An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs

Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domai...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 135; no. 3; pp. 497 - 509
Main Authors Chari, Ashwin, Golas, Monika M., Klingenhäger, Michael, Neuenkirchen, Nils, Sander, Bjoern, Englbrecht, Clemens, Sickmann, Albert, Stark, Holger, Fischer, Utz
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 31.10.2008
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2008.09.020

Cover

Loading…
Abstract Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.
AbstractList Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.
Author Englbrecht, Clemens
Chari, Ashwin
Klingenhäger, Michael
Stark, Holger
Fischer, Utz
Neuenkirchen, Nils
Golas, Monika M.
Sander, Bjoern
Sickmann, Albert
Author_xml – sequence: 1
  givenname: Ashwin
  surname: Chari
  fullname: Chari, Ashwin
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
– sequence: 2
  givenname: Monika M.
  surname: Golas
  fullname: Golas, Monika M.
  organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany
– sequence: 3
  givenname: Michael
  surname: Klingenhäger
  fullname: Klingenhäger, Michael
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
– sequence: 4
  givenname: Nils
  surname: Neuenkirchen
  fullname: Neuenkirchen, Nils
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
– sequence: 5
  givenname: Bjoern
  surname: Sander
  fullname: Sander, Bjoern
  organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany
– sequence: 6
  givenname: Clemens
  surname: Englbrecht
  fullname: Englbrecht, Clemens
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
– sequence: 7
  givenname: Albert
  surname: Sickmann
  fullname: Sickmann, Albert
  organization: Rudolf Virchow Centre for Experimental Medicine, Versbacher Str. 9, D-97078 Würzburg, Germany
– sequence: 8
  givenname: Holger
  surname: Stark
  fullname: Stark, Holger
  organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany
– sequence: 9
  givenname: Utz
  surname: Fischer
  fullname: Fischer, Utz
  email: utz.fischer@biozentrum.uni-wuerzburg.de
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18984161$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFF-CAfOKWYDuOE0tcVisoSG2puiCOluOMtV45cbC90L59E20RUg_lNIf5vhnp_8_QyRhGQOgtJSUlVHzYlwa8LxkhbUlkSRh5gVaUyKbgtGEnaEWIZEUrGn6KzlLakxms6_oVOqWtbDkVdIV-rke8TgmGzt_jzU5PEOcneBO8112IOkPCf1ze4bwDvL26njfD5OEO54AvYISFwNvJOwMhhUF7vB1vr2_Sa_TSap_gzeM8Rz8-f_q--VJcfrv4ullfFoYzmQvBGakrzStr-pa3wDSTYIW1wjCtLZfcCCo5tU1fV12lpe2MaITutNYLVZ2j98e7Uwy_DpCyGlxaYtEjhENSQjY1YXX9X5DKqmKk4TP47hE8dAP0aopu0PFe_c1sBtgRMDGkFMH-Q4hailF7tRxWSzGKSDUXM0vtE8m4rLMLY47a-efVj0cV5hx_O4gqGQejgd5FMFn1wT2nPwCOlqjM
CitedBy_id crossref_primary_10_1101_gad_291377_116
crossref_primary_10_1002_wrna_76
crossref_primary_10_1074_mcp_M110_001446
crossref_primary_10_1093_hmg_ddaa229
crossref_primary_10_1007_s00018_022_04522_9
crossref_primary_10_1007_s10048_010_0239_4
crossref_primary_10_1107_S0907444910009005
crossref_primary_10_1016_j_ceb_2009_02_004
crossref_primary_10_1007_s00412_017_0637_6
crossref_primary_10_1038_s41467_021_21529_1
crossref_primary_10_1091_mbc_E14_06_1151
crossref_primary_10_1016_j_febslet_2015_04_052
crossref_primary_10_1093_nar_gkx031
crossref_primary_10_1128_MCB_00752_09
crossref_primary_10_3389_frnar_2024_1448194
crossref_primary_10_1016_j_freeradbiomed_2023_02_025
crossref_primary_10_1016_j_mcn_2014_12_005
crossref_primary_10_1038_emboj_2010_70
crossref_primary_10_1074_jbc_M110_190587
crossref_primary_10_3390_ijms242216172
crossref_primary_10_1098_rstb_2013_0091
crossref_primary_10_1002_mrd_22024
crossref_primary_10_1016_j_ejcb_2014_01_006
crossref_primary_10_1093_jxb_erab234
crossref_primary_10_1002_wrna_87
crossref_primary_10_1016_j_jbc_2025_108165
crossref_primary_10_1261_rna_2164210
crossref_primary_10_15252_embj_201490350
crossref_primary_10_1073_pnas_1522458113
crossref_primary_10_1074_jbc_M110_148486
crossref_primary_10_1016_j_molcel_2012_12_009
crossref_primary_10_3389_fonc_2020_594224
crossref_primary_10_1016_j_ygeno_2021_05_039
crossref_primary_10_3389_fmolb_2017_00041
crossref_primary_10_1002_bies_202100092
crossref_primary_10_1074_jbc_M110_153429
crossref_primary_10_1242_bio_032409
crossref_primary_10_1016_j_virol_2015_02_008
crossref_primary_10_1093_nar_gkae622
crossref_primary_10_1105_tpc_110_081356
crossref_primary_10_3389_fgene_2015_00091
crossref_primary_10_1128_MCB_01407_13
crossref_primary_10_1016_j_molcel_2010_03_014
crossref_primary_10_1242_dev_140715
crossref_primary_10_1016_j_celrep_2021_109277
crossref_primary_10_3389_fonc_2020_00508
crossref_primary_10_1016_j_cell_2011_06_043
crossref_primary_10_1093_nar_gkab158
crossref_primary_10_1093_nar_gkaa743
crossref_primary_10_1107_S1399004715014832
crossref_primary_10_1038_nrm3742
crossref_primary_10_3233_RNN_170780
crossref_primary_10_1021_acs_jproteome_7b00335
crossref_primary_10_3390_ijms21113868
crossref_primary_10_1016_j_neuroscience_2022_03_013
crossref_primary_10_3390_app11083349
crossref_primary_10_1016_j_semcdb_2014_04_026
crossref_primary_10_1093_hmg_ddq425
crossref_primary_10_1093_nar_gkaa354
crossref_primary_10_1007_s12032_022_01726_8
crossref_primary_10_1038_s41580_024_00818_9
crossref_primary_10_1007_s00018_015_1847_9
crossref_primary_10_1093_nar_gkv809
crossref_primary_10_1093_hmg_ddu734
crossref_primary_10_1038_s41565_023_01585_y
crossref_primary_10_1242_dmm_041251
crossref_primary_10_1371_journal_pgen_1008460
crossref_primary_10_23868_gc340771
crossref_primary_10_3390_ijms160922456
crossref_primary_10_1038_nrneurol_2015_77
crossref_primary_10_1093_nar_gks1224
crossref_primary_10_3390_genes15020235
crossref_primary_10_1038_nsmb_3167
crossref_primary_10_1016_j_celrep_2016_08_047
crossref_primary_10_1093_nar_gkab452
crossref_primary_10_1042_BST20180016
crossref_primary_10_1186_1475_2875_12_333
crossref_primary_10_1093_nar_gky070
crossref_primary_10_3389_fgene_2022_813285
crossref_primary_10_1016_j_brainres_2012_02_051
crossref_primary_10_1016_j_isci_2019_100750
crossref_primary_10_1101_gad_293084_116
crossref_primary_10_1007_s40610_015_0003_5
crossref_primary_10_1016_j_molp_2016_10_010
crossref_primary_10_1016_j_celrep_2018_07_013
crossref_primary_10_3390_ijms18020290
crossref_primary_10_3390_ijms242115552
crossref_primary_10_1371_journal_pone_0108826
crossref_primary_10_1016_j_isci_2023_107604
crossref_primary_10_1371_journal_pgen_1006660
crossref_primary_10_1080_15476286_2016_1236168
crossref_primary_10_1038_nrn2670
crossref_primary_10_1038_s41467_021_23934_y
crossref_primary_10_1128_MCB_06077_11
crossref_primary_10_1083_jcb_201611108
crossref_primary_10_1261_rna_047373_114
crossref_primary_10_3389_fcell_2021_639904
crossref_primary_10_1073_pnas_1009669107
crossref_primary_10_1038_emboj_2009_365
crossref_primary_10_1146_annurev_cancerbio_050216_034422
crossref_primary_10_1128_EC_00113_10
crossref_primary_10_1080_15476286_2021_1872963
crossref_primary_10_1093_nar_gkz1135
crossref_primary_10_3390_cells9071677
crossref_primary_10_1074_jbc_M115_667279
crossref_primary_10_3390_ijms22168494
crossref_primary_10_1074_jbc_M109_015578
crossref_primary_10_1038_nsmb_2185
crossref_primary_10_1042_BJ20120241
crossref_primary_10_1128_MCB_01009_15
crossref_primary_10_1146_annurev_pathol_011110_130307
crossref_primary_10_1002_bies_201000088
crossref_primary_10_1261_rna_079709_123
crossref_primary_10_1016_j_isci_2019_100809
crossref_primary_10_1261_rna_1712910
crossref_primary_10_1371_journal_pone_0178519
crossref_primary_10_1016_j_oor_2023_100030
crossref_primary_10_1002_wrna_1257
crossref_primary_10_1152_physiolgenomics_00160_2020
crossref_primary_10_1098_rstb_2011_0398
crossref_primary_10_1093_genetics_iyae223
crossref_primary_10_1038_cr_2010_56
crossref_primary_10_1111_nph_18746
crossref_primary_10_7554_eLife_72867
crossref_primary_10_1038_nmeth_3493
crossref_primary_10_1016_j_molp_2016_10_006
crossref_primary_10_1101_gad_1899210
crossref_primary_10_3390_molecules27123733
crossref_primary_10_1016_j_nbd_2016_06_015
crossref_primary_10_1093_hmg_ddab212
crossref_primary_10_1093_nar_gkaa301
crossref_primary_10_1016_j_csbj_2023_03_015
crossref_primary_10_3390_ijms24032247
crossref_primary_10_1371_journal_pone_0083258
crossref_primary_10_1038_s41536_020_0089_0
crossref_primary_10_3389_fnins_2024_1412893
crossref_primary_10_1038_s41434_019_0085_4
crossref_primary_10_1515_hsz_2022_0136
crossref_primary_10_1021_acs_jproteome_7b00930
crossref_primary_10_1093_plphys_kiac527
crossref_primary_10_1371_journal_pgen_1011316
crossref_primary_10_2217_fnl_10_57
crossref_primary_10_3390_biom5020343
crossref_primary_10_1016_j_jmb_2011_09_051
crossref_primary_10_1093_hmg_ddq500
crossref_primary_10_2217_fnl_2018_0008
crossref_primary_10_1016_j_ejcb_2012_03_002
crossref_primary_10_1261_rna_2146910
crossref_primary_10_1038_nature12803
crossref_primary_10_1073_pnas_1413392111
crossref_primary_10_1038_s41467_023_42324_0
crossref_primary_10_1093_hmg_ddt567
crossref_primary_10_3390_vaccines3010074
crossref_primary_10_1074_jbc_M809031200
crossref_primary_10_1101_gad_526109
crossref_primary_10_1016_j_tibs_2010_07_006
crossref_primary_10_3390_cancers13164118
crossref_primary_10_3390_biomedicines13010025
crossref_primary_10_1093_jmicro_dfv367
crossref_primary_10_1016_j_ccr_2010_12_020
crossref_primary_10_1002_advs_202003047
crossref_primary_10_1083_jcb_201404160
crossref_primary_10_1111_rda_13951
crossref_primary_10_1080_15476286_2020_1809186
crossref_primary_10_1038_embor_2009_24
crossref_primary_10_1158_1078_0432_CCR_18_2342
crossref_primary_10_1016_j_ccell_2017_08_018
crossref_primary_10_1038_nature09470
Cites_doi 10.1016/0022-2836(82)90392-8
10.1016/S0092-8674(01)00498-6
10.1016/j.jsb.2005.04.004
10.1038/nrm949
10.1016/j.molcel.2007.06.025
10.1016/j.molcel.2006.11.015
10.1038/nmeth1139
10.1038/275416a0
10.1016/j.febslet.2008.03.009
10.1016/S0962-8924(02)02371-1
10.1093/emboj/20.1.187
10.1074/jbc.M003299200
10.1002/j.1460-2075.1989.tb03374.x
10.1128/MCB.22.18.6533-6541.2002
10.1016/j.cell.2007.04.025
10.1073/pnas.0802287105
10.1002/j.1460-2075.1996.tb00579.x
10.1073/pnas.0508947102
10.1128/MCB.21.24.8289-8300.2001
10.1038/sj.embor.7400941
10.1101/gad.274403
10.1016/j.cell.2007.11.045
10.1016/S0960-9822(01)00592-9
10.1016/S0955-0674(02)00332-0
10.1016/j.jsb.2003.08.001
10.1126/science.1074962
10.1074/jbc.M500541200
10.1038/nrm2022
10.1016/S0092-8674(00)80550-4
10.1146/annurev.biochem.73.011303.073859
10.1038/ncb1101-945
10.1128/MCB.19.6.4113
10.1038/35054102
10.1017/S135583820101442X
10.1016/S0955-0674(00)00211-8
10.1016/j.cell.2008.03.031
10.1016/0092-8674(85)90271-5
10.1126/science.1084155
10.1093/emboj/cdf585
10.1006/jsbi.1996.0004
10.1016/S0092-8674(00)80368-2
10.1016/j.yexcr.2004.03.022
10.1101/gad.342005
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
DOI 10.1016/j.cell.2008.09.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Nucleic Acids Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 509
ExternalDocumentID 18984161
10_1016_j_cell_2008_09_020
S009286740801177X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
.-4
.55
.GJ
.HR
0R~
0WA
1CY
1RT
1VV
1~5
29B
2FS
2KS
2WC
3EH
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
6TJ
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABEFU
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AETEA
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AHPSJ
AI.
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
G8K
HH5
HVGLF
HZ~
H~9
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
MVM
N9A
NCXOZ
O-L
O9-
OHT
OK1
OMK
OZT
P2P
PUQ
R2-
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UBW
UHB
UKR
UPT
VH1
VQA
WH7
WQ6
X7M
XFK
YYP
YYQ
YZZ
ZA5
ZCA
ZGI
ZHY
ZKB
ZY4
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7TM
7X8
ID FETCH-LOGICAL-c429t-642053a43fcd848e2a29ef6ff6c2aaf494c61941f7d53b3a9fbc676abaaa6ff63
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Fri Jul 11 15:58:53 EDT 2025
Thu Jul 10 20:07:25 EDT 2025
Mon Jul 21 06:06:00 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 03:51:53 EDT 2025
Fri Feb 23 02:28:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords RNA
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-642053a43fcd848e2a29ef6ff6c2aaf494c61941f7d53b3a9fbc676abaaa6ff63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S009286740801177X
PMID 18984161
PQID 19332074
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_69750255
proquest_miscellaneous_19332074
pubmed_primary_18984161
crossref_primary_10_1016_j_cell_2008_09_020
crossref_citationtrail_10_1016_j_cell_2008_09_020
elsevier_sciencedirect_doi_10_1016_j_cell_2008_09_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-31
PublicationDateYYYYMMDD 2008-10-31
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-31
  day: 31
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2008
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shpargel, Matera (bib37) 2005; 102
Urlaub, Raker, Kostka, Lührmann (bib39) 2001; 20
Fisher, Conner, Reeves, Wisniewolski, Blobel (bib5) 1985; 42
Friesen, Paushkin, Wyce, Massenet, Pesiridis, Van Duyne, Rappsilber, Mann, Dreyfuss (bib7) 2001; 21
Le Tallec, Barrault, Courbeyrette, Guerois, Marsolier-Kergoat, Peyroche (bib20) 2007; 27
Pellizzoni, Yong, Dreyfuss (bib30) 2002; 298
Johnson, O'Donnell (bib14) 2005; 74
Gubitz, Feng, Dreyfuss (bib11) 2004; 296
Pillai, Grimmler, Meister, Will, Lührmann, Fischer, Schümperli (bib31) 2003; 17
Pu, Krapivinsky, Krapivinsky, Clapham (bib32) 1999; 19
Indiani, O'Donnell (bib13) 2006; 7
Zhang, Lotti, Dittmar, Younis, Wan, Kasim, Dreyfuss (bib43) 2008; 133
Winkler, Eggert, Gradl, Meister, Giegerich, Wedlich, Laggerbauer, Fischer (bib42) 2005; 19
Ellison, Stillman (bib3) 2001; 106
Sander, Golas, Stark (bib34) 2003; 143
Hirano, Hayashi, Iemura, Hendil, Niwa, Kishimoto, Kasahara, Natsume, Tanaka, Murata (bib12) 2006; 24
Kambach, Walke, Young, Avis, de la Fortelle, Raker, Lührmann, Li, Nagai (bib15) 1999; 96
Davey, Jeruzalmi, Kuriyan, O'Donnell (bib2) 2002; 3
Paushkin, Gubitz, Massenet, Dreyfuss (bib28) 2002; 14
Saschenbrecker, Bracher, Rao, Rao, Hartl, Hayer-Hartl (bib36) 2007; 129
Kastner, Lührmann (bib16) 1989; 8
Pellizzoni (bib29) 2007; 8
Golas, Sander, Will, Lührmann, Stark (bib10) 2003; 300
Meister, Bühler, Pillai, Lottspeich, Fischer (bib24) 2001; 3
Massenet, Pellizzoni, Paushkin, Mattaj, Dreyfuss (bib22) 2002; 22
Raker, Plessel, Lührmann (bib33) 1996; 15
Friesen, Dreyfuss (bib6) 2000; 275
Kroiss, Schultz, Wiesner, Chari, Sickmann, Fischer (bib18) 2008; 105
Sander, Golas, Stark (bib35) 2005; 151
Georgescu, Kim, Yurieva, Kuriyan, Kong, O'Donnell (bib9) 2008; 132
Meister, Fischer (bib23) 2002; 21
Meister, Eggert, Bühler, Brahms, Kambach, Fischer (bib25) 2001; 11
Neuenkirchen, Chari, Fischer (bib27) 2008; 582
Laskey, Honda, Mills, Finch (bib19) 1978; 275
Liautard, Sri-Widada, Brunel, Jeanteur (bib21) 1982; 162
Meister, Eggert, Fischer (bib26) 2002; 12
Brahms, Meheus, de Brabandere, Fischer, Lührmann (bib1) 2001; 7
Stark, Dube, Lührmann, Kastner (bib38) 2001; 409
Fischer, Liu, Dreyfuss (bib4) 1997; 90
van Heel, Harauz, Orlova, Schmidt, Schatz (bib40) 1996; 116
Furst, Schedlbauer, Gandini, Garavaglia, Saino, Gschwentner, Sarg, Lindner, Jakab, Ritter (bib8) 2005; 280
Kastner, Fischer, Golas, Sander, Dube, Boehringer, Hartmuth, Deckert, Hauer, Wolf (bib17) 2008; 5
Will, Lührmann (bib41) 2001; 13
Furst (10.1016/j.cell.2008.09.020_bib8) 2005; 280
Georgescu (10.1016/j.cell.2008.09.020_bib9) 2008; 132
Sander (10.1016/j.cell.2008.09.020_bib35) 2005; 151
Stark (10.1016/j.cell.2008.09.020_bib38) 2001; 409
Massenet (10.1016/j.cell.2008.09.020_bib22) 2002; 22
Pellizzoni (10.1016/j.cell.2008.09.020_bib30) 2002; 298
Ellison (10.1016/j.cell.2008.09.020_bib3) 2001; 106
Meister (10.1016/j.cell.2008.09.020_bib24) 2001; 3
Kroiss (10.1016/j.cell.2008.09.020_bib18) 2008; 105
Fischer (10.1016/j.cell.2008.09.020_bib4) 1997; 90
Le Tallec (10.1016/j.cell.2008.09.020_bib20) 2007; 27
Hirano (10.1016/j.cell.2008.09.020_bib12) 2006; 24
Meister (10.1016/j.cell.2008.09.020_bib23) 2002; 21
Gubitz (10.1016/j.cell.2008.09.020_bib11) 2004; 296
Kastner (10.1016/j.cell.2008.09.020_bib16) 1989; 8
Neuenkirchen (10.1016/j.cell.2008.09.020_bib27) 2008; 582
Indiani (10.1016/j.cell.2008.09.020_bib13) 2006; 7
Raker (10.1016/j.cell.2008.09.020_bib33) 1996; 15
Will (10.1016/j.cell.2008.09.020_bib41) 2001; 13
Brahms (10.1016/j.cell.2008.09.020_bib1) 2001; 7
Liautard (10.1016/j.cell.2008.09.020_bib21) 1982; 162
Winkler (10.1016/j.cell.2008.09.020_bib42) 2005; 19
Kastner (10.1016/j.cell.2008.09.020_bib17) 2008; 5
Shpargel (10.1016/j.cell.2008.09.020_bib37) 2005; 102
Friesen (10.1016/j.cell.2008.09.020_bib6) 2000; 275
Laskey (10.1016/j.cell.2008.09.020_bib19) 1978; 275
Meister (10.1016/j.cell.2008.09.020_bib26) 2002; 12
Pellizzoni (10.1016/j.cell.2008.09.020_bib29) 2007; 8
Sander (10.1016/j.cell.2008.09.020_bib34) 2003; 143
Pu (10.1016/j.cell.2008.09.020_bib32) 1999; 19
Johnson (10.1016/j.cell.2008.09.020_bib14) 2005; 74
Davey (10.1016/j.cell.2008.09.020_bib2) 2002; 3
Saschenbrecker (10.1016/j.cell.2008.09.020_bib36) 2007; 129
Fisher (10.1016/j.cell.2008.09.020_bib5) 1985; 42
van Heel (10.1016/j.cell.2008.09.020_bib40) 1996; 116
Urlaub (10.1016/j.cell.2008.09.020_bib39) 2001; 20
Pillai (10.1016/j.cell.2008.09.020_bib31) 2003; 17
Paushkin (10.1016/j.cell.2008.09.020_bib28) 2002; 14
Friesen (10.1016/j.cell.2008.09.020_bib7) 2001; 21
Golas (10.1016/j.cell.2008.09.020_bib10) 2003; 300
Kambach (10.1016/j.cell.2008.09.020_bib15) 1999; 96
Meister (10.1016/j.cell.2008.09.020_bib25) 2001; 11
Zhang (10.1016/j.cell.2008.09.020_bib43) 2008; 133
References_xml – volume: 3
  start-page: 826
  year: 2002
  end-page: 835
  ident: bib2
  article-title: Motors and switches: AAA+ machines within the replisome
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 21
  start-page: 8289
  year: 2001
  end-page: 8300
  ident: bib7
  article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins
  publication-title: Mol. Cell. Biol.
– volume: 20
  start-page: 187
  year: 2001
  end-page: 196
  ident: bib39
  article-title: Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure
  publication-title: EMBO J.
– volume: 151
  start-page: 92
  year: 2005
  end-page: 105
  ident: bib35
  article-title: Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy
  publication-title: J. Struct. Biol.
– volume: 5
  start-page: 53
  year: 2008
  end-page: 55
  ident: bib17
  article-title: GraFix: sample preparation for single-particle electron cryomicroscopy
  publication-title: Nat. Methods
– volume: 8
  start-page: 277
  year: 1989
  end-page: 286
  ident: bib16
  article-title: Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus
  publication-title: EMBO J.
– volume: 3
  start-page: 945
  year: 2001
  end-page: 949
  ident: bib24
  article-title: A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs
  publication-title: Nat. Cell Biol.
– volume: 133
  start-page: 585
  year: 2008
  end-page: 600
  ident: bib43
  article-title: SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
  publication-title: Cell
– volume: 42
  start-page: 751
  year: 1985
  end-page: 758
  ident: bib5
  article-title: Small nuclear ribonucleoprotein particle assembly
  publication-title: Cell
– volume: 17
  start-page: 2321
  year: 2003
  end-page: 2333
  ident: bib31
  article-title: Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing
  publication-title: Genes Dev.
– volume: 15
  start-page: 2256
  year: 1996
  end-page: 2269
  ident: bib33
  article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle
  publication-title: EMBO J.
– volume: 27
  start-page: 660
  year: 2007
  end-page: 674
  ident: bib20
  article-title: 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals
  publication-title: Mol. Cell
– volume: 7
  start-page: 751
  year: 2006
  end-page: 761
  ident: bib13
  article-title: The replication clamp-loading machine at work in the three domains of life
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 143
  start-page: 219
  year: 2003
  end-page: 228
  ident: bib34
  article-title: Corrim-based alignment for improved speed in single-particle image processing
  publication-title: J. Struct. Biol.
– volume: 129
  start-page: 1189
  year: 2007
  end-page: 1200
  ident: bib36
  article-title: Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco
  publication-title: Cell
– volume: 409
  start-page: 539
  year: 2001
  end-page: 542
  ident: bib38
  article-title: Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle
  publication-title: Nature
– volume: 12
  start-page: 472
  year: 2002
  end-page: 478
  ident: bib26
  article-title: SMN-mediated assembly of RNPs: a complex story
  publication-title: Trends Cell Biol.
– volume: 24
  start-page: 977
  year: 2006
  end-page: 984
  ident: bib12
  article-title: Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
  publication-title: Mol. Cell
– volume: 96
  start-page: 375
  year: 1999
  end-page: 387
  ident: bib15
  article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs
  publication-title: Cell
– volume: 74
  start-page: 283
  year: 2005
  end-page: 315
  ident: bib14
  article-title: Cellular DNA replicases: components and dynamics at the replication fork
  publication-title: Annu. Rev. Biochem.
– volume: 162
  start-page: 623
  year: 1982
  end-page: 643
  ident: bib21
  article-title: Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs
  publication-title: J. Mol. Biol.
– volume: 19
  start-page: 4113
  year: 1999
  end-page: 4120
  ident: bib32
  article-title: pICln inhibits snRNP biogenesis by binding core spliceosomal proteins
  publication-title: Mol. Cell. Biol.
– volume: 102
  start-page: 17372
  year: 2005
  end-page: 17377
  ident: bib37
  article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 298
  start-page: 1775
  year: 2002
  end-page: 1779
  ident: bib30
  article-title: Essential role for the SMN complex in the specificity of snRNP assembly
  publication-title: Science
– volume: 116
  start-page: 17
  year: 1996
  end-page: 24
  ident: bib40
  article-title: A new generation of the IMAGIC image processing system
  publication-title: J. Struct. Biol.
– volume: 275
  start-page: 26370
  year: 2000
  end-page: 26375
  ident: bib6
  article-title: Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN)
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 416
  year: 1978
  end-page: 420
  ident: bib19
  article-title: Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA
  publication-title: Nature
– volume: 11
  start-page: 1990
  year: 2001
  end-page: 1994
  ident: bib25
  article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln
  publication-title: Curr. Biol.
– volume: 22
  start-page: 6533
  year: 2002
  end-page: 6541
  ident: bib22
  article-title: The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway
  publication-title: Mol. Cell. Biol.
– volume: 14
  start-page: 305
  year: 2002
  end-page: 312
  ident: bib28
  article-title: The SMN complex, an assemblyosome of ribonucleoproteins
  publication-title: Curr. Opin. Cell Biol.
– volume: 300
  start-page: 980
  year: 2003
  end-page: 984
  ident: bib10
  article-title: Molecular architecture of the multiprotein splicing factor SF3b
  publication-title: Science
– volume: 582
  start-page: 1997
  year: 2008
  end-page: 2003
  ident: bib27
  article-title: Deciphering the assembly pathway of Sm-class U snRNPs
  publication-title: FEBS Lett.
– volume: 132
  start-page: 43
  year: 2008
  end-page: 54
  ident: bib9
  article-title: Structure of a sliding clamp on DNA
  publication-title: Cell
– volume: 19
  start-page: 2320
  year: 2005
  end-page: 2330
  ident: bib42
  article-title: Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy
  publication-title: Genes Dev.
– volume: 106
  start-page: 655
  year: 2001
  end-page: 660
  ident: bib3
  article-title: Opening of the clamp: an intimate view of an ATP-driven biological machine
  publication-title: Cell
– volume: 296
  start-page: 51
  year: 2004
  end-page: 56
  ident: bib11
  article-title: The SMN complex
  publication-title: Exp. Cell Res.
– volume: 21
  start-page: 5853
  year: 2002
  end-page: 5863
  ident: bib23
  article-title: Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs
  publication-title: EMBO J.
– volume: 280
  start-page: 31276
  year: 2005
  end-page: 31282
  ident: bib8
  article-title: ICln159 folds into a pleckstrin homology domain-like structure. Interaction with kinases and the splicing factor LSm4
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 290
  year: 2001
  end-page: 301
  ident: bib41
  article-title: Spliceosomal UsnRNP biogenesis, structure and function
  publication-title: Curr. Opin. Cell Biol.
– volume: 8
  start-page: 340
  year: 2007
  end-page: 345
  ident: bib29
  article-title: Chaperoning ribonucleoprotein biogenesis in health and disease
  publication-title: EMBO Rep.
– volume: 90
  start-page: 1023
  year: 1997
  end-page: 1029
  ident: bib4
  article-title: The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis
  publication-title: Cell
– volume: 105
  start-page: 10045
  year: 2008
  end-page: 10050
  ident: bib18
  article-title: Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 1531
  year: 2001
  end-page: 1542
  ident: bib1
  article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein
  publication-title: RNA
– volume: 162
  start-page: 623
  year: 1982
  ident: 10.1016/j.cell.2008.09.020_bib21
  article-title: Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(82)90392-8
– volume: 106
  start-page: 655
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib3
  article-title: Opening of the clamp: an intimate view of an ATP-driven biological machine
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00498-6
– volume: 151
  start-page: 92
  year: 2005
  ident: 10.1016/j.cell.2008.09.020_bib35
  article-title: Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.04.004
– volume: 3
  start-page: 826
  year: 2002
  ident: 10.1016/j.cell.2008.09.020_bib2
  article-title: Motors and switches: AAA+ machines within the replisome
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm949
– volume: 27
  start-page: 660
  year: 2007
  ident: 10.1016/j.cell.2008.09.020_bib20
  article-title: 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.025
– volume: 24
  start-page: 977
  year: 2006
  ident: 10.1016/j.cell.2008.09.020_bib12
  article-title: Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.11.015
– volume: 5
  start-page: 53
  year: 2008
  ident: 10.1016/j.cell.2008.09.020_bib17
  article-title: GraFix: sample preparation for single-particle electron cryomicroscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1139
– volume: 275
  start-page: 416
  year: 1978
  ident: 10.1016/j.cell.2008.09.020_bib19
  article-title: Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA
  publication-title: Nature
  doi: 10.1038/275416a0
– volume: 582
  start-page: 1997
  year: 2008
  ident: 10.1016/j.cell.2008.09.020_bib27
  article-title: Deciphering the assembly pathway of Sm-class U snRNPs
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.03.009
– volume: 12
  start-page: 472
  year: 2002
  ident: 10.1016/j.cell.2008.09.020_bib26
  article-title: SMN-mediated assembly of RNPs: a complex story
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(02)02371-1
– volume: 20
  start-page: 187
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib39
  article-title: Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.1.187
– volume: 275
  start-page: 26370
  year: 2000
  ident: 10.1016/j.cell.2008.09.020_bib6
  article-title: Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003299200
– volume: 8
  start-page: 277
  year: 1989
  ident: 10.1016/j.cell.2008.09.020_bib16
  article-title: Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb03374.x
– volume: 22
  start-page: 6533
  year: 2002
  ident: 10.1016/j.cell.2008.09.020_bib22
  article-title: The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.18.6533-6541.2002
– volume: 129
  start-page: 1189
  year: 2007
  ident: 10.1016/j.cell.2008.09.020_bib36
  article-title: Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco
  publication-title: Cell
  doi: 10.1016/j.cell.2007.04.025
– volume: 105
  start-page: 10045
  year: 2008
  ident: 10.1016/j.cell.2008.09.020_bib18
  article-title: Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802287105
– volume: 15
  start-page: 2256
  year: 1996
  ident: 10.1016/j.cell.2008.09.020_bib33
  article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00579.x
– volume: 102
  start-page: 17372
  year: 2005
  ident: 10.1016/j.cell.2008.09.020_bib37
  article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508947102
– volume: 21
  start-page: 8289
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib7
  article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.24.8289-8300.2001
– volume: 8
  start-page: 340
  year: 2007
  ident: 10.1016/j.cell.2008.09.020_bib29
  article-title: Chaperoning ribonucleoprotein biogenesis in health and disease
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400941
– volume: 17
  start-page: 2321
  year: 2003
  ident: 10.1016/j.cell.2008.09.020_bib31
  article-title: Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing
  publication-title: Genes Dev.
  doi: 10.1101/gad.274403
– volume: 132
  start-page: 43
  year: 2008
  ident: 10.1016/j.cell.2008.09.020_bib9
  article-title: Structure of a sliding clamp on DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.045
– volume: 11
  start-page: 1990
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib25
  article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00592-9
– volume: 14
  start-page: 305
  year: 2002
  ident: 10.1016/j.cell.2008.09.020_bib28
  article-title: The SMN complex, an assemblyosome of ribonucleoproteins
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(02)00332-0
– volume: 143
  start-page: 219
  year: 2003
  ident: 10.1016/j.cell.2008.09.020_bib34
  article-title: Corrim-based alignment for improved speed in single-particle image processing
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2003.08.001
– volume: 298
  start-page: 1775
  year: 2002
  ident: 10.1016/j.cell.2008.09.020_bib30
  article-title: Essential role for the SMN complex in the specificity of snRNP assembly
  publication-title: Science
  doi: 10.1126/science.1074962
– volume: 280
  start-page: 31276
  year: 2005
  ident: 10.1016/j.cell.2008.09.020_bib8
  article-title: ICln159 folds into a pleckstrin homology domain-like structure. Interaction with kinases and the splicing factor LSm4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500541200
– volume: 7
  start-page: 751
  year: 2006
  ident: 10.1016/j.cell.2008.09.020_bib13
  article-title: The replication clamp-loading machine at work in the three domains of life
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2022
– volume: 96
  start-page: 375
  year: 1999
  ident: 10.1016/j.cell.2008.09.020_bib15
  article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80550-4
– volume: 74
  start-page: 283
  year: 2005
  ident: 10.1016/j.cell.2008.09.020_bib14
  article-title: Cellular DNA replicases: components and dynamics at the replication fork
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.073859
– volume: 3
  start-page: 945
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib24
  article-title: A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1101-945
– volume: 19
  start-page: 4113
  year: 1999
  ident: 10.1016/j.cell.2008.09.020_bib32
  article-title: pICln inhibits snRNP biogenesis by binding core spliceosomal proteins
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.6.4113
– volume: 409
  start-page: 539
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib38
  article-title: Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle
  publication-title: Nature
  doi: 10.1038/35054102
– volume: 7
  start-page: 1531
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib1
  article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein
  publication-title: RNA
  doi: 10.1017/S135583820101442X
– volume: 13
  start-page: 290
  year: 2001
  ident: 10.1016/j.cell.2008.09.020_bib41
  article-title: Spliceosomal UsnRNP biogenesis, structure and function
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(00)00211-8
– volume: 133
  start-page: 585
  year: 2008
  ident: 10.1016/j.cell.2008.09.020_bib43
  article-title: SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.031
– volume: 42
  start-page: 751
  year: 1985
  ident: 10.1016/j.cell.2008.09.020_bib5
  article-title: Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90271-5
– volume: 300
  start-page: 980
  year: 2003
  ident: 10.1016/j.cell.2008.09.020_bib10
  article-title: Molecular architecture of the multiprotein splicing factor SF3b
  publication-title: Science
  doi: 10.1126/science.1084155
– volume: 21
  start-page: 5853
  year: 2002
  ident: 10.1016/j.cell.2008.09.020_bib23
  article-title: Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf585
– volume: 116
  start-page: 17
  year: 1996
  ident: 10.1016/j.cell.2008.09.020_bib40
  article-title: A new generation of the IMAGIC image processing system
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1996.0004
– volume: 90
  start-page: 1023
  year: 1997
  ident: 10.1016/j.cell.2008.09.020_bib4
  article-title: The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80368-2
– volume: 296
  start-page: 51
  year: 2004
  ident: 10.1016/j.cell.2008.09.020_bib11
  article-title: The SMN complex
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.03.022
– volume: 19
  start-page: 2320
  year: 2005
  ident: 10.1016/j.cell.2008.09.020_bib42
  article-title: Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy
  publication-title: Genes Dev.
  doi: 10.1101/gad.342005
SSID ssj0008555
Score 2.371409
Snippet Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms HeLa Cells
Humans
Models, Biological
Molecular Chaperones - metabolism
Nerve Tissue Proteins - metabolism
Protein Methyltransferases - chemistry
Protein Methyltransferases - metabolism
Protein-Arginine N-Methyltransferases
Ribonucleoproteins, Small Nuclear - chemistry
Ribonucleoproteins, Small Nuclear - metabolism
RNA
RNA - metabolism
RNA-Binding Proteins - metabolism
Survival of Motor Neuron 1 Protein - metabolism
Title An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs
URI https://dx.doi.org/10.1016/j.cell.2008.09.020
https://www.ncbi.nlm.nih.gov/pubmed/18984161
https://www.proquest.com/docview/19332074
https://www.proquest.com/docview/69750255
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMIggeBHfrs8cvEm1bdq0OeqiiOAiPnBvZZImoOy24lbQv3dmm64I6sFLD-2EDjPJvDIPxg6lMAC6DIPU4SNRcRYordBLCXMV5RKkAQroXw_k5UNyNUyHc6zf1cJQWqWX_a1Mn0pr_-bEU_Pk5emJanxVnMssQZuHbh6HKIdFkk-L-IZnM2mcp2k7xUDhyUdoXzjT5nhRcNznU6rjkGZ-_6ycfjM-p0roYpkteeuRn7YIrrA5W62yhXae5McaezytON3ijvXog1NlgX2tK8v7M17bCafAK0erj99dDzhJg5F9503N2_7TDb6nG21bT-ox_umuuh3cTNbZw8X5ff8y8JMTAoP6pQnQqcDDBYlwpsyT3MYQK-ukc9LEAC5RiaHoReSyMhVagHLayEyCBgCCEhtsvkIEtxiPdClC3G6hwwUqMlDqTIGDtMwEuoJhj0UdyQrj24rTdItR0eWPPRdEZj_vUhVI5h47mq15aZtq_Amddpwovm2NAqX-n-sOOrYVeGboM1S2fpsUaLSKGG2n3yGkQksKva0e22z5_YVnruimNtr-J1Y7bDH2LXVFtMvmm9c3u4d2TaP3Sauk-9Pt-wn6EvYz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8YaBovaOyLgw3ysLepo23atHmEE-hg3GkaoN1b5KSJxHS0iCsS_PfY1_SmScDDXvrQOqplJ87PdmIz9lUKC2CqOMo9PjKVFpEyCr2UuFRJKUFaoID-eCJHl9npNJ-usGF_F4aOVQbb39n0hbUOb_aDNPdvrq7ojq9KS1lkiHko8zh9xdYQDRTUv-Fkerg0x2Wed20MFC59JA83Z7pDXhQdDwcq1feYmn4_vTs9hz4Xu9DxW7YR4CM_6DjcZCuufsdedw0lH96z3wc1pzTutZk9cLpa4G6b2vHhUtluzinyyhH28fPxhJM5mLl73ja8K0Dd4ntKabtm3lzjn87rX5Of8w_s8vjoYjiKQuuEyOIG00boVeDqgkx4W5VZ6VJIlfPSe2lTAJ-pzFL4IvFFlQsjQHljZSHBAABRiY9stUYGtxhPTCVinG-xxwEqsVCZQoGHvCoE-oLxgCW9yLQNdcWpvcVM9wfI_mgSc2h4qTSKecC-LcfcdFU1XqTOe03of-aGRrP_4ri9Xm0aFw19hto1d3ONqFWkCJ6ep5AKoRS6WwP2qdP3Xz5LRanaZPs_udpjb0YX4zN9djL5scPW01BfVySf2Wp7e-e-IMhpze5iEj8CkWj4bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Assembly+Chaperone+Collaborates+with+the+SMN+Complex+to+Generate+Spliceosomal+SnRNPs&rft.jtitle=Cell&rft.au=Chari%2C+Ashwin&rft.au=Golas%2C+Monika+M.&rft.au=Klingenh%C3%A4ger%2C+Michael&rft.au=Neuenkirchen%2C+Nils&rft.date=2008-10-31&rft.issn=0092-8674&rft.volume=135&rft.issue=3&rft.spage=497&rft.epage=509&rft_id=info:doi/10.1016%2Fj.cell.2008.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2008_09_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon