Maize root growth angles become steeper under low N conditions
Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of ro...
Saved in:
Published in | Field crops research Vol. 140; pp. 18 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of root growth angles to nitrogen fertilization. We focus on genetic variation for growth angles of crown and brace roots among 108 inbred lines of maize in high and low nitrogen field environments in the USA and South Africa. Root angles of crown roots were significantly associated with rooting depth calculated as the depth containing 95% of the root mass (D95). The number of brace roots as well as rooting depth (D95) increased between 43 days after planting (DAP) and flowering, but did not show any major changes between flowering and physiological maturity. Brace root branching increased between 43 DAP and flowering and showed reductions between flowering and physiological maturity. Under well-fertilized conditions genotypes initially selected as ‘steep’ and ‘shallow’ did not alter their root angles. Brace and crown root angles became up to 18° steeper under nitrogen deficient conditions. Increases in root angles under nitrogen deficient conditions were more accentuated for shallow genotypes, resulting in root angles and rooting depths similar to the ones measured for steep genotypes. Steeper root angles enabled plastic genotypes to potentially explore similar soil volumes under nitrogen deficient conditions as steep genotypes, thereby not incurring any reductions in grain yield compared to genotypes constitutively forming steep root angles. Additive main and multiplicative interaction effects (AMMI) analysis revealed that out of 29 genotypes best adapted to 4 different nitrogen fertilizer treatment-by-location combinations, 11 were steep, 11 were plastic and 7 were shallow genotypes. The number of plastic genotypes among the adapted entries was disproportionately high compared to 6 that could be anticipated based on the distribution in the entire genotypic set. We postulate that modulation of rooting depth by root growth angles is important for nitrogen acquisition by positioning roots in soil domains with the greatest nitrogen availability. Genotypic variation in root growth angles and the plasticity of root growth angles in response to nitrogen may be useful in breeding crops with improved nitrogen acquisition. |
---|---|
AbstractList | Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of root growth angles to nitrogen fertilization. We focus on genetic variation for growth angles of crown and brace roots among 108 inbred lines of maize in high and low nitrogen field environments in the USA and South Africa. Root angles of crown roots were significantly associated with rooting depth calculated as the depth containing 95% of the root mass (D95). The number of brace roots as well as rooting depth (D95) increased between 43 days after planting (DAP) and flowering, but did not show any major changes between flowering and physiological maturity. Brace root branching increased between 43 DAP and flowering and showed reductions between flowering and physiological maturity. Under well-fertilized conditions genotypes initially selected as asteepa and ashallowa did not alter their root angles. Brace and crown root angles became up to 18 degree steeper under nitrogen deficient conditions. Increases in root angles under nitrogen deficient conditions were more accentuated for shallow genotypes, resulting in root angles and rooting depths similar to the ones measured for steep genotypes. Steeper root angles enabled plastic genotypes to potentially explore similar soil volumes under nitrogen deficient conditions as steep genotypes, thereby not incurring any reductions in grain yield compared to genotypes constitutively forming steep root angles. Additive main and multiplicative interaction effects (AMMI) analysis revealed that out of 29 genotypes best adapted to 4 different nitrogen fertilizer treatment-by-location combinations, 11 were steep, 11 were plastic and 7 were shallow genotypes. The number of plastic genotypes among the adapted entries was disproportionately high compared to 6 that could be anticipated based on the distribution in the entire genotypic set. We postulate that modulation of rooting depth by root growth angles is important for nitrogen acquisition by positioning roots in soil domains with the greatest nitrogen availability. Genotypic variation in root growth angles and the plasticity of root growth angles in response to nitrogen may be useful in breeding crops with improved nitrogen acquisition. Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of root growth angles to nitrogen fertilization. We focus on genetic variation for growth angles of crown and brace roots among 108 inbred lines of maize in high and low nitrogen field environments in the USA and South Africa. Root angles of crown roots were significantly associated with rooting depth calculated as the depth containing 95% of the root mass (D95). The number of brace roots as well as rooting depth (D95) increased between 43 days after planting (DAP) and flowering, but did not show any major changes between flowering and physiological maturity. Brace root branching increased between 43 DAP and flowering and showed reductions between flowering and physiological maturity. Under well-fertilized conditions genotypes initially selected as ‘steep’ and ‘shallow’ did not alter their root angles. Brace and crown root angles became up to 18° steeper under nitrogen deficient conditions. Increases in root angles under nitrogen deficient conditions were more accentuated for shallow genotypes, resulting in root angles and rooting depths similar to the ones measured for steep genotypes. Steeper root angles enabled plastic genotypes to potentially explore similar soil volumes under nitrogen deficient conditions as steep genotypes, thereby not incurring any reductions in grain yield compared to genotypes constitutively forming steep root angles. Additive main and multiplicative interaction effects (AMMI) analysis revealed that out of 29 genotypes best adapted to 4 different nitrogen fertilizer treatment-by-location combinations, 11 were steep, 11 were plastic and 7 were shallow genotypes. The number of plastic genotypes among the adapted entries was disproportionately high compared to 6 that could be anticipated based on the distribution in the entire genotypic set. We postulate that modulation of rooting depth by root growth angles is important for nitrogen acquisition by positioning roots in soil domains with the greatest nitrogen availability. Genotypic variation in root growth angles and the plasticity of root growth angles in response to nitrogen may be useful in breeding crops with improved nitrogen acquisition. |
Author | Trachsel, S. Kaeppler, S.M. Brown, K.M. Lynch, J.P. |
Author_xml | – sequence: 1 givenname: S. surname: Trachsel fullname: Trachsel, S. organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: S.M. surname: Kaeppler fullname: Kaeppler, S.M. organization: Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA – sequence: 3 givenname: K.M. surname: Brown fullname: Brown, K.M. organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 4 givenname: J.P. surname: Lynch fullname: Lynch, J.P. email: jpl4@psu.edu organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA |
BookMark | eNqFkD1PwzAQhi1UJNrCD2DLyJJwjlPbFRISqviSCiwwW45zKa7SuNguFfx6XJWJoSx3y_vcxzMig971SMg5hYIC5ZfLojW-KIGWBUwLoHBEhlSKMudyUg7IEJiQeVVO4YSMQlgCAOeUD8n1k7bfmHnnYrbwbhvfM90vOgxZjcatMAsRcY0-2_RNqp3bZs-ZcX1jo3V9OCXHre4Cnv32MXm7u32dPeTzl_vH2c08N2lnzDkKBoZRViNtRD0RE8o01mBka6DSjTCaS9ZyAQ1jupKNFLxkdSlalu6Gmo3JxX7u2ruPDYaoVjYY7Drdo9sERScAQlZlJf-PsqRESkFFiop91HgXgsdWGRv17rHote0UBbWTq5YqyVU7uQqmKslNJP1Drr1daf91kLnaM5hEfVr0KhiLvcHGejRRNc4eoH8AhxKSzA |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2023_129578 crossref_primary_10_1016_j_jaridenv_2019_104046 crossref_primary_10_1007_s11104_015_2462_0 crossref_primary_10_31545_intagr_143121 crossref_primary_10_1016_j_heliyon_2025_e42340 crossref_primary_10_1007_s11104_015_2413_9 crossref_primary_10_1016_j_dib_2020_105561 crossref_primary_10_1111_1442_1984_12410 crossref_primary_10_1016_j_agwat_2021_107392 crossref_primary_10_1093_jxb_erab406 crossref_primary_10_1093_jxb_ery252 crossref_primary_10_1016_j_agwat_2023_108487 crossref_primary_10_1093_jpe_rty015 crossref_primary_10_1007_s12298_021_01113_z crossref_primary_10_1007_s11104_015_2533_2 crossref_primary_10_1007_s44372_024_00006_1 crossref_primary_10_1007_s00425_024_04424_z crossref_primary_10_1111_tpj_15560 crossref_primary_10_1111_nph_17572 crossref_primary_10_1007_s11104_014_2307_2 crossref_primary_10_34133_2020_3252703 crossref_primary_10_3390_agronomy14092018 crossref_primary_10_1016_j_gene_2024_148163 crossref_primary_10_1093_pcp_pcy141 crossref_primary_10_1002_jsfa_11892 crossref_primary_10_1016_j_fcr_2020_107872 crossref_primary_10_3389_fpls_2017_01709 crossref_primary_10_1007_s11104_013_1997_1 crossref_primary_10_1111_tpj_15774 crossref_primary_10_1016_j_fcr_2016_04_008 crossref_primary_10_1093_insilicoplants_diz012 crossref_primary_10_1080_15427528_2016_1258603 crossref_primary_10_1270_jsbbs_65_111 crossref_primary_10_1007_s40415_024_00991_3 crossref_primary_10_1007_s11269_015_0973_3 crossref_primary_10_1093_jxb_erae009 crossref_primary_10_1093_jxb_eraa324 crossref_primary_10_1371_journal_pone_0217571 crossref_primary_10_1525_elementa_287 crossref_primary_10_1016_j_fcr_2014_05_009 crossref_primary_10_1007_s11104_022_05331_6 crossref_primary_10_3198_jpr2014_09_0063crmp crossref_primary_10_1093_jxb_ery048 crossref_primary_10_1094_PBIOMES_12_18_0062_R crossref_primary_10_1101_cshperspect_a040014 crossref_primary_10_3389_fpls_2017_00436 crossref_primary_10_1111_ppl_14207 crossref_primary_10_1016_j_agwat_2024_108722 crossref_primary_10_3390_agronomy10101606 crossref_primary_10_1016_j_fcr_2023_108878 crossref_primary_10_1002_csc2_20237 crossref_primary_10_1007_s13205_021_02727_6 crossref_primary_10_1016_j_cj_2019_12_006 crossref_primary_10_1007_s11104_024_06903_4 crossref_primary_10_3390_plants10040764 crossref_primary_10_1093_aob_mcw112 crossref_primary_10_1186_s13007_018_0316_5 crossref_primary_10_1016_j_jia_2023_04_022 crossref_primary_10_1038_srep42664 crossref_primary_10_1016_j_scienta_2017_01_019 crossref_primary_10_2134_agronj2018_08_0508 crossref_primary_10_1007_s11540_024_09718_z crossref_primary_10_1002_pei3_10057 crossref_primary_10_1016_j_agwat_2023_108570 crossref_primary_10_1093_aob_mcy092 crossref_primary_10_3390_ijms24065290 crossref_primary_10_1038_s41477_022_01274_z crossref_primary_10_1038_srep37649 crossref_primary_10_3389_fpls_2024_1358163 crossref_primary_10_1016_S2095_3119_21_63700_0 crossref_primary_10_1016_j_scienta_2018_11_082 crossref_primary_10_1111_pce_15268 crossref_primary_10_1016_j_eja_2024_127298 crossref_primary_10_1111_jac_12525 crossref_primary_10_1002_jsfa_11461 crossref_primary_10_1016_j_fcr_2025_109786 crossref_primary_10_1007_s11104_014_2249_8 crossref_primary_10_1111_pce_14290 crossref_primary_10_1007_s13593_017_0457_3 crossref_primary_10_1007_s11104_024_07139_y crossref_primary_10_1007_s10681_019_2472_8 crossref_primary_10_1093_plphys_kiae495 crossref_primary_10_1042_BCJ20220245 crossref_primary_10_1038_s41598_021_88588_8 crossref_primary_10_3390_genes13020181 crossref_primary_10_1080_15226514_2018_1523869 crossref_primary_10_1093_aob_mcab074 crossref_primary_10_1016_j_fcr_2025_109774 crossref_primary_10_1002_csc2_20241 crossref_primary_10_1021_acs_jafc_9b02491 crossref_primary_10_1111_nph_15738 crossref_primary_10_1007_s11104_023_06301_2 crossref_primary_10_1038_s41598_018_20361_w crossref_primary_10_1093_jxb_eraa033 crossref_primary_10_34133_2021_6953197 crossref_primary_10_1007_s11104_017_3533_1 crossref_primary_10_1016_j_fcr_2019_107562 crossref_primary_10_1270_jsbbs_22010 crossref_primary_10_1111_sum_70026 crossref_primary_10_5010_JPB_2016_43_4_444 crossref_primary_10_3389_fpls_2021_769748 crossref_primary_10_12688_f1000research_140649_1 crossref_primary_10_4141_cjps_2014_026 crossref_primary_10_1111_ppl_13313 crossref_primary_10_1104_pp_16_00705 crossref_primary_10_2135_cropsci2016_02_0116 crossref_primary_10_7717_peerj_10291 crossref_primary_10_1094_PBIOMES_3_2 crossref_primary_10_1007_s11356_022_20432_6 crossref_primary_10_1016_j_fcr_2021_108142 crossref_primary_10_1007_s10681_015_1625_7 crossref_primary_10_1111_eea_12748 crossref_primary_10_1071_FP15162 crossref_primary_10_1007_s11104_023_06322_x crossref_primary_10_1002_aps3_1238 crossref_primary_10_1016_j_fcr_2013_12_008 crossref_primary_10_1016_j_agwat_2018_09_010 crossref_primary_10_1007_s11104_015_2379_7 crossref_primary_10_1016_j_cj_2020_09_011 crossref_primary_10_1111_pce_14135 crossref_primary_10_3389_fpls_2018_00229 crossref_primary_10_1007_s00425_014_2150_y crossref_primary_10_1111_pce_15462 crossref_primary_10_1146_annurev_arplant_042916_041124 crossref_primary_10_3389_fpls_2020_00546 crossref_primary_10_1093_jxb_eraa165 crossref_primary_10_1186_s12870_021_03127_x crossref_primary_10_2134_agronj2017_02_0064 crossref_primary_10_1093_jxb_erv127 crossref_primary_10_1093_jxb_erv241 crossref_primary_10_1093_jxb_eraa049 crossref_primary_10_1111_nph_18489 crossref_primary_10_1093_jxb_erv007 crossref_primary_10_1016_S2095_3119_17_61709_X crossref_primary_10_1007_s42106_022_00225_0 crossref_primary_10_1186_s12284_020_00404_5 crossref_primary_10_1016_j_fcr_2016_10_005 crossref_primary_10_1016_j_ecoleng_2017_06_019 crossref_primary_10_3390_ijms22189826 crossref_primary_10_3390_plants11111417 crossref_primary_10_34133_2020_3074916 crossref_primary_10_1093_jxb_erz293 crossref_primary_10_1186_s12284_015_0049_2 crossref_primary_10_1016_j_fcr_2023_109136 crossref_primary_10_2134_agronj2016_09_0507 crossref_primary_10_3390_agriculture12020209 crossref_primary_10_3390_microorganisms11112761 crossref_primary_10_1093_aob_mcx157 crossref_primary_10_1038_s41598_024_53798_3 crossref_primary_10_1111_pbr_13049 crossref_primary_10_1016_j_eja_2022_126461 crossref_primary_10_3390_agronomy10030324 crossref_primary_10_1016_j_pbi_2014_12_004 crossref_primary_10_1007_s11427_022_2178_7 crossref_primary_10_1007_s00122_024_04606_z crossref_primary_10_1016_j_jplph_2020_153281 crossref_primary_10_1111_pce_14247 crossref_primary_10_3389_fpls_2020_01289 crossref_primary_10_1007_s11738_014_1609_6 crossref_primary_10_1017_S1742170517000163 crossref_primary_10_1093_jxb_erv074 crossref_primary_10_1007_s10705_019_10016_1 crossref_primary_10_1093_jxb_erw243 crossref_primary_10_1016_j_geoderma_2024_117061 crossref_primary_10_1007_s11104_018_3888_y crossref_primary_10_1186_s12870_025_06120_w crossref_primary_10_1002_agj2_20210 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_1111_pbr_12777 crossref_primary_10_1016_j_rhisph_2023_100772 crossref_primary_10_1002_pld3_310 crossref_primary_10_1016_j_fcr_2018_02_009 crossref_primary_10_1016_j_fcr_2023_109109 crossref_primary_10_3390_cells9040916 crossref_primary_10_1016_j_fcr_2020_108013 crossref_primary_10_1016_j_fcr_2023_109101 crossref_primary_10_1111_jipb_12384 crossref_primary_10_1371_journal_pone_0222788 crossref_primary_10_1002_csc2_20635 crossref_primary_10_1093_jxb_erw133 crossref_primary_10_3389_fpls_2023_1145389 crossref_primary_10_1007_s00425_024_04408_z crossref_primary_10_1016_j_tplants_2021_03_011 crossref_primary_10_1002_jpln_201800560 crossref_primary_10_1093_jxb_eraa084 crossref_primary_10_1016_j_eja_2019_01_008 crossref_primary_10_1016_S2095_3119_20_63598_5 crossref_primary_10_1093_aob_mcs293 crossref_primary_10_1016_j_cub_2017_06_043 crossref_primary_10_3390_agronomy14030409 crossref_primary_10_1626_jcs_86_151 crossref_primary_10_3390_stresses3010011 crossref_primary_10_1104_pp_114_245423 crossref_primary_10_3389_fpls_2022_928229 crossref_primary_10_1007_s42729_022_00846_4 |
Cites_doi | 10.2135/cropsci2008.03.0152 10.1104/pp.111.175414 10.1007/s11104-004-1096-4 10.1093/jxb/erh276 10.1007/BF00008078 10.1111/j.1469-8137.2006.01787.x 10.1111/j.0269-8463.2004.00827.x 10.1093/jxb/erp265 10.1007/s11104-010-0675-9 10.1071/FP03255 10.1626/jcs.60.543 10.1016/0098-8472(93)90062-K 10.1007/s11104-010-0343-0 10.1007/BF00008076 10.1104/pp.111.175489 10.1126/science.1174320 10.1007/s10681-008-9833-z 10.1071/FP05005 10.1023/A:1010381919003 10.1890/10-1086.1 10.1023/B:BIOG.0000049342.08183.90 10.1104/pp.109.1.7 10.1111/j.1365-3040.2011.02409.x 10.1002/wsbm.87 10.1016/S1369-5266(03)00035-9 10.1071/FP09184 10.1111/j.1469-8137.1996.tb01847.x 10.1046/j.1365-3040.2003.01015.x 10.1111/j.1399-3054.2010.01439.x 10.1071/FP03088 10.1007/s11104-009-9984-2 10.1007/s12665-010-0725-x 10.1146/annurev.arplant.59.032607.092819 10.1007/s11104-009-9898-z 10.1626/pps.3.281 10.1016/0167-1987(85)90004-2 10.1007/s11427-010-4097-y 10.1007/s11104-010-0623-8 10.1093/aob/mch056 10.1111/j.1475-2743.2007.00105.x 10.1016/j.agwat.2008.05.001 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 7ST C1K SOI |
DOI | 10.1016/j.fcr.2012.09.010 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6852 |
EndPage | 31 |
ExternalDocumentID | 10_1016_j_fcr_2012_09_010 S0378429012002961 |
GeographicLocations | United States South Africa USA |
GeographicLocations_xml | – name: South Africa – name: United States – name: USA |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPCBC SSA SSZ T5K UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 7ST C1K EFKBS SOI |
ID | FETCH-LOGICAL-c429t-6e730c313be1d7b57513aeb0c8fc04ad7ca683f670d33a48d87623b27f33780b3 |
IEDL.DBID | .~1 |
ISSN | 0378-4290 |
IngestDate | Tue Aug 05 11:14:34 EDT 2025 Thu Jul 10 20:09:47 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Tue Jul 01 01:32:24 EDT 2025 Fri Feb 23 02:21:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BB D95 GDD SPAD Root architecture QTL CN K BN Crown root Nitrogen N P SD DAP GY BW AMMI Brace root PHT CA Zea mays L BA CB |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-6e730c313be1d7b57513aeb0c8fc04ad7ca683f670d33a48d87623b27f33780b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1368588717 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1500784248 proquest_miscellaneous_1368588717 crossref_citationtrail_10_1016_j_fcr_2012_09_010 crossref_primary_10_1016_j_fcr_2012_09_010 elsevier_sciencedirect_doi_10_1016_j_fcr_2012_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2013 2013-1-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationTitle | Field crops research |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hund, Trachsel, Stamp (bib0075) 2009; 325 Nakamoto, Shimoda, Matsuzaki (bib0160) 1991; 60 Mi, Chen, Wu, Lai, Yuan, Zhang (bib0145) 2010; 53 Zhu, Kaeppler, Brown, Lynch (bib0235) 2005; 32 Abe, Morita (bib0005) 1994; 165 Nagel, Kastenholz, Jahnke, Van Dusschoten, Aach, Muhlich, Truhn, Scharr, Terjung, Walter, Schurr (bib0155) 2009; 36 Gaudin, McClymont, Holmes, Lyons, Raizada (bib0050) 2011; 34 Dunbabin, Rengel, Diggle (bib0035) 2004; 18 Bates, D., Sarkar, D., 2007. Linear mixed effect models using S4 classes. Lynch (bib0110) 1995; 109 Hu, Li, Chen, Zhanq, Edis (bib0065) 2008; 95 Thorup-Kristensen, Cortasa, Loges (bib0205) 2009; 322 Hochholdinger, Woll, Sauer, Dembinsky (bib0060) 2004; 93 Liao, Rubio, Yan, Cao, Brown, Lynch (bib0095) 2001; 232 Oyanagi (bib0175) 1994; 165 Araki, Hirayama, Hirasawa, Iijima (bib0010) 2000; 3 Lopez-Bucio, Cruz-Ramirez, Herrera-Estrella (bib0105) 2003; 6 Mishima, Takada, Kitagawa (bib0150) 2011; 63 Bonser, Lynch, Snapp (bib0020) 1996; 132 Sharp, Poroyko, Hejlek, Spollen, Springer, Bohnert, Nguyen (bib0195) 2004; 5 LaMotte, Pickard (bib0090) 2004; 31 Hammer, Dong, McLean, Doherty, Messina, Schusler, Zinselmeier, Paszkiewicz, Cooper (bib0055) 2009; 49 Trachsel, Kaeppler, Brown, Lynch (bib0210) 2011; 341 Forde (bib0045) 2009; 60 Vidal, Tamayo, Gutierrez (bib0220) 2010; 2 Lynch, Ho (bib0125) 2005; 269 McMullen, Kresovich, Villeda, Bradbury, Li, Sun, Flint-Garcia, Thornsberry, Acharya, Bottoms, Brown, Browne, Eller, Guill, Harjes, Kroon, Lepak, Mitchell, Peterson, Pressoir, Romero, Rosas, Salvo, Yates, Hanson, Jones, Smith, Glaubitz, Goodman, Ware, Holland, Buckler (bib0130) 2009; 325 Trachsel, Stamp, Hund (bib0215) 2010; 55 Norton, Price (bib0165) 2009; 166 Schiffers, Tielborger, Tietjen, Jeltsch (bib0190) 2011; 92 Kristensen, Thorup-Kristensen (bib0085) 2007; 23 de Mendiburu, F., 2010. Statistical Procedures for Agricultural Research. Oyanagi, Nakamoto, Morita (bib0170) 1993; 33 Dunbabin, Diggle, Rengel (bib0030) 2003; 26 Walter, Silk, Schurr (bib0225) 2009; 60 Singh, van Oosterom, Jordan, Messina, Cooper, Hammer (bib0200) 2010; 333 Postma, Lynch (bib0180) 2011; 156 Wolverton, Paya, Toska (bib0230) 2011; 141 Finch-Savage, Leubner-Metzger (bib0040) 2006; 171 Liao, Yan, Rubio, Beebe, Blair, Lynch (bib0100) 2004; 31 Kano, Inukai, Kitano, Yamauchi (bib0080) 2011; 342 McIsaac, Hu (bib0140) 2004; 70 Raun, Johnson (bib0185) 1999; 91 Chaudhary, Gajri, Prihar, Khera (bib0025) 1985; 6 Lynch (bib0115) 2009 Lynch (bib0120) 2011; 156 Kano (10.1016/j.fcr.2012.09.010_bib0080) 2011; 342 Chaudhary (10.1016/j.fcr.2012.09.010_bib0025) 1985; 6 Sharp (10.1016/j.fcr.2012.09.010_bib0195) 2004; 5 Thorup-Kristensen (10.1016/j.fcr.2012.09.010_bib0205) 2009; 322 10.1016/j.fcr.2012.09.010_bib0015 Trachsel (10.1016/j.fcr.2012.09.010_bib0215) 2010; 55 Araki (10.1016/j.fcr.2012.09.010_bib0010) 2000; 3 Lynch (10.1016/j.fcr.2012.09.010_bib0120) 2011; 156 Hochholdinger (10.1016/j.fcr.2012.09.010_bib0060) 2004; 93 LaMotte (10.1016/j.fcr.2012.09.010_bib0090) 2004; 31 Liao (10.1016/j.fcr.2012.09.010_bib0095) 2001; 232 Walter (10.1016/j.fcr.2012.09.010_bib0225) 2009; 60 Mi (10.1016/j.fcr.2012.09.010_bib0145) 2010; 53 Nagel (10.1016/j.fcr.2012.09.010_bib0155) 2009; 36 Forde (10.1016/j.fcr.2012.09.010_bib0045) 2009; 60 Gaudin (10.1016/j.fcr.2012.09.010_bib0050) 2011; 34 Bonser (10.1016/j.fcr.2012.09.010_bib0020) 1996; 132 Dunbabin (10.1016/j.fcr.2012.09.010_bib0035) 2004; 18 Schiffers (10.1016/j.fcr.2012.09.010_bib0190) 2011; 92 Singh (10.1016/j.fcr.2012.09.010_bib0200) 2010; 333 Wolverton (10.1016/j.fcr.2012.09.010_bib0230) 2011; 141 Liao (10.1016/j.fcr.2012.09.010_bib0100) 2004; 31 Dunbabin (10.1016/j.fcr.2012.09.010_bib0030) 2003; 26 Lynch (10.1016/j.fcr.2012.09.010_bib0110) 1995; 109 Oyanagi (10.1016/j.fcr.2012.09.010_bib0175) 1994; 165 Nakamoto (10.1016/j.fcr.2012.09.010_bib0160) 1991; 60 Vidal (10.1016/j.fcr.2012.09.010_bib0220) 2010; 2 Lynch (10.1016/j.fcr.2012.09.010_bib0125) 2005; 269 Raun (10.1016/j.fcr.2012.09.010_bib0185) 1999; 91 Lynch (10.1016/j.fcr.2012.09.010_bib0115) 2009 Lopez-Bucio (10.1016/j.fcr.2012.09.010_bib0105) 2003; 6 Zhu (10.1016/j.fcr.2012.09.010_bib0235) 2005; 32 Abe (10.1016/j.fcr.2012.09.010_bib0005) 1994; 165 Kristensen (10.1016/j.fcr.2012.09.010_bib0085) 2007; 23 Trachsel (10.1016/j.fcr.2012.09.010_bib0210) 2011; 341 McMullen (10.1016/j.fcr.2012.09.010_bib0130) 2009; 325 Hammer (10.1016/j.fcr.2012.09.010_bib0055) 2009; 49 10.1016/j.fcr.2012.09.010_bib0135 Finch-Savage (10.1016/j.fcr.2012.09.010_bib0040) 2006; 171 Oyanagi (10.1016/j.fcr.2012.09.010_bib0170) 1993; 33 Hu (10.1016/j.fcr.2012.09.010_bib0065) 2008; 95 Hund (10.1016/j.fcr.2012.09.010_bib0075) 2009; 325 Mishima (10.1016/j.fcr.2012.09.010_bib0150) 2011; 63 Norton (10.1016/j.fcr.2012.09.010_bib0165) 2009; 166 Postma (10.1016/j.fcr.2012.09.010_bib0180) 2011; 156 McIsaac (10.1016/j.fcr.2012.09.010_bib0140) 2004; 70 |
References_xml | – volume: 171 start-page: 501 year: 2006 end-page: 523 ident: bib0040 article-title: Seed dormancy and the control of germination publication-title: New Phytol. – volume: 232 start-page: 69 year: 2001 end-page: 79 ident: bib0095 article-title: Effect of phosphorus availability on basal root shallowness in common bean publication-title: Plant Soil – volume: 269 start-page: 45 year: 2005 end-page: 56 ident: bib0125 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant Soil – volume: 91 start-page: 357 year: 1999 end-page: 363 ident: bib0185 article-title: Improving nitrogen use efficiency for cereal production publication-title: Agric. J. – reference: de Mendiburu, F., 2010. Statistical Procedures for Agricultural Research. – volume: 333 start-page: 287 year: 2010 end-page: 299 ident: bib0200 article-title: Morphological and architectural development of root systems in sorghum and maize publication-title: Plant Soil – volume: 6 start-page: 280 year: 2003 end-page: 287 ident: bib0105 article-title: The role of nutrient availability in regulating root architecture publication-title: Curr. Opinion Plant Biol. – volume: 33 start-page: 141 year: 1993 end-page: 158 ident: bib0170 article-title: The gravitropic response of roots and the shaping of the root system in cereal plants publication-title: Environ. Exp. Bot. – volume: 55 start-page: 249 year: 2010 end-page: 260 ident: bib0215 article-title: Effect of high temperatures, drought and aluminum toxicity on root growth of tropical maize ( publication-title: Maydica – volume: 341 start-page: 75 year: 2011 end-page: 87 ident: bib0210 article-title: : high throughput phenotyping of maize ( publication-title: Plant Soil – volume: 60 start-page: 3989 year: 2009 end-page: 4002 ident: bib0045 article-title: Is it good noise? The role of developmental instability in the shaping of a root system publication-title: J. Exp. Bot. – volume: 95 start-page: 1180 year: 2008 end-page: 1188 ident: bib0065 article-title: Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China publication-title: Agric. Water Manag. – volume: 2 start-page: 683 year: 2010 end-page: 693 ident: bib0220 article-title: Gene networks for nitrogen sensing, signaling, and response in publication-title: Wiley Interdisciplinary Rev. -Syst. Biol. Med. – start-page: 55467 year: 2009 ident: bib0115 article-title: Steep, cheap, and deep: an ideotype for efficient acquisition of water and nitrate by maize root systems publication-title: 2009 Annual Meeting of the ASA, CSSA, SSSA, abstract – volume: 63 start-page: 571 year: 2011 end-page: 580 ident: bib0150 article-title: Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management publication-title: Environ. Earth Sci. – volume: 53 start-page: 1369 year: 2010 end-page: 1373 ident: bib0145 article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems publication-title: Sci. China-Life Sci. – volume: 36 start-page: 947 year: 2009 end-page: 959 ident: bib0155 article-title: Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping publication-title: Funct. Plant Biol. – volume: 165 start-page: 323 year: 1994 end-page: 326 ident: bib0175 article-title: Gravitropic response growth angle and the vertical distribution of roots of wheat ( publication-title: Plant Soil – volume: 93 start-page: 359 year: 2004 end-page: 368 ident: bib0060 article-title: Genetic dissection of root formation in maize ( publication-title: Ann. Bot. – volume: 60 start-page: 279 year: 2009 end-page: 304 ident: bib0225 article-title: Environmental effects on spatial and temporal patterns of leaf and root growth publication-title: Ann. Rev. Plant Biol. – volume: 166 start-page: 229 year: 2009 end-page: 237 ident: bib0165 article-title: Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice publication-title: Euphytica – volume: 156 start-page: 1041 year: 2011 end-page: 1049 ident: bib0120 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol. – volume: 32 start-page: 749 year: 2005 end-page: 762 ident: bib0235 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( publication-title: Funct. Plant Biol. – volume: 70 start-page: 251 year: 2004 end-page: 271 ident: bib0140 article-title: Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage publication-title: Biogeochemistry – volume: 92 start-page: 610 year: 2011 end-page: 620 ident: bib0190 article-title: Root plasticity buffers competition among plants: theory meets experimental data publication-title: Ecology – volume: 132 start-page: 281 year: 1996 end-page: 288 ident: bib0020 article-title: Effect of phosphorus deficiency on growth angle of basal roots in publication-title: New Phytol. – volume: 165 start-page: 333 year: 1994 end-page: 337 ident: bib0005 article-title: Growth direction of nodal roots of rice – its variation and contribution to root-system formation publication-title: Plant Soil – volume: 156 start-page: 1190 year: 2011 end-page: 1201 ident: bib0180 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiol. – volume: 31 start-page: 93 year: 2004 end-page: 107 ident: bib0090 article-title: Control of gravitropic orientation. I. Non-vertical orientation by primary roots of maize results from decay of competence for orthogravitropic induction publication-title: Funct. Plant Biol. – volume: 34 start-page: 2122 year: 2011 end-page: 2137 ident: bib0050 article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize ( publication-title: Plant Cell Environ. – volume: 49 start-page: 299 year: 2009 end-page: 312 ident: bib0055 article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? publication-title: Crop Sci. – volume: 322 start-page: 101 year: 2009 end-page: 114 ident: bib0205 article-title: Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses? publication-title: Plant Soil – volume: 342 start-page: 117 year: 2011 end-page: 128 ident: bib0080 article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice publication-title: Plant Soil – volume: 31 start-page: 959 year: 2004 end-page: 970 ident: bib0100 article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean publication-title: Funct. Plant Biol. – volume: 109 start-page: 7 year: 1995 end-page: 13 ident: bib0110 article-title: Root architecture and plant productivity publication-title: Plant Physiol. – volume: 5 start-page: 2343 year: 2004 end-page: 2351 ident: bib0195 article-title: Root growth maintenance during water deficits: physiology to functional genomics publication-title: J. Exp. Bot. – volume: 141 start-page: 373 year: 2011 end-page: 382 ident: bib0230 article-title: Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant publication-title: Physiol. Plant. – volume: 3 start-page: 281 year: 2000 end-page: 288 ident: bib0010 article-title: Which roots penetrate the deepest in rice and maize root systems? publication-title: Plant Prod. Sci. – reference: Bates, D., Sarkar, D., 2007. Linear mixed effect models using S4 classes. – volume: 6 start-page: 31 year: 1985 end-page: 44 ident: bib0025 article-title: Effect of deep tillage on soil physical properties and maize yields on coarse textured soils publication-title: Soil Till. Res. – volume: 18 start-page: 204 year: 2004 end-page: 211 ident: bib0035 article-title: Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply publication-title: Funct. Ecol. – volume: 325 start-page: 737 year: 2009 end-page: 740 ident: bib0130 article-title: Genetic properties of the maize nested association mapping population publication-title: Science – volume: 60 start-page: 543 year: 1991 end-page: 549 ident: bib0160 article-title: Elongation angle of nodal roots and its possible relation to spatial root distribution in maize and foxtail millet publication-title: Jpn. J. Crop Sci. – volume: 23 start-page: 338 year: 2007 end-page: 347 ident: bib0085 article-title: Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops publication-title: Soil Use Manage. – volume: 26 start-page: 835 year: 2003 end-page: 844 ident: bib0030 article-title: Is there an optimal root architecture for nitrate capture in leaching environments? publication-title: Plant Cell Environ. – volume: 325 start-page: 335 year: 2009 end-page: 349 ident: bib0075 article-title: Growth of axile and lateral roots of maize: I Development of a phenotyping platform publication-title: Plant Soil – volume: 49 start-page: 299 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0055 article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? publication-title: Crop Sci. doi: 10.2135/cropsci2008.03.0152 – volume: 91 start-page: 357 year: 1999 ident: 10.1016/j.fcr.2012.09.010_bib0185 article-title: Improving nitrogen use efficiency for cereal production publication-title: Agric. J. – volume: 156 start-page: 1041 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0120 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol. doi: 10.1104/pp.111.175414 – volume: 269 start-page: 45 year: 2005 ident: 10.1016/j.fcr.2012.09.010_bib0125 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant Soil doi: 10.1007/s11104-004-1096-4 – volume: 5 start-page: 2343 year: 2004 ident: 10.1016/j.fcr.2012.09.010_bib0195 article-title: Root growth maintenance during water deficits: physiology to functional genomics publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh276 – volume: 165 start-page: 333 year: 1994 ident: 10.1016/j.fcr.2012.09.010_bib0005 article-title: Growth direction of nodal roots of rice – its variation and contribution to root-system formation publication-title: Plant Soil doi: 10.1007/BF00008078 – volume: 171 start-page: 501 year: 2006 ident: 10.1016/j.fcr.2012.09.010_bib0040 article-title: Seed dormancy and the control of germination publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01787.x – ident: 10.1016/j.fcr.2012.09.010_bib0015 – volume: 18 start-page: 204 year: 2004 ident: 10.1016/j.fcr.2012.09.010_bib0035 article-title: Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply publication-title: Funct. Ecol. doi: 10.1111/j.0269-8463.2004.00827.x – volume: 60 start-page: 3989 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0045 article-title: Is it good noise? The role of developmental instability in the shaping of a root system publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp265 – volume: 342 start-page: 117 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0080 article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice publication-title: Plant Soil doi: 10.1007/s11104-010-0675-9 – volume: 31 start-page: 959 year: 2004 ident: 10.1016/j.fcr.2012.09.010_bib0100 article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean publication-title: Funct. Plant Biol. doi: 10.1071/FP03255 – volume: 60 start-page: 543 year: 1991 ident: 10.1016/j.fcr.2012.09.010_bib0160 article-title: Elongation angle of nodal roots and its possible relation to spatial root distribution in maize and foxtail millet publication-title: Jpn. J. Crop Sci. doi: 10.1626/jcs.60.543 – volume: 33 start-page: 141 year: 1993 ident: 10.1016/j.fcr.2012.09.010_bib0170 article-title: The gravitropic response of roots and the shaping of the root system in cereal plants publication-title: Environ. Exp. Bot. doi: 10.1016/0098-8472(93)90062-K – volume: 333 start-page: 287 year: 2010 ident: 10.1016/j.fcr.2012.09.010_bib0200 article-title: Morphological and architectural development of root systems in sorghum and maize publication-title: Plant Soil doi: 10.1007/s11104-010-0343-0 – volume: 165 start-page: 323 year: 1994 ident: 10.1016/j.fcr.2012.09.010_bib0175 article-title: Gravitropic response growth angle and the vertical distribution of roots of wheat (Triticum aestivum L.) publication-title: Plant Soil doi: 10.1007/BF00008076 – volume: 156 start-page: 1190 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0180 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiol. doi: 10.1104/pp.111.175489 – volume: 325 start-page: 737 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0130 article-title: Genetic properties of the maize nested association mapping population publication-title: Science doi: 10.1126/science.1174320 – volume: 166 start-page: 229 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0165 article-title: Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice publication-title: Euphytica doi: 10.1007/s10681-008-9833-z – volume: 32 start-page: 749 year: 2005 ident: 10.1016/j.fcr.2012.09.010_bib0235 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays) publication-title: Funct. Plant Biol. doi: 10.1071/FP05005 – volume: 232 start-page: 69 year: 2001 ident: 10.1016/j.fcr.2012.09.010_bib0095 article-title: Effect of phosphorus availability on basal root shallowness in common bean publication-title: Plant Soil doi: 10.1023/A:1010381919003 – ident: 10.1016/j.fcr.2012.09.010_bib0135 – start-page: 55467 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0115 article-title: Steep, cheap, and deep: an ideotype for efficient acquisition of water and nitrate by maize root systems – volume: 92 start-page: 610 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0190 article-title: Root plasticity buffers competition among plants: theory meets experimental data publication-title: Ecology doi: 10.1890/10-1086.1 – volume: 70 start-page: 251 year: 2004 ident: 10.1016/j.fcr.2012.09.010_bib0140 article-title: Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage publication-title: Biogeochemistry doi: 10.1023/B:BIOG.0000049342.08183.90 – volume: 109 start-page: 7 year: 1995 ident: 10.1016/j.fcr.2012.09.010_bib0110 article-title: Root architecture and plant productivity publication-title: Plant Physiol. doi: 10.1104/pp.109.1.7 – volume: 34 start-page: 2122 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0050 article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02409.x – volume: 2 start-page: 683 year: 2010 ident: 10.1016/j.fcr.2012.09.010_bib0220 article-title: Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana publication-title: Wiley Interdisciplinary Rev. -Syst. Biol. Med. doi: 10.1002/wsbm.87 – volume: 6 start-page: 280 year: 2003 ident: 10.1016/j.fcr.2012.09.010_bib0105 article-title: The role of nutrient availability in regulating root architecture publication-title: Curr. Opinion Plant Biol. doi: 10.1016/S1369-5266(03)00035-9 – volume: 36 start-page: 947 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0155 article-title: Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping publication-title: Funct. Plant Biol. doi: 10.1071/FP09184 – volume: 132 start-page: 281 year: 1996 ident: 10.1016/j.fcr.2012.09.010_bib0020 article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris publication-title: New Phytol. doi: 10.1111/j.1469-8137.1996.tb01847.x – volume: 26 start-page: 835 year: 2003 ident: 10.1016/j.fcr.2012.09.010_bib0030 article-title: Is there an optimal root architecture for nitrate capture in leaching environments? publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.01015.x – volume: 141 start-page: 373 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0230 article-title: Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2010.01439.x – volume: 31 start-page: 93 year: 2004 ident: 10.1016/j.fcr.2012.09.010_bib0090 article-title: Control of gravitropic orientation. I. Non-vertical orientation by primary roots of maize results from decay of competence for orthogravitropic induction publication-title: Funct. Plant Biol. doi: 10.1071/FP03088 – volume: 325 start-page: 335 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0075 article-title: Growth of axile and lateral roots of maize: I Development of a phenotyping platform publication-title: Plant Soil doi: 10.1007/s11104-009-9984-2 – volume: 63 start-page: 571 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0150 article-title: Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0725-x – volume: 60 start-page: 279 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0225 article-title: Environmental effects on spatial and temporal patterns of leaf and root growth publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092819 – volume: 55 start-page: 249 year: 2010 ident: 10.1016/j.fcr.2012.09.010_bib0215 article-title: Effect of high temperatures, drought and aluminum toxicity on root growth of tropical maize (Zea mays L.) seedlings publication-title: Maydica – volume: 322 start-page: 101 year: 2009 ident: 10.1016/j.fcr.2012.09.010_bib0205 article-title: Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses? publication-title: Plant Soil doi: 10.1007/s11104-009-9898-z – volume: 3 start-page: 281 year: 2000 ident: 10.1016/j.fcr.2012.09.010_bib0010 article-title: Which roots penetrate the deepest in rice and maize root systems? publication-title: Plant Prod. Sci. doi: 10.1626/pps.3.281 – volume: 6 start-page: 31 year: 1985 ident: 10.1016/j.fcr.2012.09.010_bib0025 article-title: Effect of deep tillage on soil physical properties and maize yields on coarse textured soils publication-title: Soil Till. Res. doi: 10.1016/0167-1987(85)90004-2 – volume: 53 start-page: 1369 year: 2010 ident: 10.1016/j.fcr.2012.09.010_bib0145 article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems publication-title: Sci. China-Life Sci. doi: 10.1007/s11427-010-4097-y – volume: 341 start-page: 75 year: 2011 ident: 10.1016/j.fcr.2012.09.010_bib0210 article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field publication-title: Plant Soil doi: 10.1007/s11104-010-0623-8 – volume: 93 start-page: 359 year: 2004 ident: 10.1016/j.fcr.2012.09.010_bib0060 article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programs publication-title: Ann. Bot. doi: 10.1093/aob/mch056 – volume: 23 start-page: 338 year: 2007 ident: 10.1016/j.fcr.2012.09.010_bib0085 article-title: Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.2007.00105.x – volume: 95 start-page: 1180 year: 2008 ident: 10.1016/j.fcr.2012.09.010_bib0065 article-title: Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2008.05.001 |
SSID | ssj0006616 |
Score | 2.504706 |
Snippet | Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18 |
SubjectTerms | Brace root branching corn crops Crown root flowering foraging genetic variation genotype grain yield inbred lines Nitrogen nitrogen fertilizers planting Root architecture root crown root growth rooting roots soaking soil South Africa United States Zea mays Zea mays L |
Title | Maize root growth angles become steeper under low N conditions |
URI | https://dx.doi.org/10.1016/j.fcr.2012.09.010 https://www.proquest.com/docview/1368588717 https://www.proquest.com/docview/1500784248 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jXvQgPnE-RgRPQl3WZG16EcZQprJddLBbSNJ0TmY3ZkXw4N_u9_WhKLKD1zbp45fke-cXQs4SaXgEtzxrZccTQZx4BilcOSgPHmvfN3lMdzAM-iNxO-6Ma6RX7YXBsspS9hcyPZfW5ZVWiWZrMZ227hkPpcA0INYZRLkLJESIs_zi47vMA_RPka8EbwlbV5nNvMYrsUgJiuHA6ILhJtq_ddMvKZ2rnustslnajLRbfNY2qbl0h2x0J8uSN8PtksuBnr47CmZwRifgWWePVKeTmXuhgN782VEYTLdwS4p7xpZ0Nn-jQwqucFxUbO2R0fXVQ6_vlUcjeBZ-IvMCByvT8jY3rh2HBpMnXDvDrEwsEzoOrQ4kT4KQxZxrIWMUetz4YcIBCGb4Pqmn89QdEOqM9WPJHOhp8JYMk4kWETwHic0CEyYNwipQlC15w_H4ipmqCsSeFOCoEEfFIgU4Nsj5V5dFQZqxqrGokFY_Rl6BUF_V7bQaFQUrAtMcOnXz1xfVzjn1wREMV7TpoG0kfCEP__f6I7Lu5wdjYDDmmNSz5as7AfMkM818_jXJWvfmrj_8BDvG4t8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqA9oFKKoKVlK7WXSiYb78ZeH6iEWlB4JBdA4rbsrtdpqtSJEiMEB_4Uf5AZP1qBqhyQuNr7sL4dz3tnAL5kyooEXwXOqU4gozQLLJVwFSg8RGrC0JY-3V4_6p7Jw_PO-QLcNXdhKK2y5v0VTy-5df2kVaPZmgyHrRMuYiUpDEh5BknUrjMrj_z1Fdpts52Dn3jIX8Nwf-_0RzeoWwsEDqcUQeSRsp1oC-vbaWwp-CCMt9ypzHFp0tiZSIksinkqhJEqJaYhbBhnAnflVuC6L-ClRHZBbRO2b__llaDAqwKkaJ7R5zWh1DKpLHNUg5T8j8k2p1u7_xeGj8RCKev238ByraSy3QqHFVjw-Vt4vTuY1oU6_Cp875nhjWeodxdsgKZ88YuZfDDyM4bHNf7jGVKPn_gpo0tqUzYaX7E-Q9s7rVLE3sHZswC2Bov5OPfrwLx1Yaq4R8UAzTPLVWZkgutQJbXIxtkG8AYU7epC5dQvY6SbjLTfGnHUhKPmiUYcN-Db3ymTqkrHvMGyQVo_IDWNUmTetM_NqWj8BSmuYnI_vpzpdlnEHy3PeM6YDiljMpTq_dO234Kl7mnvWB8f9I8-wKuw7MpBnqBNWCyml_4j6kaF_VTSIoOL5yb-ewlEHeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+root+growth+angles+become+steeper+under+low+N+conditions&rft.jtitle=Field+crops+research&rft.au=Trachsel%2C+S&rft.au=Kaeppler%2C+S+M&rft.au=Brown%2C+K+M&rft.au=Lynch%2C+J+P&rft.date=2013-01-01&rft.issn=0378-4290&rft.volume=140+p.18-31&rft.spage=18&rft.epage=31&rft_id=info:doi/10.1016%2Fj.fcr.2012.09.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon |