An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domai...
Saved in:
Published in | Cell Vol. 135; no. 3; pp. 497 - 509 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
31.10.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2008.09.020 |
Cover
Loading…
Abstract | Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders. |
---|---|
AbstractList | Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders. Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders. Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders. |
Author | Englbrecht, Clemens Chari, Ashwin Klingenhäger, Michael Stark, Holger Fischer, Utz Neuenkirchen, Nils Golas, Monika M. Sander, Bjoern Sickmann, Albert |
Author_xml | – sequence: 1 givenname: Ashwin surname: Chari fullname: Chari, Ashwin organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 2 givenname: Monika M. surname: Golas fullname: Golas, Monika M. organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany – sequence: 3 givenname: Michael surname: Klingenhäger fullname: Klingenhäger, Michael organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 4 givenname: Nils surname: Neuenkirchen fullname: Neuenkirchen, Nils organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 5 givenname: Bjoern surname: Sander fullname: Sander, Bjoern organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany – sequence: 6 givenname: Clemens surname: Englbrecht fullname: Englbrecht, Clemens organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 7 givenname: Albert surname: Sickmann fullname: Sickmann, Albert organization: Rudolf Virchow Centre for Experimental Medicine, Versbacher Str. 9, D-97078 Würzburg, Germany – sequence: 8 givenname: Holger surname: Stark fullname: Stark, Holger organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany – sequence: 9 givenname: Utz surname: Fischer fullname: Fischer, Utz email: utz.fischer@biozentrum.uni-wuerzburg.de organization: Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18984161$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFF-CAfOKWYDuOE0tcVisoSG2puiCOluOMtV45cbC90L59E20RUg_lNIf5vhnp_8_QyRhGQOgtJSUlVHzYlwa8LxkhbUlkSRh5gVaUyKbgtGEnaEWIZEUrGn6KzlLakxms6_oVOqWtbDkVdIV-rke8TgmGzt_jzU5PEOcneBO8112IOkPCf1ze4bwDvL26njfD5OEO54AvYISFwNvJOwMhhUF7vB1vr2_Sa_TSap_gzeM8Rz8-f_q--VJcfrv4ullfFoYzmQvBGakrzStr-pa3wDSTYIW1wjCtLZfcCCo5tU1fV12lpe2MaITutNYLVZ2j98e7Uwy_DpCyGlxaYtEjhENSQjY1YXX9X5DKqmKk4TP47hE8dAP0aopu0PFe_c1sBtgRMDGkFMH-Q4hailF7tRxWSzGKSDUXM0vtE8m4rLMLY47a-efVj0cV5hx_O4gqGQejgd5FMFn1wT2nPwCOlqjM |
CitedBy_id | crossref_primary_10_1101_gad_291377_116 crossref_primary_10_1002_wrna_76 crossref_primary_10_1074_mcp_M110_001446 crossref_primary_10_1093_hmg_ddaa229 crossref_primary_10_1007_s00018_022_04522_9 crossref_primary_10_1007_s10048_010_0239_4 crossref_primary_10_1107_S0907444910009005 crossref_primary_10_1016_j_ceb_2009_02_004 crossref_primary_10_1007_s00412_017_0637_6 crossref_primary_10_1038_s41467_021_21529_1 crossref_primary_10_1091_mbc_E14_06_1151 crossref_primary_10_1016_j_febslet_2015_04_052 crossref_primary_10_1093_nar_gkx031 crossref_primary_10_1128_MCB_00752_09 crossref_primary_10_3389_frnar_2024_1448194 crossref_primary_10_1016_j_freeradbiomed_2023_02_025 crossref_primary_10_1016_j_mcn_2014_12_005 crossref_primary_10_1038_emboj_2010_70 crossref_primary_10_1074_jbc_M110_190587 crossref_primary_10_3390_ijms242216172 crossref_primary_10_1098_rstb_2013_0091 crossref_primary_10_1002_mrd_22024 crossref_primary_10_1016_j_ejcb_2014_01_006 crossref_primary_10_1093_jxb_erab234 crossref_primary_10_1002_wrna_87 crossref_primary_10_1016_j_jbc_2025_108165 crossref_primary_10_1261_rna_2164210 crossref_primary_10_15252_embj_201490350 crossref_primary_10_1073_pnas_1522458113 crossref_primary_10_1074_jbc_M110_148486 crossref_primary_10_1016_j_molcel_2012_12_009 crossref_primary_10_3389_fonc_2020_594224 crossref_primary_10_1016_j_ygeno_2021_05_039 crossref_primary_10_3389_fmolb_2017_00041 crossref_primary_10_1002_bies_202100092 crossref_primary_10_1074_jbc_M110_153429 crossref_primary_10_1242_bio_032409 crossref_primary_10_1016_j_virol_2015_02_008 crossref_primary_10_1093_nar_gkae622 crossref_primary_10_1105_tpc_110_081356 crossref_primary_10_3389_fgene_2015_00091 crossref_primary_10_1128_MCB_01407_13 crossref_primary_10_1016_j_molcel_2010_03_014 crossref_primary_10_1242_dev_140715 crossref_primary_10_1016_j_celrep_2021_109277 crossref_primary_10_3389_fonc_2020_00508 crossref_primary_10_1016_j_cell_2011_06_043 crossref_primary_10_1093_nar_gkab158 crossref_primary_10_1093_nar_gkaa743 crossref_primary_10_1107_S1399004715014832 crossref_primary_10_1038_nrm3742 crossref_primary_10_3233_RNN_170780 crossref_primary_10_1021_acs_jproteome_7b00335 crossref_primary_10_3390_ijms21113868 crossref_primary_10_1016_j_neuroscience_2022_03_013 crossref_primary_10_3390_app11083349 crossref_primary_10_1016_j_semcdb_2014_04_026 crossref_primary_10_1093_hmg_ddq425 crossref_primary_10_1093_nar_gkaa354 crossref_primary_10_1007_s12032_022_01726_8 crossref_primary_10_1038_s41580_024_00818_9 crossref_primary_10_1007_s00018_015_1847_9 crossref_primary_10_1093_nar_gkv809 crossref_primary_10_1093_hmg_ddu734 crossref_primary_10_1038_s41565_023_01585_y crossref_primary_10_1242_dmm_041251 crossref_primary_10_1371_journal_pgen_1008460 crossref_primary_10_23868_gc340771 crossref_primary_10_3390_ijms160922456 crossref_primary_10_1038_nrneurol_2015_77 crossref_primary_10_1093_nar_gks1224 crossref_primary_10_3390_genes15020235 crossref_primary_10_1038_nsmb_3167 crossref_primary_10_1016_j_celrep_2016_08_047 crossref_primary_10_1093_nar_gkab452 crossref_primary_10_1042_BST20180016 crossref_primary_10_1186_1475_2875_12_333 crossref_primary_10_1093_nar_gky070 crossref_primary_10_3389_fgene_2022_813285 crossref_primary_10_1016_j_brainres_2012_02_051 crossref_primary_10_1016_j_isci_2019_100750 crossref_primary_10_1101_gad_293084_116 crossref_primary_10_1007_s40610_015_0003_5 crossref_primary_10_1016_j_molp_2016_10_010 crossref_primary_10_1016_j_celrep_2018_07_013 crossref_primary_10_3390_ijms18020290 crossref_primary_10_3390_ijms242115552 crossref_primary_10_1371_journal_pone_0108826 crossref_primary_10_1016_j_isci_2023_107604 crossref_primary_10_1371_journal_pgen_1006660 crossref_primary_10_1080_15476286_2016_1236168 crossref_primary_10_1038_nrn2670 crossref_primary_10_1038_s41467_021_23934_y crossref_primary_10_1128_MCB_06077_11 crossref_primary_10_1083_jcb_201611108 crossref_primary_10_1261_rna_047373_114 crossref_primary_10_3389_fcell_2021_639904 crossref_primary_10_1073_pnas_1009669107 crossref_primary_10_1038_emboj_2009_365 crossref_primary_10_1146_annurev_cancerbio_050216_034422 crossref_primary_10_1128_EC_00113_10 crossref_primary_10_1080_15476286_2021_1872963 crossref_primary_10_1093_nar_gkz1135 crossref_primary_10_3390_cells9071677 crossref_primary_10_1074_jbc_M115_667279 crossref_primary_10_3390_ijms22168494 crossref_primary_10_1074_jbc_M109_015578 crossref_primary_10_1038_nsmb_2185 crossref_primary_10_1042_BJ20120241 crossref_primary_10_1128_MCB_01009_15 crossref_primary_10_1146_annurev_pathol_011110_130307 crossref_primary_10_1002_bies_201000088 crossref_primary_10_1261_rna_079709_123 crossref_primary_10_1016_j_isci_2019_100809 crossref_primary_10_1261_rna_1712910 crossref_primary_10_1371_journal_pone_0178519 crossref_primary_10_1016_j_oor_2023_100030 crossref_primary_10_1002_wrna_1257 crossref_primary_10_1152_physiolgenomics_00160_2020 crossref_primary_10_1098_rstb_2011_0398 crossref_primary_10_1093_genetics_iyae223 crossref_primary_10_1038_cr_2010_56 crossref_primary_10_1111_nph_18746 crossref_primary_10_7554_eLife_72867 crossref_primary_10_1038_nmeth_3493 crossref_primary_10_1016_j_molp_2016_10_006 crossref_primary_10_1101_gad_1899210 crossref_primary_10_3390_molecules27123733 crossref_primary_10_1016_j_nbd_2016_06_015 crossref_primary_10_1093_hmg_ddab212 crossref_primary_10_1093_nar_gkaa301 crossref_primary_10_1016_j_csbj_2023_03_015 crossref_primary_10_3390_ijms24032247 crossref_primary_10_1371_journal_pone_0083258 crossref_primary_10_1038_s41536_020_0089_0 crossref_primary_10_3389_fnins_2024_1412893 crossref_primary_10_1038_s41434_019_0085_4 crossref_primary_10_1515_hsz_2022_0136 crossref_primary_10_1021_acs_jproteome_7b00930 crossref_primary_10_1093_plphys_kiac527 crossref_primary_10_1371_journal_pgen_1011316 crossref_primary_10_2217_fnl_10_57 crossref_primary_10_3390_biom5020343 crossref_primary_10_1016_j_jmb_2011_09_051 crossref_primary_10_1093_hmg_ddq500 crossref_primary_10_2217_fnl_2018_0008 crossref_primary_10_1016_j_ejcb_2012_03_002 crossref_primary_10_1261_rna_2146910 crossref_primary_10_1038_nature12803 crossref_primary_10_1073_pnas_1413392111 crossref_primary_10_1038_s41467_023_42324_0 crossref_primary_10_1093_hmg_ddt567 crossref_primary_10_3390_vaccines3010074 crossref_primary_10_1074_jbc_M809031200 crossref_primary_10_1101_gad_526109 crossref_primary_10_1016_j_tibs_2010_07_006 crossref_primary_10_3390_cancers13164118 crossref_primary_10_3390_biomedicines13010025 crossref_primary_10_1093_jmicro_dfv367 crossref_primary_10_1016_j_ccr_2010_12_020 crossref_primary_10_1002_advs_202003047 crossref_primary_10_1083_jcb_201404160 crossref_primary_10_1111_rda_13951 crossref_primary_10_1080_15476286_2020_1809186 crossref_primary_10_1038_embor_2009_24 crossref_primary_10_1158_1078_0432_CCR_18_2342 crossref_primary_10_1016_j_ccell_2017_08_018 crossref_primary_10_1038_nature09470 |
Cites_doi | 10.1016/0022-2836(82)90392-8 10.1016/S0092-8674(01)00498-6 10.1016/j.jsb.2005.04.004 10.1038/nrm949 10.1016/j.molcel.2007.06.025 10.1016/j.molcel.2006.11.015 10.1038/nmeth1139 10.1038/275416a0 10.1016/j.febslet.2008.03.009 10.1016/S0962-8924(02)02371-1 10.1093/emboj/20.1.187 10.1074/jbc.M003299200 10.1002/j.1460-2075.1989.tb03374.x 10.1128/MCB.22.18.6533-6541.2002 10.1016/j.cell.2007.04.025 10.1073/pnas.0802287105 10.1002/j.1460-2075.1996.tb00579.x 10.1073/pnas.0508947102 10.1128/MCB.21.24.8289-8300.2001 10.1038/sj.embor.7400941 10.1101/gad.274403 10.1016/j.cell.2007.11.045 10.1016/S0960-9822(01)00592-9 10.1016/S0955-0674(02)00332-0 10.1016/j.jsb.2003.08.001 10.1126/science.1074962 10.1074/jbc.M500541200 10.1038/nrm2022 10.1016/S0092-8674(00)80550-4 10.1146/annurev.biochem.73.011303.073859 10.1038/ncb1101-945 10.1128/MCB.19.6.4113 10.1038/35054102 10.1017/S135583820101442X 10.1016/S0955-0674(00)00211-8 10.1016/j.cell.2008.03.031 10.1016/0092-8674(85)90271-5 10.1126/science.1084155 10.1093/emboj/cdf585 10.1006/jsbi.1996.0004 10.1016/S0092-8674(00)80368-2 10.1016/j.yexcr.2004.03.022 10.1101/gad.342005 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. |
Copyright_xml | – notice: 2008 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 |
DOI | 10.1016/j.cell.2008.09.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 509 |
ExternalDocumentID | 18984161 10_1016_j_cell_2008_09_020 S009286740801177X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -ET -~X .-4 .55 .GJ .HR 0R~ 0WA 1CY 1RT 1VV 1~5 29B 2FS 2KS 2WC 3EH 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 6TJ 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABEFU ABJNI ABMAC ABMWF ABOCM ABTAH ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV ADMUD AEFWE AENEX AETEA AEXQZ AFDAS AFTJW AGHFR AGHSJ AGKMS AHHHB AHPSJ AI. AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 G8K HH5 HVGLF HZ~ H~9 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 MVM N9A NCXOZ O-L O9- OHT OK1 OMK OZT P2P PUQ R2- RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UBW UHB UKR UPT VH1 VQA WH7 WQ6 X7M XFK YYP YYQ YZZ ZA5 ZCA ZGI ZHY ZKB ZY4 AAHBH AAMRU AAYWO AAYXX ABDGV ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7TM 7X8 |
ID | FETCH-LOGICAL-c429t-642053a43fcd848e2a29ef6ff6c2aaf494c61941f7d53b3a9fbc676abaaa6ff63 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Fri Jul 11 15:58:53 EDT 2025 Thu Jul 10 20:07:25 EDT 2025 Mon Jul 21 06:06:00 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 03:51:53 EDT 2025 Fri Feb 23 02:28:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | RNA |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-642053a43fcd848e2a29ef6ff6c2aaf494c61941f7d53b3a9fbc676abaaa6ff63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S009286740801177X |
PMID | 18984161 |
PQID | 19332074 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_69750255 proquest_miscellaneous_19332074 pubmed_primary_18984161 crossref_primary_10_1016_j_cell_2008_09_020 crossref_citationtrail_10_1016_j_cell_2008_09_020 elsevier_sciencedirect_doi_10_1016_j_cell_2008_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-31 |
PublicationDateYYYYMMDD | 2008-10-31 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-31 day: 31 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2008 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shpargel, Matera (bib37) 2005; 102 Urlaub, Raker, Kostka, Lührmann (bib39) 2001; 20 Fisher, Conner, Reeves, Wisniewolski, Blobel (bib5) 1985; 42 Friesen, Paushkin, Wyce, Massenet, Pesiridis, Van Duyne, Rappsilber, Mann, Dreyfuss (bib7) 2001; 21 Le Tallec, Barrault, Courbeyrette, Guerois, Marsolier-Kergoat, Peyroche (bib20) 2007; 27 Pellizzoni, Yong, Dreyfuss (bib30) 2002; 298 Johnson, O'Donnell (bib14) 2005; 74 Gubitz, Feng, Dreyfuss (bib11) 2004; 296 Pillai, Grimmler, Meister, Will, Lührmann, Fischer, Schümperli (bib31) 2003; 17 Pu, Krapivinsky, Krapivinsky, Clapham (bib32) 1999; 19 Indiani, O'Donnell (bib13) 2006; 7 Zhang, Lotti, Dittmar, Younis, Wan, Kasim, Dreyfuss (bib43) 2008; 133 Winkler, Eggert, Gradl, Meister, Giegerich, Wedlich, Laggerbauer, Fischer (bib42) 2005; 19 Ellison, Stillman (bib3) 2001; 106 Sander, Golas, Stark (bib34) 2003; 143 Hirano, Hayashi, Iemura, Hendil, Niwa, Kishimoto, Kasahara, Natsume, Tanaka, Murata (bib12) 2006; 24 Kambach, Walke, Young, Avis, de la Fortelle, Raker, Lührmann, Li, Nagai (bib15) 1999; 96 Davey, Jeruzalmi, Kuriyan, O'Donnell (bib2) 2002; 3 Paushkin, Gubitz, Massenet, Dreyfuss (bib28) 2002; 14 Saschenbrecker, Bracher, Rao, Rao, Hartl, Hayer-Hartl (bib36) 2007; 129 Kastner, Lührmann (bib16) 1989; 8 Pellizzoni (bib29) 2007; 8 Golas, Sander, Will, Lührmann, Stark (bib10) 2003; 300 Meister, Bühler, Pillai, Lottspeich, Fischer (bib24) 2001; 3 Massenet, Pellizzoni, Paushkin, Mattaj, Dreyfuss (bib22) 2002; 22 Raker, Plessel, Lührmann (bib33) 1996; 15 Friesen, Dreyfuss (bib6) 2000; 275 Kroiss, Schultz, Wiesner, Chari, Sickmann, Fischer (bib18) 2008; 105 Sander, Golas, Stark (bib35) 2005; 151 Georgescu, Kim, Yurieva, Kuriyan, Kong, O'Donnell (bib9) 2008; 132 Meister, Fischer (bib23) 2002; 21 Meister, Eggert, Bühler, Brahms, Kambach, Fischer (bib25) 2001; 11 Neuenkirchen, Chari, Fischer (bib27) 2008; 582 Laskey, Honda, Mills, Finch (bib19) 1978; 275 Liautard, Sri-Widada, Brunel, Jeanteur (bib21) 1982; 162 Meister, Eggert, Fischer (bib26) 2002; 12 Brahms, Meheus, de Brabandere, Fischer, Lührmann (bib1) 2001; 7 Stark, Dube, Lührmann, Kastner (bib38) 2001; 409 Fischer, Liu, Dreyfuss (bib4) 1997; 90 van Heel, Harauz, Orlova, Schmidt, Schatz (bib40) 1996; 116 Furst, Schedlbauer, Gandini, Garavaglia, Saino, Gschwentner, Sarg, Lindner, Jakab, Ritter (bib8) 2005; 280 Kastner, Fischer, Golas, Sander, Dube, Boehringer, Hartmuth, Deckert, Hauer, Wolf (bib17) 2008; 5 Will, Lührmann (bib41) 2001; 13 Furst (10.1016/j.cell.2008.09.020_bib8) 2005; 280 Georgescu (10.1016/j.cell.2008.09.020_bib9) 2008; 132 Sander (10.1016/j.cell.2008.09.020_bib35) 2005; 151 Stark (10.1016/j.cell.2008.09.020_bib38) 2001; 409 Massenet (10.1016/j.cell.2008.09.020_bib22) 2002; 22 Pellizzoni (10.1016/j.cell.2008.09.020_bib30) 2002; 298 Ellison (10.1016/j.cell.2008.09.020_bib3) 2001; 106 Meister (10.1016/j.cell.2008.09.020_bib24) 2001; 3 Kroiss (10.1016/j.cell.2008.09.020_bib18) 2008; 105 Fischer (10.1016/j.cell.2008.09.020_bib4) 1997; 90 Le Tallec (10.1016/j.cell.2008.09.020_bib20) 2007; 27 Hirano (10.1016/j.cell.2008.09.020_bib12) 2006; 24 Meister (10.1016/j.cell.2008.09.020_bib23) 2002; 21 Gubitz (10.1016/j.cell.2008.09.020_bib11) 2004; 296 Kastner (10.1016/j.cell.2008.09.020_bib16) 1989; 8 Neuenkirchen (10.1016/j.cell.2008.09.020_bib27) 2008; 582 Indiani (10.1016/j.cell.2008.09.020_bib13) 2006; 7 Raker (10.1016/j.cell.2008.09.020_bib33) 1996; 15 Will (10.1016/j.cell.2008.09.020_bib41) 2001; 13 Brahms (10.1016/j.cell.2008.09.020_bib1) 2001; 7 Liautard (10.1016/j.cell.2008.09.020_bib21) 1982; 162 Winkler (10.1016/j.cell.2008.09.020_bib42) 2005; 19 Kastner (10.1016/j.cell.2008.09.020_bib17) 2008; 5 Shpargel (10.1016/j.cell.2008.09.020_bib37) 2005; 102 Friesen (10.1016/j.cell.2008.09.020_bib6) 2000; 275 Laskey (10.1016/j.cell.2008.09.020_bib19) 1978; 275 Meister (10.1016/j.cell.2008.09.020_bib26) 2002; 12 Pellizzoni (10.1016/j.cell.2008.09.020_bib29) 2007; 8 Sander (10.1016/j.cell.2008.09.020_bib34) 2003; 143 Pu (10.1016/j.cell.2008.09.020_bib32) 1999; 19 Johnson (10.1016/j.cell.2008.09.020_bib14) 2005; 74 Davey (10.1016/j.cell.2008.09.020_bib2) 2002; 3 Saschenbrecker (10.1016/j.cell.2008.09.020_bib36) 2007; 129 Fisher (10.1016/j.cell.2008.09.020_bib5) 1985; 42 van Heel (10.1016/j.cell.2008.09.020_bib40) 1996; 116 Urlaub (10.1016/j.cell.2008.09.020_bib39) 2001; 20 Pillai (10.1016/j.cell.2008.09.020_bib31) 2003; 17 Paushkin (10.1016/j.cell.2008.09.020_bib28) 2002; 14 Friesen (10.1016/j.cell.2008.09.020_bib7) 2001; 21 Golas (10.1016/j.cell.2008.09.020_bib10) 2003; 300 Kambach (10.1016/j.cell.2008.09.020_bib15) 1999; 96 Meister (10.1016/j.cell.2008.09.020_bib25) 2001; 11 Zhang (10.1016/j.cell.2008.09.020_bib43) 2008; 133 |
References_xml | – volume: 3 start-page: 826 year: 2002 end-page: 835 ident: bib2 article-title: Motors and switches: AAA+ machines within the replisome publication-title: Nat. Rev. Mol. Cell Biol. – volume: 21 start-page: 8289 year: 2001 end-page: 8300 ident: bib7 article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins publication-title: Mol. Cell. Biol. – volume: 20 start-page: 187 year: 2001 end-page: 196 ident: bib39 article-title: Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure publication-title: EMBO J. – volume: 151 start-page: 92 year: 2005 end-page: 105 ident: bib35 article-title: Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy publication-title: J. Struct. Biol. – volume: 5 start-page: 53 year: 2008 end-page: 55 ident: bib17 article-title: GraFix: sample preparation for single-particle electron cryomicroscopy publication-title: Nat. Methods – volume: 8 start-page: 277 year: 1989 end-page: 286 ident: bib16 article-title: Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus publication-title: EMBO J. – volume: 3 start-page: 945 year: 2001 end-page: 949 ident: bib24 article-title: A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs publication-title: Nat. Cell Biol. – volume: 133 start-page: 585 year: 2008 end-page: 600 ident: bib43 article-title: SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing publication-title: Cell – volume: 42 start-page: 751 year: 1985 end-page: 758 ident: bib5 article-title: Small nuclear ribonucleoprotein particle assembly publication-title: Cell – volume: 17 start-page: 2321 year: 2003 end-page: 2333 ident: bib31 article-title: Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing publication-title: Genes Dev. – volume: 15 start-page: 2256 year: 1996 end-page: 2269 ident: bib33 article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle publication-title: EMBO J. – volume: 27 start-page: 660 year: 2007 end-page: 674 ident: bib20 article-title: 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals publication-title: Mol. Cell – volume: 7 start-page: 751 year: 2006 end-page: 761 ident: bib13 article-title: The replication clamp-loading machine at work in the three domains of life publication-title: Nat. Rev. Mol. Cell Biol. – volume: 143 start-page: 219 year: 2003 end-page: 228 ident: bib34 article-title: Corrim-based alignment for improved speed in single-particle image processing publication-title: J. Struct. Biol. – volume: 129 start-page: 1189 year: 2007 end-page: 1200 ident: bib36 article-title: Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco publication-title: Cell – volume: 409 start-page: 539 year: 2001 end-page: 542 ident: bib38 article-title: Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle publication-title: Nature – volume: 12 start-page: 472 year: 2002 end-page: 478 ident: bib26 article-title: SMN-mediated assembly of RNPs: a complex story publication-title: Trends Cell Biol. – volume: 24 start-page: 977 year: 2006 end-page: 984 ident: bib12 article-title: Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes publication-title: Mol. Cell – volume: 96 start-page: 375 year: 1999 end-page: 387 ident: bib15 article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs publication-title: Cell – volume: 74 start-page: 283 year: 2005 end-page: 315 ident: bib14 article-title: Cellular DNA replicases: components and dynamics at the replication fork publication-title: Annu. Rev. Biochem. – volume: 162 start-page: 623 year: 1982 end-page: 643 ident: bib21 article-title: Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs publication-title: J. Mol. Biol. – volume: 19 start-page: 4113 year: 1999 end-page: 4120 ident: bib32 article-title: pICln inhibits snRNP biogenesis by binding core spliceosomal proteins publication-title: Mol. Cell. Biol. – volume: 102 start-page: 17372 year: 2005 end-page: 17377 ident: bib37 article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 298 start-page: 1775 year: 2002 end-page: 1779 ident: bib30 article-title: Essential role for the SMN complex in the specificity of snRNP assembly publication-title: Science – volume: 116 start-page: 17 year: 1996 end-page: 24 ident: bib40 article-title: A new generation of the IMAGIC image processing system publication-title: J. Struct. Biol. – volume: 275 start-page: 26370 year: 2000 end-page: 26375 ident: bib6 article-title: Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN) publication-title: J. Biol. Chem. – volume: 275 start-page: 416 year: 1978 end-page: 420 ident: bib19 article-title: Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA publication-title: Nature – volume: 11 start-page: 1990 year: 2001 end-page: 1994 ident: bib25 article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln publication-title: Curr. Biol. – volume: 22 start-page: 6533 year: 2002 end-page: 6541 ident: bib22 article-title: The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway publication-title: Mol. Cell. Biol. – volume: 14 start-page: 305 year: 2002 end-page: 312 ident: bib28 article-title: The SMN complex, an assemblyosome of ribonucleoproteins publication-title: Curr. Opin. Cell Biol. – volume: 300 start-page: 980 year: 2003 end-page: 984 ident: bib10 article-title: Molecular architecture of the multiprotein splicing factor SF3b publication-title: Science – volume: 582 start-page: 1997 year: 2008 end-page: 2003 ident: bib27 article-title: Deciphering the assembly pathway of Sm-class U snRNPs publication-title: FEBS Lett. – volume: 132 start-page: 43 year: 2008 end-page: 54 ident: bib9 article-title: Structure of a sliding clamp on DNA publication-title: Cell – volume: 19 start-page: 2320 year: 2005 end-page: 2330 ident: bib42 article-title: Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy publication-title: Genes Dev. – volume: 106 start-page: 655 year: 2001 end-page: 660 ident: bib3 article-title: Opening of the clamp: an intimate view of an ATP-driven biological machine publication-title: Cell – volume: 296 start-page: 51 year: 2004 end-page: 56 ident: bib11 article-title: The SMN complex publication-title: Exp. Cell Res. – volume: 21 start-page: 5853 year: 2002 end-page: 5863 ident: bib23 article-title: Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs publication-title: EMBO J. – volume: 280 start-page: 31276 year: 2005 end-page: 31282 ident: bib8 article-title: ICln159 folds into a pleckstrin homology domain-like structure. Interaction with kinases and the splicing factor LSm4 publication-title: J. Biol. Chem. – volume: 13 start-page: 290 year: 2001 end-page: 301 ident: bib41 article-title: Spliceosomal UsnRNP biogenesis, structure and function publication-title: Curr. Opin. Cell Biol. – volume: 8 start-page: 340 year: 2007 end-page: 345 ident: bib29 article-title: Chaperoning ribonucleoprotein biogenesis in health and disease publication-title: EMBO Rep. – volume: 90 start-page: 1023 year: 1997 end-page: 1029 ident: bib4 article-title: The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis publication-title: Cell – volume: 105 start-page: 10045 year: 2008 end-page: 10050 ident: bib18 article-title: Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 1531 year: 2001 end-page: 1542 ident: bib1 article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein publication-title: RNA – volume: 162 start-page: 623 year: 1982 ident: 10.1016/j.cell.2008.09.020_bib21 article-title: Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(82)90392-8 – volume: 106 start-page: 655 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib3 article-title: Opening of the clamp: an intimate view of an ATP-driven biological machine publication-title: Cell doi: 10.1016/S0092-8674(01)00498-6 – volume: 151 start-page: 92 year: 2005 ident: 10.1016/j.cell.2008.09.020_bib35 article-title: Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.04.004 – volume: 3 start-page: 826 year: 2002 ident: 10.1016/j.cell.2008.09.020_bib2 article-title: Motors and switches: AAA+ machines within the replisome publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm949 – volume: 27 start-page: 660 year: 2007 ident: 10.1016/j.cell.2008.09.020_bib20 article-title: 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.025 – volume: 24 start-page: 977 year: 2006 ident: 10.1016/j.cell.2008.09.020_bib12 article-title: Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.11.015 – volume: 5 start-page: 53 year: 2008 ident: 10.1016/j.cell.2008.09.020_bib17 article-title: GraFix: sample preparation for single-particle electron cryomicroscopy publication-title: Nat. Methods doi: 10.1038/nmeth1139 – volume: 275 start-page: 416 year: 1978 ident: 10.1016/j.cell.2008.09.020_bib19 article-title: Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA publication-title: Nature doi: 10.1038/275416a0 – volume: 582 start-page: 1997 year: 2008 ident: 10.1016/j.cell.2008.09.020_bib27 article-title: Deciphering the assembly pathway of Sm-class U snRNPs publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.03.009 – volume: 12 start-page: 472 year: 2002 ident: 10.1016/j.cell.2008.09.020_bib26 article-title: SMN-mediated assembly of RNPs: a complex story publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(02)02371-1 – volume: 20 start-page: 187 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib39 article-title: Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure publication-title: EMBO J. doi: 10.1093/emboj/20.1.187 – volume: 275 start-page: 26370 year: 2000 ident: 10.1016/j.cell.2008.09.020_bib6 article-title: Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003299200 – volume: 8 start-page: 277 year: 1989 ident: 10.1016/j.cell.2008.09.020_bib16 article-title: Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb03374.x – volume: 22 start-page: 6533 year: 2002 ident: 10.1016/j.cell.2008.09.020_bib22 article-title: The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.18.6533-6541.2002 – volume: 129 start-page: 1189 year: 2007 ident: 10.1016/j.cell.2008.09.020_bib36 article-title: Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco publication-title: Cell doi: 10.1016/j.cell.2007.04.025 – volume: 105 start-page: 10045 year: 2008 ident: 10.1016/j.cell.2008.09.020_bib18 article-title: Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802287105 – volume: 15 start-page: 2256 year: 1996 ident: 10.1016/j.cell.2008.09.020_bib33 article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00579.x – volume: 102 start-page: 17372 year: 2005 ident: 10.1016/j.cell.2008.09.020_bib37 article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508947102 – volume: 21 start-page: 8289 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib7 article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.24.8289-8300.2001 – volume: 8 start-page: 340 year: 2007 ident: 10.1016/j.cell.2008.09.020_bib29 article-title: Chaperoning ribonucleoprotein biogenesis in health and disease publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400941 – volume: 17 start-page: 2321 year: 2003 ident: 10.1016/j.cell.2008.09.020_bib31 article-title: Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing publication-title: Genes Dev. doi: 10.1101/gad.274403 – volume: 132 start-page: 43 year: 2008 ident: 10.1016/j.cell.2008.09.020_bib9 article-title: Structure of a sliding clamp on DNA publication-title: Cell doi: 10.1016/j.cell.2007.11.045 – volume: 11 start-page: 1990 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib25 article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00592-9 – volume: 14 start-page: 305 year: 2002 ident: 10.1016/j.cell.2008.09.020_bib28 article-title: The SMN complex, an assemblyosome of ribonucleoproteins publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00332-0 – volume: 143 start-page: 219 year: 2003 ident: 10.1016/j.cell.2008.09.020_bib34 article-title: Corrim-based alignment for improved speed in single-particle image processing publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2003.08.001 – volume: 298 start-page: 1775 year: 2002 ident: 10.1016/j.cell.2008.09.020_bib30 article-title: Essential role for the SMN complex in the specificity of snRNP assembly publication-title: Science doi: 10.1126/science.1074962 – volume: 280 start-page: 31276 year: 2005 ident: 10.1016/j.cell.2008.09.020_bib8 article-title: ICln159 folds into a pleckstrin homology domain-like structure. Interaction with kinases and the splicing factor LSm4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500541200 – volume: 7 start-page: 751 year: 2006 ident: 10.1016/j.cell.2008.09.020_bib13 article-title: The replication clamp-loading machine at work in the three domains of life publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2022 – volume: 96 start-page: 375 year: 1999 ident: 10.1016/j.cell.2008.09.020_bib15 article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs publication-title: Cell doi: 10.1016/S0092-8674(00)80550-4 – volume: 74 start-page: 283 year: 2005 ident: 10.1016/j.cell.2008.09.020_bib14 article-title: Cellular DNA replicases: components and dynamics at the replication fork publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.073859 – volume: 3 start-page: 945 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib24 article-title: A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs publication-title: Nat. Cell Biol. doi: 10.1038/ncb1101-945 – volume: 19 start-page: 4113 year: 1999 ident: 10.1016/j.cell.2008.09.020_bib32 article-title: pICln inhibits snRNP biogenesis by binding core spliceosomal proteins publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.6.4113 – volume: 409 start-page: 539 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib38 article-title: Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle publication-title: Nature doi: 10.1038/35054102 – volume: 7 start-page: 1531 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib1 article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein publication-title: RNA doi: 10.1017/S135583820101442X – volume: 13 start-page: 290 year: 2001 ident: 10.1016/j.cell.2008.09.020_bib41 article-title: Spliceosomal UsnRNP biogenesis, structure and function publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(00)00211-8 – volume: 133 start-page: 585 year: 2008 ident: 10.1016/j.cell.2008.09.020_bib43 article-title: SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing publication-title: Cell doi: 10.1016/j.cell.2008.03.031 – volume: 42 start-page: 751 year: 1985 ident: 10.1016/j.cell.2008.09.020_bib5 article-title: Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification publication-title: Cell doi: 10.1016/0092-8674(85)90271-5 – volume: 300 start-page: 980 year: 2003 ident: 10.1016/j.cell.2008.09.020_bib10 article-title: Molecular architecture of the multiprotein splicing factor SF3b publication-title: Science doi: 10.1126/science.1084155 – volume: 21 start-page: 5853 year: 2002 ident: 10.1016/j.cell.2008.09.020_bib23 article-title: Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs publication-title: EMBO J. doi: 10.1093/emboj/cdf585 – volume: 116 start-page: 17 year: 1996 ident: 10.1016/j.cell.2008.09.020_bib40 article-title: A new generation of the IMAGIC image processing system publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1996.0004 – volume: 90 start-page: 1023 year: 1997 ident: 10.1016/j.cell.2008.09.020_bib4 article-title: The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis publication-title: Cell doi: 10.1016/S0092-8674(00)80368-2 – volume: 296 start-page: 51 year: 2004 ident: 10.1016/j.cell.2008.09.020_bib11 article-title: The SMN complex publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2004.03.022 – volume: 19 start-page: 2320 year: 2005 ident: 10.1016/j.cell.2008.09.020_bib42 article-title: Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy publication-title: Genes Dev. doi: 10.1101/gad.342005 |
SSID | ssj0008555 |
Score | 2.371409 |
Snippet | Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 497 |
SubjectTerms | HeLa Cells Humans Models, Biological Molecular Chaperones - metabolism Nerve Tissue Proteins - metabolism Protein Methyltransferases - chemistry Protein Methyltransferases - metabolism Protein-Arginine N-Methyltransferases Ribonucleoproteins, Small Nuclear - chemistry Ribonucleoproteins, Small Nuclear - metabolism RNA RNA - metabolism RNA-Binding Proteins - metabolism Survival of Motor Neuron 1 Protein - metabolism |
Title | An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs |
URI | https://dx.doi.org/10.1016/j.cell.2008.09.020 https://www.ncbi.nlm.nih.gov/pubmed/18984161 https://www.proquest.com/docview/19332074 https://www.proquest.com/docview/69750255 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMIggeBHfrs8cvEm1bdq0OeqiiOAiPnBvZZImoOy24lbQv3dmm64I6sFLD-2EDjPJvDIPxg6lMAC6DIPU4SNRcRYordBLCXMV5RKkAQroXw_k5UNyNUyHc6zf1cJQWqWX_a1Mn0pr_-bEU_Pk5emJanxVnMssQZuHbh6HKIdFkk-L-IZnM2mcp2k7xUDhyUdoXzjT5nhRcNznU6rjkGZ-_6ycfjM-p0roYpkteeuRn7YIrrA5W62yhXae5McaezytON3ijvXog1NlgX2tK8v7M17bCafAK0erj99dDzhJg5F9503N2_7TDb6nG21bT-ox_umuuh3cTNbZw8X5ff8y8JMTAoP6pQnQqcDDBYlwpsyT3MYQK-ukc9LEAC5RiaHoReSyMhVagHLayEyCBgCCEhtsvkIEtxiPdClC3G6hwwUqMlDqTIGDtMwEuoJhj0UdyQrj24rTdItR0eWPPRdEZj_vUhVI5h47mq15aZtq_Amddpwovm2NAqX-n-sOOrYVeGboM1S2fpsUaLSKGG2n3yGkQksKva0e22z5_YVnruimNtr-J1Y7bDH2LXVFtMvmm9c3u4d2TaP3Sauk-9Pt-wn6EvYz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8YaBovaOyLgw3ysLepo23atHmEE-hg3GkaoN1b5KSJxHS0iCsS_PfY1_SmScDDXvrQOqplJ87PdmIz9lUKC2CqOMo9PjKVFpEyCr2UuFRJKUFaoID-eCJHl9npNJ-usGF_F4aOVQbb39n0hbUOb_aDNPdvrq7ojq9KS1lkiHko8zh9xdYQDRTUv-Fkerg0x2Wed20MFC59JA83Z7pDXhQdDwcq1feYmn4_vTs9hz4Xu9DxW7YR4CM_6DjcZCuufsdedw0lH96z3wc1pzTutZk9cLpa4G6b2vHhUtluzinyyhH28fPxhJM5mLl73ja8K0Dd4ntKabtm3lzjn87rX5Of8w_s8vjoYjiKQuuEyOIG00boVeDqgkx4W5VZ6VJIlfPSe2lTAJ-pzFL4IvFFlQsjQHljZSHBAABRiY9stUYGtxhPTCVinG-xxwEqsVCZQoGHvCoE-oLxgCW9yLQNdcWpvcVM9wfI_mgSc2h4qTSKecC-LcfcdFU1XqTOe03of-aGRrP_4ri9Xm0aFw19hto1d3ONqFWkCJ6ep5AKoRS6WwP2qdP3Xz5LRanaZPs_udpjb0YX4zN9djL5scPW01BfVySf2Wp7e-e-IMhpze5iEj8CkWj4bA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Assembly+Chaperone+Collaborates+with+the+SMN+Complex+to+Generate+Spliceosomal+SnRNPs&rft.jtitle=Cell&rft.au=Chari%2C+Ashwin&rft.au=Golas%2C+Monika+M.&rft.au=Klingenh%C3%A4ger%2C+Michael&rft.au=Neuenkirchen%2C+Nils&rft.date=2008-10-31&rft.issn=0092-8674&rft.volume=135&rft.issue=3&rft.spage=497&rft.epage=509&rft_id=info:doi/10.1016%2Fj.cell.2008.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2008_09_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |