Maize root growth angles become steeper under low N conditions

Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of ro...

Full description

Saved in:
Bibliographic Details
Published inField crops research Vol. 140; pp. 18 - 31
Main Authors Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of root growth angles to nitrogen fertilization. We focus on genetic variation for growth angles of crown and brace roots among 108 inbred lines of maize in high and low nitrogen field environments in the USA and South Africa. Root angles of crown roots were significantly associated with rooting depth calculated as the depth containing 95% of the root mass (D95). The number of brace roots as well as rooting depth (D95) increased between 43 days after planting (DAP) and flowering, but did not show any major changes between flowering and physiological maturity. Brace root branching increased between 43 DAP and flowering and showed reductions between flowering and physiological maturity. Under well-fertilized conditions genotypes initially selected as ‘steep’ and ‘shallow’ did not alter their root angles. Brace and crown root angles became up to 18° steeper under nitrogen deficient conditions. Increases in root angles under nitrogen deficient conditions were more accentuated for shallow genotypes, resulting in root angles and rooting depths similar to the ones measured for steep genotypes. Steeper root angles enabled plastic genotypes to potentially explore similar soil volumes under nitrogen deficient conditions as steep genotypes, thereby not incurring any reductions in grain yield compared to genotypes constitutively forming steep root angles. Additive main and multiplicative interaction effects (AMMI) analysis revealed that out of 29 genotypes best adapted to 4 different nitrogen fertilizer treatment-by-location combinations, 11 were steep, 11 were plastic and 7 were shallow genotypes. The number of plastic genotypes among the adapted entries was disproportionately high compared to 6 that could be anticipated based on the distribution in the entire genotypic set. We postulate that modulation of rooting depth by root growth angles is important for nitrogen acquisition by positioning roots in soil domains with the greatest nitrogen availability. Genotypic variation in root growth angles and the plasticity of root growth angles in response to nitrogen may be useful in breeding crops with improved nitrogen acquisition.
AbstractList Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of root growth angles to nitrogen fertilization. We focus on genetic variation for growth angles of crown and brace roots among 108 inbred lines of maize in high and low nitrogen field environments in the USA and South Africa. Root angles of crown roots were significantly associated with rooting depth calculated as the depth containing 95% of the root mass (D95). The number of brace roots as well as rooting depth (D95) increased between 43 days after planting (DAP) and flowering, but did not show any major changes between flowering and physiological maturity. Brace root branching increased between 43 DAP and flowering and showed reductions between flowering and physiological maturity. Under well-fertilized conditions genotypes initially selected as asteepa and ashallowa did not alter their root angles. Brace and crown root angles became up to 18 degree steeper under nitrogen deficient conditions. Increases in root angles under nitrogen deficient conditions were more accentuated for shallow genotypes, resulting in root angles and rooting depths similar to the ones measured for steep genotypes. Steeper root angles enabled plastic genotypes to potentially explore similar soil volumes under nitrogen deficient conditions as steep genotypes, thereby not incurring any reductions in grain yield compared to genotypes constitutively forming steep root angles. Additive main and multiplicative interaction effects (AMMI) analysis revealed that out of 29 genotypes best adapted to 4 different nitrogen fertilizer treatment-by-location combinations, 11 were steep, 11 were plastic and 7 were shallow genotypes. The number of plastic genotypes among the adapted entries was disproportionately high compared to 6 that could be anticipated based on the distribution in the entire genotypic set. We postulate that modulation of rooting depth by root growth angles is important for nitrogen acquisition by positioning roots in soil domains with the greatest nitrogen availability. Genotypic variation in root growth angles and the plasticity of root growth angles in response to nitrogen may be useful in breeding crops with improved nitrogen acquisition.
Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth distribution of maize genotypes across the cropping cycle, effects of root angles on plant performance and potential plastic responses of root growth angles to nitrogen fertilization. We focus on genetic variation for growth angles of crown and brace roots among 108 inbred lines of maize in high and low nitrogen field environments in the USA and South Africa. Root angles of crown roots were significantly associated with rooting depth calculated as the depth containing 95% of the root mass (D95). The number of brace roots as well as rooting depth (D95) increased between 43 days after planting (DAP) and flowering, but did not show any major changes between flowering and physiological maturity. Brace root branching increased between 43 DAP and flowering and showed reductions between flowering and physiological maturity. Under well-fertilized conditions genotypes initially selected as ‘steep’ and ‘shallow’ did not alter their root angles. Brace and crown root angles became up to 18° steeper under nitrogen deficient conditions. Increases in root angles under nitrogen deficient conditions were more accentuated for shallow genotypes, resulting in root angles and rooting depths similar to the ones measured for steep genotypes. Steeper root angles enabled plastic genotypes to potentially explore similar soil volumes under nitrogen deficient conditions as steep genotypes, thereby not incurring any reductions in grain yield compared to genotypes constitutively forming steep root angles. Additive main and multiplicative interaction effects (AMMI) analysis revealed that out of 29 genotypes best adapted to 4 different nitrogen fertilizer treatment-by-location combinations, 11 were steep, 11 were plastic and 7 were shallow genotypes. The number of plastic genotypes among the adapted entries was disproportionately high compared to 6 that could be anticipated based on the distribution in the entire genotypic set. We postulate that modulation of rooting depth by root growth angles is important for nitrogen acquisition by positioning roots in soil domains with the greatest nitrogen availability. Genotypic variation in root growth angles and the plasticity of root growth angles in response to nitrogen may be useful in breeding crops with improved nitrogen acquisition.
Author Trachsel, S.
Kaeppler, S.M.
Brown, K.M.
Lynch, J.P.
Author_xml – sequence: 1
  givenname: S.
  surname: Trachsel
  fullname: Trachsel, S.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 2
  givenname: S.M.
  surname: Kaeppler
  fullname: Kaeppler, S.M.
  organization: Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
– sequence: 3
  givenname: K.M.
  surname: Brown
  fullname: Brown, K.M.
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 4
  givenname: J.P.
  surname: Lynch
  fullname: Lynch, J.P.
  email: jpl4@psu.edu
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
BookMark eNqFkD1PwzAQhi1UJNrCD2DLyJJwjlPbFRISqviSCiwwW45zKa7SuNguFfx6XJWJoSx3y_vcxzMig971SMg5hYIC5ZfLojW-KIGWBUwLoHBEhlSKMudyUg7IEJiQeVVO4YSMQlgCAOeUD8n1k7bfmHnnYrbwbhvfM90vOgxZjcatMAsRcY0-2_RNqp3bZs-ZcX1jo3V9OCXHre4Cnv32MXm7u32dPeTzl_vH2c08N2lnzDkKBoZRViNtRD0RE8o01mBka6DSjTCaS9ZyAQ1jupKNFLxkdSlalu6Gmo3JxX7u2ruPDYaoVjYY7Drdo9sERScAQlZlJf-PsqRESkFFiop91HgXgsdWGRv17rHote0UBbWTq5YqyVU7uQqmKslNJP1Drr1daf91kLnaM5hEfVr0KhiLvcHGejRRNc4eoH8AhxKSzA
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129578
crossref_primary_10_1016_j_jaridenv_2019_104046
crossref_primary_10_1007_s11104_015_2462_0
crossref_primary_10_31545_intagr_143121
crossref_primary_10_1016_j_heliyon_2025_e42340
crossref_primary_10_1007_s11104_015_2413_9
crossref_primary_10_1016_j_dib_2020_105561
crossref_primary_10_1111_1442_1984_12410
crossref_primary_10_1016_j_agwat_2021_107392
crossref_primary_10_1093_jxb_erab406
crossref_primary_10_1093_jxb_ery252
crossref_primary_10_1016_j_agwat_2023_108487
crossref_primary_10_1093_jpe_rty015
crossref_primary_10_1007_s12298_021_01113_z
crossref_primary_10_1007_s11104_015_2533_2
crossref_primary_10_1007_s44372_024_00006_1
crossref_primary_10_1007_s00425_024_04424_z
crossref_primary_10_1111_tpj_15560
crossref_primary_10_1111_nph_17572
crossref_primary_10_1007_s11104_014_2307_2
crossref_primary_10_34133_2020_3252703
crossref_primary_10_3390_agronomy14092018
crossref_primary_10_1016_j_gene_2024_148163
crossref_primary_10_1093_pcp_pcy141
crossref_primary_10_1002_jsfa_11892
crossref_primary_10_1016_j_fcr_2020_107872
crossref_primary_10_3389_fpls_2017_01709
crossref_primary_10_1007_s11104_013_1997_1
crossref_primary_10_1111_tpj_15774
crossref_primary_10_1016_j_fcr_2016_04_008
crossref_primary_10_1093_insilicoplants_diz012
crossref_primary_10_1080_15427528_2016_1258603
crossref_primary_10_1270_jsbbs_65_111
crossref_primary_10_1007_s40415_024_00991_3
crossref_primary_10_1007_s11269_015_0973_3
crossref_primary_10_1093_jxb_erae009
crossref_primary_10_1093_jxb_eraa324
crossref_primary_10_1371_journal_pone_0217571
crossref_primary_10_1525_elementa_287
crossref_primary_10_1016_j_fcr_2014_05_009
crossref_primary_10_1007_s11104_022_05331_6
crossref_primary_10_3198_jpr2014_09_0063crmp
crossref_primary_10_1093_jxb_ery048
crossref_primary_10_1094_PBIOMES_12_18_0062_R
crossref_primary_10_1101_cshperspect_a040014
crossref_primary_10_3389_fpls_2017_00436
crossref_primary_10_1111_ppl_14207
crossref_primary_10_1016_j_agwat_2024_108722
crossref_primary_10_3390_agronomy10101606
crossref_primary_10_1016_j_fcr_2023_108878
crossref_primary_10_1002_csc2_20237
crossref_primary_10_1007_s13205_021_02727_6
crossref_primary_10_1016_j_cj_2019_12_006
crossref_primary_10_1007_s11104_024_06903_4
crossref_primary_10_3390_plants10040764
crossref_primary_10_1093_aob_mcw112
crossref_primary_10_1186_s13007_018_0316_5
crossref_primary_10_1016_j_jia_2023_04_022
crossref_primary_10_1038_srep42664
crossref_primary_10_1016_j_scienta_2017_01_019
crossref_primary_10_2134_agronj2018_08_0508
crossref_primary_10_1007_s11540_024_09718_z
crossref_primary_10_1002_pei3_10057
crossref_primary_10_1016_j_agwat_2023_108570
crossref_primary_10_1093_aob_mcy092
crossref_primary_10_3390_ijms24065290
crossref_primary_10_1038_s41477_022_01274_z
crossref_primary_10_1038_srep37649
crossref_primary_10_3389_fpls_2024_1358163
crossref_primary_10_1016_S2095_3119_21_63700_0
crossref_primary_10_1016_j_scienta_2018_11_082
crossref_primary_10_1111_pce_15268
crossref_primary_10_1016_j_eja_2024_127298
crossref_primary_10_1111_jac_12525
crossref_primary_10_1002_jsfa_11461
crossref_primary_10_1016_j_fcr_2025_109786
crossref_primary_10_1007_s11104_014_2249_8
crossref_primary_10_1111_pce_14290
crossref_primary_10_1007_s13593_017_0457_3
crossref_primary_10_1007_s11104_024_07139_y
crossref_primary_10_1007_s10681_019_2472_8
crossref_primary_10_1093_plphys_kiae495
crossref_primary_10_1042_BCJ20220245
crossref_primary_10_1038_s41598_021_88588_8
crossref_primary_10_3390_genes13020181
crossref_primary_10_1080_15226514_2018_1523869
crossref_primary_10_1093_aob_mcab074
crossref_primary_10_1016_j_fcr_2025_109774
crossref_primary_10_1002_csc2_20241
crossref_primary_10_1021_acs_jafc_9b02491
crossref_primary_10_1111_nph_15738
crossref_primary_10_1007_s11104_023_06301_2
crossref_primary_10_1038_s41598_018_20361_w
crossref_primary_10_1093_jxb_eraa033
crossref_primary_10_34133_2021_6953197
crossref_primary_10_1007_s11104_017_3533_1
crossref_primary_10_1016_j_fcr_2019_107562
crossref_primary_10_1270_jsbbs_22010
crossref_primary_10_1111_sum_70026
crossref_primary_10_5010_JPB_2016_43_4_444
crossref_primary_10_3389_fpls_2021_769748
crossref_primary_10_12688_f1000research_140649_1
crossref_primary_10_4141_cjps_2014_026
crossref_primary_10_1111_ppl_13313
crossref_primary_10_1104_pp_16_00705
crossref_primary_10_2135_cropsci2016_02_0116
crossref_primary_10_7717_peerj_10291
crossref_primary_10_1094_PBIOMES_3_2
crossref_primary_10_1007_s11356_022_20432_6
crossref_primary_10_1016_j_fcr_2021_108142
crossref_primary_10_1007_s10681_015_1625_7
crossref_primary_10_1111_eea_12748
crossref_primary_10_1071_FP15162
crossref_primary_10_1007_s11104_023_06322_x
crossref_primary_10_1002_aps3_1238
crossref_primary_10_1016_j_fcr_2013_12_008
crossref_primary_10_1016_j_agwat_2018_09_010
crossref_primary_10_1007_s11104_015_2379_7
crossref_primary_10_1016_j_cj_2020_09_011
crossref_primary_10_1111_pce_14135
crossref_primary_10_3389_fpls_2018_00229
crossref_primary_10_1007_s00425_014_2150_y
crossref_primary_10_1111_pce_15462
crossref_primary_10_1146_annurev_arplant_042916_041124
crossref_primary_10_3389_fpls_2020_00546
crossref_primary_10_1093_jxb_eraa165
crossref_primary_10_1186_s12870_021_03127_x
crossref_primary_10_2134_agronj2017_02_0064
crossref_primary_10_1093_jxb_erv127
crossref_primary_10_1093_jxb_erv241
crossref_primary_10_1093_jxb_eraa049
crossref_primary_10_1111_nph_18489
crossref_primary_10_1093_jxb_erv007
crossref_primary_10_1016_S2095_3119_17_61709_X
crossref_primary_10_1007_s42106_022_00225_0
crossref_primary_10_1186_s12284_020_00404_5
crossref_primary_10_1016_j_fcr_2016_10_005
crossref_primary_10_1016_j_ecoleng_2017_06_019
crossref_primary_10_3390_ijms22189826
crossref_primary_10_3390_plants11111417
crossref_primary_10_34133_2020_3074916
crossref_primary_10_1093_jxb_erz293
crossref_primary_10_1186_s12284_015_0049_2
crossref_primary_10_1016_j_fcr_2023_109136
crossref_primary_10_2134_agronj2016_09_0507
crossref_primary_10_3390_agriculture12020209
crossref_primary_10_3390_microorganisms11112761
crossref_primary_10_1093_aob_mcx157
crossref_primary_10_1038_s41598_024_53798_3
crossref_primary_10_1111_pbr_13049
crossref_primary_10_1016_j_eja_2022_126461
crossref_primary_10_3390_agronomy10030324
crossref_primary_10_1016_j_pbi_2014_12_004
crossref_primary_10_1007_s11427_022_2178_7
crossref_primary_10_1007_s00122_024_04606_z
crossref_primary_10_1016_j_jplph_2020_153281
crossref_primary_10_1111_pce_14247
crossref_primary_10_3389_fpls_2020_01289
crossref_primary_10_1007_s11738_014_1609_6
crossref_primary_10_1017_S1742170517000163
crossref_primary_10_1093_jxb_erv074
crossref_primary_10_1007_s10705_019_10016_1
crossref_primary_10_1093_jxb_erw243
crossref_primary_10_1016_j_geoderma_2024_117061
crossref_primary_10_1007_s11104_018_3888_y
crossref_primary_10_1186_s12870_025_06120_w
crossref_primary_10_1002_agj2_20210
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_1111_pbr_12777
crossref_primary_10_1016_j_rhisph_2023_100772
crossref_primary_10_1002_pld3_310
crossref_primary_10_1016_j_fcr_2018_02_009
crossref_primary_10_1016_j_fcr_2023_109109
crossref_primary_10_3390_cells9040916
crossref_primary_10_1016_j_fcr_2020_108013
crossref_primary_10_1016_j_fcr_2023_109101
crossref_primary_10_1111_jipb_12384
crossref_primary_10_1371_journal_pone_0222788
crossref_primary_10_1002_csc2_20635
crossref_primary_10_1093_jxb_erw133
crossref_primary_10_3389_fpls_2023_1145389
crossref_primary_10_1007_s00425_024_04408_z
crossref_primary_10_1016_j_tplants_2021_03_011
crossref_primary_10_1002_jpln_201800560
crossref_primary_10_1093_jxb_eraa084
crossref_primary_10_1016_j_eja_2019_01_008
crossref_primary_10_1016_S2095_3119_20_63598_5
crossref_primary_10_1093_aob_mcs293
crossref_primary_10_1016_j_cub_2017_06_043
crossref_primary_10_3390_agronomy14030409
crossref_primary_10_1626_jcs_86_151
crossref_primary_10_3390_stresses3010011
crossref_primary_10_1104_pp_114_245423
crossref_primary_10_3389_fpls_2022_928229
crossref_primary_10_1007_s42729_022_00846_4
Cites_doi 10.2135/cropsci2008.03.0152
10.1104/pp.111.175414
10.1007/s11104-004-1096-4
10.1093/jxb/erh276
10.1007/BF00008078
10.1111/j.1469-8137.2006.01787.x
10.1111/j.0269-8463.2004.00827.x
10.1093/jxb/erp265
10.1007/s11104-010-0675-9
10.1071/FP03255
10.1626/jcs.60.543
10.1016/0098-8472(93)90062-K
10.1007/s11104-010-0343-0
10.1007/BF00008076
10.1104/pp.111.175489
10.1126/science.1174320
10.1007/s10681-008-9833-z
10.1071/FP05005
10.1023/A:1010381919003
10.1890/10-1086.1
10.1023/B:BIOG.0000049342.08183.90
10.1104/pp.109.1.7
10.1111/j.1365-3040.2011.02409.x
10.1002/wsbm.87
10.1016/S1369-5266(03)00035-9
10.1071/FP09184
10.1111/j.1469-8137.1996.tb01847.x
10.1046/j.1365-3040.2003.01015.x
10.1111/j.1399-3054.2010.01439.x
10.1071/FP03088
10.1007/s11104-009-9984-2
10.1007/s12665-010-0725-x
10.1146/annurev.arplant.59.032607.092819
10.1007/s11104-009-9898-z
10.1626/pps.3.281
10.1016/0167-1987(85)90004-2
10.1007/s11427-010-4097-y
10.1007/s11104-010-0623-8
10.1093/aob/mch056
10.1111/j.1475-2743.2007.00105.x
10.1016/j.agwat.2008.05.001
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
7ST
C1K
SOI
DOI 10.1016/j.fcr.2012.09.010
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6852
EndPage 31
ExternalDocumentID 10_1016_j_fcr_2012_09_010
S0378429012002961
GeographicLocations United States
South Africa
USA
GeographicLocations_xml – name: South Africa
– name: United States
– name: USA
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPCBC
SSA
SSZ
T5K
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
7ST
C1K
EFKBS
SOI
ID FETCH-LOGICAL-c429t-6e730c313be1d7b57513aeb0c8fc04ad7ca683f670d33a48d87623b27f33780b3
IEDL.DBID .~1
ISSN 0378-4290
IngestDate Tue Aug 05 11:14:34 EDT 2025
Thu Jul 10 20:09:47 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Tue Jul 01 01:32:24 EDT 2025
Fri Feb 23 02:21:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BB
D95
GDD
SPAD
Root architecture
QTL
CN
K
BN
Crown root
Nitrogen
N
P
SD
DAP
GY
BW
AMMI
Brace root
PHT
CA
Zea mays L
BA
CB
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-6e730c313be1d7b57513aeb0c8fc04ad7ca683f670d33a48d87623b27f33780b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1368588717
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_1500784248
proquest_miscellaneous_1368588717
crossref_citationtrail_10_1016_j_fcr_2012_09_010
crossref_primary_10_1016_j_fcr_2012_09_010
elsevier_sciencedirect_doi_10_1016_j_fcr_2012_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2013
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationTitle Field crops research
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hund, Trachsel, Stamp (bib0075) 2009; 325
Nakamoto, Shimoda, Matsuzaki (bib0160) 1991; 60
Mi, Chen, Wu, Lai, Yuan, Zhang (bib0145) 2010; 53
Zhu, Kaeppler, Brown, Lynch (bib0235) 2005; 32
Abe, Morita (bib0005) 1994; 165
Nagel, Kastenholz, Jahnke, Van Dusschoten, Aach, Muhlich, Truhn, Scharr, Terjung, Walter, Schurr (bib0155) 2009; 36
Gaudin, McClymont, Holmes, Lyons, Raizada (bib0050) 2011; 34
Dunbabin, Rengel, Diggle (bib0035) 2004; 18
Bates, D., Sarkar, D., 2007. Linear mixed effect models using S4 classes.
Lynch (bib0110) 1995; 109
Hu, Li, Chen, Zhanq, Edis (bib0065) 2008; 95
Thorup-Kristensen, Cortasa, Loges (bib0205) 2009; 322
Hochholdinger, Woll, Sauer, Dembinsky (bib0060) 2004; 93
Liao, Rubio, Yan, Cao, Brown, Lynch (bib0095) 2001; 232
Oyanagi (bib0175) 1994; 165
Araki, Hirayama, Hirasawa, Iijima (bib0010) 2000; 3
Lopez-Bucio, Cruz-Ramirez, Herrera-Estrella (bib0105) 2003; 6
Mishima, Takada, Kitagawa (bib0150) 2011; 63
Bonser, Lynch, Snapp (bib0020) 1996; 132
Sharp, Poroyko, Hejlek, Spollen, Springer, Bohnert, Nguyen (bib0195) 2004; 5
LaMotte, Pickard (bib0090) 2004; 31
Hammer, Dong, McLean, Doherty, Messina, Schusler, Zinselmeier, Paszkiewicz, Cooper (bib0055) 2009; 49
Trachsel, Kaeppler, Brown, Lynch (bib0210) 2011; 341
Forde (bib0045) 2009; 60
Vidal, Tamayo, Gutierrez (bib0220) 2010; 2
Lynch, Ho (bib0125) 2005; 269
McMullen, Kresovich, Villeda, Bradbury, Li, Sun, Flint-Garcia, Thornsberry, Acharya, Bottoms, Brown, Browne, Eller, Guill, Harjes, Kroon, Lepak, Mitchell, Peterson, Pressoir, Romero, Rosas, Salvo, Yates, Hanson, Jones, Smith, Glaubitz, Goodman, Ware, Holland, Buckler (bib0130) 2009; 325
Trachsel, Stamp, Hund (bib0215) 2010; 55
Norton, Price (bib0165) 2009; 166
Schiffers, Tielborger, Tietjen, Jeltsch (bib0190) 2011; 92
Kristensen, Thorup-Kristensen (bib0085) 2007; 23
de Mendiburu, F., 2010. Statistical Procedures for Agricultural Research.
Oyanagi, Nakamoto, Morita (bib0170) 1993; 33
Dunbabin, Diggle, Rengel (bib0030) 2003; 26
Walter, Silk, Schurr (bib0225) 2009; 60
Singh, van Oosterom, Jordan, Messina, Cooper, Hammer (bib0200) 2010; 333
Postma, Lynch (bib0180) 2011; 156
Wolverton, Paya, Toska (bib0230) 2011; 141
Finch-Savage, Leubner-Metzger (bib0040) 2006; 171
Liao, Yan, Rubio, Beebe, Blair, Lynch (bib0100) 2004; 31
Kano, Inukai, Kitano, Yamauchi (bib0080) 2011; 342
McIsaac, Hu (bib0140) 2004; 70
Raun, Johnson (bib0185) 1999; 91
Chaudhary, Gajri, Prihar, Khera (bib0025) 1985; 6
Lynch (bib0115) 2009
Lynch (bib0120) 2011; 156
Kano (10.1016/j.fcr.2012.09.010_bib0080) 2011; 342
Chaudhary (10.1016/j.fcr.2012.09.010_bib0025) 1985; 6
Sharp (10.1016/j.fcr.2012.09.010_bib0195) 2004; 5
Thorup-Kristensen (10.1016/j.fcr.2012.09.010_bib0205) 2009; 322
10.1016/j.fcr.2012.09.010_bib0015
Trachsel (10.1016/j.fcr.2012.09.010_bib0215) 2010; 55
Araki (10.1016/j.fcr.2012.09.010_bib0010) 2000; 3
Lynch (10.1016/j.fcr.2012.09.010_bib0120) 2011; 156
Hochholdinger (10.1016/j.fcr.2012.09.010_bib0060) 2004; 93
LaMotte (10.1016/j.fcr.2012.09.010_bib0090) 2004; 31
Liao (10.1016/j.fcr.2012.09.010_bib0095) 2001; 232
Walter (10.1016/j.fcr.2012.09.010_bib0225) 2009; 60
Mi (10.1016/j.fcr.2012.09.010_bib0145) 2010; 53
Nagel (10.1016/j.fcr.2012.09.010_bib0155) 2009; 36
Forde (10.1016/j.fcr.2012.09.010_bib0045) 2009; 60
Gaudin (10.1016/j.fcr.2012.09.010_bib0050) 2011; 34
Bonser (10.1016/j.fcr.2012.09.010_bib0020) 1996; 132
Dunbabin (10.1016/j.fcr.2012.09.010_bib0035) 2004; 18
Schiffers (10.1016/j.fcr.2012.09.010_bib0190) 2011; 92
Singh (10.1016/j.fcr.2012.09.010_bib0200) 2010; 333
Wolverton (10.1016/j.fcr.2012.09.010_bib0230) 2011; 141
Liao (10.1016/j.fcr.2012.09.010_bib0100) 2004; 31
Dunbabin (10.1016/j.fcr.2012.09.010_bib0030) 2003; 26
Lynch (10.1016/j.fcr.2012.09.010_bib0110) 1995; 109
Oyanagi (10.1016/j.fcr.2012.09.010_bib0175) 1994; 165
Nakamoto (10.1016/j.fcr.2012.09.010_bib0160) 1991; 60
Vidal (10.1016/j.fcr.2012.09.010_bib0220) 2010; 2
Lynch (10.1016/j.fcr.2012.09.010_bib0125) 2005; 269
Raun (10.1016/j.fcr.2012.09.010_bib0185) 1999; 91
Lynch (10.1016/j.fcr.2012.09.010_bib0115) 2009
Lopez-Bucio (10.1016/j.fcr.2012.09.010_bib0105) 2003; 6
Zhu (10.1016/j.fcr.2012.09.010_bib0235) 2005; 32
Abe (10.1016/j.fcr.2012.09.010_bib0005) 1994; 165
Kristensen (10.1016/j.fcr.2012.09.010_bib0085) 2007; 23
Trachsel (10.1016/j.fcr.2012.09.010_bib0210) 2011; 341
McMullen (10.1016/j.fcr.2012.09.010_bib0130) 2009; 325
Hammer (10.1016/j.fcr.2012.09.010_bib0055) 2009; 49
10.1016/j.fcr.2012.09.010_bib0135
Finch-Savage (10.1016/j.fcr.2012.09.010_bib0040) 2006; 171
Oyanagi (10.1016/j.fcr.2012.09.010_bib0170) 1993; 33
Hu (10.1016/j.fcr.2012.09.010_bib0065) 2008; 95
Hund (10.1016/j.fcr.2012.09.010_bib0075) 2009; 325
Mishima (10.1016/j.fcr.2012.09.010_bib0150) 2011; 63
Norton (10.1016/j.fcr.2012.09.010_bib0165) 2009; 166
Postma (10.1016/j.fcr.2012.09.010_bib0180) 2011; 156
McIsaac (10.1016/j.fcr.2012.09.010_bib0140) 2004; 70
References_xml – volume: 171
  start-page: 501
  year: 2006
  end-page: 523
  ident: bib0040
  article-title: Seed dormancy and the control of germination
  publication-title: New Phytol.
– volume: 232
  start-page: 69
  year: 2001
  end-page: 79
  ident: bib0095
  article-title: Effect of phosphorus availability on basal root shallowness in common bean
  publication-title: Plant Soil
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  ident: bib0125
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant Soil
– volume: 91
  start-page: 357
  year: 1999
  end-page: 363
  ident: bib0185
  article-title: Improving nitrogen use efficiency for cereal production
  publication-title: Agric. J.
– reference: de Mendiburu, F., 2010. Statistical Procedures for Agricultural Research.
– volume: 333
  start-page: 287
  year: 2010
  end-page: 299
  ident: bib0200
  article-title: Morphological and architectural development of root systems in sorghum and maize
  publication-title: Plant Soil
– volume: 6
  start-page: 280
  year: 2003
  end-page: 287
  ident: bib0105
  article-title: The role of nutrient availability in regulating root architecture
  publication-title: Curr. Opinion Plant Biol.
– volume: 33
  start-page: 141
  year: 1993
  end-page: 158
  ident: bib0170
  article-title: The gravitropic response of roots and the shaping of the root system in cereal plants
  publication-title: Environ. Exp. Bot.
– volume: 55
  start-page: 249
  year: 2010
  end-page: 260
  ident: bib0215
  article-title: Effect of high temperatures, drought and aluminum toxicity on root growth of tropical maize (
  publication-title: Maydica
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  ident: bib0210
  article-title: : high throughput phenotyping of maize (
  publication-title: Plant Soil
– volume: 60
  start-page: 3989
  year: 2009
  end-page: 4002
  ident: bib0045
  article-title: Is it good noise? The role of developmental instability in the shaping of a root system
  publication-title: J. Exp. Bot.
– volume: 95
  start-page: 1180
  year: 2008
  end-page: 1188
  ident: bib0065
  article-title: Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China
  publication-title: Agric. Water Manag.
– volume: 2
  start-page: 683
  year: 2010
  end-page: 693
  ident: bib0220
  article-title: Gene networks for nitrogen sensing, signaling, and response in
  publication-title: Wiley Interdisciplinary Rev. -Syst. Biol. Med.
– start-page: 55467
  year: 2009
  ident: bib0115
  article-title: Steep, cheap, and deep: an ideotype for efficient acquisition of water and nitrate by maize root systems
  publication-title: 2009 Annual Meeting of the ASA, CSSA, SSSA, abstract
– volume: 63
  start-page: 571
  year: 2011
  end-page: 580
  ident: bib0150
  article-title: Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management
  publication-title: Environ. Earth Sci.
– volume: 53
  start-page: 1369
  year: 2010
  end-page: 1373
  ident: bib0145
  article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems
  publication-title: Sci. China-Life Sci.
– volume: 36
  start-page: 947
  year: 2009
  end-page: 959
  ident: bib0155
  article-title: Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping
  publication-title: Funct. Plant Biol.
– volume: 165
  start-page: 323
  year: 1994
  end-page: 326
  ident: bib0175
  article-title: Gravitropic response growth angle and the vertical distribution of roots of wheat (
  publication-title: Plant Soil
– volume: 93
  start-page: 359
  year: 2004
  end-page: 368
  ident: bib0060
  article-title: Genetic dissection of root formation in maize (
  publication-title: Ann. Bot.
– volume: 60
  start-page: 279
  year: 2009
  end-page: 304
  ident: bib0225
  article-title: Environmental effects on spatial and temporal patterns of leaf and root growth
  publication-title: Ann. Rev. Plant Biol.
– volume: 166
  start-page: 229
  year: 2009
  end-page: 237
  ident: bib0165
  article-title: Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice
  publication-title: Euphytica
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  ident: bib0120
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol.
– volume: 32
  start-page: 749
  year: 2005
  end-page: 762
  ident: bib0235
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (
  publication-title: Funct. Plant Biol.
– volume: 70
  start-page: 251
  year: 2004
  end-page: 271
  ident: bib0140
  article-title: Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage
  publication-title: Biogeochemistry
– volume: 92
  start-page: 610
  year: 2011
  end-page: 620
  ident: bib0190
  article-title: Root plasticity buffers competition among plants: theory meets experimental data
  publication-title: Ecology
– volume: 132
  start-page: 281
  year: 1996
  end-page: 288
  ident: bib0020
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in
  publication-title: New Phytol.
– volume: 165
  start-page: 333
  year: 1994
  end-page: 337
  ident: bib0005
  article-title: Growth direction of nodal roots of rice – its variation and contribution to root-system formation
  publication-title: Plant Soil
– volume: 156
  start-page: 1190
  year: 2011
  end-page: 1201
  ident: bib0180
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiol.
– volume: 31
  start-page: 93
  year: 2004
  end-page: 107
  ident: bib0090
  article-title: Control of gravitropic orientation. I. Non-vertical orientation by primary roots of maize results from decay of competence for orthogravitropic induction
  publication-title: Funct. Plant Biol.
– volume: 34
  start-page: 2122
  year: 2011
  end-page: 2137
  ident: bib0050
  article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (
  publication-title: Plant Cell Environ.
– volume: 49
  start-page: 299
  year: 2009
  end-page: 312
  ident: bib0055
  article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt?
  publication-title: Crop Sci.
– volume: 322
  start-page: 101
  year: 2009
  end-page: 114
  ident: bib0205
  article-title: Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?
  publication-title: Plant Soil
– volume: 342
  start-page: 117
  year: 2011
  end-page: 128
  ident: bib0080
  article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice
  publication-title: Plant Soil
– volume: 31
  start-page: 959
  year: 2004
  end-page: 970
  ident: bib0100
  article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean
  publication-title: Funct. Plant Biol.
– volume: 109
  start-page: 7
  year: 1995
  end-page: 13
  ident: bib0110
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol.
– volume: 5
  start-page: 2343
  year: 2004
  end-page: 2351
  ident: bib0195
  article-title: Root growth maintenance during water deficits: physiology to functional genomics
  publication-title: J. Exp. Bot.
– volume: 141
  start-page: 373
  year: 2011
  end-page: 382
  ident: bib0230
  article-title: Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant
  publication-title: Physiol. Plant.
– volume: 3
  start-page: 281
  year: 2000
  end-page: 288
  ident: bib0010
  article-title: Which roots penetrate the deepest in rice and maize root systems?
  publication-title: Plant Prod. Sci.
– reference: Bates, D., Sarkar, D., 2007. Linear mixed effect models using S4 classes.
– volume: 6
  start-page: 31
  year: 1985
  end-page: 44
  ident: bib0025
  article-title: Effect of deep tillage on soil physical properties and maize yields on coarse textured soils
  publication-title: Soil Till. Res.
– volume: 18
  start-page: 204
  year: 2004
  end-page: 211
  ident: bib0035
  article-title: Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply
  publication-title: Funct. Ecol.
– volume: 325
  start-page: 737
  year: 2009
  end-page: 740
  ident: bib0130
  article-title: Genetic properties of the maize nested association mapping population
  publication-title: Science
– volume: 60
  start-page: 543
  year: 1991
  end-page: 549
  ident: bib0160
  article-title: Elongation angle of nodal roots and its possible relation to spatial root distribution in maize and foxtail millet
  publication-title: Jpn. J. Crop Sci.
– volume: 23
  start-page: 338
  year: 2007
  end-page: 347
  ident: bib0085
  article-title: Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops
  publication-title: Soil Use Manage.
– volume: 26
  start-page: 835
  year: 2003
  end-page: 844
  ident: bib0030
  article-title: Is there an optimal root architecture for nitrate capture in leaching environments?
  publication-title: Plant Cell Environ.
– volume: 325
  start-page: 335
  year: 2009
  end-page: 349
  ident: bib0075
  article-title: Growth of axile and lateral roots of maize: I Development of a phenotyping platform
  publication-title: Plant Soil
– volume: 49
  start-page: 299
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0055
  article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt?
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2008.03.0152
– volume: 91
  start-page: 357
  year: 1999
  ident: 10.1016/j.fcr.2012.09.010_bib0185
  article-title: Improving nitrogen use efficiency for cereal production
  publication-title: Agric. J.
– volume: 156
  start-page: 1041
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0120
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175414
– volume: 269
  start-page: 45
  year: 2005
  ident: 10.1016/j.fcr.2012.09.010_bib0125
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1096-4
– volume: 5
  start-page: 2343
  year: 2004
  ident: 10.1016/j.fcr.2012.09.010_bib0195
  article-title: Root growth maintenance during water deficits: physiology to functional genomics
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh276
– volume: 165
  start-page: 333
  year: 1994
  ident: 10.1016/j.fcr.2012.09.010_bib0005
  article-title: Growth direction of nodal roots of rice – its variation and contribution to root-system formation
  publication-title: Plant Soil
  doi: 10.1007/BF00008078
– volume: 171
  start-page: 501
  year: 2006
  ident: 10.1016/j.fcr.2012.09.010_bib0040
  article-title: Seed dormancy and the control of germination
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01787.x
– ident: 10.1016/j.fcr.2012.09.010_bib0015
– volume: 18
  start-page: 204
  year: 2004
  ident: 10.1016/j.fcr.2012.09.010_bib0035
  article-title: Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply
  publication-title: Funct. Ecol.
  doi: 10.1111/j.0269-8463.2004.00827.x
– volume: 60
  start-page: 3989
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0045
  article-title: Is it good noise? The role of developmental instability in the shaping of a root system
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp265
– volume: 342
  start-page: 117
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0080
  article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0675-9
– volume: 31
  start-page: 959
  year: 2004
  ident: 10.1016/j.fcr.2012.09.010_bib0100
  article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03255
– volume: 60
  start-page: 543
  year: 1991
  ident: 10.1016/j.fcr.2012.09.010_bib0160
  article-title: Elongation angle of nodal roots and its possible relation to spatial root distribution in maize and foxtail millet
  publication-title: Jpn. J. Crop Sci.
  doi: 10.1626/jcs.60.543
– volume: 33
  start-page: 141
  year: 1993
  ident: 10.1016/j.fcr.2012.09.010_bib0170
  article-title: The gravitropic response of roots and the shaping of the root system in cereal plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/0098-8472(93)90062-K
– volume: 333
  start-page: 287
  year: 2010
  ident: 10.1016/j.fcr.2012.09.010_bib0200
  article-title: Morphological and architectural development of root systems in sorghum and maize
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0343-0
– volume: 165
  start-page: 323
  year: 1994
  ident: 10.1016/j.fcr.2012.09.010_bib0175
  article-title: Gravitropic response growth angle and the vertical distribution of roots of wheat (Triticum aestivum L.)
  publication-title: Plant Soil
  doi: 10.1007/BF00008076
– volume: 156
  start-page: 1190
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0180
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175489
– volume: 325
  start-page: 737
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0130
  article-title: Genetic properties of the maize nested association mapping population
  publication-title: Science
  doi: 10.1126/science.1174320
– volume: 166
  start-page: 229
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0165
  article-title: Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice
  publication-title: Euphytica
  doi: 10.1007/s10681-008-9833-z
– volume: 32
  start-page: 749
  year: 2005
  ident: 10.1016/j.fcr.2012.09.010_bib0235
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays)
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP05005
– volume: 232
  start-page: 69
  year: 2001
  ident: 10.1016/j.fcr.2012.09.010_bib0095
  article-title: Effect of phosphorus availability on basal root shallowness in common bean
  publication-title: Plant Soil
  doi: 10.1023/A:1010381919003
– ident: 10.1016/j.fcr.2012.09.010_bib0135
– start-page: 55467
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0115
  article-title: Steep, cheap, and deep: an ideotype for efficient acquisition of water and nitrate by maize root systems
– volume: 92
  start-page: 610
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0190
  article-title: Root plasticity buffers competition among plants: theory meets experimental data
  publication-title: Ecology
  doi: 10.1890/10-1086.1
– volume: 70
  start-page: 251
  year: 2004
  ident: 10.1016/j.fcr.2012.09.010_bib0140
  article-title: Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage
  publication-title: Biogeochemistry
  doi: 10.1023/B:BIOG.0000049342.08183.90
– volume: 109
  start-page: 7
  year: 1995
  ident: 10.1016/j.fcr.2012.09.010_bib0110
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.1.7
– volume: 34
  start-page: 2122
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0050
  article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02409.x
– volume: 2
  start-page: 683
  year: 2010
  ident: 10.1016/j.fcr.2012.09.010_bib0220
  article-title: Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana
  publication-title: Wiley Interdisciplinary Rev. -Syst. Biol. Med.
  doi: 10.1002/wsbm.87
– volume: 6
  start-page: 280
  year: 2003
  ident: 10.1016/j.fcr.2012.09.010_bib0105
  article-title: The role of nutrient availability in regulating root architecture
  publication-title: Curr. Opinion Plant Biol.
  doi: 10.1016/S1369-5266(03)00035-9
– volume: 36
  start-page: 947
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0155
  article-title: Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP09184
– volume: 132
  start-page: 281
  year: 1996
  ident: 10.1016/j.fcr.2012.09.010_bib0020
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– volume: 26
  start-page: 835
  year: 2003
  ident: 10.1016/j.fcr.2012.09.010_bib0030
  article-title: Is there an optimal root architecture for nitrate capture in leaching environments?
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2003.01015.x
– volume: 141
  start-page: 373
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0230
  article-title: Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2010.01439.x
– volume: 31
  start-page: 93
  year: 2004
  ident: 10.1016/j.fcr.2012.09.010_bib0090
  article-title: Control of gravitropic orientation. I. Non-vertical orientation by primary roots of maize results from decay of competence for orthogravitropic induction
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03088
– volume: 325
  start-page: 335
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0075
  article-title: Growth of axile and lateral roots of maize: I Development of a phenotyping platform
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9984-2
– volume: 63
  start-page: 571
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0150
  article-title: Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-010-0725-x
– volume: 60
  start-page: 279
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0225
  article-title: Environmental effects on spatial and temporal patterns of leaf and root growth
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092819
– volume: 55
  start-page: 249
  year: 2010
  ident: 10.1016/j.fcr.2012.09.010_bib0215
  article-title: Effect of high temperatures, drought and aluminum toxicity on root growth of tropical maize (Zea mays L.) seedlings
  publication-title: Maydica
– volume: 322
  start-page: 101
  year: 2009
  ident: 10.1016/j.fcr.2012.09.010_bib0205
  article-title: Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9898-z
– volume: 3
  start-page: 281
  year: 2000
  ident: 10.1016/j.fcr.2012.09.010_bib0010
  article-title: Which roots penetrate the deepest in rice and maize root systems?
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.3.281
– volume: 6
  start-page: 31
  year: 1985
  ident: 10.1016/j.fcr.2012.09.010_bib0025
  article-title: Effect of deep tillage on soil physical properties and maize yields on coarse textured soils
  publication-title: Soil Till. Res.
  doi: 10.1016/0167-1987(85)90004-2
– volume: 53
  start-page: 1369
  year: 2010
  ident: 10.1016/j.fcr.2012.09.010_bib0145
  article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems
  publication-title: Sci. China-Life Sci.
  doi: 10.1007/s11427-010-4097-y
– volume: 341
  start-page: 75
  year: 2011
  ident: 10.1016/j.fcr.2012.09.010_bib0210
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 93
  start-page: 359
  year: 2004
  ident: 10.1016/j.fcr.2012.09.010_bib0060
  article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programs
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mch056
– volume: 23
  start-page: 338
  year: 2007
  ident: 10.1016/j.fcr.2012.09.010_bib0085
  article-title: Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.2007.00105.x
– volume: 95
  start-page: 1180
  year: 2008
  ident: 10.1016/j.fcr.2012.09.010_bib0065
  article-title: Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2008.05.001
SSID ssj0006616
Score 2.504706
Snippet Root traits that increase the speed and effectiveness of subsoil foraging may enhance nitrogen acquisition in leaching environments. We investigated root depth...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Brace root
branching
corn
crops
Crown root
flowering
foraging
genetic variation
genotype
grain yield
inbred lines
Nitrogen
nitrogen fertilizers
planting
Root architecture
root crown
root growth
rooting
roots
soaking
soil
South Africa
United States
Zea mays
Zea mays L
Title Maize root growth angles become steeper under low N conditions
URI https://dx.doi.org/10.1016/j.fcr.2012.09.010
https://www.proquest.com/docview/1368588717
https://www.proquest.com/docview/1500784248
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jXvQgPnE-RgRPQl3WZG16EcZQprJddLBbSNJ0TmY3ZkXw4N_u9_WhKLKD1zbp45fke-cXQs4SaXgEtzxrZccTQZx4BilcOSgPHmvfN3lMdzAM-iNxO-6Ma6RX7YXBsspS9hcyPZfW5ZVWiWZrMZ227hkPpcA0INYZRLkLJESIs_zi47vMA_RPka8EbwlbV5nNvMYrsUgJiuHA6ILhJtq_ddMvKZ2rnustslnajLRbfNY2qbl0h2x0J8uSN8PtksuBnr47CmZwRifgWWePVKeTmXuhgN782VEYTLdwS4p7xpZ0Nn-jQwqucFxUbO2R0fXVQ6_vlUcjeBZ-IvMCByvT8jY3rh2HBpMnXDvDrEwsEzoOrQ4kT4KQxZxrIWMUetz4YcIBCGb4Pqmn89QdEOqM9WPJHOhp8JYMk4kWETwHic0CEyYNwipQlC15w_H4ipmqCsSeFOCoEEfFIgU4Nsj5V5dFQZqxqrGokFY_Rl6BUF_V7bQaFQUrAtMcOnXz1xfVzjn1wREMV7TpoG0kfCEP__f6I7Lu5wdjYDDmmNSz5as7AfMkM818_jXJWvfmrj_8BDvG4t8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqA9oFKKoKVlK7WXSiYb78ZeH6iEWlB4JBdA4rbsrtdpqtSJEiMEB_4Uf5AZP1qBqhyQuNr7sL4dz3tnAL5kyooEXwXOqU4gozQLLJVwFSg8RGrC0JY-3V4_6p7Jw_PO-QLcNXdhKK2y5v0VTy-5df2kVaPZmgyHrRMuYiUpDEh5BknUrjMrj_z1Fdpts52Dn3jIX8Nwf-_0RzeoWwsEDqcUQeSRsp1oC-vbaWwp-CCMt9ypzHFp0tiZSIksinkqhJEqJaYhbBhnAnflVuC6L-ClRHZBbRO2b__llaDAqwKkaJ7R5zWh1DKpLHNUg5T8j8k2p1u7_xeGj8RCKev238ByraSy3QqHFVjw-Vt4vTuY1oU6_Cp875nhjWeodxdsgKZ88YuZfDDyM4bHNf7jGVKPn_gpo0tqUzYaX7E-Q9s7rVLE3sHZswC2Bov5OPfrwLx1Yaq4R8UAzTPLVWZkgutQJbXIxtkG8AYU7epC5dQvY6SbjLTfGnHUhKPmiUYcN-Db3ymTqkrHvMGyQVo_IDWNUmTetM_NqWj8BSmuYnI_vpzpdlnEHy3PeM6YDiljMpTq_dO234Kl7mnvWB8f9I8-wKuw7MpBnqBNWCyml_4j6kaF_VTSIoOL5yb-ewlEHeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+root+growth+angles+become+steeper+under+low+N+conditions&rft.jtitle=Field+crops+research&rft.au=Trachsel%2C+S&rft.au=Kaeppler%2C+S+M&rft.au=Brown%2C+K+M&rft.au=Lynch%2C+J+P&rft.date=2013-01-01&rft.issn=0378-4290&rft.volume=140+p.18-31&rft.spage=18&rft.epage=31&rft_id=info:doi/10.1016%2Fj.fcr.2012.09.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon