Theory-driven design of cadmium mineralizing layered double hydroxides for environmental remediation

The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still u...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 15; no. 32; pp. 1321 - 1331
Main Authors Li, Zixian, Xu, Nuo, Ren, Jing, Hao, Haigang, Gao, Rui, Kong, Xianggui, Yan, Hong, Hua, Xiao, Peng, Yung-Kang, Ma, Shulan, O'Hare, Dermot, Zhao, Yufei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.08.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2041-6520
2041-6539
DOI10.1039/d4sc02860k

Cover

Loading…
Abstract The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca 2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd 2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g −1 ) in comparison to the corresponding pristine seven coordinated Ca-7 OH/H 2 O -LDH (191.2 mg g −1 ). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research. The environmental concern posed by toxic heavy metal pollution in soil and water has grown.
AbstractList The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g ) in comparison to the corresponding pristine seven coordinated Ca-7 -LDH (191.2 mg g ). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.
The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca 2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd 2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g −1 ) in comparison to the corresponding pristine seven coordinated Ca-7 OH/H 2 O -LDH (191.2 mg g −1 ). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research. The environmental concern posed by toxic heavy metal pollution in soil and water has grown.
The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca 2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd 2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g −1 ) in comparison to the corresponding pristine seven coordinated Ca-7 OH/H 2 O -LDH (191.2 mg g −1 ). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.
The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g-1) in comparison to the corresponding pristine seven coordinated Ca-7OH/H2O-LDH (191.2 mg g-1). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g-1) in comparison to the corresponding pristine seven coordinated Ca-7OH/H2O-LDH (191.2 mg g-1). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.
The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g−1) in comparison to the corresponding pristine seven coordinated Ca-7OH/H2O-LDH (191.2 mg g−1). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.
Author Li, Zixian
Xu, Nuo
Hua, Xiao
Peng, Yung-Kang
Ma, Shulan
Hao, Haigang
Gao, Rui
Kong, Xianggui
Zhao, Yufei
O'Hare, Dermot
Ren, Jing
Yan, Hong
AuthorAffiliation Department of Chemistry
Beijing Normal University
State Key Laboratory of Chemical Resource Engineering
Lancaster University
Inner Mongolia University
Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry
City University of Hong Kong
Beijing University of Chemical Technology
Quzhou Institute for Innovation in Resource Chemical Engineering
College of Chemistry and Chemical Engineering
University of Oxford
Chemistry Research Laboratory
AuthorAffiliation_xml – sequence: 0
  name: City University of Hong Kong
– sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Lancaster University
– sequence: 0
  name: Beijing Normal University
– sequence: 0
  name: University of Oxford
– sequence: 0
  name: State Key Laboratory of Chemical Resource Engineering
– sequence: 0
  name: Inner Mongolia University
– sequence: 0
  name: Quzhou Institute for Innovation in Resource Chemical Engineering
– sequence: 0
  name: Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry
– sequence: 0
  name: Beijing University of Chemical Technology
– sequence: 0
  name: Chemistry Research Laboratory
Author_xml – sequence: 1
  givenname: Zixian
  surname: Li
  fullname: Li, Zixian
– sequence: 2
  givenname: Nuo
  surname: Xu
  fullname: Xu, Nuo
– sequence: 3
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
– sequence: 4
  givenname: Haigang
  surname: Hao
  fullname: Hao, Haigang
– sequence: 5
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
– sequence: 6
  givenname: Xianggui
  surname: Kong
  fullname: Kong, Xianggui
– sequence: 7
  givenname: Hong
  surname: Yan
  fullname: Yan, Hong
– sequence: 8
  givenname: Xiao
  surname: Hua
  fullname: Hua, Xiao
– sequence: 9
  givenname: Yung-Kang
  surname: Peng
  fullname: Peng, Yung-Kang
– sequence: 10
  givenname: Shulan
  surname: Ma
  fullname: Ma, Shulan
– sequence: 11
  givenname: Dermot
  surname: O'Hare
  fullname: O'Hare, Dermot
– sequence: 12
  givenname: Yufei
  surname: Zhao
  fullname: Zhao, Yufei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39148794$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQhkVISdJtLrmnCHoJBaeS9WH7VMqmXzTQQ9OzkKXxrlJbSiR76fbXV5tNt0mIQEigZ955Z0Yv0b4PHhA6oeScEta8szwZUtaS_NpDRyXhtJCCNfu7e0kO0XFK1yQvxqgoqwN0yBrK66rhR8heLSHEdWGjW4HHFpJbeBw6bLQd3DTgwXmIund_nF_gXq8hgsU2TG0PeLm2Mfx2OQh3IWLwKxeDH8CPuscRBrBOjy74V-hFp_sEx_fnDP389PFq_qW4_P756_zDZWF42YyFNGBAMqKJbQlvtZai62zbEkapyZsaw0GDIUJwyrtK1rWkLZcVFaKFmrEZer_VvZnanNxkI9m6uolu0HGtgnbq8Yt3S7UIK0UpKxkrZVY4u1eI4XaCNKrBJQN9rz2EKSlGGiYauWnlDL15gl6HKfpc34bKWpWgG8HXDy3tvPybQAbebgETQ0oRuh1CidpMWF3wH_O7CX_LMHkCGzfetTiX4_rnQ063ITGZnfT_T8P-AjD8s9c
CitedBy_id crossref_primary_10_1016_j_ces_2024_120910
crossref_primary_10_1021_acsomega_4c06366
crossref_primary_10_1016_j_ces_2025_121545
crossref_primary_10_1016_j_ccr_2024_216268
Cites_doi 10.1021/jp910977a
10.1021/cm800324v
10.1021/acs.iecr.8b02246
10.1016/j.cej.2020.127178
10.1016/j.jenvman.2010.11.011
10.1039/C8GC00851E
10.1038/s41467-020-17757-6
10.1021/acscatal.7b03022
10.1016/j.cej.2020.125961
10.1038/s41467-022-28932-2
10.1016/j.cej.2022.138500
10.1002/jcc.26812
10.1039/C7CP02110K
10.1002/smm2.1199
10.1007/430_2019_47
10.1016/B978-0-12-821978-2.00076-3
10.1016/j.apcatb.2020.119740
10.1039/D0TA09029H
10.1002/adfm.202008499
10.1002/aenm.202002199
10.1039/D1CS00186H
10.1007/s12209-020-00249-5
10.1021/jacs.5b10754
10.1002/anie.200907005
10.1016/j.cej.2023.141926
10.1021/ja3010754
10.1021/jacs.3c01279
10.1016/j.jssc.2011.11.034
10.1002/adfm.202106645
10.1038/s41557-023-01339-2
10.1021/ja001533a
10.1016/0920-5861(91)80068-K
10.1016/j.cej.2020.126923
10.1016/j.ces.2023.118928
10.1016/j.ces.2023.118583
10.1002/aenm.202201497
10.1039/C6TA06404C
10.1126/science.1164271
10.1021/acs.iecr.2c03082
10.1016/j.cemconres.2004.01.003
10.1016/j.cej.2006.01.015
10.1021/acs.jpcc.3c00305
10.1002/adma.201503730
10.1126/science.1157581
10.1021/acs.est.1c04600
10.1016/j.ccr.2020.213337
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d4sc02860k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 1331
ExternalDocumentID PMC11323326
39148794
10_1039_D4SC02860K
d4sc02860k
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 22278030, 22090032, 22090030, 22288102
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c429t-6cece630a0db04baa65ffdbb0311c3111cc4eaec055414f768861b467155be833
ISSN 2041-6520
IngestDate Thu Aug 21 18:34:54 EDT 2025
Fri Jul 11 16:06:09 EDT 2025
Fri Jul 25 22:31:11 EDT 2025
Mon Jul 21 06:05:03 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 01:31:07 EDT 2025
Tue Dec 17 20:57:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-6cece630a0db04baa65ffdbb0311c3111cc4eaec055414f768861b467155be833
Notes https://doi.org/10.1039/d4sc02860k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8054-8751
0000-0002-8673-5678
0000-0001-9590-6902
0000-0002-8326-3134
0000-0003-0285-3704
0000-0002-5325-8991
OpenAccessLink http://dx.doi.org/10.1039/d4sc02860k
PMID 39148794
PQID 3092637516
PQPubID 2047492
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11323326
crossref_citationtrail_10_1039_D4SC02860K
pubmed_primary_39148794
proquest_journals_3092637516
rsc_primary_d4sc02860k
proquest_miscellaneous_3093596003
crossref_primary_10_1039_D4SC02860K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-14
PublicationDateYYYYMMDD 2024-08-14
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Yin (D4SC02860K/cit4/1) 2020; 401
Lu (D4SC02860K/cit40/1) 2022; 43
Bui (D4SC02860K/cit1/1) 2020; 11
Lefebvre (D4SC02860K/cit39/1) 2017; 19
Gebauer (D4SC02860K/cit20/1) 2008; 322
Bing (D4SC02860K/cit28/1) 2017; 8
Bruno (D4SC02860K/cit2/1) 2021; 31
Li (D4SC02860K/cit6/1) 2022; 8
Zhao (D4SC02860K/cit46/1) 2015; 27
Shimamura (D4SC02860K/cit47/1) 2012; 186
Zhao (D4SC02860K/cit16/1) 2023; 451
Zhang (D4SC02860K/cit12/1) 2021; 27
Xiong (D4SC02860K/cit51/1) 2023; 279
Wang (D4SC02860K/cit38/1) 2023; 271
Bing (D4SC02860K/cit29/1) 2018; 20
Wu (D4SC02860K/cit50/1) 2021; 55
Kong (D4SC02860K/cit15/1) 2021; 1
Xiong (D4SC02860K/cit19/1) 2023; 127
Kim (D4SC02860K/cit27/1) 2023; 18
Raiteri (D4SC02860K/cit23/1) 2010; 114
Li (D4SC02860K/cit24/1) 2022; 13
Ha (D4SC02860K/cit35/1) 2022; 12
Jalilehvand (D4SC02860K/cit33/1) 2001; 123
Kong (D4SC02860K/cit17/1) 2021; 407
Wang (D4SC02860K/cit48/1) 2012; 134
Nicholas (D4SC02860K/cit21/1) 2024; 16
Zhou (D4SC02860K/cit31/1) 2021; 50
Zhao (D4SC02860K/cit32/1) 2020; 10
Cavani (D4SC02860K/cit30/1) 1991; 11
Han (D4SC02860K/cit42/1) 2010; 49
Wang (D4SC02860K/cit37/1) 2022; 62
Lu (D4SC02860K/cit41/1) 2024
(D4SC02860K/cit25a/1) 2005
Lide (D4SC02860K/cit25b/1) 2005
Yan (D4SC02860K/cit13/1) 2019
Kutus (D4SC02860K/cit26/1) 2020; 417
Xu (D4SC02860K/cit9/1) 2023
He (D4SC02860K/cit3/1) 2021; 407
Dong (D4SC02860K/cit7/1) 2021; 9
Renaudin (D4SC02860K/cit34/1) 2004; 34
Fu (D4SC02860K/cit10/1) 2011; 92
Xu (D4SC02860K/cit43/1) 2018; 57
Ding (D4SC02860K/cit8/1) 2016; 138
Li (D4SC02860K/cit44/1) 2023; 462
Kurniawan (D4SC02860K/cit5/1) 2006; 118
Berruyer (D4SC02860K/cit36/1) 2023; 145
Sarma (D4SC02860K/cit11/1) 2016; 4
Sun (D4SC02860K/cit49/1) 2021; 284
Sideris (D4SC02860K/cit14/1) 2008; 321
Michel (D4SC02860K/cit22/1) 2008; 20
Xiong (D4SC02860K/cit45/1) 2023; 279
Chi (D4SC02860K/cit18/1) 2022; 32
References_xml – issn: 2019
  end-page: p 89-120
  publication-title: The Periodic Table II: Catalytic, Materials, Biological and Medical Applications
  doi: Yan Zhao Zhu Wei Evans Duan
– issn: 2005
  end-page: 2544
  publication-title: CRC handbook of chemistry and physics
  doi: Lide
– issn: 2005
  end-page: 2544
  publication-title: CRC Handbook of Chemistry and Physics
– issn: 2024
  end-page: p 240-264
  publication-title: Comprehensive Computational Chemistry
  doi: Lu Chen
– volume: 1
  start-page: 20210052
  year: 2021
  ident: D4SC02860K/cit15/1
  publication-title: Explor.
– volume: 114
  start-page: 5997
  year: 2010
  ident: D4SC02860K/cit23/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp910977a
– volume: 20
  start-page: 4720
  year: 2008
  ident: D4SC02860K/cit22/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm800324v
– volume: 57
  start-page: 10411
  year: 2018
  ident: D4SC02860K/cit43/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b02246
– volume: 407
  start-page: 127178
  year: 2021
  ident: D4SC02860K/cit17/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127178
– volume: 18
  start-page: e01975
  year: 2023
  ident: D4SC02860K/cit27/1
  publication-title: Case Stud. Constr. Mater.
– volume: 92
  start-page: 407
  year: 2011
  ident: D4SC02860K/cit10/1
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.11.011
– volume: 20
  start-page: 3071
  year: 2018
  ident: D4SC02860K/cit29/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC00851E
– volume: 11
  start-page: 3947
  year: 2020
  ident: D4SC02860K/cit1/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17757-6
– volume: 8
  start-page: 656
  year: 2017
  ident: D4SC02860K/cit28/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03022
– volume: 401
  start-page: 125961
  year: 2020
  ident: D4SC02860K/cit4/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125961
– volume: 13
  start-page: 1253
  year: 2022
  ident: D4SC02860K/cit24/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28932-2
– volume: 451
  start-page: 138500
  year: 2023
  ident: D4SC02860K/cit16/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138500
– volume: 43
  start-page: 539
  year: 2022
  ident: D4SC02860K/cit40/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26812
– volume: 19
  start-page: 17928
  year: 2017
  ident: D4SC02860K/cit39/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP02110K
– start-page: e1199
  issue: 4
  year: 2023
  ident: D4SC02860K/cit9/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1199
– start-page: 89
  volume-title: The Periodic Table II: Catalytic, Materials, Biological and Medical Applications
  year: 2019
  ident: D4SC02860K/cit13/1
  doi: 10.1007/430_2019_47
– start-page: 240
  volume-title: Comprehensive Computational Chemistry
  year: 2024
  ident: D4SC02860K/cit41/1
  doi: 10.1016/B978-0-12-821978-2.00076-3
– volume: 284
  start-page: 119740
  year: 2021
  ident: D4SC02860K/cit49/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119740
– volume: 8
  start-page: 484
  year: 2022
  ident: D4SC02860K/cit6/1
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 9
  start-page: 293
  year: 2021
  ident: D4SC02860K/cit7/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09029H
– volume: 31
  start-page: 2008499
  year: 2021
  ident: D4SC02860K/cit2/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008499
– volume: 10
  start-page: 2002199
  year: 2020
  ident: D4SC02860K/cit32/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002199
– volume: 50
  start-page: 8790
  year: 2021
  ident: D4SC02860K/cit31/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00186H
– volume: 27
  start-page: 394
  year: 2021
  ident: D4SC02860K/cit12/1
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-020-00249-5
– volume: 138
  start-page: 3031
  year: 2016
  ident: D4SC02860K/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10754
– volume: 49
  start-page: 2171
  year: 2010
  ident: D4SC02860K/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907005
– start-page: 2544
  volume-title: CRC Handbook of Chemistry and Physics
  year: 2005
  ident: D4SC02860K/cit25a/1
– volume: 462
  start-page: 141926
  year: 2023
  ident: D4SC02860K/cit44/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141926
– volume: 134
  start-page: 10011
  year: 2012
  ident: D4SC02860K/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3010754
– volume: 145
  start-page: 9700
  year: 2023
  ident: D4SC02860K/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01279
– volume: 186
  start-page: 116
  year: 2012
  ident: D4SC02860K/cit47/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.11.034
– volume: 32
  start-page: 2106645
  year: 2022
  ident: D4SC02860K/cit18/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106645
– volume: 16
  start-page: 36
  year: 2024
  ident: D4SC02860K/cit21/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-023-01339-2
– volume: 123
  start-page: 431
  year: 2001
  ident: D4SC02860K/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja001533a
– volume: 11
  start-page: 173
  year: 1991
  ident: D4SC02860K/cit30/1
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(91)80068-K
– volume: 407
  start-page: 126923
  year: 2021
  ident: D4SC02860K/cit3/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126923
– volume: 279
  start-page: 118928
  year: 2023
  ident: D4SC02860K/cit51/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118928
– volume: 271
  start-page: 118583
  year: 2023
  ident: D4SC02860K/cit38/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118583
– volume: 12
  start-page: 2201497
  year: 2022
  ident: D4SC02860K/cit35/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201497
– volume: 4
  start-page: 16597
  year: 2016
  ident: D4SC02860K/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06404C
– start-page: 2544
  volume-title: CRC handbook of chemistry and physics
  year: 2005
  ident: D4SC02860K/cit25b/1
– volume: 279
  start-page: 118928
  year: 2023
  ident: D4SC02860K/cit45/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118928
– volume: 322
  start-page: 1819
  year: 2008
  ident: D4SC02860K/cit20/1
  publication-title: Science
  doi: 10.1126/science.1164271
– volume: 62
  start-page: 365
  year: 2022
  ident: D4SC02860K/cit37/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c03082
– volume: 34
  start-page: 1845
  year: 2004
  ident: D4SC02860K/cit34/1
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2004.01.003
– volume: 118
  start-page: 83
  year: 2006
  ident: D4SC02860K/cit5/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.01.015
– volume: 127
  start-page: 8759
  year: 2023
  ident: D4SC02860K/cit19/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.3c00305
– volume: 27
  start-page: 7824
  year: 2015
  ident: D4SC02860K/cit46/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503730
– volume: 321
  start-page: 113
  year: 2008
  ident: D4SC02860K/cit14/1
  publication-title: Science
  doi: 10.1126/science.1157581
– volume: 55
  start-page: 15400
  year: 2021
  ident: D4SC02860K/cit50/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04600
– volume: 417
  start-page: 213337
  year: 2020
  ident: D4SC02860K/cit26/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213337
SSID ssj0000331527
Score 2.4544058
Snippet The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1321
SubjectTerms Calcium ions
Chemistry
Coordination
Density functional theory
Environmental restoration
Heavy metals
Hydroxides
Mineralization
Molecular dynamics
Molecular structure
Remediation
Soil layers
Soil pollution
Soil remediation
Soil water
Title Theory-driven design of cadmium mineralizing layered double hydroxides for environmental remediation
URI https://www.ncbi.nlm.nih.gov/pubmed/39148794
https://www.proquest.com/docview/3092637516
https://www.proquest.com/docview/3093596003
https://pubmed.ncbi.nlm.nih.gov/PMC11323326
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6ywEuiNdCYEFGcEFVwI4dtzmiAqp4XdiVKi6VX2Ejtg3qNtJ2z_xwxo7zKO1h4dCocuy0yXzxzHg83yD0UhGjpeRprJmVMdi3PFaWiXikTQIehiIic_nOX76K6Sn_OEtng8Hv3q6laq1e66u9eSX_I1VoA7m6LNl_kGx7UWiA7yBfOIKE4XhdGZerTWxWbsoaGr8Zw-8Tl2ZRVIvhovCc0sWVWw84lxtXl3NoysplS51tzKq8LGBQzfrdJbx5qn-fUdIKraEyaNgFmmQgFwJukr56awqf_RaB78VlD3uzygOvKtsQT0gLaXSnnwb9wu1UFj9kaA0LEgl3K6x1Img9byWE01ikSR1usf22mreonXjTHsDCKmc9jbpoKu3pZKdo6d4JnzDHl_qOf5uAoSTIp06tNaH8v7RduwfRR99ZNu_GHqAbCTgbpOeYe33OWKj9295Zw3PLsjfd8G3LZsdd2d11e7Bqisx4Y-bkDrodvBD8tobUXTSwy3vo5qQp_ncfmS1o4RpauMxxgBbuQwsHaOEaWriDFgZo4S1o4R60HqDTD-9PJtM4FOSINZgt61hoq61gRBKjCFdSijTPjVIgHKrhQ7XmVlpNUldcPgdPdiyoAlUMRquyY8aO0OGyXNpHCIuMmtFYE6Uo40nu6LJzpVKbGCX5OEkj9Kp5mHMd2Opd0ZTz-a7cIvSi7fur5mjZ2-u4kck8vMMXc0ayRLBRSkWEnren4Vm7sJlc2rLyfVgKjj5hEXpYi7D9GZZR8PgzHqHxlnDbDo69ffvMsjjzLO6UsoSB8xShI8BBO8DwC-3_8M_H17qtJ-hW9xIeo8P1qrJPwU5eq2cexn8AS4i-zA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory-driven+design+of+cadmium+mineralizing+layered+double+hydroxides+for+environmental+remediation&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Li%2C+Zixian&rft.au=Xu%2C+Nuo&rft.au=Ren%2C+Jing&rft.au=Hao%2C+Haigang&rft.date=2024-08-14&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=32&rft.spage=13021&rft.epage=13031&rft_id=info:doi/10.1039%2FD4SC02860K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4SC02860K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon