Optimal decision trees for categorical data via integer programming
Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this pap...
Saved in:
Published in | Journal of global optimization Vol. 81; no. 1; pp. 233 - 260 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the special structure of categorical features into account and allow combinatorial decisions (based on subsets of values of features) at each node. Our approach can also handle numerical features via thresholding. We show that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization problems we solve are tractable with modern solvers. |
---|---|
AbstractList | Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the special structure of categorical features into account and allow combinatorial decisions (based on subsets of values of features) at each node. Our approach can also handle numerical features via thresholding. We show that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization problems we solve are tractable with modern solvers. Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the special structure of categorical features into account and allow combinatorial decisions (based on subsets of values of features) at each node. Our approach can also handle numerical features via thresholding. Here we show that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization problems we solve are tractable with modern solvers. |
Audience | Academic |
Author | Günlük, Oktay Kalagnanam, Jayant Menickelly, Matt Li, Minhan Scheinberg, Katya |
Author_xml | – sequence: 1 givenname: Oktay surname: Günlük fullname: Günlük, Oktay organization: Cornell University – sequence: 2 givenname: Jayant surname: Kalagnanam fullname: Kalagnanam, Jayant organization: IBM Research – sequence: 3 givenname: Minhan surname: Li fullname: Li, Minhan organization: Lehigh University – sequence: 4 givenname: Matt surname: Menickelly fullname: Menickelly, Matt organization: Argonne National Laboratory – sequence: 5 givenname: Katya orcidid: 0000-0003-3547-1841 surname: Scheinberg fullname: Scheinberg, Katya email: katyas@cornell.edu organization: Cornell University |
BackLink | https://www.osti.gov/servlets/purl/1839906$$D View this record in Osti.gov |
BookMark | eNp9kU9rGzEQxUVJoU7aL5DTkpw3HWmtlXQMJv0DgVzas9BqR66CLTmSEvC37zhbCPQQdBCM3m9m9N45O0s5IWOXHG44gPpaOWijexC8ByqY_viBrbhUQy8MH8_YCoyQvQTgn9h5rY9AGi3Fim0eDi3u3a6b0ccac-paQaxdyKXzruE2l-hPz6657iW6LiYqYukOJW-L2-9j2n5mH4PbVfzy775gv7_d_dr86O8fvv_c3N73fi1M62WYBIzAxey9AuWFNuM8SaeVEmFSDiQOPIxaD7OccJoVTKMe1249hAE5x-GCXS19c23RVh8b-j8-p4S-Wa4HY2Ak0fUiogWfnrE2-5ifS6K9rJAjrLXkUpLqZlFt3Q5tTCG34jydGfeRWmKIVL9Vp65KGiBAL4AvudaCwdJ418gwAuPOcrCnIOwShKUg7GsQ9kio-A89FLK8HN-HhgWqJE5k-Ns33qH-AsfBnJs |
CitedBy_id | crossref_primary_10_2139_ssrn_3971979 crossref_primary_10_1007_s10601_023_09367_y crossref_primary_10_1016_j_porgcoat_2024_108604 crossref_primary_10_1007_s11634_021_00467_2 crossref_primary_10_1007_s11750_024_00674_y crossref_primary_10_1007_s10601_023_09348_1 crossref_primary_10_1007_s10845_023_02119_y crossref_primary_10_1016_j_bspc_2023_105870 crossref_primary_10_3390_agriengineering6040216 crossref_primary_10_1016_j_cor_2024_106579 crossref_primary_10_1007_s11042_023_17008_y crossref_primary_10_1016_j_ejco_2024_100091 crossref_primary_10_1016_j_cor_2023_106441 crossref_primary_10_1007_s10462_022_10275_5 crossref_primary_10_26634_jet_21_1_20532 crossref_primary_10_1016_j_ejor_2023_11_019 crossref_primary_10_1016_j_cor_2023_106152 crossref_primary_10_1016_j_ejor_2021_12_022 crossref_primary_10_1287_msom_2022_1118 crossref_primary_10_1287_opre_2021_0034 crossref_primary_10_1016_j_cor_2021_105281 crossref_primary_10_1016_j_jechem_2024_07_045 crossref_primary_10_1214_21_SS133 |
Cites_doi | 10.1287/opre.1060.0360 10.1023/A:1010933404324 10.1145/1961189.1961199 10.1007/s10462-011-9272-4 10.1007/s10994-017-5633-9 10.1016/0020-0190(76)90095-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U OIOZB OTOTI |
DOI | 10.1007/s10898-021-01009-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Science Database Engineering Database (subscription) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 260 |
ExternalDocumentID | 1839906 A718397590 10_1007_s10898_021_01009_y |
GrantInformation_xml | – fundername: National Science Foundation (US) grantid: CCF-1320137 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U AAFGU ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC N95 OIOZB OTOTI UNUBA Z7S Z7Y Z8S |
ID | FETCH-LOGICAL-c429t-5fb206012dcc707c2896db5a8772fb7a05e31f6883d5bebd70b6864a43f3e11e3 |
IEDL.DBID | BENPR |
ISSN | 0925-5001 |
IngestDate | Mon Jul 10 02:34:35 EDT 2023 Sat Aug 23 14:37:26 EDT 2025 Tue Jun 10 20:37:35 EDT 2025 Tue Jul 01 00:53:01 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Fri Feb 21 02:47:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Integer programming Decision trees Binary classification Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-5fb206012dcc707c2896db5a8772fb7a05e31f6883d5bebd70b6864a43f3e11e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE National Science Foundation (NSF) AC02-06CH11357; CCF-1320137 |
ORCID | 0000-0003-3547-1841 0000000335471841 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1839906 |
PQID | 2560485155 |
PQPubID | 29930 |
PageCount | 28 |
ParticipantIDs | osti_scitechconnect_1839906 proquest_journals_2560485155 gale_infotracacademiconefile_A718397590 crossref_citationtrail_10_1007_s10898_021_01009_y crossref_primary_10_1007_s10898_021_01009_y springer_journals_10_1007_s10898_021_01009_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht – name: United States |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-9 Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sensing. In: Proceedings of the 30th International Conference on Machine Learning, volume 3, pp. 765–773 (2013) BreimanLFriedmanJHOlshenRAStoneCJClassification and Regression Trees1984New YorkChapman and Hall0541.62042 Murthy, S., Salzberg, S.: Lookahead and pathology in decision tree induction. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 2, pp. 1025–1031, San Francisco, CA, USA, (1995). Morgan Kaufmann Publishers Inc Bennett, K.P., Blue, J.: Optimal decision trees. Technical Report 214, Rensselaer Polytechnic Institute Math Report (1996) FICO Explainable Machine Learning Challenge https://community.fico.com/s/explainable-machine-learning-challenge BertsimasDShiodaRClassification and regression via integer optimizationOper. Res.2017552252271231625810.1287/opre.1060.0360 BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324 WangTRudinCDoshi-VelezFLiuYKlampflEMacNeillePA Bayesian framework for learning rule sets for interpretable classificationJ. Mach. Learn. Res.2017187013737142331434.68467 DashSGünlükOWeiDBoolean Decision Rules via Column Generation. Advances in Neural Information Processing Systems2018CanadaMontreal HyafilLRivestRLConstructing optimal binary decision trees is np-completeInform. Process. Lett.197651151741359810.1016/0020-0190(76)90095-8 Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive partitioning and regression trees. Technical Report (2017). R package version 4.1-11 BennettKPBlueJAA support vector machine approach to decision treesNeural Netw. Proc. IEEE World Congr. Comput. Intell.1998323962401 KotsiantisSBDecision trees: a recent overviewArtif. Intell. Rev.201339426128310.1007/s10462-011-9272-4 Wang, T., Rudin, C.: Learning optimized or’s of and’s. Technical report, (2015). arxiv:1511.02210 RossJQuinlan. C4.5: Programs for Machine Learning1993San FranciscoMorgan Kaufmann Publishers Inc. ChangCCLinCJLIBSVM: a library for support vector machinesACM Trans. Intell. Syst. Technol.2011227:127:2710.1145/1961189.1961199 Norouzi, M., Collins, M., Johnson, M.A., Fleet, D.J., Kohli, P.: Efficient non-greedy optimization of decision trees. In: Advances in Neural Information Processing Systems, pp. 1720–1728, (2015) Lichman, M.: UCI machine learning repository (2013) KP Bennett (1009_CR2) 1998; 3 J Ross (1009_CR16) 1993 L Hyafil (1009_CR10) 1976; 5 1009_CR9 1009_CR15 CC Chang (1009_CR7) 2011; 2 1009_CR14 1009_CR13 L Breiman (1009_CR5) 1984 1009_CR18 1009_CR1 1009_CR17 T Wang (1009_CR19) 2017; 18 D Bertsimas (1009_CR3) 2017; 106 S Dash (1009_CR8) 2018 SB Kotsiantis (1009_CR11) 2013; 39 L Breiman (1009_CR6) 2001; 45 1009_CR12 D Bertsimas (1009_CR4) 2017; 55 |
References_xml | – reference: Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive partitioning and regression trees. Technical Report (2017). R package version 4.1-11 – reference: Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sensing. In: Proceedings of the 30th International Conference on Machine Learning, volume 3, pp. 765–773 (2013) – reference: ChangCCLinCJLIBSVM: a library for support vector machinesACM Trans. Intell. Syst. Technol.2011227:127:2710.1145/1961189.1961199 – reference: WangTRudinCDoshi-VelezFLiuYKlampflEMacNeillePA Bayesian framework for learning rule sets for interpretable classificationJ. Mach. Learn. Res.2017187013737142331434.68467 – reference: BennettKPBlueJAA support vector machine approach to decision treesNeural Netw. Proc. IEEE World Congr. Comput. Intell.1998323962401 – reference: BertsimasDShiodaRClassification and regression via integer optimizationOper. Res.2017552252271231625810.1287/opre.1060.0360 – reference: KotsiantisSBDecision trees: a recent overviewArtif. Intell. Rev.201339426128310.1007/s10462-011-9272-4 – reference: Murthy, S., Salzberg, S.: Lookahead and pathology in decision tree induction. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 2, pp. 1025–1031, San Francisco, CA, USA, (1995). Morgan Kaufmann Publishers Inc – reference: Norouzi, M., Collins, M., Johnson, M.A., Fleet, D.J., Kohli, P.: Efficient non-greedy optimization of decision trees. In: Advances in Neural Information Processing Systems, pp. 1720–1728, (2015) – reference: HyafilLRivestRLConstructing optimal binary decision trees is np-completeInform. Process. Lett.197651151741359810.1016/0020-0190(76)90095-8 – reference: Bennett, K.P., Blue, J.: Optimal decision trees. Technical Report 214, Rensselaer Polytechnic Institute Math Report (1996) – reference: BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-9 – reference: Wang, T., Rudin, C.: Learning optimized or’s of and’s. Technical report, (2015). arxiv:1511.02210 – reference: FICO Explainable Machine Learning Challenge https://community.fico.com/s/explainable-machine-learning-challenge – reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324 – reference: DashSGünlükOWeiDBoolean Decision Rules via Column Generation. Advances in Neural Information Processing Systems2018CanadaMontreal – reference: BreimanLFriedmanJHOlshenRAStoneCJClassification and Regression Trees1984New YorkChapman and Hall0541.62042 – reference: Lichman, M.: UCI machine learning repository (2013) – reference: RossJQuinlan. C4.5: Programs for Machine Learning1993San FranciscoMorgan Kaufmann Publishers Inc. – volume-title: Classification and Regression Trees year: 1984 ident: 1009_CR5 – volume: 55 start-page: 252 issue: 2 year: 2017 ident: 1009_CR4 publication-title: Oper. Res. doi: 10.1287/opre.1060.0360 – volume-title: Quinlan. C4.5: Programs for Machine Learning year: 1993 ident: 1009_CR16 – ident: 1009_CR9 – volume-title: Boolean Decision Rules via Column Generation. Advances in Neural Information Processing Systems year: 2018 ident: 1009_CR8 – volume: 3 start-page: 2396 year: 1998 ident: 1009_CR2 publication-title: Neural Netw. Proc. IEEE World Congr. Comput. Intell. – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1009_CR6 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 2 start-page: 27:1 year: 2011 ident: 1009_CR7 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – ident: 1009_CR1 – volume: 39 start-page: 261 issue: 4 year: 2013 ident: 1009_CR11 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9272-4 – volume: 106 start-page: 1039 issue: 7 year: 2017 ident: 1009_CR3 publication-title: Mach. Learn. doi: 10.1007/s10994-017-5633-9 – volume: 18 start-page: 1 issue: 70 year: 2017 ident: 1009_CR19 publication-title: J. Mach. Learn. Res. – ident: 1009_CR15 – ident: 1009_CR17 – volume: 5 start-page: 15 issue: 1 year: 1976 ident: 1009_CR10 publication-title: Inform. Process. Lett. doi: 10.1016/0020-0190(76)90095-8 – ident: 1009_CR13 – ident: 1009_CR18 – ident: 1009_CR14 – ident: 1009_CR12 |
SSID | ssj0009852 |
Score | 2.508416 |
Snippet | Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features.... |
SourceID | osti proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 233 |
SubjectTerms | binary classification Combinatorial analysis Computer Science Decision trees Integer programming machine learning Mathematics MATHEMATICS AND COMPUTING Mathematics and Statistics Mixed integer Operations Research/Decision Theory Optimization Prediction models Real Functions Robustness (mathematics) S.i.: Gerad-40 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6pYX-QgqGihaZI2e1xEEUG9uOAtNEkrgu6KXQX_vTPd1FVRwWNJmoTOI1-amW8A9hLptEegH6eZFjE6PB5r6VCXhRUF9zrlnhKcL6-y84G8uFW3ISmsbqPd2yvJxlN_SnbTlA6W0vGXfum_zcKcorM7avEg7U-pdnVTZyfppSpW6IVDqszPY3zZjoJT7ozQur4gzm-XpM3ec7YMiwE0sv5EyiswUw67sNQWZGDBPruw8IldEJ8uPyhZ6y6shF41OwhU04ercHKNHuMRh_ah1A6jS-qaIZJlFCp1N2EQYRRHyl7vC9awS-CUIazrESdag8HZ6c3JeRzKKsQOZTGOVWVTYmFJvXN5kjs8cmXeqkIj0K5sXiSqFLzKtBZe2dL6PLGZzmQhRSVKzkuxDp3haFhuAFPcca9Epn1lpSy4xdOLlMrZsoe4RtoIePt1jQuc41T64sFM2ZJJIgYlYhqJmLcIjj7eeZowbvzZe5-EZsgccWRXhKwCXB8RW5l-ThAwV70kgi2Sq0FkQfS4juKI3NhQcy_JIthuxW2CFdeG4KDUVAQnguNWBabNv69q83_dt2A-bXSSQte2oTN-fil3EOuM7W6j2u8YfvII priority: 102 providerName: Springer Nature |
Title | Optimal decision trees for categorical data via integer programming |
URI | https://link.springer.com/article/10.1007/s10898-021-01009-y https://www.proquest.com/docview/2560485155 https://www.osti.gov/servlets/purl/1839906 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yQUOqA0glpbIh0oFwYr12t51Tiip8lARASEilZO1fixCoklpAlL_fWc2TtMg0dMevLasGXv82TPzDcBJJp32CPTTvNAiRYPHUy0drmVhRcW9zrmnBOdP02Iyk-cX6iI-uC1jWOXGJjaG2i8cvZG_p6NZaipI8uHqd0pVo8i7Gkto7EMbTbDGy1d7MJx--bql3dVNzZ2sl6tUoUWOaTMxeU5TellO12lyEdzsHE3RQLcWuNN20Oc_DtPmHBodwJMIIFl_rfFD2AvzDjy-RyvYgcO4YZfsdWSVfvMUzj6jcbjEnj5W1WHkj14yBK2MoqJ-rMlCGIWMsr8_K9YQSYRrFiO4LnHoZzAbDb-dTdJYQSF1KPZVqmqbE-FK7p0rs9Lh7arwVlUaMXVtyypTQfC60Fp4ZYP1ZWYLXchKiloEzoN4Dq35Yh5eAFPcca9EoX1tpay4xYuKlMrZ0EMII20CfCM84yK9OFW5-GW2xMgkcIMCN43AzU0Cb-_6XK3JNR78-5R0Ymjn4ciuigkEOD_isDL9ktBeqXpZAkekNoMggphwHYUMuZWh5l5WJHC80aaJG3ZptssrgXcbDW-b_z-rlw-PdgSP8maJUVTaMbRW13_CK4QxK9uFfT0ad6HdHw0GU_qOv38cduMKxtZZ3r8FuSfwAA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEC0g0hbwAQQIIuJX4hwQqgrLlj64tFJvJn4EIbW7pbuA9k_xG5nJOixForeeHVvWvPw5nvkG4EmhvAkI9HNRGpljwOO5UR5tWTrZ8GAED1TgvH9Qjo7Ux2N9vAK_-loYSqvsY2IXqMPE0z_y13Q0K0MNSd6efcupaxS9rvYtNBZmsRvnP_HKNn2z8w71-1SI4fvD7VGeugrkHrcyy3XrBJGQiOB9VVQebxxlcLoxiDNbVzWFjpK3pTEyaBddqApXmlI1SrYych4lrnsNrispa_IoM_ywJPk1XYefohY61xj_U5FOKtUzVMwm6PJODxLzCwdhOg4GE_TrC1j3n-fZ7tQb3oHbCa6yrYV9rcJKHK_Brb9IDNdgNYWHKXueOKxf3IXtTxiKTnFmSD18GL1-TxlCZEY5WF8W1CSMElTZj68N62gr4jlL-WKnuPQ9OLoSyd6HwXgyjg-Aae550LI0oXVKNdzhtUgp7V2sETAplwHvhWd9IjOnnhondknDTAK3KHDbCdzOM3j5Z87Zgsrj0q-fkU4s-Tmu7JtUroD7I8Ysu1URtqx0XWSwQWqzCFmId9dTgpKfWRquizKDzV6bNoWHqV0acwaveg0vh_-_q_XLV3sMN0aH-3t2b-dgdwNuis7cKB9uEwaz8-_xIQKomXvUWS2Dz1ftJr8BlNEmdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRh9MIIaK6j7oFGjDd2vdu_BGAQuIHoSIwlva_ejhgTukDs196_51znT23piIm88t91sZmZnftOd-Q3Ak0J5ExDo56I0MkeHx3OjPNqydLLmwQgeqMH5w7DcPVTvjvTREvzqemGorLLzia2jDmNP_8g3KDQrQwNJNppUFnGwPXhz9i2nCVJ009qN05ibyH6c_cT0bfJ6bxt1_VSIwc7nrd08TRjIPW5rmuvGCSIkEcH7qqg8Zh9lcLo2iDkbV9WFjpI3pTEyaBddqApXmlLVSjYych4lrnsNlivMiooeLL_dGR58WlD-mnbeT9EXOtcYDVLLTmrcM9TaJiiVp-uJ2YWwmIJDb4yn_ALy_eeyto2Bg9twK4FXtjm3thVYiqNVuPkXpeEqrCRnMWHPE6P1izuw9REd0yl-GdJEH0Z34ROGgJlRRdbXOVEJo3JV9uO4Zi2JRTxnqXrsFJe-C4dXItt70BuNR_E-MM09D1qWJjROqZo7TJKU0t7FPsIn5TLgnfCsT9TmNGHjxC5ImUngFgVuW4HbWQYv_3xzNif2uPTtZ6QTS6ceV_Z1al7A_RF_lt2sCGlWul9ksEZqswhgiIXXU7mSn1p63C_KDNY7bdrkLCZ2YdoZvOo0vHj8_109uHy1x3Adj4h9vzfcX4MborU2Ko5bh970_Ht8iGhq6h4ls2Xw5apPym-ABiwG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+decision+trees+for+categorical+data+via+integer+programming&rft.jtitle=Journal+of+global+optimization&rft.au=G%C3%BCnl%C3%BCk%2C+Oktay&rft.au=Kalagnanam%2C+Jayant&rft.au=Li%2C+Minhan&rft.au=Menickelly%2C+Matt&rft.date=2021-09-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=81&rft.issue=1&rft.spage=233&rft.epage=260&rft_id=info:doi/10.1007%2Fs10898-021-01009-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_021_01009_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |