Optimal decision trees for categorical data via integer programming

Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this pap...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 81; no. 1; pp. 233 - 260
Main Authors Günlük, Oktay, Kalagnanam, Jayant, Li, Minhan, Menickelly, Matt, Scheinberg, Katya
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the special structure of categorical features into account and allow combinatorial decisions (based on subsets of values of features) at each node. Our approach can also handle numerical features via thresholding. We show that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization problems we solve are tractable with modern solvers.
AbstractList Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the special structure of categorical features into account and allow combinatorial decisions (based on subsets of values of features) at each node. Our approach can also handle numerical features via thresholding. We show that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization problems we solve are tractable with modern solvers.
Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the special structure of categorical features into account and allow combinatorial decisions (based on subsets of values of features) at each node. Our approach can also handle numerical features via thresholding. Here we show that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization problems we solve are tractable with modern solvers.
Audience Academic
Author Günlük, Oktay
Kalagnanam, Jayant
Menickelly, Matt
Li, Minhan
Scheinberg, Katya
Author_xml – sequence: 1
  givenname: Oktay
  surname: Günlük
  fullname: Günlük, Oktay
  organization: Cornell University
– sequence: 2
  givenname: Jayant
  surname: Kalagnanam
  fullname: Kalagnanam, Jayant
  organization: IBM Research
– sequence: 3
  givenname: Minhan
  surname: Li
  fullname: Li, Minhan
  organization: Lehigh University
– sequence: 4
  givenname: Matt
  surname: Menickelly
  fullname: Menickelly, Matt
  organization: Argonne National Laboratory
– sequence: 5
  givenname: Katya
  orcidid: 0000-0003-3547-1841
  surname: Scheinberg
  fullname: Scheinberg, Katya
  email: katyas@cornell.edu
  organization: Cornell University
BackLink https://www.osti.gov/servlets/purl/1839906$$D View this record in Osti.gov
BookMark eNp9kU9rGzEQxUVJoU7aL5DTkpw3HWmtlXQMJv0DgVzas9BqR66CLTmSEvC37zhbCPQQdBCM3m9m9N45O0s5IWOXHG44gPpaOWijexC8ByqY_viBrbhUQy8MH8_YCoyQvQTgn9h5rY9AGi3Fim0eDi3u3a6b0ccac-paQaxdyKXzruE2l-hPz6657iW6LiYqYukOJW-L2-9j2n5mH4PbVfzy775gv7_d_dr86O8fvv_c3N73fi1M62WYBIzAxey9AuWFNuM8SaeVEmFSDiQOPIxaD7OccJoVTKMe1249hAE5x-GCXS19c23RVh8b-j8-p4S-Wa4HY2Ak0fUiogWfnrE2-5ifS6K9rJAjrLXkUpLqZlFt3Q5tTCG34jydGfeRWmKIVL9Vp65KGiBAL4AvudaCwdJ418gwAuPOcrCnIOwShKUg7GsQ9kio-A89FLK8HN-HhgWqJE5k-Ns33qH-AsfBnJs
CitedBy_id crossref_primary_10_2139_ssrn_3971979
crossref_primary_10_1007_s10601_023_09367_y
crossref_primary_10_1016_j_porgcoat_2024_108604
crossref_primary_10_1007_s11634_021_00467_2
crossref_primary_10_1007_s11750_024_00674_y
crossref_primary_10_1007_s10601_023_09348_1
crossref_primary_10_1007_s10845_023_02119_y
crossref_primary_10_1016_j_bspc_2023_105870
crossref_primary_10_3390_agriengineering6040216
crossref_primary_10_1016_j_cor_2024_106579
crossref_primary_10_1007_s11042_023_17008_y
crossref_primary_10_1016_j_ejco_2024_100091
crossref_primary_10_1016_j_cor_2023_106441
crossref_primary_10_1007_s10462_022_10275_5
crossref_primary_10_26634_jet_21_1_20532
crossref_primary_10_1016_j_ejor_2023_11_019
crossref_primary_10_1016_j_cor_2023_106152
crossref_primary_10_1016_j_ejor_2021_12_022
crossref_primary_10_1287_msom_2022_1118
crossref_primary_10_1287_opre_2021_0034
crossref_primary_10_1016_j_cor_2021_105281
crossref_primary_10_1016_j_jechem_2024_07_045
crossref_primary_10_1214_21_SS133
Cites_doi 10.1287/opre.1060.0360
10.1023/A:1010933404324
10.1145/1961189.1961199
10.1007/s10462-011-9272-4
10.1007/s10994-017-5633-9
10.1016/0020-0190(76)90095-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
OIOZB
OTOTI
DOI 10.1007/s10898-021-01009-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Science Database
Engineering Database (subscription)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 260
ExternalDocumentID 1839906
A718397590
10_1007_s10898_021_01009_y
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: CCF-1320137
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
N95
OIOZB
OTOTI
UNUBA
Z7S
Z7Y
Z8S
ID FETCH-LOGICAL-c429t-5fb206012dcc707c2896db5a8772fb7a05e31f6883d5bebd70b6864a43f3e11e3
IEDL.DBID BENPR
ISSN 0925-5001
IngestDate Mon Jul 10 02:34:35 EDT 2023
Sat Aug 23 14:37:26 EDT 2025
Tue Jun 10 20:37:35 EDT 2025
Tue Jul 01 00:53:01 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Fri Feb 21 02:47:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Integer programming
Decision trees
Binary classification
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-5fb206012dcc707c2896db5a8772fb7a05e31f6883d5bebd70b6864a43f3e11e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
National Science Foundation (NSF)
AC02-06CH11357; CCF-1320137
ORCID 0000-0003-3547-1841
0000000335471841
OpenAccessLink https://www.osti.gov/servlets/purl/1839906
PQID 2560485155
PQPubID 29930
PageCount 28
ParticipantIDs osti_scitechconnect_1839906
proquest_journals_2560485155
gale_infotracacademiconefile_A718397590
crossref_citationtrail_10_1007_s10898_021_01009_y
crossref_primary_10_1007_s10898_021_01009_y
springer_journals_10_1007_s10898_021_01009_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
– name: United States
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-9
Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sensing. In: Proceedings of the 30th International Conference on Machine Learning, volume 3, pp. 765–773 (2013)
BreimanLFriedmanJHOlshenRAStoneCJClassification and Regression Trees1984New YorkChapman and Hall0541.62042
Murthy, S., Salzberg, S.: Lookahead and pathology in decision tree induction. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 2, pp. 1025–1031, San Francisco, CA, USA, (1995). Morgan Kaufmann Publishers Inc
Bennett, K.P., Blue, J.: Optimal decision trees. Technical Report 214, Rensselaer Polytechnic Institute Math Report (1996)
FICO Explainable Machine Learning Challenge https://community.fico.com/s/explainable-machine-learning-challenge
BertsimasDShiodaRClassification and regression via integer optimizationOper. Res.2017552252271231625810.1287/opre.1060.0360
BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
WangTRudinCDoshi-VelezFLiuYKlampflEMacNeillePA Bayesian framework for learning rule sets for interpretable classificationJ. Mach. Learn. Res.2017187013737142331434.68467
DashSGünlükOWeiDBoolean Decision Rules via Column Generation. Advances in Neural Information Processing Systems2018CanadaMontreal
HyafilLRivestRLConstructing optimal binary decision trees is np-completeInform. Process. Lett.197651151741359810.1016/0020-0190(76)90095-8
Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive partitioning and regression trees. Technical Report (2017). R package version 4.1-11
BennettKPBlueJAA support vector machine approach to decision treesNeural Netw. Proc. IEEE World Congr. Comput. Intell.1998323962401
KotsiantisSBDecision trees: a recent overviewArtif. Intell. Rev.201339426128310.1007/s10462-011-9272-4
Wang, T., Rudin, C.: Learning optimized or’s of and’s. Technical report, (2015). arxiv:1511.02210
RossJQuinlan. C4.5: Programs for Machine Learning1993San FranciscoMorgan Kaufmann Publishers Inc.
ChangCCLinCJLIBSVM: a library for support vector machinesACM Trans. Intell. Syst. Technol.2011227:127:2710.1145/1961189.1961199
Norouzi, M., Collins, M., Johnson, M.A., Fleet, D.J., Kohli, P.: Efficient non-greedy optimization of decision trees. In: Advances in Neural Information Processing Systems, pp. 1720–1728, (2015)
Lichman, M.: UCI machine learning repository (2013)
KP Bennett (1009_CR2) 1998; 3
J Ross (1009_CR16) 1993
L Hyafil (1009_CR10) 1976; 5
1009_CR9
1009_CR15
CC Chang (1009_CR7) 2011; 2
1009_CR14
1009_CR13
L Breiman (1009_CR5) 1984
1009_CR18
1009_CR1
1009_CR17
T Wang (1009_CR19) 2017; 18
D Bertsimas (1009_CR3) 2017; 106
S Dash (1009_CR8) 2018
SB Kotsiantis (1009_CR11) 2013; 39
L Breiman (1009_CR6) 2001; 45
1009_CR12
D Bertsimas (1009_CR4) 2017; 55
References_xml – reference: Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive partitioning and regression trees. Technical Report (2017). R package version 4.1-11
– reference: Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sensing. In: Proceedings of the 30th International Conference on Machine Learning, volume 3, pp. 765–773 (2013)
– reference: ChangCCLinCJLIBSVM: a library for support vector machinesACM Trans. Intell. Syst. Technol.2011227:127:2710.1145/1961189.1961199
– reference: WangTRudinCDoshi-VelezFLiuYKlampflEMacNeillePA Bayesian framework for learning rule sets for interpretable classificationJ. Mach. Learn. Res.2017187013737142331434.68467
– reference: BennettKPBlueJAA support vector machine approach to decision treesNeural Netw. Proc. IEEE World Congr. Comput. Intell.1998323962401
– reference: BertsimasDShiodaRClassification and regression via integer optimizationOper. Res.2017552252271231625810.1287/opre.1060.0360
– reference: KotsiantisSBDecision trees: a recent overviewArtif. Intell. Rev.201339426128310.1007/s10462-011-9272-4
– reference: Murthy, S., Salzberg, S.: Lookahead and pathology in decision tree induction. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 2, pp. 1025–1031, San Francisco, CA, USA, (1995). Morgan Kaufmann Publishers Inc
– reference: Norouzi, M., Collins, M., Johnson, M.A., Fleet, D.J., Kohli, P.: Efficient non-greedy optimization of decision trees. In: Advances in Neural Information Processing Systems, pp. 1720–1728, (2015)
– reference: HyafilLRivestRLConstructing optimal binary decision trees is np-completeInform. Process. Lett.197651151741359810.1016/0020-0190(76)90095-8
– reference: Bennett, K.P., Blue, J.: Optimal decision trees. Technical Report 214, Rensselaer Polytechnic Institute Math Report (1996)
– reference: BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-9
– reference: Wang, T., Rudin, C.: Learning optimized or’s of and’s. Technical report, (2015). arxiv:1511.02210
– reference: FICO Explainable Machine Learning Challenge https://community.fico.com/s/explainable-machine-learning-challenge
– reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
– reference: DashSGünlükOWeiDBoolean Decision Rules via Column Generation. Advances in Neural Information Processing Systems2018CanadaMontreal
– reference: BreimanLFriedmanJHOlshenRAStoneCJClassification and Regression Trees1984New YorkChapman and Hall0541.62042
– reference: Lichman, M.: UCI machine learning repository (2013)
– reference: RossJQuinlan. C4.5: Programs for Machine Learning1993San FranciscoMorgan Kaufmann Publishers Inc.
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 1009_CR5
– volume: 55
  start-page: 252
  issue: 2
  year: 2017
  ident: 1009_CR4
  publication-title: Oper. Res.
  doi: 10.1287/opre.1060.0360
– volume-title: Quinlan. C4.5: Programs for Machine Learning
  year: 1993
  ident: 1009_CR16
– ident: 1009_CR9
– volume-title: Boolean Decision Rules via Column Generation. Advances in Neural Information Processing Systems
  year: 2018
  ident: 1009_CR8
– volume: 3
  start-page: 2396
  year: 1998
  ident: 1009_CR2
  publication-title: Neural Netw. Proc. IEEE World Congr. Comput. Intell.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1009_CR6
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 27:1
  year: 2011
  ident: 1009_CR7
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: 1009_CR1
– volume: 39
  start-page: 261
  issue: 4
  year: 2013
  ident: 1009_CR11
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9272-4
– volume: 106
  start-page: 1039
  issue: 7
  year: 2017
  ident: 1009_CR3
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5633-9
– volume: 18
  start-page: 1
  issue: 70
  year: 2017
  ident: 1009_CR19
  publication-title: J. Mach. Learn. Res.
– ident: 1009_CR15
– ident: 1009_CR17
– volume: 5
  start-page: 15
  issue: 1
  year: 1976
  ident: 1009_CR10
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(76)90095-8
– ident: 1009_CR13
– ident: 1009_CR18
– ident: 1009_CR14
– ident: 1009_CR12
SSID ssj0009852
Score 2.508416
Snippet Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features....
SourceID osti
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 233
SubjectTerms binary classification
Combinatorial analysis
Computer Science
Decision trees
Integer programming
machine learning
Mathematics
MATHEMATICS AND COMPUTING
Mathematics and Statistics
Mixed integer
Operations Research/Decision Theory
Optimization
Prediction models
Real Functions
Robustness (mathematics)
S.i.: Gerad-40
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6pYX-QgqGihaZI2e1xEEUG9uOAtNEkrgu6KXQX_vTPd1FVRwWNJmoTOI1-amW8A9hLptEegH6eZFjE6PB5r6VCXhRUF9zrlnhKcL6-y84G8uFW3ISmsbqPd2yvJxlN_SnbTlA6W0vGXfum_zcKcorM7avEg7U-pdnVTZyfppSpW6IVDqszPY3zZjoJT7ozQur4gzm-XpM3ec7YMiwE0sv5EyiswUw67sNQWZGDBPruw8IldEJ8uPyhZ6y6shF41OwhU04ercHKNHuMRh_ah1A6jS-qaIZJlFCp1N2EQYRRHyl7vC9awS-CUIazrESdag8HZ6c3JeRzKKsQOZTGOVWVTYmFJvXN5kjs8cmXeqkIj0K5sXiSqFLzKtBZe2dL6PLGZzmQhRSVKzkuxDp3haFhuAFPcca9Epn1lpSy4xdOLlMrZsoe4RtoIePt1jQuc41T64sFM2ZJJIgYlYhqJmLcIjj7eeZowbvzZe5-EZsgccWRXhKwCXB8RW5l-ThAwV70kgi2Sq0FkQfS4juKI3NhQcy_JIthuxW2CFdeG4KDUVAQnguNWBabNv69q83_dt2A-bXSSQte2oTN-fil3EOuM7W6j2u8YfvII
  priority: 102
  providerName: Springer Nature
Title Optimal decision trees for categorical data via integer programming
URI https://link.springer.com/article/10.1007/s10898-021-01009-y
https://www.proquest.com/docview/2560485155
https://www.osti.gov/servlets/purl/1839906
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yQUOqA0glpbIh0oFwYr12t51Tiip8lARASEilZO1fixCoklpAlL_fWc2TtMg0dMevLasGXv82TPzDcBJJp32CPTTvNAiRYPHUy0drmVhRcW9zrmnBOdP02Iyk-cX6iI-uC1jWOXGJjaG2i8cvZG_p6NZaipI8uHqd0pVo8i7Gkto7EMbTbDGy1d7MJx--bql3dVNzZ2sl6tUoUWOaTMxeU5TellO12lyEdzsHE3RQLcWuNN20Oc_DtPmHBodwJMIIFl_rfFD2AvzDjy-RyvYgcO4YZfsdWSVfvMUzj6jcbjEnj5W1WHkj14yBK2MoqJ-rMlCGIWMsr8_K9YQSYRrFiO4LnHoZzAbDb-dTdJYQSF1KPZVqmqbE-FK7p0rs9Lh7arwVlUaMXVtyypTQfC60Fp4ZYP1ZWYLXchKiloEzoN4Dq35Yh5eAFPcca9EoX1tpay4xYuKlMrZ0EMII20CfCM84yK9OFW5-GW2xMgkcIMCN43AzU0Cb-_6XK3JNR78-5R0Ymjn4ciuigkEOD_isDL9ktBeqXpZAkekNoMggphwHYUMuZWh5l5WJHC80aaJG3ZptssrgXcbDW-b_z-rlw-PdgSP8maJUVTaMbRW13_CK4QxK9uFfT0ad6HdHw0GU_qOv38cduMKxtZZ3r8FuSfwAA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEC0g0hbwAQQIIuJX4hwQqgrLlj64tFJvJn4EIbW7pbuA9k_xG5nJOixForeeHVvWvPw5nvkG4EmhvAkI9HNRGpljwOO5UR5tWTrZ8GAED1TgvH9Qjo7Ux2N9vAK_-loYSqvsY2IXqMPE0z_y13Q0K0MNSd6efcupaxS9rvYtNBZmsRvnP_HKNn2z8w71-1SI4fvD7VGeugrkHrcyy3XrBJGQiOB9VVQebxxlcLoxiDNbVzWFjpK3pTEyaBddqApXmlI1SrYych4lrnsNrispa_IoM_ywJPk1XYefohY61xj_U5FOKtUzVMwm6PJODxLzCwdhOg4GE_TrC1j3n-fZ7tQb3oHbCa6yrYV9rcJKHK_Brb9IDNdgNYWHKXueOKxf3IXtTxiKTnFmSD18GL1-TxlCZEY5WF8W1CSMElTZj68N62gr4jlL-WKnuPQ9OLoSyd6HwXgyjg-Aae550LI0oXVKNdzhtUgp7V2sETAplwHvhWd9IjOnnhondknDTAK3KHDbCdzOM3j5Z87Zgsrj0q-fkU4s-Tmu7JtUroD7I8Ysu1URtqx0XWSwQWqzCFmId9dTgpKfWRquizKDzV6bNoWHqV0acwaveg0vh_-_q_XLV3sMN0aH-3t2b-dgdwNuis7cKB9uEwaz8-_xIQKomXvUWS2Dz1ftJr8BlNEmdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRh9MIIaK6j7oFGjDd2vdu_BGAQuIHoSIwlva_ejhgTukDs196_51znT23piIm88t91sZmZnftOd-Q3Ak0J5ExDo56I0MkeHx3OjPNqydLLmwQgeqMH5w7DcPVTvjvTREvzqemGorLLzia2jDmNP_8g3KDQrQwNJNppUFnGwPXhz9i2nCVJ009qN05ibyH6c_cT0bfJ6bxt1_VSIwc7nrd08TRjIPW5rmuvGCSIkEcH7qqg8Zh9lcLo2iDkbV9WFjpI3pTEyaBddqApXmlLVSjYych4lrnsNlivMiooeLL_dGR58WlD-mnbeT9EXOtcYDVLLTmrcM9TaJiiVp-uJ2YWwmIJDb4yn_ALy_eeyto2Bg9twK4FXtjm3thVYiqNVuPkXpeEqrCRnMWHPE6P1izuw9REd0yl-GdJEH0Z34ROGgJlRRdbXOVEJo3JV9uO4Zi2JRTxnqXrsFJe-C4dXItt70BuNR_E-MM09D1qWJjROqZo7TJKU0t7FPsIn5TLgnfCsT9TmNGHjxC5ImUngFgVuW4HbWQYv_3xzNif2uPTtZ6QTS6ceV_Z1al7A_RF_lt2sCGlWul9ksEZqswhgiIXXU7mSn1p63C_KDNY7bdrkLCZ2YdoZvOo0vHj8_109uHy1x3Adj4h9vzfcX4MborU2Ko5bh970_Ht8iGhq6h4ls2Xw5apPym-ABiwG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+decision+trees+for+categorical+data+via+integer+programming&rft.jtitle=Journal+of+global+optimization&rft.au=G%C3%BCnl%C3%BCk%2C+Oktay&rft.au=Kalagnanam%2C+Jayant&rft.au=Li%2C+Minhan&rft.au=Menickelly%2C+Matt&rft.date=2021-09-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=81&rft.issue=1&rft.spage=233&rft.epage=260&rft_id=info:doi/10.1007%2Fs10898-021-01009-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_021_01009_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon