Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers

DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a sin...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 12; p. 129725
Main Authors Cristofalo, M., Marrano, C.A., Salerno, D., Corti, R., Cassina, V., Mammola, A., Gherardi, M., Sclavi, B., Cosentino Lagomarsino, M., Mantegazza, F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding. In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively. We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG. Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes. •In the presence of H-NS alone, the DNA displays a step-wise collapse due to the formation of multiple bridges.•In presence of PEG alone, the DNA collapses at a force highly dependent on the volume fraction of the crowding agent.•The combination of the two agents displays a cooperative effect, i.e. cellular crowding influences H-NS activity.
AbstractList DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.
DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.BACKGROUNDDNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.METHODSWe apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.RESULTSIn the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.CONCLUSIONSWe observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.GENERAL SIGNIFICANCEOur data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.
DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding. In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively. We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG. Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.
DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding. In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively. We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG. Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes. •In the presence of H-NS alone, the DNA displays a step-wise collapse due to the formation of multiple bridges.•In presence of PEG alone, the DNA collapses at a force highly dependent on the volume fraction of the crowding agent.•The combination of the two agents displays a cooperative effect, i.e. cellular crowding influences H-NS activity.
ArticleNumber 129725
Author Gherardi, M.
Mantegazza, F.
Salerno, D.
Sclavi, B.
Cosentino Lagomarsino, M.
Marrano, C.A.
Cristofalo, M.
Cassina, V.
Mammola, A.
Corti, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Cristofalo
  fullname: Cristofalo, M.
  organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
– sequence: 2
  givenname: C.A.
  surname: Marrano
  fullname: Marrano, C.A.
  organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
– sequence: 3
  givenname: D.
  surname: Salerno
  fullname: Salerno, D.
  organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
– sequence: 4
  givenname: R.
  surname: Corti
  fullname: Corti, R.
  organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
– sequence: 5
  givenname: V.
  surname: Cassina
  fullname: Cassina, V.
  organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
– sequence: 6
  givenname: A.
  surname: Mammola
  fullname: Mammola, A.
  organization: Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy
– sequence: 7
  givenname: M.
  surname: Gherardi
  fullname: Gherardi, M.
  organization: Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy
– sequence: 8
  givenname: B.
  surname: Sclavi
  fullname: Sclavi, B.
  organization: Université Pierre et Marie Curie, Institut de Biologie Paris Seine, 7-9 Quai Saint Bernard, 75005 Paris, France
– sequence: 9
  givenname: M.
  surname: Cosentino Lagomarsino
  fullname: Cosentino Lagomarsino, M.
  organization: Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy
– sequence: 10
  givenname: F.
  surname: Mantegazza
  fullname: Mantegazza, F.
  email: francesco.mantegazza@unimib.it
  organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32891648$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03035306$$DView record in HAL
BookMark eNqNks9uEzEQxi1URNPCGyDkIxw22F57_3BAikJpkEJBopwtrz2bOtrYwXZSlUfgqfGyLQcOgC8jj37fp9HMd4ZOnHeA0HNK5pTQ6vV23nVqA27OCMst1tZMPEIz2tSsaAipTtCMlIQXnFbiFJ3FuCX5iVY8Qacla1pa8WaGfiy930NQyR4BQ9-DThF7h9MNYO13e6WTzV_f43dXC9wHtdmBy0h39wtxBz2Atwbvg09gHV4VV1-wcmYyCP7WWLfB45wJf764HLkOzCj_qDYOktX4-hbgO4T4FD3u1RDh2X09R1_fX1wvV8X60-WH5WJdaM7aVAjTdopXypCy6WsqSiJEy3lfi7aHSvAe6oZw09Sa0bGpVdtQw2griDBGiPIcvZp8b9Qg98HuVLiTXlm5Wqzl2MtrK7NtdaSZfTmxee5vB4hJ7mzUMAzKgT9EyYTIxi2p_gPlnFRVLcomoy_u0UO3A_N7iIezZODNBOQNxhigl9omNV4iBWUHSYkcMyC3csqAHDMgpwxkMf9D_OD_D9nbSQZ590cLQUZtwWkwNuRUSOPt3w1-AoYIymw
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113552
crossref_primary_10_1039_D3AN00102D
crossref_primary_10_1016_j_bpj_2023_11_010
crossref_primary_10_1073_pnas_2107871119
crossref_primary_10_1093_femsre_fuac049
crossref_primary_10_3390_ijms242417502
crossref_primary_10_1038_s41598_023_50355_2
crossref_primary_10_1007_s12064_024_00427_2
crossref_primary_10_1111_mmi_15272
crossref_primary_10_1021_acs_jpcc_2c00584
Cites_doi 10.1074/jbc.RA117.001425
10.1038/nrmicro883
10.1073/pnas.1600098113
10.1126/science.1439819
10.1093/nar/gkq597
10.1016/j.cell.2013.11.028
10.1016/j.biochi.2010.06.024
10.1063/1.469375
10.1038/nmeth.1218
10.1529/biophysj.104.052811
10.1039/C4SM02434F
10.1073/pnas.1521241113
10.1093/nar/gky826
10.1529/biophysj.105.077685
10.1039/C5SM00619H
10.1073/pnas.1102544108
10.1073/pnas.1208689109
10.1093/nar/gkm712
10.1039/C3IB40147B
10.1063/1.1740347
10.1007/s00249-013-0941-x
10.1093/nar/gkr712
10.1038/nature05283
10.1101/gad.1883510
10.1209/0295-5075/15/4/009
10.1093/nar/gku566
10.1093/nar/gky021
10.1126/science.1128794
10.1093/nar/gkz1196
10.1021/ma201427y
10.1093/nar/gks1206
10.1016/j.jsb.2012.03.007
10.1093/nar/gkq934
10.1016/j.bpj.2015.08.016
10.1016/j.ceb.2016.02.015
10.1038/ncomms2330
10.1016/0014-5793(88)80826-3
10.1016/j.jsb.2006.03.022
10.1039/c3mb70035f
10.1126/science.8079175
10.1093/nar/gky1077
10.1103/PhysRevLett.120.088101
10.1103/PhysRevLett.116.256803
10.1073/pnas.1716721114
10.1016/j.jsb.2016.02.009
10.1074/jbc.M206037200
10.1074/jbc.C100603200
10.1021/ma00098a016
10.1016/S0301-4622(98)00115-X
10.1021/bm700856u
10.1103/PhysRevLett.104.238102
10.1371/journal.ppat.0020081
10.1016/j.bpj.2019.01.027
10.1093/nar/gkl542
10.1073/pnas.1006966107
10.1021/jp501589d
10.1063/1.1898213
10.1016/S0006-3495(03)74826-7
10.1016/j.jsb.2004.02.003
10.1038/nsmb1233
10.1038/nrmicro1598
10.1038/srep29422
10.1007/978-1-4939-6421-5_9
10.1146/annurev.biophys.37.032807.125817
10.1021/ma00130a008
10.1088/0034-4885/75/7/076602
10.1016/j.ijbiomac.2017.05.079
10.1016/j.jsb.2006.05.006
10.1093/nar/28.18.3504
10.1038/ncomms3003
10.1016/S0300-9084(01)01245-7
10.1016/S0006-3495(03)75051-6
10.1002/bip.22789
10.1159/000368851
10.1016/j.bpj.2009.06.051
10.1016/j.jsb.2005.10.011
10.1016/j.mib.2008.02.011
10.1038/nrmicro2261
10.1042/BST20160190
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
DOI 10.1016/j.bbagen.2020.129725
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID oai_HAL_hal_03035306v1
32891648
10_1016_j_bbagen_2020_129725
S0304416520302373
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
1XC
ID FETCH-LOGICAL-c429t-5d9ba46ad038f7153055944f759fe654fe7804d87c21f759ca981d219505dd553
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri May 09 12:18:43 EDT 2025
Mon Jul 21 09:29:32 EDT 2025
Tue Aug 05 09:28:39 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 00:22:14 EDT 2025
Fri Feb 23 02:47:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords H-NS
Force spectroscopy
Magnetic Tweezers
Nucleoid-associated proteins
Single molecule
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-5d9ba46ad038f7153055944f759fe654fe7804d87c21f759ca981d219505dd553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0254-8243
0000-0002-3883-8592
PMID 32891648
PQID 2440667538
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03035306v1
proquest_miscellaneous_2551959061
proquest_miscellaneous_2440667538
pubmed_primary_32891648
crossref_citationtrail_10_1016_j_bbagen_2020_129725
crossref_primary_10_1016_j_bbagen_2020_129725
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
2020-12
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lucchini, Rowley, Goldberg, Hurd, Harrison, Hinton (bb0010) 2006; 2
Navarre, Porwollik, Wang, McClelland, Rosen, Libby, Fang (bb0200) 2006; 313
Halperin, Zhulina (bb0355) 1991; 15
Dame, Tark-Dame (bb0095) 2016; 40
Liu, Chen, Kenney, Yan (bb0295) 2010; 24
Vasilevskaya, Khokhlov, Matsuzawa, Yoshikawa (bb0125) 1995; 102
Pelletier, Halvorsen, Ha, Paparcone, Sandler, Woldringh, Wong, Jun (bb0135) 2012; 109
Srinivasan, Chandraprakash, Krishnamurthi, Singh, Scolari, Krishna, Seshasayee (bb0225) 2013; 9
Kahramanoglou, Seshasayee, Prieto, Ibberson, Schmidt, Zimmermann, Benes, Fraser, Luscombe (bb0195) 2011; 39
Bustamante, Marko, Siggia, Smith (bb0340) 1994; 265
Bouffartigues, Buckle, Badaut, Travers, Rimsky (bb0215) 2007; 14
Ojala, Ziedaite, Wallin, Bamford, Hæggstrom (bb0115) 2014; 43
Javer, Long, Nugent, Grisi, Siriwatwetchakul, Dorfman, Cicuta, Cosentino Lagomarsino (bb0035) 2013; 4
Rocha, Cavalcante, Silva, Ramos (bb0305) 2014; 118
Landick, Wade, Grainger (bb0285) 2015; 24
Gao, Foo, Winardhi, Tang, Yan, Kenney (bb0180) 2017; 114
Salerno, Brogioli, Cassina, Turchi, Beretta, Seruggia, Ziano, Zunino, Mantegazza (bb0320) 2010; 38
Ramisetty, Langlete, Lale, Dias (bb0160) 2017; 103
Fang, Rimsky (bb0220) 2008; 11
Grainger (bb0175) 2016; 44
Tempestini, Cassina, Brogioli, Ziano, Erba, Giovannoni, Cerrito, Salerno, Mantegazza (bb0325) 2013; 43
Grosberg, Khokhlov (bb0360) 1994
Yan, Leng, Finzi, Dunlap (bb0380) 2018; 46
Santos-Zavaleta, Salgado, Gama-Castro, Sanchez-Perez, Gomez-Romero, Ledezma-Tejeida, Santiago Garcia-Sotelo, Alquicira-Hernandez, Jose Muniz-Rascado, Pena-Loredo, Ishida-Gutierrez, Velazquez-Ramirez, Del Moral-Chavez, Bonavides-Martinez, Mendez-Cruz, Galagan, Collado-Vides (bb0385) 2019; 47
Zimmerman (bb0060) 2004; 147
Polotsky, Smolyakova, Birshtein (bb0410) 2011; 44
de Vries (bb0055) 2010; 92
Arold, Leonard, Parkinson, Ladbury (bb0165) 2010; 107
Wegner, Alexeeva, Odijk, Woldringh (bb0140) 2012
Wiggins, Dame, Noom, Wuite (bb0090) 2009; 97
Dame, Wyman, Goosen (bb0260) 2000; 28
Dame, Wyman, Wurm, Wagner, Goosen (bb0265) 2002; 277
bb0390
Winardhi, Yan, Kenney (bb0170) 2015; 109
Amit, Oppenheim, Stavans (bb0290) 2003; 84
Lang, Blot, Bouffartigues, Buckle, Geertz, Gualerzi, Mavathur, Muskhelishvili, Pon, Rimsky, Stella, Babu, Travers (bb0190) 2007; 35
Craig, Terentjev (bb0405) 2005; 122
Cristofalo, Kovari, Corti, Salerno, Cassina, Dunlap, Mantegazza (bb0330) 2019; 116
Heller, Laurens, Vorselen, Broekmans, Biebricher, King, Brouwer, Wuite, Peterman (bb0275) 2017; 1486
Wegner, Wintraecken, Spurio, Woldringh, de Vries, Odijk (bb0145) 2016; 194
Dillon, Dorman (bb0015) 2010; 8
Vologodskii (bb0345) 1994; 27
Thacker, Bromek, Meijer, Kotar, Sclavi, Lagomarsino, Keyser, Cicuta (bb0150) 2014; 6
Scolari, Cosentino Lagomarsino (bb0155) 2015; 11
Dame, Noom, Wuite (bb0270) 2006; 444
Marko, Siggia (bb0335) 1995; 28
Friedrich, Gualerzi, Lammi, Losso, Pon (bb0350) 1988; 229
Polovnikov, Gherardi, Cosentino Lagomarsino, Tamm (bb0045) 2018; 120
Laurens, Driessen, Heller, Vorselen, Noom, Hol, White, Dame, Wuite (bb0020) 2012; 3
Smith, Finzi, Bustamante (bb0245) 1992; 258
Luijsterburg, Noom, Wuite, Dame (bb0400) 2006; 156
Dorman (bb0230) 2007; 5
Zimmerman (bb0070) 2006; 153
Gulvady, Gao, Kenney, Yan (bb0280) 2018; 46
Gordon, Li, Cote, Weirauch, Ding, Hughes, Navarre, Xia, Liu (bb0205) 2011; 108
Abels, Moreno-Herrero, van der Heijden, Dekker, Dekker (bb0250) 2005; 88
Yamanaka, Winardhi, Yamauchi, Nishiyama, Sowa, Yan, Kawagishi, Ishihama, Yamamoto (bb0185) 2018; 293
Zimmerman (bb0065) 2006; 156
Pastre, Hamon, Mechulam, Sorel, Baconnais, Curmi, Le Cam, Pietrement (bb0075) 2007; 8
Hirano, Ichikawa, Ishido, Ishikawa, Baba, Yoshikawa (bb0120) 2012; 40
Marenduzzo, Micheletti, Cook (bb0370) 2006; 90
Rotondo, Molinari, Ratti, Gherardi (bb0365) 2016; 116
Driessen, Lin, Waterreus, van der Meulen, van der Valk, Laurens, Moolenaar, Pannu, Wuite, Goosen, Dame (bb0025) 2016; 6
Crisafuli, da Silva, Ferreira, Ramos, Rocha (bb0310) 2015; 105
Odijk (bb0050) 1998; 73
Yousuf, Iuliani, Veetil, Seshasayee, Sclavi, Cosentino Lagomarsino (bb0235) 2020; 48
Cheng, Jia, Ran (bb0315) 2015; 11
Weber, Spakowitz, Theriot (bb0030) 2010; 104
Zhou, Rivas, Minton (bb0085) 2008; 37
Parry, Surovtsev, Cabeen, O’Hern, Dufresne, Jacobs-Wagner (bb0040) 2014; 156
Benza, Bassetti, Dorfman, Scolari, Bromek, Cicuta, Cosentino Lagomarsino (bb0100) 2012; 75
Lim, Kenney, Yan (bb0300) 2014; 42
Gherardi, Scolari, Dame, Cosentino Lagomarsino (bb0105) 2019; 1486
Dorman (bb0005) 2004; 2
Cunha, Odijk, Suleymanoglu, Woldringh (bb0130) 2001; 83
Neuman, Nagy (bb0255) 2008; 5
Dame, Wuite (bb0110) 2003; 85
Van der Valk, Vreede, Crémazy, Dame (bb0210) 2014; 24
Vtyurina, Dulin, Docter, Meyer, Dekker, Abbondanzieri (bb0415) 2016; 113
Sharp (bb0080) 2016; 113
Asakura, Oosawa (bb0375) 1954; 22
Badaut, Williams, Arluison, Bouffartigues, Robert, Buc, Rimsky (bb0395) 2002; 277
Grainger, Hurd, Goldberg, Busby (bb0240) 2006; 34
Dillon (10.1016/j.bbagen.2020.129725_bb0015) 2010; 8
Gulvady (10.1016/j.bbagen.2020.129725_bb0280) 2018; 46
Ramisetty (10.1016/j.bbagen.2020.129725_bb0160) 2017; 103
Wegner (10.1016/j.bbagen.2020.129725_bb0140) 2012
Grainger (10.1016/j.bbagen.2020.129725_bb0240) 2006; 34
Gherardi (10.1016/j.bbagen.2020.129725_bb0105) 2019; 1486
Zimmerman (10.1016/j.bbagen.2020.129725_bb0060) 2004; 147
Vasilevskaya (10.1016/j.bbagen.2020.129725_bb0125) 1995; 102
Wegner (10.1016/j.bbagen.2020.129725_bb0145) 2016; 194
Fang (10.1016/j.bbagen.2020.129725_bb0220) 2008; 11
Vtyurina (10.1016/j.bbagen.2020.129725_bb0415) 2016; 113
Parry (10.1016/j.bbagen.2020.129725_bb0040) 2014; 156
Halperin (10.1016/j.bbagen.2020.129725_bb0355) 1991; 15
Scolari (10.1016/j.bbagen.2020.129725_bb0155) 2015; 11
Salerno (10.1016/j.bbagen.2020.129725_bb0320) 2010; 38
Zimmerman (10.1016/j.bbagen.2020.129725_bb0070) 2006; 153
Vologodskii (10.1016/j.bbagen.2020.129725_bb0345) 1994; 27
Lucchini (10.1016/j.bbagen.2020.129725_bb0010) 2006; 2
de Vries (10.1016/j.bbagen.2020.129725_bb0055) 2010; 92
Arold (10.1016/j.bbagen.2020.129725_bb0165) 2010; 107
Tempestini (10.1016/j.bbagen.2020.129725_bb0325) 2013; 43
Grosberg (10.1016/j.bbagen.2020.129725_bb0360) 1994
Pastre (10.1016/j.bbagen.2020.129725_bb0075) 2007; 8
Gao (10.1016/j.bbagen.2020.129725_bb0180) 2017; 114
Lim (10.1016/j.bbagen.2020.129725_bb0300) 2014; 42
Kahramanoglou (10.1016/j.bbagen.2020.129725_bb0195) 2011; 39
Yousuf (10.1016/j.bbagen.2020.129725_bb0235) 2020; 48
Winardhi (10.1016/j.bbagen.2020.129725_bb0170) 2015; 109
Dorman (10.1016/j.bbagen.2020.129725_bb0230) 2007; 5
Dame (10.1016/j.bbagen.2020.129725_bb0265) 2002; 277
Hirano (10.1016/j.bbagen.2020.129725_bb0120) 2012; 40
Badaut (10.1016/j.bbagen.2020.129725_bb0395) 2002; 277
Marenduzzo (10.1016/j.bbagen.2020.129725_bb0370) 2006; 90
Thacker (10.1016/j.bbagen.2020.129725_bb0150) 2014; 6
Laurens (10.1016/j.bbagen.2020.129725_bb0020) 2012; 3
Dame (10.1016/j.bbagen.2020.129725_bb0095) 2016; 40
Crisafuli (10.1016/j.bbagen.2020.129725_bb0310) 2015; 105
Odijk (10.1016/j.bbagen.2020.129725_bb0050) 1998; 73
Srinivasan (10.1016/j.bbagen.2020.129725_bb0225) 2013; 9
Gordon (10.1016/j.bbagen.2020.129725_bb0205) 2011; 108
Amit (10.1016/j.bbagen.2020.129725_bb0290) 2003; 84
Weber (10.1016/j.bbagen.2020.129725_bb0030) 2010; 104
Zimmerman (10.1016/j.bbagen.2020.129725_bb0065) 2006; 156
Asakura (10.1016/j.bbagen.2020.129725_bb0375) 1954; 22
Craig (10.1016/j.bbagen.2020.129725_bb0405) 2005; 122
Abels (10.1016/j.bbagen.2020.129725_bb0250) 2005; 88
Luijsterburg (10.1016/j.bbagen.2020.129725_bb0400) 2006; 156
Benza (10.1016/j.bbagen.2020.129725_bb0100) 2012; 75
Santos-Zavaleta (10.1016/j.bbagen.2020.129725_bb0385) 2019; 47
Dame (10.1016/j.bbagen.2020.129725_bb0270) 2006; 444
Ojala (10.1016/j.bbagen.2020.129725_bb0115) 2014; 43
Lang (10.1016/j.bbagen.2020.129725_bb0190) 2007; 35
Rocha (10.1016/j.bbagen.2020.129725_bb0305) 2014; 118
Cristofalo (10.1016/j.bbagen.2020.129725_bb0330) 2019; 116
Dame (10.1016/j.bbagen.2020.129725_bb0260) 2000; 28
Wiggins (10.1016/j.bbagen.2020.129725_bb0090) 2009; 97
Neuman (10.1016/j.bbagen.2020.129725_bb0255) 2008; 5
Polotsky (10.1016/j.bbagen.2020.129725_bb0410) 2011; 44
Landick (10.1016/j.bbagen.2020.129725_bb0285) 2015; 24
Navarre (10.1016/j.bbagen.2020.129725_bb0200) 2006; 313
Polovnikov (10.1016/j.bbagen.2020.129725_bb0045) 2018; 120
Liu (10.1016/j.bbagen.2020.129725_bb0295) 2010; 24
Yamanaka (10.1016/j.bbagen.2020.129725_bb0185) 2018; 293
Cunha (10.1016/j.bbagen.2020.129725_bb0130) 2001; 83
Zhou (10.1016/j.bbagen.2020.129725_bb0085) 2008; 37
Yan (10.1016/j.bbagen.2020.129725_bb0380) 2018; 46
Grainger (10.1016/j.bbagen.2020.129725_bb0175) 2016; 44
Dame (10.1016/j.bbagen.2020.129725_bb0110) 2003; 85
Bustamante (10.1016/j.bbagen.2020.129725_bb0340) 1994; 265
Smith (10.1016/j.bbagen.2020.129725_bb0245) 1992; 258
Cheng (10.1016/j.bbagen.2020.129725_bb0315) 2015; 11
Van der Valk (10.1016/j.bbagen.2020.129725_bb0210) 2014; 24
Driessen (10.1016/j.bbagen.2020.129725_bb0025) 2016; 6
Sharp (10.1016/j.bbagen.2020.129725_bb0080) 2016; 113
Pelletier (10.1016/j.bbagen.2020.129725_bb0135) 2012; 109
Marko (10.1016/j.bbagen.2020.129725_bb0335) 1995; 28
Heller (10.1016/j.bbagen.2020.129725_bb0275) 2017; 1486
Javer (10.1016/j.bbagen.2020.129725_bb0035) 2013; 4
Bouffartigues (10.1016/j.bbagen.2020.129725_bb0215) 2007; 14
Dorman (10.1016/j.bbagen.2020.129725_bb0005) 2004; 2
Friedrich (10.1016/j.bbagen.2020.129725_bb0350) 1988; 229
Rotondo (10.1016/j.bbagen.2020.129725_bb0365) 2016; 116
References_xml – volume: 97
  start-page: 1997
  year: 2009
  end-page: 2003
  ident: bb0090
  article-title: Protein-mediated molecular bridging: a key mechanism in biopolymer organization
  publication-title: Biophys. J.
– volume: 28
  start-page: 3504
  year: 2000
  end-page: 3510
  ident: bb0260
  article-title: H-NS mediated compaction of DNA visualised by atomic force microscopy
  publication-title: Nucleic Acids Res.
– volume: 85
  start-page: 4146
  year: 2003
  end-page: 4148
  ident: bb0110
  article-title: On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back
  publication-title: Biophys. J.
– volume: 116
  start-page: 256803
  year: 2016
  ident: bb0365
  article-title: Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit
  publication-title: Phys. Rev. Lett.
– volume: 43
  start-page: 2009
  year: 2013
  end-page: 2012
  ident: bb0325
  article-title: Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength
  publication-title: Nucleic Acids Res.
– volume: 47
  start-page: D212
  year: 2019
  end-page: D220
  ident: bb0385
  article-title: RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in
  publication-title: Nucleic Acids Res.
– volume: 40
  start-page: 60
  year: 2016
  end-page: 65
  ident: bb0095
  article-title: Bacterial chromatin: converging views at different scales
  publication-title: Curr. Opin. Cell Biol.
– volume: 107
  start-page: 15728
  year: 2010
  end-page: 15732
  ident: bb0165
  article-title: H-NS forms a superhelical protein scaffold for DNA condensation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 184
  year: 2014
  end-page: 191
  ident: bb0150
  article-title: Bacterial nucleoid structure probed by active drag and resistive pulse sensing
  publication-title: Integr. Biol.
– volume: 38
  start-page: 7089
  year: 2010
  end-page: 7099
  ident: bb0320
  article-title: Magnetic tweezers measurements of the nanomechanical properties of DNA in the presence of drugs
  publication-title: Nucleic Acids Res.
– volume: 83
  start-page: 149
  year: 2001
  end-page: 154
  ident: bb0130
  article-title: Isolation of the Escherichia coli nucleoid
  publication-title: Biochimie
– volume: 265
  start-page: 1599
  year: 1994
  end-page: 1600
  ident: bb0340
  article-title: Entropic elasticity of
  publication-title: Science
– volume: 14
  start-page: 441
  year: 2007
  end-page: 448
  ident: bb0215
  article-title: H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing
  publication-title: Nat. Struct. Mol. Biol.
– volume: 4
  start-page: 3003
  year: 2013
  ident: bb0035
  article-title: Short-time movement of
  publication-title: Nat. Commun.
– volume: 113
  start-page: 1684
  year: 2016
  end-page: 1685
  ident: bb0080
  article-title: Unpacking the origins of in-cell crowding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 29422
  year: 2016
  ident: bb0025
  article-title: Diverse architectural properties of Sso10a proteins: evidence for a role in chromatin compaction and organization
  publication-title: Sci. Rep.
– volume: 109
  start-page: 1321
  year: 2015
  end-page: 1329
  ident: bb0170
  article-title: H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments
  publication-title: Biophys. J.
– volume: 48
  start-page: 2348
  year: 2020
  end-page: 2356
  ident: bb0235
  article-title: Early fate of exogenous promoters in
  publication-title: Nucleic Acids Res.
– volume: 88
  start-page: 2737
  year: 2005
  end-page: 2744
  ident: bb0250
  article-title: Single-molecule measurements of the persistence length of double- stranded RNA
  publication-title: Biophys. J.
– volume: 194
  start-page: 129
  year: 2016
  end-page: 137
  ident: bb0145
  article-title: Compaction of isolated Escherichia coli nucleoids: polymer and H-NS protein synergetics
  publication-title: J. Struct. Biol.
– volume: 43
  start-page: 71
  year: 2014
  end-page: 79
  ident: bb0115
  article-title: Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation
  publication-title: Eur. Biophys. J.
– volume: 34
  start-page: 4642
  year: 2006
  end-page: 4652
  ident: bb0240
  article-title: Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 53
  year: 2015
  end-page: 59
  ident: bb0285
  article-title: H-NS and RNA Polymerase: A Love-Hate Relationship?
– volume: 108
  start-page: 10690
  year: 2011
  end-page: 10695
  ident: bb0205
  article-title: Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 153
  start-page: 160
  year: 2006
  end-page: 175
  ident: bb0070
  article-title: Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase
  publication-title: J. Struct. Biol.
– volume: 9
  start-page: 2021
  year: 2013
  end-page: 2033
  ident: bb0225
  article-title: Genomic analysis reveals epistatic silencing of “expensive” genes in Escherichia coli K-12
  publication-title: Mol. BioSyst.
– volume: 156
  start-page: 255
  year: 2006
  end-page: 261
  ident: bb0065
  article-title: Shape and compaction of Escherichia coli nucleoids
  publication-title: J. Struct. Biol.
– volume: 28
  start-page: 8759
  year: 1995
  end-page: 8770
  ident: bb0335
  article-title: Stretching DNA
  publication-title: Macromolecules
– volume: 40
  start-page: 284
  year: 2012
  end-page: 289
  ident: bb0120
  article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: 1561
  year: 2016
  end-page: 1569
  ident: bb0175
  article-title: Structure and function of bacterial H-NS protein
  publication-title: Biochem. Soc. Trans.
– volume: 37
  start-page: 375
  year: 2008
  end-page: 397
  ident: bb0085
  article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences
  publication-title: Annu. Rev. Biophys.
– volume: 122
  start-page: 194901
  year: 2005
  ident: bb0405
  article-title: Stretching globular polymers. I. single chains
  publication-title: J. Chem. Phys.
– volume: 313
  start-page: 236
  year: 2006
  end-page: 238
  ident: bb0200
  article-title: Selective silencing of foreign DNA with low GC content by the H-NS protein in salmonella
  publication-title: Science
– volume: 258
  start-page: 1122
  year: 1992
  end-page: 1126
  ident: bb0245
  article-title: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads
  publication-title: Science
– volume: 444
  start-page: 387
  year: 2006
  end-page: 390
  ident: bb0270
  article-title: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation
  publication-title: Nature
– volume: 46
  start-page: 10216
  year: 2018
  end-page: 10224
  ident: bb0280
  article-title: A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 491
  year: 2008
  end-page: 505
  ident: bb0255
  article-title: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
  publication-title: Nat. Methods
– volume: 15
  start-page: 417
  year: 1991
  end-page: 421
  ident: bb0355
  article-title: On the deformation behaviour of collapsed polymers
  publication-title: Europhys. Lett.
– volume: 2
  start-page: 391
  year: 2004
  end-page: 400
  ident: bb0005
  article-title: H-NS: a universal regulator for a dynamic genome
  publication-title: Nat. Rev. Microbiol.
– volume: 156
  start-page: 183
  year: 2014
  end-page: 194
  ident: bb0040
  article-title: The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity
  publication-title: Cell
– volume: 46
  start-page: 2370
  year: 2018
  end-page: 2379
  ident: bb0380
  article-title: Protein-mediated looping of DNA under tension requires supercoiling
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 8369
  year: 2014
  end-page: 8378
  ident: bb0300
  article-title: Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 113
  year: 2008
  end-page: 120
  ident: bb0220
  article-title: New insights into transcriptional regulation by H-NS
  publication-title: Curr. Opin. Microbiol.
– volume: 73
  start-page: 23
  year: 1998
  end-page: 29
  ident: bb0050
  article-title: Osmotic compaction of supercoiled DNA into a bacterial nucleoid
  publication-title: Biophys. Chem.
– volume: 11
  start-page: 1677
  year: 2015
  end-page: 1687
  ident: bb0155
  article-title: Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid
  publication-title: Soft Matter
– volume: 116
  start-page: 760
  year: 2019
  end-page: 771
  ident: bb0330
  article-title: Nanomechanics of diaminopurine-substituted DNA
  publication-title: Biophys. J.
– volume: 293
  start-page: 9496
  year: 2018
  end-page: 9505
  ident: bb0185
  article-title: Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation
  publication-title: J. Biol. Chem.
– volume: 1486
  start-page: 207
  year: 2019
  end-page: 230
  ident: bb0105
  article-title: Chromosome structure and dynamics in bacteria: Theory and experiments
  publication-title: Modeling the 3D Conformation of Genomes
– start-page: 260
  year: 2012
  end-page: 269
  ident: bb0140
  article-title: Characterization of Escherichia coli nucleoids released by osmotic shock
  publication-title: J. Struct. Biol.
– volume: 147
  start-page: 146
  year: 2004
  end-page: 158
  ident: bb0060
  article-title: Studies on the compaction of isolated nucleoids from Escherichia coli
  publication-title: J. Struct. Biol.
– volume: 24
  start-page: 339
  year: 2010
  end-page: 344
  ident: bb0295
  article-title: A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes
  publication-title: Genes Dev.
– volume: 8
  start-page: 185
  year: 2010
  end-page: 195
  ident: bb0015
  article-title: Bacterial nucleoid-associated proteins, nucleoid structure and gene expression
  publication-title: Nat. Rev. Microbiol.
– volume: 104
  start-page: 238102
  year: 2010
  ident: bb0030
  article-title: Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 3927
  year: 2015
  end-page: 3935
  ident: bb0315
  article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements
  publication-title: Soft Matter
– volume: 44
  start-page: 8270
  year: 2011
  end-page: 8283
  ident: bb0410
  article-title: Theory of mechanical unfolding of homopolymer globule: all-or-none transition in force-clamp mode vs phase coexistence in position-clamp mode
  publication-title: Macromolecules
– ident: bb0390
– volume: 156
  start-page: 262
  year: 2006
  end-page: 272
  ident: bb0400
  article-title: The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective
  publication-title: J. Struct. Biol.
– volume: 102
  start-page: 6595
  year: 1995
  end-page: 6602
  ident: bb0125
  article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 344
  year: 2014
  end-page: 359
  ident: bb0210
  article-title: Genomic looping: a key principle of chromatin organization
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 75
  year: 2012
  ident: bb0100
  article-title: Physical descriptions of the bacterial nucleoid at large scales, and their biological implications
  publication-title: Rep. Prog. Phys.
– volume: 39
  start-page: 2073
  year: 2011
  end-page: 2091
  ident: bb0195
  article-title: Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli
  publication-title: Nucleic Acids Res.
– volume: 118
  start-page: 4832
  year: 2014
  end-page: 4839
  ident: bb0305
  article-title: On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study
  publication-title: J. Phys. Chem. B
– volume: 103
  start-page: 845
  year: 2017
  end-page: 853
  ident: bb0160
  article-title: In vitro studies of DNA condensation by bridging protein in a crowding environment
  publication-title: Int. J. Biol. Macromol.
– volume: 27
  start-page: 5623
  year: 1994
  end-page: 5625
  ident: bb0345
  article-title: DNA extension under the action of an external force
  publication-title: Macromolecules
– volume: 90
  start-page: 3712
  year: 2006
  end-page: 3721
  ident: bb0370
  article-title: Entropy-driven genome organization
  publication-title: Biophys. J.
– volume: 5
  start-page: 157
  year: 2007
  end-page: 161
  ident: bb0230
  article-title: H-NS, the genome sentinel
  publication-title: Nat. Rev. Microbiol.
– volume: 120
  year: 2018
  ident: bb0045
  article-title: Fractal folding and medium viscoelasticity contribute jointly to chromosome dynamics
  publication-title: Phys. Rev. Lett.
– volume: 277
  start-page: 41657
  year: 2002
  end-page: 41666
  ident: bb0395
  article-title: The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA
  publication-title: J. Biol. Chem.
– volume: 114
  start-page: 12560
  year: 2017
  end-page: 12565
  ident: bb0180
  article-title: Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 6330
  year: 2007
  end-page: 6337
  ident: bb0190
  article-title: High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 0746
  year: 2006
  end-page: 0752
  ident: bb0010
  article-title: H-NS mediates the silencing of laterally acquired genes in bacteria
  publication-title: PLoS Pathog.
– volume: 22
  start-page: 1255
  year: 1954
  end-page: 1256
  ident: bb0375
  article-title: On interaction between two bodies immersed in a solution of macromolecules
  publication-title: J. Chem. Phys.
– volume: 92
  start-page: 1715
  year: 2010
  end-page: 1721
  ident: bb0055
  article-title: DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins
  publication-title: Biochimie
– volume: 277
  start-page: 2146
  year: 2002
  end-page: 2150
  ident: bb0265
  article-title: Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1
  publication-title: J. Biol. Chem.
– volume: 109
  start-page: E2649
  year: 2012
  end-page: E2656
  ident: bb0135
  article-title: Physical manipulation of the Escherichia coli chromosome reveals its soft nature
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 229
  start-page: 197
  year: 1988
  end-page: 202
  ident: bb0350
  article-title: Proteins from the prokaryotic nucleoid - interaction of nucleic-acids with the 15 KDa Escherichia-coli histone-like protein H-NS
  publication-title: FEBS Lett.
– volume: 105
  start-page: 227
  year: 2015
  end-page: 233
  ident: bb0310
  article-title: Depletion interactions and modulation of DNA-intercalators binding: opposite behavior of the neutral polymer poly(ethylene-glycol)
  publication-title: Biopolymers
– volume: 8
  start-page: 3712
  year: 2007
  end-page: 3717
  ident: bb0075
  article-title: Atomic force microscopy imaging of DNA under macromolecular crowding conditions
  publication-title: Biomacromol
– volume: 1486
  start-page: 257
  year: 2017
  end-page: 272
  ident: bb0275
  article-title: Versatile quadruple-trap optical tweezers for dual DNA experiments
  publication-title: Optical Tweezers. Methods in Molecular Biology
– year: 1994
  ident: bb0360
  article-title: Statistical Physics of Macromolecules
– volume: 3
  start-page: 1328
  year: 2012
  ident: bb0020
  article-title: Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA
  publication-title: Nat. Commun.
– volume: 84
  start-page: 2467
  year: 2003
  end-page: 2473
  ident: bb0290
  article-title: Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor
  publication-title: Biophys. J.
– volume: 113
  start-page: 4982
  year: 2016
  end-page: 4987
  ident: bb0415
  article-title: Hysteresis in DNA compaction by Dps is described by an Ising model
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 293
  start-page: 9496
  year: 2018
  ident: 10.1016/j.bbagen.2020.129725_bb0185
  article-title: Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001425
– volume: 2
  start-page: 391
  year: 2004
  ident: 10.1016/j.bbagen.2020.129725_bb0005
  article-title: H-NS: a universal regulator for a dynamic genome
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro883
– volume: 113
  start-page: 1684
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0080
  article-title: Unpacking the origins of in-cell crowding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1600098113
– volume: 258
  start-page: 1122
  year: 1992
  ident: 10.1016/j.bbagen.2020.129725_bb0245
  article-title: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads
  publication-title: Science
  doi: 10.1126/science.1439819
– volume: 38
  start-page: 7089
  year: 2010
  ident: 10.1016/j.bbagen.2020.129725_bb0320
  article-title: Magnetic tweezers measurements of the nanomechanical properties of DNA in the presence of drugs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq597
– volume: 156
  start-page: 183
  year: 2014
  ident: 10.1016/j.bbagen.2020.129725_bb0040
  article-title: The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.028
– volume: 92
  start-page: 1715
  year: 2010
  ident: 10.1016/j.bbagen.2020.129725_bb0055
  article-title: DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2010.06.024
– volume: 102
  start-page: 6595
  year: 1995
  ident: 10.1016/j.bbagen.2020.129725_bb0125
  article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469375
– volume: 5
  start-page: 491
  year: 2008
  ident: 10.1016/j.bbagen.2020.129725_bb0255
  article-title: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1218
– volume: 88
  start-page: 2737
  year: 2005
  ident: 10.1016/j.bbagen.2020.129725_bb0250
  article-title: Single-molecule measurements of the persistence length of double- stranded RNA
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.052811
– volume: 11
  start-page: 1677
  year: 2015
  ident: 10.1016/j.bbagen.2020.129725_bb0155
  article-title: Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid
  publication-title: Soft Matter
  doi: 10.1039/C4SM02434F
– volume: 113
  start-page: 4982
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0415
  article-title: Hysteresis in DNA compaction by Dps is described by an Ising model
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1521241113
– volume: 46
  start-page: 10216
  year: 2018
  ident: 10.1016/j.bbagen.2020.129725_bb0280
  article-title: A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky826
– volume: 90
  start-page: 3712
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0370
  article-title: Entropy-driven genome organization
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.077685
– volume: 11
  start-page: 3927
  year: 2015
  ident: 10.1016/j.bbagen.2020.129725_bb0315
  article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements
  publication-title: Soft Matter
  doi: 10.1039/C5SM00619H
– volume: 108
  start-page: 10690
  year: 2011
  ident: 10.1016/j.bbagen.2020.129725_bb0205
  article-title: Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1102544108
– volume: 109
  start-page: E2649
  year: 2012
  ident: 10.1016/j.bbagen.2020.129725_bb0135
  article-title: Physical manipulation of the Escherichia coli chromosome reveals its soft nature
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1208689109
– volume: 35
  start-page: 6330
  year: 2007
  ident: 10.1016/j.bbagen.2020.129725_bb0190
  article-title: High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm712
– volume: 6
  start-page: 184
  year: 2014
  ident: 10.1016/j.bbagen.2020.129725_bb0150
  article-title: Bacterial nucleoid structure probed by active drag and resistive pulse sensing
  publication-title: Integr. Biol.
  doi: 10.1039/C3IB40147B
– volume: 22
  start-page: 1255
  year: 1954
  ident: 10.1016/j.bbagen.2020.129725_bb0375
  article-title: On interaction between two bodies immersed in a solution of macromolecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740347
– volume: 43
  start-page: 71
  year: 2014
  ident: 10.1016/j.bbagen.2020.129725_bb0115
  article-title: Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-013-0941-x
– volume: 40
  start-page: 284
  year: 2012
  ident: 10.1016/j.bbagen.2020.129725_bb0120
  article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr712
– volume: 444
  start-page: 387
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0270
  article-title: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation
  publication-title: Nature
  doi: 10.1038/nature05283
– volume: 24
  start-page: 339
  year: 2010
  ident: 10.1016/j.bbagen.2020.129725_bb0295
  article-title: A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes
  publication-title: Genes Dev.
  doi: 10.1101/gad.1883510
– volume: 15
  start-page: 417
  year: 1991
  ident: 10.1016/j.bbagen.2020.129725_bb0355
  article-title: On the deformation behaviour of collapsed polymers
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/15/4/009
– volume: 42
  start-page: 8369
  year: 2014
  ident: 10.1016/j.bbagen.2020.129725_bb0300
  article-title: Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku566
– volume: 46
  start-page: 2370
  year: 2018
  ident: 10.1016/j.bbagen.2020.129725_bb0380
  article-title: Protein-mediated looping of DNA under tension requires supercoiling
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky021
– volume: 313
  start-page: 236
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0200
  article-title: Selective silencing of foreign DNA with low GC content by the H-NS protein in salmonella
  publication-title: Science
  doi: 10.1126/science.1128794
– volume: 48
  start-page: 2348
  year: 2020
  ident: 10.1016/j.bbagen.2020.129725_bb0235
  article-title: Early fate of exogenous promoters in E. coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1196
– volume: 44
  start-page: 8270
  year: 2011
  ident: 10.1016/j.bbagen.2020.129725_bb0410
  article-title: Theory of mechanical unfolding of homopolymer globule: all-or-none transition in force-clamp mode vs phase coexistence in position-clamp mode
  publication-title: Macromolecules
  doi: 10.1021/ma201427y
– volume: 43
  start-page: 2009
  year: 2013
  ident: 10.1016/j.bbagen.2020.129725_bb0325
  article-title: Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1206
– start-page: 260
  year: 2012
  ident: 10.1016/j.bbagen.2020.129725_bb0140
  article-title: Characterization of Escherichia coli nucleoids released by osmotic shock
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.03.007
– volume: 39
  start-page: 2073
  year: 2011
  ident: 10.1016/j.bbagen.2020.129725_bb0195
  article-title: Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq934
– volume: 109
  start-page: 1321
  year: 2015
  ident: 10.1016/j.bbagen.2020.129725_bb0170
  article-title: H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.08.016
– volume: 40
  start-page: 60
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0095
  article-title: Bacterial chromatin: converging views at different scales
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.02.015
– volume: 3
  start-page: 1328
  year: 2012
  ident: 10.1016/j.bbagen.2020.129725_bb0020
  article-title: Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2330
– volume: 229
  start-page: 197
  year: 1988
  ident: 10.1016/j.bbagen.2020.129725_bb0350
  article-title: Proteins from the prokaryotic nucleoid - interaction of nucleic-acids with the 15 KDa Escherichia-coli histone-like protein H-NS
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(88)80826-3
– volume: 156
  start-page: 255
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0065
  article-title: Shape and compaction of Escherichia coli nucleoids
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.03.022
– volume: 24
  start-page: 53
  year: 2015
  ident: 10.1016/j.bbagen.2020.129725_bb0285
– volume: 9
  start-page: 2021
  year: 2013
  ident: 10.1016/j.bbagen.2020.129725_bb0225
  article-title: Genomic analysis reveals epistatic silencing of “expensive” genes in Escherichia coli K-12
  publication-title: Mol. BioSyst.
  doi: 10.1039/c3mb70035f
– volume: 265
  start-page: 1599
  year: 1994
  ident: 10.1016/j.bbagen.2020.129725_bb0340
  article-title: Entropic elasticity of λ-phage DNA
  publication-title: Science
  doi: 10.1126/science.8079175
– volume: 47
  start-page: D212
  year: 2019
  ident: 10.1016/j.bbagen.2020.129725_bb0385
  article-title: RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1077
– volume: 120
  year: 2018
  ident: 10.1016/j.bbagen.2020.129725_bb0045
  article-title: Fractal folding and medium viscoelasticity contribute jointly to chromosome dynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.088101
– volume: 116
  start-page: 256803
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0365
  article-title: Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.256803
– volume: 1486
  start-page: 207
  year: 2019
  ident: 10.1016/j.bbagen.2020.129725_bb0105
  article-title: Chromosome structure and dynamics in bacteria: Theory and experiments
– volume: 114
  start-page: 12560
  year: 2017
  ident: 10.1016/j.bbagen.2020.129725_bb0180
  article-title: Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1716721114
– volume: 194
  start-page: 129
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0145
  article-title: Compaction of isolated Escherichia coli nucleoids: polymer and H-NS protein synergetics
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.02.009
– volume: 277
  start-page: 41657
  year: 2002
  ident: 10.1016/j.bbagen.2020.129725_bb0395
  article-title: The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206037200
– volume: 277
  start-page: 2146
  year: 2002
  ident: 10.1016/j.bbagen.2020.129725_bb0265
  article-title: Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C100603200
– volume: 27
  start-page: 5623
  year: 1994
  ident: 10.1016/j.bbagen.2020.129725_bb0345
  article-title: DNA extension under the action of an external force
  publication-title: Macromolecules
  doi: 10.1021/ma00098a016
– volume: 73
  start-page: 23
  year: 1998
  ident: 10.1016/j.bbagen.2020.129725_bb0050
  article-title: Osmotic compaction of supercoiled DNA into a bacterial nucleoid
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(98)00115-X
– volume: 8
  start-page: 3712
  year: 2007
  ident: 10.1016/j.bbagen.2020.129725_bb0075
  article-title: Atomic force microscopy imaging of DNA under macromolecular crowding conditions
  publication-title: Biomacromol
  doi: 10.1021/bm700856u
– year: 1994
  ident: 10.1016/j.bbagen.2020.129725_bb0360
– volume: 104
  start-page: 238102
  year: 2010
  ident: 10.1016/j.bbagen.2020.129725_bb0030
  article-title: Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.238102
– volume: 2
  start-page: 0746
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0010
  article-title: H-NS mediates the silencing of laterally acquired genes in bacteria
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0020081
– volume: 116
  start-page: 760
  year: 2019
  ident: 10.1016/j.bbagen.2020.129725_bb0330
  article-title: Nanomechanics of diaminopurine-substituted DNA
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.01.027
– volume: 34
  start-page: 4642
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0240
  article-title: Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl542
– volume: 107
  start-page: 15728
  year: 2010
  ident: 10.1016/j.bbagen.2020.129725_bb0165
  article-title: H-NS forms a superhelical protein scaffold for DNA condensation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1006966107
– volume: 118
  start-page: 4832
  year: 2014
  ident: 10.1016/j.bbagen.2020.129725_bb0305
  article-title: On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp501589d
– volume: 122
  start-page: 194901
  year: 2005
  ident: 10.1016/j.bbagen.2020.129725_bb0405
  article-title: Stretching globular polymers. I. single chains
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1898213
– volume: 85
  start-page: 4146
  year: 2003
  ident: 10.1016/j.bbagen.2020.129725_bb0110
  article-title: On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74826-7
– volume: 147
  start-page: 146
  year: 2004
  ident: 10.1016/j.bbagen.2020.129725_bb0060
  article-title: Studies on the compaction of isolated nucleoids from Escherichia coli
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2004.02.003
– volume: 14
  start-page: 441
  year: 2007
  ident: 10.1016/j.bbagen.2020.129725_bb0215
  article-title: H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1233
– volume: 5
  start-page: 157
  year: 2007
  ident: 10.1016/j.bbagen.2020.129725_bb0230
  article-title: H-NS, the genome sentinel
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1598
– volume: 6
  start-page: 29422
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0025
  article-title: Diverse architectural properties of Sso10a proteins: evidence for a role in chromatin compaction and organization
  publication-title: Sci. Rep.
  doi: 10.1038/srep29422
– volume: 1486
  start-page: 257
  year: 2017
  ident: 10.1016/j.bbagen.2020.129725_bb0275
  article-title: Versatile quadruple-trap optical tweezers for dual DNA experiments
  doi: 10.1007/978-1-4939-6421-5_9
– volume: 37
  start-page: 375
  year: 2008
  ident: 10.1016/j.bbagen.2020.129725_bb0085
  article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev.biophys.37.032807.125817
– volume: 28
  start-page: 8759
  year: 1995
  ident: 10.1016/j.bbagen.2020.129725_bb0335
  article-title: Stretching DNA
  publication-title: Macromolecules
  doi: 10.1021/ma00130a008
– volume: 75
  year: 2012
  ident: 10.1016/j.bbagen.2020.129725_bb0100
  article-title: Physical descriptions of the bacterial nucleoid at large scales, and their biological implications
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/7/076602
– volume: 103
  start-page: 845
  year: 2017
  ident: 10.1016/j.bbagen.2020.129725_bb0160
  article-title: In vitro studies of DNA condensation by bridging protein in a crowding environment
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.05.079
– volume: 156
  start-page: 262
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0400
  article-title: The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.05.006
– volume: 28
  start-page: 3504
  year: 2000
  ident: 10.1016/j.bbagen.2020.129725_bb0260
  article-title: H-NS mediated compaction of DNA visualised by atomic force microscopy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.18.3504
– volume: 4
  start-page: 3003
  year: 2013
  ident: 10.1016/j.bbagen.2020.129725_bb0035
  article-title: Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3003
– volume: 83
  start-page: 149
  year: 2001
  ident: 10.1016/j.bbagen.2020.129725_bb0130
  article-title: Isolation of the Escherichia coli nucleoid
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(01)01245-7
– volume: 84
  start-page: 2467
  year: 2003
  ident: 10.1016/j.bbagen.2020.129725_bb0290
  article-title: Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)75051-6
– volume: 105
  start-page: 227
  year: 2015
  ident: 10.1016/j.bbagen.2020.129725_bb0310
  article-title: Depletion interactions and modulation of DNA-intercalators binding: opposite behavior of the neutral polymer poly(ethylene-glycol)
  publication-title: Biopolymers
  doi: 10.1002/bip.22789
– volume: 24
  start-page: 344
  year: 2014
  ident: 10.1016/j.bbagen.2020.129725_bb0210
  article-title: Genomic looping: a key principle of chromatin organization
  publication-title: J. Mol. Microbiol. Biotechnol.
  doi: 10.1159/000368851
– volume: 97
  start-page: 1997
  year: 2009
  ident: 10.1016/j.bbagen.2020.129725_bb0090
  article-title: Protein-mediated molecular bridging: a key mechanism in biopolymer organization
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.06.051
– volume: 153
  start-page: 160
  year: 2006
  ident: 10.1016/j.bbagen.2020.129725_bb0070
  article-title: Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.10.011
– volume: 11
  start-page: 113
  year: 2008
  ident: 10.1016/j.bbagen.2020.129725_bb0220
  article-title: New insights into transcriptional regulation by H-NS
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2008.02.011
– volume: 8
  start-page: 185
  year: 2010
  ident: 10.1016/j.bbagen.2020.129725_bb0015
  article-title: Bacterial nucleoid-associated proteins, nucleoid structure and gene expression
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2261
– volume: 44
  start-page: 1561
  year: 2016
  ident: 10.1016/j.bbagen.2020.129725_bb0175
  article-title: Structure and function of bacterial H-NS protein
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20160190
SSID ssj0000595
Score 2.3869178
Snippet DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129725
SubjectTerms Bacteriology
Biochemistry
Biochemistry, Molecular Biology
Biophysics
DNA
DNA fragmentation
DNA, Bacterial - chemistry
DNA, Bacterial - metabolism
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Fimbriae Proteins - metabolism
Force spectroscopy
genome
Genomics
H-NS
Life Sciences
Magnetic Phenomena
Magnetic Tweezers
magnetism
Microbiology and Parasitology
Molecular biology
Molecular Networks
Nucleic Acid Conformation
Nucleoid-associated proteins
Polyethylene Glycols - metabolism
Single molecule
Structural Biology
Title Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers
URI https://dx.doi.org/10.1016/j.bbagen.2020.129725
https://www.ncbi.nlm.nih.gov/pubmed/32891648
https://www.proquest.com/docview/2440667538
https://www.proquest.com/docview/2551959061
https://hal.science/hal-03035306
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXBOW1PCqDuJrNw46T42ppCY-ukNpKvVnxI2URSlZlCyoHfgC_mhk7WYQEVOISKdY4iT0Tz2d55huA5yY1wglnuCgzvCSV5ZVKLS_yNitL64xrKBv5YFHUx-LNiTzZgvmYC0NhlcPaH9f0sFoPLdNhNqer5XJ6SId6CCdkllDhG0WMn0IosvIX33-FeSB8kPEkQXCSHtPnQoyXMfjTEgtqRjQLlaKC2X92T1c-UJzk30BocEb7t-DmgCLZLH7obdjy3Q5ci3UlL3bg-nws43YHfsz7fuUjvzcbojdY3zEEfiwEoIfEBta37OVixtqz5jQkvTFzEUQ64jvul44FQodlx2q-OGRN5-IDcBNPzo_RANfs_d4rkjPeUfeD5rSjFEl29NX7bwgz78Lx_t7RvOZDAQZu0U2tuXSVaUTRuCQvW4VrY4L7DyFaJavWF1K0nuiLXKlsllKjbSqEvxlVlpXOSZnfg-2u7_wDYMKKvM1dmhYlYhYnqtII5ZSz1rrKZskE8nHetR3YyalIxic9hqF91FFbmrSlo7YmwDe9VpGd4xJ5NapU_2ZlGh3IJT2foQVsXkKk3PXsnaY2NK0cp6b4kk7g6WggGrVMRy9N5_vzzxpBFEUTo3f5h4wMTD8IsCZwP1rX5n057otxY1s-_O8BPIIbdBcjcR7D9vrs3D9BPLU2u-GH2YWrs9dv68VPUBgcmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB61qVB5QVCucC6IVys-dn08RqHFpYmF1FTq28p7uAQhOyopqPwEfjUzu3YQElCJFz-sZ33sjGe-lWe-AXijIsUNNyrgeYyHsNBBkUU6SJMmznNtlKmpGnlRpeUZf38uzndgNtTCUFpl7_u9T3feuh-Z9Ks5Wa9Wk1P6qYdwQsQhNb7Jkl3YI3YqMYK96fFJWf1yyMI1XyH5gCYMFXQuzUsp_G6JCDUmpoUio57Zf45Qux8pVfJvONTFo6O7cKcHkmzqn_Ue7Nj2AG751pLXB7A_Gzq53Ycfs65bW0_xzfoEDta1DLEfcznorraBdQ17W01Zc1lfuLo3pq6dSEuUx93KMMfpsGpZGVSnrG6NvwDu4yn-MXrBDftw-I7klDU0fVFftFQlyZbfrP2OSPMBnB0dLmdl0PdgCDRGqk0gTKFqntYmTPImQ_cY4haE8yYTRWNTwRtLDEYmz3Qc0aCuC0TAMTWXFcYIkTyEUdu19jEwrnnSJCaK0hxhi-FFrnhmMqO1NoWOwzEkw7pL3ROUU5-Mz3LIRPskvbYkaUt6bY0h2M5ae4KOG-SzQaXyN0OTGENumPkaLWB7E-LlLqdzSWNoWgkuTfo1GsOrwUAkapn-vtSt7a6-SMRRlFCMAeYfMsKR_SDGGsMjb13b-yW4Nca9bf7kv1_gJeyXy8Vczo-rk6dwm874xJxnMNpcXtnnCK826kX_-fwEBoMfTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+effects+on+the+compaction+of+DNA+fragments+by+the+nucleoid+protein+H-NS+and+the+crowding+agent+PEG+probed+by+Magnetic+Tweezers&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Cristofalo%2C+M.&rft.au=Marrano%2C+C.A.&rft.au=Salerno%2C+D.&rft.au=Corti%2C+R.&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1864&rft.issue=12&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129725&rft.externalDocID=S0304416520302373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon