenname: Shu-Hui surname: Hu fullname: Hu, Shu-Hui email: suhuhu@cc.kmu.edu.tw organization: Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan – sequence: 5 givenname: Ming-Yi surname: Liu fullname: Liu, Ming-Yi email: liumiyi@gmail.com organization: Department of Long Term Care, Wu Feng University, Chiayi County, Taiwan – sequence: 6 givenname: Sue-Joan surname: Chang fullname: Chang, Sue-Joan email: sjchang@mail.ncku.edu.tw organization: Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan |
BookMark | eNqFkc2KFDEUhYOMYM_oA7jL0k3a_FSSCq5k0FEYGJBxHVKpW91pqpMySQ_03gc3Zbuaxbi6OeR8F8491-gqpggIvWd0yyhTHw9bNwxbTvmqe8nYK7Rh1ChCRd9doQ2lVBDTK_YGXZdyoJSxTvEN-v24B7zLABFXcHhJ83nZQ0wzhiXs3Dwn7yr4fYhEkFU3hV2tEE_tVbDbAXGlJB-aHPHxVPwMeE6l4KfgcIbdqSEhRZwmfAw_SNcrIhfsYjOfU6ntM75Fryc3F3j3b96gn1-_PN5-I_cPd99vP98T33FTiWZu0k4NwzQyMRmtDO3VyDvZwSQd1Ub0ApSUk-yNGhQYITTTkjvg1BnpxQ36cNm75PTrBKXaYygeWqgI6VQsl5JTIbVS_7d2XHMjNF2t-mL1ucXOMFkf6t_MNbswW0btWpE92FaRXSuyl4oayZ6RSw5Hl88vMp8uDLRDPQXItvgA0cMYMvhqxxReoP8AycqrFw |
CitedBy_id | crossref_primary_10_1016_j_fbio_2023_102983 crossref_primary_10_3803_EnM_2020_405 crossref_primary_10_1016_j_mad_2024_112020 crossref_primary_10_3389_fmolb_2023_1308274 crossref_primary_10_1016_j_abb_2020_108678 crossref_primary_10_3390_nu13113895 crossref_primary_10_3389_fcimb_2024_1432111 crossref_primary_10_3389_fendo_2021_681267 crossref_primary_10_2174_0113895575331878240924035332 crossref_primary_10_2174_0115734021334958240903072642 crossref_primary_10_3390_ijms22041539 crossref_primary_10_1155_2024_7134404 crossref_primary_10_1016_j_ejphar_2023_175511 crossref_primary_10_3390_molecules26164887 crossref_primary_10_3390_cells13191620 crossref_primary_10_3390_antiox12051063 crossref_primary_10_3390_antiox11071224 crossref_primary_10_3389_fnut_2024_1445080 crossref_primary_10_3390_nu16213621 crossref_primary_10_1016_j_cbi_2023_110465 crossref_primary_10_2174_1874467216666230308142137 crossref_primary_10_3390_ijms252111549 crossref_primary_10_1007_s10068_024_01610_3 crossref_primary_10_3390_biomedicines10102557 crossref_primary_10_1007_s13105_024_01043_w crossref_primary_10_3389_fnut_2022_1013449 crossref_primary_10_3390_nu16091302 crossref_primary_10_7759_cureus_76212 crossref_primary_10_3390_nu14061197 crossref_primary_10_1080_87559129_2022_2087669 crossref_primary_10_3390_ijms22115722 crossref_primary_10_1155_2022_6316611 crossref_primary_10_3390_genes15030359 crossref_primary_10_3390_ijms23063232 crossref_primary_10_51847_kHmOBKWWfH crossref_primary_10_1016_j_exger_2025_112720 crossref_primary_10_1021_acs_jafc_3c02023 crossref_primary_10_1371_journal_pone_0280527 crossref_primary_10_7600_jspfsm_72_335 |
Cites_doi | 10.1016/j.biocel.2013.12.003 10.1161/CIRCULATIONAHA.109.879429 10.1007/s00394-016-1375-x 10.1002/jcp.20757 10.1093/nar/gky1141 10.1093/ageing/afz091 10.1016/j.ydbio.2015.12.013 10.1152/ajpcell.00542.2005 10.1172/JCI73579 10.1083/jcb.200911036 10.1073/pnas.1000300107 10.1038/s41467-019-08481-x 10.3390/ijms19020405 10.1016/S0092-8674(04)00400-3 10.1128/MCB.01009-10 10.1242/jeb.205.15.2143 10.1038/srep19225 10.1093/ageing/afy169 10.3390/nu9111168 10.1038/387083a0 10.1016/0022-510X(88)90132-3 10.1007/s003359900843 10.32098/mltj.04.2013.17 10.1038/s41598-019-39873-0 10.1021/acs.jafc.5b02501 10.1002/jcsm.12384 10.1016/j.bbrc.2010.08.079 10.1016/j.cmet.2017.04.021 10.1089/rej.2007.0588 10.2741/4298 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.abb.2020.108511 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1096-0384 |
ExternalDocumentID | 10_1016_j_abb_2020_108511 S0003986120305208 |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLW IH2 IHE J1W KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 ~02 ~G- .55 .GJ .HR 3O- 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ K-O MVM NEJ OHT R2- RIG SBG SEW SSH UQL VH1 WUQ X7M XOL XPP YYP ZGI ZMT ZXP ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c429t-71af7a6bbfd13f9769086d2454ef5a079383e655f5896b6e93371752ae20a95c3 |
IEDL.DBID | .~1 |
ISSN | 0003-9861 1096-0384 |
IngestDate | Fri Jul 11 03:40:42 EDT 2025 Fri Jul 11 03:45:57 EDT 2025 Tue Jul 01 03:48:16 EDT 2025 Thu Apr 24 22:55:58 EDT 2025 Fri Feb 23 02:43:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Myostatin miRNA-486-5p EGCG Muscle loss SAMP8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-71af7a6bbfd13f9769086d2454ef5a079383e655f5896b6e93371752ae20a95c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2427293706 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2552035766 proquest_miscellaneous_2427293706 crossref_citationtrail_10_1016_j_abb_2020_108511 crossref_primary_10_1016_j_abb_2020_108511 elsevier_sciencedirect_doi_10_1016_j_abb_2020_108511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Archives of biochemistry and biophysics |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Chang, Chan, Hu, Liu, Chang (bib32) 2020 Yamada, Tsukamoto, Huang, Makio, Kumazoe, Yamashita, Tachibana (bib19) 2016; 6 Rasheed, Rasheed, Al-Shaya (bib18) 2018; 57 Kirby, Chaillou, McCarthy (bib14) 2015; 20 Yarasheski, Bhasin, Sinha-Hikim, Pak-Loduca, Gonzalez-Cadavid (bib31) 2002; 6 Tezze, Romanello, Desbats, Fadini, Albiero, Favaro, Ciciliot, Soriano, Morbidoni, Cerqua, Loefler, Kern, Franceschi, Salvioli, Conte, Blaauw, Zampieri, Salviati, Scorrano, Sandri (bib1) 2017; 25 Zhang, Chen (bib11) 2018; 19 Leger, Derave, De Bock, Hespel, Russell (bib30) 2008; 11 Dey, Gagan, Dutta (bib26) 2011; 31 Elia, Contu, Quintavalle, Varrone, Chimenti, Russo, Cimino, De Marinis, Frustaci, Catalucci, Condorelli (bib13) 2009; 120 Chen, Tao, Li, Deng, Yan, Xiao, Wang (bib12) 2010; 190 Small, O'Rourke, Moresi, Sutherland, McAnally, Gerard, Richardson, Olson (bib15) 2010; 107 Alexander, Casar, Motohashi, Vieira, Eisenberg, Marshall, Gasperini, Lek, Myers, Estrella, Kang, Shapiro, Rahimov, Kawahara, Widrick, Kunkel (bib16) 2014; 124 Ong, Woldhuis, Boudewijn, van den Berg, Kluiver, Kok, Terpstra, Guryev, de Vries, Vermeulen, Timens, van den Berge, Brandsma (bib23) 2019; 9 Hitachi, Nakatani, Tsuchida (bib33) 2014; 47 Keller, Engelhardt (bib6) 2013; 3 Kim, Won (bib7) 2019; 48 Allen, Unterman (bib29) 2007; 292 Rosenberg (bib4) 1989; 50 Horak, Novak, Bienertova-Vasku (bib25) 2016; 410 Hoppeler, Fluck (bib2) 2002; 205 Sandri, Sandri, Gilbert, Skurk, Calabria, Picard, Walsh, Schiaffino, Lecker, Goldberg (bib21) 2004; 117 Park, Yao, Xia, Setijono, Kim, Vila, Chiu, Wu, Billalabeitia, Lee, Kalb, Hung, Pandolfi, Song, Song (bib20) 2019; 10 Lexell, Taylor, Sjostrom (bib3) 1988; 84 Hamrick, Herberg, Arounleut, He, Shiver, Qi, Zhou, Isales, Mi (bib24) 2010; 400 Suzuki, Springer (bib10) 2018; 9 McPherron, Lawler, Lee (bib22) 1997; 387 McFarlane, Plummer, Thomas, Hennebry, Ashby, Ling, Smith, Sharma, Kambadur (bib28) 2006; 209 Szabo, Dallmann, Muller, Patthy, Soller, Varga (bib27) 1998; 9 Cruz-Jentoft, Bahat, Bauer, Boirie, Bruyere, Cederholm, Cooper, Landi, Rolland, Sayer, Schneider, Sieber, Topinkova, Vandewoude, Visser, Zamboni, Writing (bib5) 2019; 48 Santilli, Bernetti, Mangone, Paoloni (bib8) 2014; 11 Liu, Chan, Wang, Wei, Chang (bib17) 2015; 63 Kozomara, Birgaoanu, Griffiths-Jones (bib9) 2019; 47 Quintanilha, Reis, Duarte, Cozzolino, Rogero (bib34) 2017; 9 Allen (10.1016/j.abb.2020.108511_bib29) 2007; 292 Liu (10.1016/j.abb.2020.108511_bib32) 2020 Keller (10.1016/j.abb.2020.108511_bib6) 2013; 3 Chen (10.1016/j.abb.2020.108511_bib12) 2010; 190 Elia (10.1016/j.abb.2020.108511_bib13) 2009; 120 Yarasheski (10.1016/j.abb.2020.108511_bib31) 2002; 6 Hitachi (10.1016/j.abb.2020.108511_bib33) 2014; 47 Kirby (10.1016/j.abb.2020.108511_bib14) 2015; 20 Alexander (10.1016/j.abb.2020.108511_bib16) 2014; 124 Small (10.1016/j.abb.2020.108511_bib15) 2010; 107 Sandri (10.1016/j.abb.2020.108511_bib21) 2004; 117 Hamrick (10.1016/j.abb.2020.108511_bib24) 2010; 400 Suzuki (10.1016/j.abb.2020.108511_bib10) 2018; 9 Rasheed (10.1016/j.abb.2020.108511_bib18) 2018; 57 Szabo (10.1016/j.abb.2020.108511_bib27) 1998; 9 Lexell (10.1016/j.abb.2020.108511_bib3) 1988; 84 McFarlane (10.1016/j.abb.2020.108511_bib28) 2006; 209 Zhang (10.1016/j.abb.2020.108511_bib11) 2018; 19 Rosenberg (10.1016/j.abb.2020.108511_bib4) 1989; 50 Cruz-Jentoft (10.1016/j.abb.2020.108511_bib5) 2019; 48 Hoppeler (10.1016/j.abb.2020.108511_bib2) 2002; 205 Kim (10.1016/j.abb.2020.108511_bib7) 2019; 48 Leger (10.1016/j.abb.2020.108511_bib30) 2008; 11 Horak (10.1016/j.abb.2020.108511_bib25) 2016; 410 Dey (10.1016/j.abb.2020.108511_bib26) 2011; 31 Park (10.1016/j.abb.2020.108511_bib20) 2019; 10 Quintanilha (10.1016/j.abb.2020.108511_bib34) 2017; 9 Liu (10.1016/j.abb.2020.108511_bib17) 2015; 63 Kozomara (10.1016/j.abb.2020.108511_bib9) 2019; 47 Ong (10.1016/j.abb.2020.108511_bib23) 2019; 9 Santilli (10.1016/j.abb.2020.108511_bib8) 2014; 11 Yamada (10.1016/j.abb.2020.108511_bib19) 2016; 6 McPherron (10.1016/j.abb.2020.108511_bib22) 1997; 387 Tezze (10.1016/j.abb.2020.108511_bib1) 2017; 25 |
References_xml | – volume: 9 year: 2017 ident: bib34 article-title: Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases publication-title: Nutrients – volume: 25 start-page: 1374 year: 2017 end-page: 1389 e6 ident: bib1 article-title: Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence publication-title: Cell Metabol. – volume: 84 start-page: 275 year: 1988 end-page: 294 ident: bib3 article-title: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men publication-title: J. Neurol. Sci. – volume: 10 start-page: 636 year: 2019 ident: bib20 article-title: PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression publication-title: Nat. Commun. – volume: 209 start-page: 501 year: 2006 end-page: 514 ident: bib28 article-title: Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism publication-title: J. Cell. Physiol. – volume: 6 start-page: 343 year: 2002 end-page: 348 ident: bib31 article-title: Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting publication-title: J. Nutr. Health Aging – year: 2020 ident: bib32 article-title: Dysregulations of Mitochondrial Quality Control and Autophagic Flux at an Early Age Lead to Progression of Sarcopenia in SAMP8 Mice, Biogerontology – volume: 47 start-page: 93 year: 2014 end-page: 103 ident: bib33 article-title: Myostatin signaling regulates Akt activity via the regulation of miR-486 expression publication-title: Int. J. Biochem. Cell Biol. – volume: 20 start-page: 37 year: 2015 end-page: 77 ident: bib14 article-title: The role of microRNAs in skeletal muscle health and disease publication-title: Front. Biosci. – volume: 11 start-page: 163 year: 2008 end-page: 175B ident: bib30 article-title: Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation publication-title: Rejuvenation Res. – volume: 31 start-page: 203 year: 2011 end-page: 214 ident: bib26 article-title: miR-206 and -486 induce myoblast differentiation by downregulating Pax7 publication-title: Mol. Cell Biol. – volume: 9 start-page: 1209 year: 2018 end-page: 1212 ident: bib10 article-title: MicroRNAs in muscle wasting publication-title: J. Cachexia, Sarcopenia Muscle – volume: 48 start-page: 910 year: 2019 end-page: 916 ident: bib7 article-title: Prevalence of sarcopenia in community-dwelling older adults using the definition of the European working group on sarcopenia in older People 2: findings from the Korean frailty and aging cohort study publication-title: Age Ageing – volume: 120 start-page: 2377 year: 2009 end-page: 2385 ident: bib13 article-title: Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions publication-title: Circulation – volume: 9 start-page: 671 year: 1998 end-page: 672 ident: bib27 article-title: A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice publication-title: Mamm. Genome – volume: 124 start-page: 2651 year: 2014 end-page: 2667 ident: bib16 article-title: MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms publication-title: J. Clin. Invest. – volume: 205 start-page: 2143 year: 2002 end-page: 2152 ident: bib2 article-title: Normal mammalian skeletal muscle and its phenotypic plasticity publication-title: J. Exp. Biol. – volume: 47 start-page: D155 year: 2019 end-page: D162 ident: bib9 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res. – volume: 107 start-page: 4218 year: 2010 end-page: 4223 ident: bib15 article-title: Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 48 start-page: 16 year: 2019 end-page: 31 ident: bib5 article-title: Group for the European working group on sarcopenia in older, E. The extended group for, sarcopenia: revised European consensus on definition and diagnosis publication-title: Age Ageing – volume: 292 start-page: C188 year: 2007 end-page: C199 ident: bib29 article-title: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors publication-title: Am. J. Physiol. Cell Physiol. – volume: 50 start-page: 1121 year: 1989 end-page: 1235 ident: bib4 article-title: Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19-21, 1988 publication-title: Am. J. Clin. Nutr. – volume: 117 start-page: 399 year: 2004 end-page: 412 ident: bib21 article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy publication-title: Cell – volume: 190 start-page: 867 year: 2010 end-page: 879 ident: bib12 article-title: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7 publication-title: J. Cell Biol. – volume: 57 start-page: 917 year: 2018 end-page: 928 ident: bib18 article-title: Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5 publication-title: Eur. J. Nutr. – volume: 19 year: 2018 ident: bib11 article-title: Regulatory role of MicroRNAs in muscle atrophy during exercise intervention publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 177 year: 2014 end-page: 180 ident: bib8 article-title: Clinical definition of sarcopenia publication-title: Clin. Cases Miner. Bone Metabol.: Off. J. Ital. Soc. Osteoporos., Miner. Metabol. Skeletal Dis. – volume: 9 start-page: 3765 year: 2019 ident: bib23 article-title: Age-related gene and miRNA expression changes in airways of healthy individuals publication-title: Sci. Rep. – volume: 63 start-page: 8407 year: 2015 end-page: 8417 ident: bib17 article-title: Dietary (-)-Epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse publication-title: J. Agric. Food Chem. – volume: 3 start-page: 346 year: 2013 end-page: 350 ident: bib6 article-title: Strength and muscle mass loss with aging process publication-title: Age Strength Loss, Muscles, Ligaments Tendons J. – volume: 400 start-page: 379 year: 2010 end-page: 383 ident: bib24 article-title: The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice publication-title: Biochem. Biophys. Res. Commun. – volume: 387 start-page: 83 year: 1997 end-page: 90 ident: bib22 article-title: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member publication-title: Nature – volume: 6 start-page: 19225 year: 2016 ident: bib19 article-title: Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells publication-title: Sci. Rep. – volume: 410 start-page: 1 year: 2016 end-page: 13 ident: bib25 article-title: Muscle-specific microRNAs in skeletal muscle development publication-title: Dev. Biol. – volume: 47 start-page: 93 year: 2014 ident: 10.1016/j.abb.2020.108511_bib33 article-title: Myostatin signaling regulates Akt activity via the regulation of miR-486 expression publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.12.003 – year: 2020 ident: 10.1016/j.abb.2020.108511_bib32 – volume: 120 start-page: 2377 issue: 23 year: 2009 ident: 10.1016/j.abb.2020.108511_bib13 article-title: Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.879429 – volume: 57 start-page: 917 issue: 3 year: 2018 ident: 10.1016/j.abb.2020.108511_bib18 article-title: Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5 publication-title: Eur. J. Nutr. doi: 10.1007/s00394-016-1375-x – volume: 209 start-page: 501 issue: 2 year: 2006 ident: 10.1016/j.abb.2020.108511_bib28 article-title: Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20757 – volume: 47 start-page: D155 issue: D1 year: 2019 ident: 10.1016/j.abb.2020.108511_bib9 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1141 – volume: 48 start-page: 910 issue: 6 year: 2019 ident: 10.1016/j.abb.2020.108511_bib7 article-title: Prevalence of sarcopenia in community-dwelling older adults using the definition of the European working group on sarcopenia in older People 2: findings from the Korean frailty and aging cohort study publication-title: Age Ageing doi: 10.1093/ageing/afz091 – volume: 410 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.abb.2020.108511_bib25 article-title: Muscle-specific microRNAs in skeletal muscle development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2015.12.013 – volume: 292 start-page: C188 issue: 1 year: 2007 ident: 10.1016/j.abb.2020.108511_bib29 article-title: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00542.2005 – volume: 124 start-page: 2651 issue: 6 year: 2014 ident: 10.1016/j.abb.2020.108511_bib16 article-title: MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms publication-title: J. Clin. Invest. doi: 10.1172/JCI73579 – volume: 190 start-page: 867 issue: 5 year: 2010 ident: 10.1016/j.abb.2020.108511_bib12 article-title: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7 publication-title: J. Cell Biol. doi: 10.1083/jcb.200911036 – volume: 107 start-page: 4218 issue: 9 year: 2010 ident: 10.1016/j.abb.2020.108511_bib15 article-title: Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1000300107 – volume: 10 start-page: 636 issue: 1 year: 2019 ident: 10.1016/j.abb.2020.108511_bib20 article-title: PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression publication-title: Nat. Commun. doi: 10.1038/s41467-019-08481-x – volume: 50 start-page: 1121 issue: 5 Suppl year: 1989 ident: 10.1016/j.abb.2020.108511_bib4 article-title: Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19-21, 1988 publication-title: Am. J. Clin. Nutr. – volume: 19 issue: 2 year: 2018 ident: 10.1016/j.abb.2020.108511_bib11 article-title: Regulatory role of MicroRNAs in muscle atrophy during exercise intervention publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19020405 – volume: 117 start-page: 399 issue: 3 year: 2004 ident: 10.1016/j.abb.2020.108511_bib21 article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy publication-title: Cell doi: 10.1016/S0092-8674(04)00400-3 – volume: 31 start-page: 203 issue: 1 year: 2011 ident: 10.1016/j.abb.2020.108511_bib26 article-title: miR-206 and -486 induce myoblast differentiation by downregulating Pax7 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01009-10 – volume: 205 start-page: 2143 issue: Pt 15 year: 2002 ident: 10.1016/j.abb.2020.108511_bib2 article-title: Normal mammalian skeletal muscle and its phenotypic plasticity publication-title: J. Exp. Biol. doi: 10.1242/jeb.205.15.2143 – volume: 6 start-page: 19225 year: 2016 ident: 10.1016/j.abb.2020.108511_bib19 article-title: Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells publication-title: Sci. Rep. doi: 10.1038/srep19225 – volume: 48 start-page: 16 issue: 1 year: 2019 ident: 10.1016/j.abb.2020.108511_bib5 article-title: Group for the European working group on sarcopenia in older, E. The extended group for, sarcopenia: revised European consensus on definition and diagnosis publication-title: Age Ageing doi: 10.1093/ageing/afy169 – volume: 9 issue: 11 year: 2017 ident: 10.1016/j.abb.2020.108511_bib34 article-title: Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases publication-title: Nutrients doi: 10.3390/nu9111168 – volume: 387 start-page: 83 issue: 6628 year: 1997 ident: 10.1016/j.abb.2020.108511_bib22 article-title: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member publication-title: Nature doi: 10.1038/387083a0 – volume: 84 start-page: 275 issue: 2–3 year: 1988 ident: 10.1016/j.abb.2020.108511_bib3 article-title: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(88)90132-3 – volume: 9 start-page: 671 issue: 8 year: 1998 ident: 10.1016/j.abb.2020.108511_bib27 article-title: A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice publication-title: Mamm. Genome doi: 10.1007/s003359900843 – volume: 3 start-page: 346 issue: 4 year: 2013 ident: 10.1016/j.abb.2020.108511_bib6 article-title: Strength and muscle mass loss with aging process publication-title: Age Strength Loss, Muscles, Ligaments Tendons J. doi: 10.32098/mltj.04.2013.17 – volume: 9 start-page: 3765 issue: 1 year: 2019 ident: 10.1016/j.abb.2020.108511_bib23 article-title: Age-related gene and miRNA expression changes in airways of healthy individuals publication-title: Sci. Rep. doi: 10.1038/s41598-019-39873-0 – volume: 63 start-page: 8407 issue: 38 year: 2015 ident: 10.1016/j.abb.2020.108511_bib17 article-title: Dietary (-)-Epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b02501 – volume: 9 start-page: 1209 issue: 7 year: 2018 ident: 10.1016/j.abb.2020.108511_bib10 article-title: MicroRNAs in muscle wasting publication-title: J. Cachexia, Sarcopenia Muscle doi: 10.1002/jcsm.12384 – volume: 11 start-page: 177 issue: 3 year: 2014 ident: 10.1016/j.abb.2020.108511_bib8 article-title: Clinical definition of sarcopenia publication-title: Clin. Cases Miner. Bone Metabol.: Off. J. Ital. Soc. Osteoporos., Miner. Metabol. Skeletal Dis. – volume: 400 start-page: 379 issue: 3 year: 2010 ident: 10.1016/j.abb.2020.108511_bib24 article-title: The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.08.079 – volume: 25 start-page: 1374 issue: 6 year: 2017 ident: 10.1016/j.abb.2020.108511_bib1 article-title: Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence publication-title: Cell Metabol. doi: 10.1016/j.cmet.2017.04.021 – volume: 6 start-page: 343 issue: 5 year: 2002 ident: 10.1016/j.abb.2020.108511_bib31 article-title: Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting publication-title: J. Nutr. Health Aging – volume: 11 start-page: 163 issue: 1 year: 2008 ident: 10.1016/j.abb.2020.108511_bib30 article-title: Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation publication-title: Rejuvenation Res. doi: 10.1089/rej.2007.0588 – volume: 20 start-page: 37 year: 2015 ident: 10.1016/j.abb.2020.108511_bib14 article-title: The role of microRNAs in skeletal muscle health and disease publication-title: Front. Biosci. doi: 10.2741/4298 |
SSID | ssj0011462 |
Score | 2.506393 |
Snippet | (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance,... (-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108511 |
SubjectTerms | biophysics catechin diet EGCG epigallocatechin gallate green tea inflammation insulin resistance lipogenesis microRNA miRNA-486-5p Muscle loss muscles Myostatin oxidative stress phosphorylation polyphenols SAMP8 skeletal muscle |
Title | The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin |
URI | https://dx.doi.org/10.1016/j.abb.2020.108511 https://www.proquest.com/docview/2427293706 https://www.proquest.com/docview/2552035766 |
Volume | 692 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB9KRfQi2irWj_IE8SCMTTKZSea4LpZVsQex0Nswk0wkZTcJ7a6wl576h_veJFNQcA_eMmFCkvm9vI_M773H2FslXVrrzPEyTRqeW9FwV3iJR0WF9tXpsqId3W9nanGef7mQF3tsHnNhiFY56f5RpwdtPZ05mVbzZGhbyvFNhC7RQpPMZiHhN88LkvIPN3c0D0q6zWLXPJoddzYDx8s6hyFiFph2Mk3_ZZv-0tLB9Jw-Zo8mnxFm42M9YXu-O2CHsw7j5dUW3kFgcYbf4wfs_sd49GAee7kdsluUBvhJFBtAUGHol1vidvVL8EMb9t6JGEW0Si44jXEEVHmz25AvCqh0uJ2A9DWsNtf4ILDEl4BfrYWrsaE9Qgx9A6v2O89LxeUAtsPJ256yltruKTs__fRjvuBT_wVeoZVa8yK1TWGVc02digb9Fo3xT53lMveNtFRZrxReSdnIUiunvBYCg0OZWZ8lVstKPGP7Xd_55wyo-KisSpd5SwVpnFVWKy8q_OhtnZb6iCVx5U01FSenHhlLE1lolwbBMgSWGcE6Yu_vLhnGyhy7JucRTvOHeBm0HLsuexOhN4gY7aXYzveba4OeDYYlokjUjjkSxVJgQKde_N_tX7KHNCJTmcpXbH99tfGv0Qdau-Mg5Mfs3uzz18XZbyloBHw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXBC2I8jQScEAyTezYcQ4cSqHa0scBtVJvxk6cKmg3ibq7oL1w4h_xB5nJ2pVAYg9IvdmJnTie8TzizzOEvFTSpVXBHdNpUrPMipq53Eso5SXoV1foEnd0j0_U6Cz7dC7P18iveBYGYZVB9i9l-iCtw5WdMJs7fdPgGd9EFBo0NPIsT3RAVh76xXfw26bvDj4AkV9xvv_xdG_EQmoBVoIAnrE8tXVulXN1lYoaVHIBpn3FM5n5WloMGqeFV1LWUhfKKQ9uP_g9klvPE1vIUsBzb5CbGYgLTJvw9scVrgRP-fKYpg-HF7dSB1CZdQ58Uj5A-2Sa_ksZ_qUWBl23f5fcCUYq3V3Owz2y5ttNsrXbgoM-WdDXdICNDv_jN8mt97G0sReTx22Rn8B-9AIxPRS4iPbdeIFgsm5Mfd8Mm_2IxEIcJxMM61CjGOqznaPxS0HKMRs4x1d0Mp_CQOgYPoJ-ayy99Bch7RjtajppPrNMKyZ7altovOjwmFTT3idn10KVB2S97Vr_kFCMdipL7bi3GAHHWWUL5UUJUsZWqS62SRJn3pQhGjom5RibCHv7aoBYBolllsTaJm-uuvTLUCCrGmeRnOYPfjagqlZ1exFJb4BiuHljW9_NpwZMKfCDRJ6oFW0krAMBHqR69H-vf042RqfHR-bo4OTwMbmNd1BPp_IJWZ9dzv1TMMBm7tnA8JR8ue4V9huaIj6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+green+tea+polyphenol+epigallocatechin-3-gallate+attenuates+age-associated+muscle+loss+via+regulation+of+miR-486-5p+and+myostatin&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Chang%2C+Yun-Ching&rft.au=Liu%2C+Hung-Wen&rft.au=Chan%2C+Yin-Ching&rft.au=Hu%2C+Shu-Hui&rft.date=2020-10-15&rft.issn=0003-9861&rft.volume=692&rft.spage=108511&rft_id=info:doi/10.1016%2Fj.abb.2020.108511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_abb_2020_108511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon |