Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers
DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a sin...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 12; p. 129725 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.
We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.
In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.
We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.
Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.
•In the presence of H-NS alone, the DNA displays a step-wise collapse due to the formation of multiple bridges.•In presence of PEG alone, the DNA collapses at a force highly dependent on the volume fraction of the crowding agent.•The combination of the two agents displays a cooperative effect, i.e. cellular crowding influences H-NS activity. |
---|---|
AbstractList | DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes. DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.BACKGROUNDDNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.METHODSWe apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.RESULTSIn the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.CONCLUSIONSWe observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.GENERAL SIGNIFICANCEOur data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes. DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding. In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively. We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG. Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes. DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding. In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively. We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG. Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes. •In the presence of H-NS alone, the DNA displays a step-wise collapse due to the formation of multiple bridges.•In presence of PEG alone, the DNA collapses at a force highly dependent on the volume fraction of the crowding agent.•The combination of the two agents displays a cooperative effect, i.e. cellular crowding influences H-NS activity. |
ArticleNumber | 129725 |
Author | Gherardi, M. Mantegazza, F. Salerno, D. Sclavi, B. Cosentino Lagomarsino, M. Marrano, C.A. Cristofalo, M. Cassina, V. Mammola, A. Corti, R. |
Author_xml | – sequence: 1 givenname: M. surname: Cristofalo fullname: Cristofalo, M. organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy – sequence: 2 givenname: C.A. surname: Marrano fullname: Marrano, C.A. organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy – sequence: 3 givenname: D. surname: Salerno fullname: Salerno, D. organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy – sequence: 4 givenname: R. surname: Corti fullname: Corti, R. organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy – sequence: 5 givenname: V. surname: Cassina fullname: Cassina, V. organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy – sequence: 6 givenname: A. surname: Mammola fullname: Mammola, A. organization: Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy – sequence: 7 givenname: M. surname: Gherardi fullname: Gherardi, M. organization: Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy – sequence: 8 givenname: B. surname: Sclavi fullname: Sclavi, B. organization: Université Pierre et Marie Curie, Institut de Biologie Paris Seine, 7-9 Quai Saint Bernard, 75005 Paris, France – sequence: 9 givenname: M. surname: Cosentino Lagomarsino fullname: Cosentino Lagomarsino, M. organization: Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy – sequence: 10 givenname: F. surname: Mantegazza fullname: Mantegazza, F. email: francesco.mantegazza@unimib.it organization: School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32891648$$D View this record in MEDLINE/PubMed https://hal.science/hal-03035306$$DView record in HAL |
BookMark | eNqNks9uEzEQxi1URNPCGyDkIxw22F57_3BAikJpkEJBopwtrz2bOtrYwXZSlUfgqfGyLQcOgC8jj37fp9HMd4ZOnHeA0HNK5pTQ6vV23nVqA27OCMst1tZMPEIz2tSsaAipTtCMlIQXnFbiFJ3FuCX5iVY8Qacla1pa8WaGfiy930NQyR4BQ9-DThF7h9MNYO13e6WTzV_f43dXC9wHtdmBy0h39wtxBz2Atwbvg09gHV4VV1-wcmYyCP7WWLfB45wJf764HLkOzCj_qDYOktX4-hbgO4T4FD3u1RDh2X09R1_fX1wvV8X60-WH5WJdaM7aVAjTdopXypCy6WsqSiJEy3lfi7aHSvAe6oZw09Sa0bGpVdtQw2griDBGiPIcvZp8b9Qg98HuVLiTXlm5Wqzl2MtrK7NtdaSZfTmxee5vB4hJ7mzUMAzKgT9EyYTIxi2p_gPlnFRVLcomoy_u0UO3A_N7iIezZODNBOQNxhigl9omNV4iBWUHSYkcMyC3csqAHDMgpwxkMf9D_OD_D9nbSQZ590cLQUZtwWkwNuRUSOPt3w1-AoYIymw |
CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113552 crossref_primary_10_1039_D3AN00102D crossref_primary_10_1016_j_bpj_2023_11_010 crossref_primary_10_1073_pnas_2107871119 crossref_primary_10_1093_femsre_fuac049 crossref_primary_10_3390_ijms242417502 crossref_primary_10_1038_s41598_023_50355_2 crossref_primary_10_1007_s12064_024_00427_2 crossref_primary_10_1111_mmi_15272 crossref_primary_10_1021_acs_jpcc_2c00584 |
Cites_doi | 10.1074/jbc.RA117.001425 10.1038/nrmicro883 10.1073/pnas.1600098113 10.1126/science.1439819 10.1093/nar/gkq597 10.1016/j.cell.2013.11.028 10.1016/j.biochi.2010.06.024 10.1063/1.469375 10.1038/nmeth.1218 10.1529/biophysj.104.052811 10.1039/C4SM02434F 10.1073/pnas.1521241113 10.1093/nar/gky826 10.1529/biophysj.105.077685 10.1039/C5SM00619H 10.1073/pnas.1102544108 10.1073/pnas.1208689109 10.1093/nar/gkm712 10.1039/C3IB40147B 10.1063/1.1740347 10.1007/s00249-013-0941-x 10.1093/nar/gkr712 10.1038/nature05283 10.1101/gad.1883510 10.1209/0295-5075/15/4/009 10.1093/nar/gku566 10.1093/nar/gky021 10.1126/science.1128794 10.1093/nar/gkz1196 10.1021/ma201427y 10.1093/nar/gks1206 10.1016/j.jsb.2012.03.007 10.1093/nar/gkq934 10.1016/j.bpj.2015.08.016 10.1016/j.ceb.2016.02.015 10.1038/ncomms2330 10.1016/0014-5793(88)80826-3 10.1016/j.jsb.2006.03.022 10.1039/c3mb70035f 10.1126/science.8079175 10.1093/nar/gky1077 10.1103/PhysRevLett.120.088101 10.1103/PhysRevLett.116.256803 10.1073/pnas.1716721114 10.1016/j.jsb.2016.02.009 10.1074/jbc.M206037200 10.1074/jbc.C100603200 10.1021/ma00098a016 10.1016/S0301-4622(98)00115-X 10.1021/bm700856u 10.1103/PhysRevLett.104.238102 10.1371/journal.ppat.0020081 10.1016/j.bpj.2019.01.027 10.1093/nar/gkl542 10.1073/pnas.1006966107 10.1021/jp501589d 10.1063/1.1898213 10.1016/S0006-3495(03)74826-7 10.1016/j.jsb.2004.02.003 10.1038/nsmb1233 10.1038/nrmicro1598 10.1038/srep29422 10.1007/978-1-4939-6421-5_9 10.1146/annurev.biophys.37.032807.125817 10.1021/ma00130a008 10.1088/0034-4885/75/7/076602 10.1016/j.ijbiomac.2017.05.079 10.1016/j.jsb.2006.05.006 10.1093/nar/28.18.3504 10.1038/ncomms3003 10.1016/S0300-9084(01)01245-7 10.1016/S0006-3495(03)75051-6 10.1002/bip.22789 10.1159/000368851 10.1016/j.bpj.2009.06.051 10.1016/j.jsb.2005.10.011 10.1016/j.mib.2008.02.011 10.1038/nrmicro2261 10.1042/BST20160190 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.bbagen.2020.129725 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | oai_HAL_hal_03035306v1 32891648 10_1016_j_bbagen_2020_129725 S0304416520302373 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c429t-5d9ba46ad038f7153055944f759fe654fe7804d87c21f759ca981d219505dd553 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri May 09 12:18:43 EDT 2025 Mon Jul 21 09:29:32 EDT 2025 Tue Aug 05 09:28:39 EDT 2025 Wed Feb 19 02:30:30 EST 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Feb 23 02:47:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | H-NS Force spectroscopy Magnetic Tweezers Nucleoid-associated proteins Single molecule |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-5d9ba46ad038f7153055944f759fe654fe7804d87c21f759ca981d219505dd553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0254-8243 0000-0002-3883-8592 |
PMID | 32891648 |
PQID | 2440667538 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_03035306v1 proquest_miscellaneous_2551959061 proquest_miscellaneous_2440667538 pubmed_primary_32891648 crossref_citationtrail_10_1016_j_bbagen_2020_129725 crossref_primary_10_1016_j_bbagen_2020_129725 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 2020-12 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lucchini, Rowley, Goldberg, Hurd, Harrison, Hinton (bb0010) 2006; 2 Navarre, Porwollik, Wang, McClelland, Rosen, Libby, Fang (bb0200) 2006; 313 Halperin, Zhulina (bb0355) 1991; 15 Dame, Tark-Dame (bb0095) 2016; 40 Liu, Chen, Kenney, Yan (bb0295) 2010; 24 Vasilevskaya, Khokhlov, Matsuzawa, Yoshikawa (bb0125) 1995; 102 Pelletier, Halvorsen, Ha, Paparcone, Sandler, Woldringh, Wong, Jun (bb0135) 2012; 109 Srinivasan, Chandraprakash, Krishnamurthi, Singh, Scolari, Krishna, Seshasayee (bb0225) 2013; 9 Kahramanoglou, Seshasayee, Prieto, Ibberson, Schmidt, Zimmermann, Benes, Fraser, Luscombe (bb0195) 2011; 39 Bustamante, Marko, Siggia, Smith (bb0340) 1994; 265 Bouffartigues, Buckle, Badaut, Travers, Rimsky (bb0215) 2007; 14 Ojala, Ziedaite, Wallin, Bamford, Hæggstrom (bb0115) 2014; 43 Javer, Long, Nugent, Grisi, Siriwatwetchakul, Dorfman, Cicuta, Cosentino Lagomarsino (bb0035) 2013; 4 Rocha, Cavalcante, Silva, Ramos (bb0305) 2014; 118 Landick, Wade, Grainger (bb0285) 2015; 24 Gao, Foo, Winardhi, Tang, Yan, Kenney (bb0180) 2017; 114 Salerno, Brogioli, Cassina, Turchi, Beretta, Seruggia, Ziano, Zunino, Mantegazza (bb0320) 2010; 38 Ramisetty, Langlete, Lale, Dias (bb0160) 2017; 103 Fang, Rimsky (bb0220) 2008; 11 Grainger (bb0175) 2016; 44 Tempestini, Cassina, Brogioli, Ziano, Erba, Giovannoni, Cerrito, Salerno, Mantegazza (bb0325) 2013; 43 Grosberg, Khokhlov (bb0360) 1994 Yan, Leng, Finzi, Dunlap (bb0380) 2018; 46 Santos-Zavaleta, Salgado, Gama-Castro, Sanchez-Perez, Gomez-Romero, Ledezma-Tejeida, Santiago Garcia-Sotelo, Alquicira-Hernandez, Jose Muniz-Rascado, Pena-Loredo, Ishida-Gutierrez, Velazquez-Ramirez, Del Moral-Chavez, Bonavides-Martinez, Mendez-Cruz, Galagan, Collado-Vides (bb0385) 2019; 47 Zimmerman (bb0060) 2004; 147 Polotsky, Smolyakova, Birshtein (bb0410) 2011; 44 de Vries (bb0055) 2010; 92 Arold, Leonard, Parkinson, Ladbury (bb0165) 2010; 107 Wegner, Alexeeva, Odijk, Woldringh (bb0140) 2012 Wiggins, Dame, Noom, Wuite (bb0090) 2009; 97 Dame, Wyman, Goosen (bb0260) 2000; 28 Dame, Wyman, Wurm, Wagner, Goosen (bb0265) 2002; 277 bb0390 Winardhi, Yan, Kenney (bb0170) 2015; 109 Amit, Oppenheim, Stavans (bb0290) 2003; 84 Lang, Blot, Bouffartigues, Buckle, Geertz, Gualerzi, Mavathur, Muskhelishvili, Pon, Rimsky, Stella, Babu, Travers (bb0190) 2007; 35 Craig, Terentjev (bb0405) 2005; 122 Cristofalo, Kovari, Corti, Salerno, Cassina, Dunlap, Mantegazza (bb0330) 2019; 116 Heller, Laurens, Vorselen, Broekmans, Biebricher, King, Brouwer, Wuite, Peterman (bb0275) 2017; 1486 Wegner, Wintraecken, Spurio, Woldringh, de Vries, Odijk (bb0145) 2016; 194 Dillon, Dorman (bb0015) 2010; 8 Vologodskii (bb0345) 1994; 27 Thacker, Bromek, Meijer, Kotar, Sclavi, Lagomarsino, Keyser, Cicuta (bb0150) 2014; 6 Scolari, Cosentino Lagomarsino (bb0155) 2015; 11 Dame, Noom, Wuite (bb0270) 2006; 444 Marko, Siggia (bb0335) 1995; 28 Friedrich, Gualerzi, Lammi, Losso, Pon (bb0350) 1988; 229 Polovnikov, Gherardi, Cosentino Lagomarsino, Tamm (bb0045) 2018; 120 Laurens, Driessen, Heller, Vorselen, Noom, Hol, White, Dame, Wuite (bb0020) 2012; 3 Smith, Finzi, Bustamante (bb0245) 1992; 258 Luijsterburg, Noom, Wuite, Dame (bb0400) 2006; 156 Dorman (bb0230) 2007; 5 Zimmerman (bb0070) 2006; 153 Gulvady, Gao, Kenney, Yan (bb0280) 2018; 46 Gordon, Li, Cote, Weirauch, Ding, Hughes, Navarre, Xia, Liu (bb0205) 2011; 108 Abels, Moreno-Herrero, van der Heijden, Dekker, Dekker (bb0250) 2005; 88 Yamanaka, Winardhi, Yamauchi, Nishiyama, Sowa, Yan, Kawagishi, Ishihama, Yamamoto (bb0185) 2018; 293 Zimmerman (bb0065) 2006; 156 Pastre, Hamon, Mechulam, Sorel, Baconnais, Curmi, Le Cam, Pietrement (bb0075) 2007; 8 Hirano, Ichikawa, Ishido, Ishikawa, Baba, Yoshikawa (bb0120) 2012; 40 Marenduzzo, Micheletti, Cook (bb0370) 2006; 90 Rotondo, Molinari, Ratti, Gherardi (bb0365) 2016; 116 Driessen, Lin, Waterreus, van der Meulen, van der Valk, Laurens, Moolenaar, Pannu, Wuite, Goosen, Dame (bb0025) 2016; 6 Crisafuli, da Silva, Ferreira, Ramos, Rocha (bb0310) 2015; 105 Odijk (bb0050) 1998; 73 Yousuf, Iuliani, Veetil, Seshasayee, Sclavi, Cosentino Lagomarsino (bb0235) 2020; 48 Cheng, Jia, Ran (bb0315) 2015; 11 Weber, Spakowitz, Theriot (bb0030) 2010; 104 Zhou, Rivas, Minton (bb0085) 2008; 37 Parry, Surovtsev, Cabeen, O’Hern, Dufresne, Jacobs-Wagner (bb0040) 2014; 156 Benza, Bassetti, Dorfman, Scolari, Bromek, Cicuta, Cosentino Lagomarsino (bb0100) 2012; 75 Lim, Kenney, Yan (bb0300) 2014; 42 Gherardi, Scolari, Dame, Cosentino Lagomarsino (bb0105) 2019; 1486 Dorman (bb0005) 2004; 2 Cunha, Odijk, Suleymanoglu, Woldringh (bb0130) 2001; 83 Neuman, Nagy (bb0255) 2008; 5 Dame, Wuite (bb0110) 2003; 85 Van der Valk, Vreede, Crémazy, Dame (bb0210) 2014; 24 Vtyurina, Dulin, Docter, Meyer, Dekker, Abbondanzieri (bb0415) 2016; 113 Sharp (bb0080) 2016; 113 Asakura, Oosawa (bb0375) 1954; 22 Badaut, Williams, Arluison, Bouffartigues, Robert, Buc, Rimsky (bb0395) 2002; 277 Grainger, Hurd, Goldberg, Busby (bb0240) 2006; 34 Dillon (10.1016/j.bbagen.2020.129725_bb0015) 2010; 8 Gulvady (10.1016/j.bbagen.2020.129725_bb0280) 2018; 46 Ramisetty (10.1016/j.bbagen.2020.129725_bb0160) 2017; 103 Wegner (10.1016/j.bbagen.2020.129725_bb0140) 2012 Grainger (10.1016/j.bbagen.2020.129725_bb0240) 2006; 34 Gherardi (10.1016/j.bbagen.2020.129725_bb0105) 2019; 1486 Zimmerman (10.1016/j.bbagen.2020.129725_bb0060) 2004; 147 Vasilevskaya (10.1016/j.bbagen.2020.129725_bb0125) 1995; 102 Wegner (10.1016/j.bbagen.2020.129725_bb0145) 2016; 194 Fang (10.1016/j.bbagen.2020.129725_bb0220) 2008; 11 Vtyurina (10.1016/j.bbagen.2020.129725_bb0415) 2016; 113 Parry (10.1016/j.bbagen.2020.129725_bb0040) 2014; 156 Halperin (10.1016/j.bbagen.2020.129725_bb0355) 1991; 15 Scolari (10.1016/j.bbagen.2020.129725_bb0155) 2015; 11 Salerno (10.1016/j.bbagen.2020.129725_bb0320) 2010; 38 Zimmerman (10.1016/j.bbagen.2020.129725_bb0070) 2006; 153 Vologodskii (10.1016/j.bbagen.2020.129725_bb0345) 1994; 27 Lucchini (10.1016/j.bbagen.2020.129725_bb0010) 2006; 2 de Vries (10.1016/j.bbagen.2020.129725_bb0055) 2010; 92 Arold (10.1016/j.bbagen.2020.129725_bb0165) 2010; 107 Tempestini (10.1016/j.bbagen.2020.129725_bb0325) 2013; 43 Grosberg (10.1016/j.bbagen.2020.129725_bb0360) 1994 Pastre (10.1016/j.bbagen.2020.129725_bb0075) 2007; 8 Gao (10.1016/j.bbagen.2020.129725_bb0180) 2017; 114 Lim (10.1016/j.bbagen.2020.129725_bb0300) 2014; 42 Kahramanoglou (10.1016/j.bbagen.2020.129725_bb0195) 2011; 39 Yousuf (10.1016/j.bbagen.2020.129725_bb0235) 2020; 48 Winardhi (10.1016/j.bbagen.2020.129725_bb0170) 2015; 109 Dorman (10.1016/j.bbagen.2020.129725_bb0230) 2007; 5 Dame (10.1016/j.bbagen.2020.129725_bb0265) 2002; 277 Hirano (10.1016/j.bbagen.2020.129725_bb0120) 2012; 40 Badaut (10.1016/j.bbagen.2020.129725_bb0395) 2002; 277 Marenduzzo (10.1016/j.bbagen.2020.129725_bb0370) 2006; 90 Thacker (10.1016/j.bbagen.2020.129725_bb0150) 2014; 6 Laurens (10.1016/j.bbagen.2020.129725_bb0020) 2012; 3 Dame (10.1016/j.bbagen.2020.129725_bb0095) 2016; 40 Crisafuli (10.1016/j.bbagen.2020.129725_bb0310) 2015; 105 Odijk (10.1016/j.bbagen.2020.129725_bb0050) 1998; 73 Srinivasan (10.1016/j.bbagen.2020.129725_bb0225) 2013; 9 Gordon (10.1016/j.bbagen.2020.129725_bb0205) 2011; 108 Amit (10.1016/j.bbagen.2020.129725_bb0290) 2003; 84 Weber (10.1016/j.bbagen.2020.129725_bb0030) 2010; 104 Zimmerman (10.1016/j.bbagen.2020.129725_bb0065) 2006; 156 Asakura (10.1016/j.bbagen.2020.129725_bb0375) 1954; 22 Craig (10.1016/j.bbagen.2020.129725_bb0405) 2005; 122 Abels (10.1016/j.bbagen.2020.129725_bb0250) 2005; 88 Luijsterburg (10.1016/j.bbagen.2020.129725_bb0400) 2006; 156 Benza (10.1016/j.bbagen.2020.129725_bb0100) 2012; 75 Santos-Zavaleta (10.1016/j.bbagen.2020.129725_bb0385) 2019; 47 Dame (10.1016/j.bbagen.2020.129725_bb0270) 2006; 444 Ojala (10.1016/j.bbagen.2020.129725_bb0115) 2014; 43 Lang (10.1016/j.bbagen.2020.129725_bb0190) 2007; 35 Rocha (10.1016/j.bbagen.2020.129725_bb0305) 2014; 118 Cristofalo (10.1016/j.bbagen.2020.129725_bb0330) 2019; 116 Dame (10.1016/j.bbagen.2020.129725_bb0260) 2000; 28 Wiggins (10.1016/j.bbagen.2020.129725_bb0090) 2009; 97 Neuman (10.1016/j.bbagen.2020.129725_bb0255) 2008; 5 Polotsky (10.1016/j.bbagen.2020.129725_bb0410) 2011; 44 Landick (10.1016/j.bbagen.2020.129725_bb0285) 2015; 24 Navarre (10.1016/j.bbagen.2020.129725_bb0200) 2006; 313 Polovnikov (10.1016/j.bbagen.2020.129725_bb0045) 2018; 120 Liu (10.1016/j.bbagen.2020.129725_bb0295) 2010; 24 Yamanaka (10.1016/j.bbagen.2020.129725_bb0185) 2018; 293 Cunha (10.1016/j.bbagen.2020.129725_bb0130) 2001; 83 Zhou (10.1016/j.bbagen.2020.129725_bb0085) 2008; 37 Yan (10.1016/j.bbagen.2020.129725_bb0380) 2018; 46 Grainger (10.1016/j.bbagen.2020.129725_bb0175) 2016; 44 Dame (10.1016/j.bbagen.2020.129725_bb0110) 2003; 85 Bustamante (10.1016/j.bbagen.2020.129725_bb0340) 1994; 265 Smith (10.1016/j.bbagen.2020.129725_bb0245) 1992; 258 Cheng (10.1016/j.bbagen.2020.129725_bb0315) 2015; 11 Van der Valk (10.1016/j.bbagen.2020.129725_bb0210) 2014; 24 Driessen (10.1016/j.bbagen.2020.129725_bb0025) 2016; 6 Sharp (10.1016/j.bbagen.2020.129725_bb0080) 2016; 113 Pelletier (10.1016/j.bbagen.2020.129725_bb0135) 2012; 109 Marko (10.1016/j.bbagen.2020.129725_bb0335) 1995; 28 Heller (10.1016/j.bbagen.2020.129725_bb0275) 2017; 1486 Javer (10.1016/j.bbagen.2020.129725_bb0035) 2013; 4 Bouffartigues (10.1016/j.bbagen.2020.129725_bb0215) 2007; 14 Dorman (10.1016/j.bbagen.2020.129725_bb0005) 2004; 2 Friedrich (10.1016/j.bbagen.2020.129725_bb0350) 1988; 229 Rotondo (10.1016/j.bbagen.2020.129725_bb0365) 2016; 116 |
References_xml | – volume: 97 start-page: 1997 year: 2009 end-page: 2003 ident: bb0090 article-title: Protein-mediated molecular bridging: a key mechanism in biopolymer organization publication-title: Biophys. J. – volume: 28 start-page: 3504 year: 2000 end-page: 3510 ident: bb0260 article-title: H-NS mediated compaction of DNA visualised by atomic force microscopy publication-title: Nucleic Acids Res. – volume: 85 start-page: 4146 year: 2003 end-page: 4148 ident: bb0110 article-title: On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back publication-title: Biophys. J. – volume: 116 start-page: 256803 year: 2016 ident: bb0365 article-title: Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit publication-title: Phys. Rev. Lett. – volume: 43 start-page: 2009 year: 2013 end-page: 2012 ident: bb0325 article-title: Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength publication-title: Nucleic Acids Res. – volume: 47 start-page: D212 year: 2019 end-page: D220 ident: bb0385 article-title: RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in publication-title: Nucleic Acids Res. – volume: 40 start-page: 60 year: 2016 end-page: 65 ident: bb0095 article-title: Bacterial chromatin: converging views at different scales publication-title: Curr. Opin. Cell Biol. – volume: 107 start-page: 15728 year: 2010 end-page: 15732 ident: bb0165 article-title: H-NS forms a superhelical protein scaffold for DNA condensation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 184 year: 2014 end-page: 191 ident: bb0150 article-title: Bacterial nucleoid structure probed by active drag and resistive pulse sensing publication-title: Integr. Biol. – volume: 38 start-page: 7089 year: 2010 end-page: 7099 ident: bb0320 article-title: Magnetic tweezers measurements of the nanomechanical properties of DNA in the presence of drugs publication-title: Nucleic Acids Res. – volume: 83 start-page: 149 year: 2001 end-page: 154 ident: bb0130 article-title: Isolation of the Escherichia coli nucleoid publication-title: Biochimie – volume: 265 start-page: 1599 year: 1994 end-page: 1600 ident: bb0340 article-title: Entropic elasticity of publication-title: Science – volume: 14 start-page: 441 year: 2007 end-page: 448 ident: bb0215 article-title: H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing publication-title: Nat. Struct. Mol. Biol. – volume: 4 start-page: 3003 year: 2013 ident: bb0035 article-title: Short-time movement of publication-title: Nat. Commun. – volume: 113 start-page: 1684 year: 2016 end-page: 1685 ident: bb0080 article-title: Unpacking the origins of in-cell crowding publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 29422 year: 2016 ident: bb0025 article-title: Diverse architectural properties of Sso10a proteins: evidence for a role in chromatin compaction and organization publication-title: Sci. Rep. – volume: 109 start-page: 1321 year: 2015 end-page: 1329 ident: bb0170 article-title: H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments publication-title: Biophys. J. – volume: 48 start-page: 2348 year: 2020 end-page: 2356 ident: bb0235 article-title: Early fate of exogenous promoters in publication-title: Nucleic Acids Res. – volume: 88 start-page: 2737 year: 2005 end-page: 2744 ident: bb0250 article-title: Single-molecule measurements of the persistence length of double- stranded RNA publication-title: Biophys. J. – volume: 194 start-page: 129 year: 2016 end-page: 137 ident: bb0145 article-title: Compaction of isolated Escherichia coli nucleoids: polymer and H-NS protein synergetics publication-title: J. Struct. Biol. – volume: 43 start-page: 71 year: 2014 end-page: 79 ident: bb0115 article-title: Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation publication-title: Eur. Biophys. J. – volume: 34 start-page: 4642 year: 2006 end-page: 4652 ident: bb0240 article-title: Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome publication-title: Nucleic Acids Res. – volume: 24 start-page: 53 year: 2015 end-page: 59 ident: bb0285 article-title: H-NS and RNA Polymerase: A Love-Hate Relationship? – volume: 108 start-page: 10690 year: 2011 end-page: 10695 ident: bb0205 article-title: Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 153 start-page: 160 year: 2006 end-page: 175 ident: bb0070 article-title: Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase publication-title: J. Struct. Biol. – volume: 9 start-page: 2021 year: 2013 end-page: 2033 ident: bb0225 article-title: Genomic analysis reveals epistatic silencing of “expensive” genes in Escherichia coli K-12 publication-title: Mol. BioSyst. – volume: 156 start-page: 255 year: 2006 end-page: 261 ident: bb0065 article-title: Shape and compaction of Escherichia coli nucleoids publication-title: J. Struct. Biol. – volume: 28 start-page: 8759 year: 1995 end-page: 8770 ident: bb0335 article-title: Stretching DNA publication-title: Macromolecules – volume: 40 start-page: 284 year: 2012 end-page: 289 ident: bb0120 article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules publication-title: Nucleic Acids Res. – volume: 44 start-page: 1561 year: 2016 end-page: 1569 ident: bb0175 article-title: Structure and function of bacterial H-NS protein publication-title: Biochem. Soc. Trans. – volume: 37 start-page: 375 year: 2008 end-page: 397 ident: bb0085 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys. – volume: 122 start-page: 194901 year: 2005 ident: bb0405 article-title: Stretching globular polymers. I. single chains publication-title: J. Chem. Phys. – volume: 313 start-page: 236 year: 2006 end-page: 238 ident: bb0200 article-title: Selective silencing of foreign DNA with low GC content by the H-NS protein in salmonella publication-title: Science – volume: 258 start-page: 1122 year: 1992 end-page: 1126 ident: bb0245 article-title: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads publication-title: Science – volume: 444 start-page: 387 year: 2006 end-page: 390 ident: bb0270 article-title: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation publication-title: Nature – volume: 46 start-page: 10216 year: 2018 end-page: 10224 ident: bb0280 article-title: A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity publication-title: Nucleic Acids Res. – volume: 5 start-page: 491 year: 2008 end-page: 505 ident: bb0255 article-title: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy publication-title: Nat. Methods – volume: 15 start-page: 417 year: 1991 end-page: 421 ident: bb0355 article-title: On the deformation behaviour of collapsed polymers publication-title: Europhys. Lett. – volume: 2 start-page: 391 year: 2004 end-page: 400 ident: bb0005 article-title: H-NS: a universal regulator for a dynamic genome publication-title: Nat. Rev. Microbiol. – volume: 156 start-page: 183 year: 2014 end-page: 194 ident: bb0040 article-title: The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity publication-title: Cell – volume: 46 start-page: 2370 year: 2018 end-page: 2379 ident: bb0380 article-title: Protein-mediated looping of DNA under tension requires supercoiling publication-title: Nucleic Acids Res. – volume: 42 start-page: 8369 year: 2014 end-page: 8378 ident: bb0300 article-title: Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties publication-title: Nucleic Acids Res. – volume: 11 start-page: 113 year: 2008 end-page: 120 ident: bb0220 article-title: New insights into transcriptional regulation by H-NS publication-title: Curr. Opin. Microbiol. – volume: 73 start-page: 23 year: 1998 end-page: 29 ident: bb0050 article-title: Osmotic compaction of supercoiled DNA into a bacterial nucleoid publication-title: Biophys. Chem. – volume: 11 start-page: 1677 year: 2015 end-page: 1687 ident: bb0155 article-title: Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid publication-title: Soft Matter – volume: 116 start-page: 760 year: 2019 end-page: 771 ident: bb0330 article-title: Nanomechanics of diaminopurine-substituted DNA publication-title: Biophys. J. – volume: 293 start-page: 9496 year: 2018 end-page: 9505 ident: bb0185 article-title: Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation publication-title: J. Biol. Chem. – volume: 1486 start-page: 207 year: 2019 end-page: 230 ident: bb0105 article-title: Chromosome structure and dynamics in bacteria: Theory and experiments publication-title: Modeling the 3D Conformation of Genomes – start-page: 260 year: 2012 end-page: 269 ident: bb0140 article-title: Characterization of Escherichia coli nucleoids released by osmotic shock publication-title: J. Struct. Biol. – volume: 147 start-page: 146 year: 2004 end-page: 158 ident: bb0060 article-title: Studies on the compaction of isolated nucleoids from Escherichia coli publication-title: J. Struct. Biol. – volume: 24 start-page: 339 year: 2010 end-page: 344 ident: bb0295 article-title: A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes publication-title: Genes Dev. – volume: 8 start-page: 185 year: 2010 end-page: 195 ident: bb0015 article-title: Bacterial nucleoid-associated proteins, nucleoid structure and gene expression publication-title: Nat. Rev. Microbiol. – volume: 104 start-page: 238102 year: 2010 ident: bb0030 article-title: Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm publication-title: Phys. Rev. Lett. – volume: 11 start-page: 3927 year: 2015 end-page: 3935 ident: bb0315 article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements publication-title: Soft Matter – volume: 44 start-page: 8270 year: 2011 end-page: 8283 ident: bb0410 article-title: Theory of mechanical unfolding of homopolymer globule: all-or-none transition in force-clamp mode vs phase coexistence in position-clamp mode publication-title: Macromolecules – ident: bb0390 – volume: 156 start-page: 262 year: 2006 end-page: 272 ident: bb0400 article-title: The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective publication-title: J. Struct. Biol. – volume: 102 start-page: 6595 year: 1995 end-page: 6602 ident: bb0125 article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions publication-title: J. Chem. Phys. – volume: 24 start-page: 344 year: 2014 end-page: 359 ident: bb0210 article-title: Genomic looping: a key principle of chromatin organization publication-title: J. Mol. Microbiol. Biotechnol. – volume: 75 year: 2012 ident: bb0100 article-title: Physical descriptions of the bacterial nucleoid at large scales, and their biological implications publication-title: Rep. Prog. Phys. – volume: 39 start-page: 2073 year: 2011 end-page: 2091 ident: bb0195 article-title: Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli publication-title: Nucleic Acids Res. – volume: 118 start-page: 4832 year: 2014 end-page: 4839 ident: bb0305 article-title: On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study publication-title: J. Phys. Chem. B – volume: 103 start-page: 845 year: 2017 end-page: 853 ident: bb0160 article-title: In vitro studies of DNA condensation by bridging protein in a crowding environment publication-title: Int. J. Biol. Macromol. – volume: 27 start-page: 5623 year: 1994 end-page: 5625 ident: bb0345 article-title: DNA extension under the action of an external force publication-title: Macromolecules – volume: 90 start-page: 3712 year: 2006 end-page: 3721 ident: bb0370 article-title: Entropy-driven genome organization publication-title: Biophys. J. – volume: 5 start-page: 157 year: 2007 end-page: 161 ident: bb0230 article-title: H-NS, the genome sentinel publication-title: Nat. Rev. Microbiol. – volume: 120 year: 2018 ident: bb0045 article-title: Fractal folding and medium viscoelasticity contribute jointly to chromosome dynamics publication-title: Phys. Rev. Lett. – volume: 277 start-page: 41657 year: 2002 end-page: 41666 ident: bb0395 article-title: The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA publication-title: J. Biol. Chem. – volume: 114 start-page: 12560 year: 2017 end-page: 12565 ident: bb0180 article-title: Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 35 start-page: 6330 year: 2007 end-page: 6337 ident: bb0190 article-title: High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes publication-title: Nucleic Acids Res. – volume: 2 start-page: 0746 year: 2006 end-page: 0752 ident: bb0010 article-title: H-NS mediates the silencing of laterally acquired genes in bacteria publication-title: PLoS Pathog. – volume: 22 start-page: 1255 year: 1954 end-page: 1256 ident: bb0375 article-title: On interaction between two bodies immersed in a solution of macromolecules publication-title: J. Chem. Phys. – volume: 92 start-page: 1715 year: 2010 end-page: 1721 ident: bb0055 article-title: DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins publication-title: Biochimie – volume: 277 start-page: 2146 year: 2002 end-page: 2150 ident: bb0265 article-title: Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1 publication-title: J. Biol. Chem. – volume: 109 start-page: E2649 year: 2012 end-page: E2656 ident: bb0135 article-title: Physical manipulation of the Escherichia coli chromosome reveals its soft nature publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 229 start-page: 197 year: 1988 end-page: 202 ident: bb0350 article-title: Proteins from the prokaryotic nucleoid - interaction of nucleic-acids with the 15 KDa Escherichia-coli histone-like protein H-NS publication-title: FEBS Lett. – volume: 105 start-page: 227 year: 2015 end-page: 233 ident: bb0310 article-title: Depletion interactions and modulation of DNA-intercalators binding: opposite behavior of the neutral polymer poly(ethylene-glycol) publication-title: Biopolymers – volume: 8 start-page: 3712 year: 2007 end-page: 3717 ident: bb0075 article-title: Atomic force microscopy imaging of DNA under macromolecular crowding conditions publication-title: Biomacromol – volume: 1486 start-page: 257 year: 2017 end-page: 272 ident: bb0275 article-title: Versatile quadruple-trap optical tweezers for dual DNA experiments publication-title: Optical Tweezers. Methods in Molecular Biology – year: 1994 ident: bb0360 article-title: Statistical Physics of Macromolecules – volume: 3 start-page: 1328 year: 2012 ident: bb0020 article-title: Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA publication-title: Nat. Commun. – volume: 84 start-page: 2467 year: 2003 end-page: 2473 ident: bb0290 article-title: Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor publication-title: Biophys. J. – volume: 113 start-page: 4982 year: 2016 end-page: 4987 ident: bb0415 article-title: Hysteresis in DNA compaction by Dps is described by an Ising model publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 293 start-page: 9496 year: 2018 ident: 10.1016/j.bbagen.2020.129725_bb0185 article-title: Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001425 – volume: 2 start-page: 391 year: 2004 ident: 10.1016/j.bbagen.2020.129725_bb0005 article-title: H-NS: a universal regulator for a dynamic genome publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro883 – volume: 113 start-page: 1684 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0080 article-title: Unpacking the origins of in-cell crowding publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1600098113 – volume: 258 start-page: 1122 year: 1992 ident: 10.1016/j.bbagen.2020.129725_bb0245 article-title: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads publication-title: Science doi: 10.1126/science.1439819 – volume: 38 start-page: 7089 year: 2010 ident: 10.1016/j.bbagen.2020.129725_bb0320 article-title: Magnetic tweezers measurements of the nanomechanical properties of DNA in the presence of drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq597 – volume: 156 start-page: 183 year: 2014 ident: 10.1016/j.bbagen.2020.129725_bb0040 article-title: The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity publication-title: Cell doi: 10.1016/j.cell.2013.11.028 – volume: 92 start-page: 1715 year: 2010 ident: 10.1016/j.bbagen.2020.129725_bb0055 article-title: DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins publication-title: Biochimie doi: 10.1016/j.biochi.2010.06.024 – volume: 102 start-page: 6595 year: 1995 ident: 10.1016/j.bbagen.2020.129725_bb0125 article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions publication-title: J. Chem. Phys. doi: 10.1063/1.469375 – volume: 5 start-page: 491 year: 2008 ident: 10.1016/j.bbagen.2020.129725_bb0255 article-title: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.1218 – volume: 88 start-page: 2737 year: 2005 ident: 10.1016/j.bbagen.2020.129725_bb0250 article-title: Single-molecule measurements of the persistence length of double- stranded RNA publication-title: Biophys. J. doi: 10.1529/biophysj.104.052811 – volume: 11 start-page: 1677 year: 2015 ident: 10.1016/j.bbagen.2020.129725_bb0155 article-title: Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid publication-title: Soft Matter doi: 10.1039/C4SM02434F – volume: 113 start-page: 4982 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0415 article-title: Hysteresis in DNA compaction by Dps is described by an Ising model publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1521241113 – volume: 46 start-page: 10216 year: 2018 ident: 10.1016/j.bbagen.2020.129725_bb0280 article-title: A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky826 – volume: 90 start-page: 3712 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0370 article-title: Entropy-driven genome organization publication-title: Biophys. J. doi: 10.1529/biophysj.105.077685 – volume: 11 start-page: 3927 year: 2015 ident: 10.1016/j.bbagen.2020.129725_bb0315 article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements publication-title: Soft Matter doi: 10.1039/C5SM00619H – volume: 108 start-page: 10690 year: 2011 ident: 10.1016/j.bbagen.2020.129725_bb0205 article-title: Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1102544108 – volume: 109 start-page: E2649 year: 2012 ident: 10.1016/j.bbagen.2020.129725_bb0135 article-title: Physical manipulation of the Escherichia coli chromosome reveals its soft nature publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1208689109 – volume: 35 start-page: 6330 year: 2007 ident: 10.1016/j.bbagen.2020.129725_bb0190 article-title: High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm712 – volume: 6 start-page: 184 year: 2014 ident: 10.1016/j.bbagen.2020.129725_bb0150 article-title: Bacterial nucleoid structure probed by active drag and resistive pulse sensing publication-title: Integr. Biol. doi: 10.1039/C3IB40147B – volume: 22 start-page: 1255 year: 1954 ident: 10.1016/j.bbagen.2020.129725_bb0375 article-title: On interaction between two bodies immersed in a solution of macromolecules publication-title: J. Chem. Phys. doi: 10.1063/1.1740347 – volume: 43 start-page: 71 year: 2014 ident: 10.1016/j.bbagen.2020.129725_bb0115 article-title: Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation publication-title: Eur. Biophys. J. doi: 10.1007/s00249-013-0941-x – volume: 40 start-page: 284 year: 2012 ident: 10.1016/j.bbagen.2020.129725_bb0120 article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr712 – volume: 444 start-page: 387 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0270 article-title: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation publication-title: Nature doi: 10.1038/nature05283 – volume: 24 start-page: 339 year: 2010 ident: 10.1016/j.bbagen.2020.129725_bb0295 article-title: A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes publication-title: Genes Dev. doi: 10.1101/gad.1883510 – volume: 15 start-page: 417 year: 1991 ident: 10.1016/j.bbagen.2020.129725_bb0355 article-title: On the deformation behaviour of collapsed polymers publication-title: Europhys. Lett. doi: 10.1209/0295-5075/15/4/009 – volume: 42 start-page: 8369 year: 2014 ident: 10.1016/j.bbagen.2020.129725_bb0300 article-title: Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku566 – volume: 46 start-page: 2370 year: 2018 ident: 10.1016/j.bbagen.2020.129725_bb0380 article-title: Protein-mediated looping of DNA under tension requires supercoiling publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky021 – volume: 313 start-page: 236 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0200 article-title: Selective silencing of foreign DNA with low GC content by the H-NS protein in salmonella publication-title: Science doi: 10.1126/science.1128794 – volume: 48 start-page: 2348 year: 2020 ident: 10.1016/j.bbagen.2020.129725_bb0235 article-title: Early fate of exogenous promoters in E. coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1196 – volume: 44 start-page: 8270 year: 2011 ident: 10.1016/j.bbagen.2020.129725_bb0410 article-title: Theory of mechanical unfolding of homopolymer globule: all-or-none transition in force-clamp mode vs phase coexistence in position-clamp mode publication-title: Macromolecules doi: 10.1021/ma201427y – volume: 43 start-page: 2009 year: 2013 ident: 10.1016/j.bbagen.2020.129725_bb0325 article-title: Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1206 – start-page: 260 year: 2012 ident: 10.1016/j.bbagen.2020.129725_bb0140 article-title: Characterization of Escherichia coli nucleoids released by osmotic shock publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.03.007 – volume: 39 start-page: 2073 year: 2011 ident: 10.1016/j.bbagen.2020.129725_bb0195 article-title: Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq934 – volume: 109 start-page: 1321 year: 2015 ident: 10.1016/j.bbagen.2020.129725_bb0170 article-title: H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.08.016 – volume: 40 start-page: 60 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0095 article-title: Bacterial chromatin: converging views at different scales publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.02.015 – volume: 3 start-page: 1328 year: 2012 ident: 10.1016/j.bbagen.2020.129725_bb0020 article-title: Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA publication-title: Nat. Commun. doi: 10.1038/ncomms2330 – volume: 229 start-page: 197 year: 1988 ident: 10.1016/j.bbagen.2020.129725_bb0350 article-title: Proteins from the prokaryotic nucleoid - interaction of nucleic-acids with the 15 KDa Escherichia-coli histone-like protein H-NS publication-title: FEBS Lett. doi: 10.1016/0014-5793(88)80826-3 – volume: 156 start-page: 255 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0065 article-title: Shape and compaction of Escherichia coli nucleoids publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.03.022 – volume: 24 start-page: 53 year: 2015 ident: 10.1016/j.bbagen.2020.129725_bb0285 – volume: 9 start-page: 2021 year: 2013 ident: 10.1016/j.bbagen.2020.129725_bb0225 article-title: Genomic analysis reveals epistatic silencing of “expensive” genes in Escherichia coli K-12 publication-title: Mol. BioSyst. doi: 10.1039/c3mb70035f – volume: 265 start-page: 1599 year: 1994 ident: 10.1016/j.bbagen.2020.129725_bb0340 article-title: Entropic elasticity of λ-phage DNA publication-title: Science doi: 10.1126/science.8079175 – volume: 47 start-page: D212 year: 2019 ident: 10.1016/j.bbagen.2020.129725_bb0385 article-title: RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1077 – volume: 120 year: 2018 ident: 10.1016/j.bbagen.2020.129725_bb0045 article-title: Fractal folding and medium viscoelasticity contribute jointly to chromosome dynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.088101 – volume: 116 start-page: 256803 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0365 article-title: Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.256803 – volume: 1486 start-page: 207 year: 2019 ident: 10.1016/j.bbagen.2020.129725_bb0105 article-title: Chromosome structure and dynamics in bacteria: Theory and experiments – volume: 114 start-page: 12560 year: 2017 ident: 10.1016/j.bbagen.2020.129725_bb0180 article-title: Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1716721114 – volume: 194 start-page: 129 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0145 article-title: Compaction of isolated Escherichia coli nucleoids: polymer and H-NS protein synergetics publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2016.02.009 – volume: 277 start-page: 41657 year: 2002 ident: 10.1016/j.bbagen.2020.129725_bb0395 article-title: The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206037200 – volume: 277 start-page: 2146 year: 2002 ident: 10.1016/j.bbagen.2020.129725_bb0265 article-title: Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C100603200 – volume: 27 start-page: 5623 year: 1994 ident: 10.1016/j.bbagen.2020.129725_bb0345 article-title: DNA extension under the action of an external force publication-title: Macromolecules doi: 10.1021/ma00098a016 – volume: 73 start-page: 23 year: 1998 ident: 10.1016/j.bbagen.2020.129725_bb0050 article-title: Osmotic compaction of supercoiled DNA into a bacterial nucleoid publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(98)00115-X – volume: 8 start-page: 3712 year: 2007 ident: 10.1016/j.bbagen.2020.129725_bb0075 article-title: Atomic force microscopy imaging of DNA under macromolecular crowding conditions publication-title: Biomacromol doi: 10.1021/bm700856u – year: 1994 ident: 10.1016/j.bbagen.2020.129725_bb0360 – volume: 104 start-page: 238102 year: 2010 ident: 10.1016/j.bbagen.2020.129725_bb0030 article-title: Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.238102 – volume: 2 start-page: 0746 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0010 article-title: H-NS mediates the silencing of laterally acquired genes in bacteria publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0020081 – volume: 116 start-page: 760 year: 2019 ident: 10.1016/j.bbagen.2020.129725_bb0330 article-title: Nanomechanics of diaminopurine-substituted DNA publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.01.027 – volume: 34 start-page: 4642 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0240 article-title: Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl542 – volume: 107 start-page: 15728 year: 2010 ident: 10.1016/j.bbagen.2020.129725_bb0165 article-title: H-NS forms a superhelical protein scaffold for DNA condensation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1006966107 – volume: 118 start-page: 4832 year: 2014 ident: 10.1016/j.bbagen.2020.129725_bb0305 article-title: On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study publication-title: J. Phys. Chem. B doi: 10.1021/jp501589d – volume: 122 start-page: 194901 year: 2005 ident: 10.1016/j.bbagen.2020.129725_bb0405 article-title: Stretching globular polymers. I. single chains publication-title: J. Chem. Phys. doi: 10.1063/1.1898213 – volume: 85 start-page: 4146 year: 2003 ident: 10.1016/j.bbagen.2020.129725_bb0110 article-title: On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)74826-7 – volume: 147 start-page: 146 year: 2004 ident: 10.1016/j.bbagen.2020.129725_bb0060 article-title: Studies on the compaction of isolated nucleoids from Escherichia coli publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2004.02.003 – volume: 14 start-page: 441 year: 2007 ident: 10.1016/j.bbagen.2020.129725_bb0215 article-title: H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1233 – volume: 5 start-page: 157 year: 2007 ident: 10.1016/j.bbagen.2020.129725_bb0230 article-title: H-NS, the genome sentinel publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1598 – volume: 6 start-page: 29422 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0025 article-title: Diverse architectural properties of Sso10a proteins: evidence for a role in chromatin compaction and organization publication-title: Sci. Rep. doi: 10.1038/srep29422 – volume: 1486 start-page: 257 year: 2017 ident: 10.1016/j.bbagen.2020.129725_bb0275 article-title: Versatile quadruple-trap optical tweezers for dual DNA experiments doi: 10.1007/978-1-4939-6421-5_9 – volume: 37 start-page: 375 year: 2008 ident: 10.1016/j.bbagen.2020.129725_bb0085 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.37.032807.125817 – volume: 28 start-page: 8759 year: 1995 ident: 10.1016/j.bbagen.2020.129725_bb0335 article-title: Stretching DNA publication-title: Macromolecules doi: 10.1021/ma00130a008 – volume: 75 year: 2012 ident: 10.1016/j.bbagen.2020.129725_bb0100 article-title: Physical descriptions of the bacterial nucleoid at large scales, and their biological implications publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/7/076602 – volume: 103 start-page: 845 year: 2017 ident: 10.1016/j.bbagen.2020.129725_bb0160 article-title: In vitro studies of DNA condensation by bridging protein in a crowding environment publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.05.079 – volume: 156 start-page: 262 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0400 article-title: The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.05.006 – volume: 28 start-page: 3504 year: 2000 ident: 10.1016/j.bbagen.2020.129725_bb0260 article-title: H-NS mediated compaction of DNA visualised by atomic force microscopy publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.18.3504 – volume: 4 start-page: 3003 year: 2013 ident: 10.1016/j.bbagen.2020.129725_bb0035 article-title: Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization publication-title: Nat. Commun. doi: 10.1038/ncomms3003 – volume: 83 start-page: 149 year: 2001 ident: 10.1016/j.bbagen.2020.129725_bb0130 article-title: Isolation of the Escherichia coli nucleoid publication-title: Biochimie doi: 10.1016/S0300-9084(01)01245-7 – volume: 84 start-page: 2467 year: 2003 ident: 10.1016/j.bbagen.2020.129725_bb0290 article-title: Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)75051-6 – volume: 105 start-page: 227 year: 2015 ident: 10.1016/j.bbagen.2020.129725_bb0310 article-title: Depletion interactions and modulation of DNA-intercalators binding: opposite behavior of the neutral polymer poly(ethylene-glycol) publication-title: Biopolymers doi: 10.1002/bip.22789 – volume: 24 start-page: 344 year: 2014 ident: 10.1016/j.bbagen.2020.129725_bb0210 article-title: Genomic looping: a key principle of chromatin organization publication-title: J. Mol. Microbiol. Biotechnol. doi: 10.1159/000368851 – volume: 97 start-page: 1997 year: 2009 ident: 10.1016/j.bbagen.2020.129725_bb0090 article-title: Protein-mediated molecular bridging: a key mechanism in biopolymer organization publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.06.051 – volume: 153 start-page: 160 year: 2006 ident: 10.1016/j.bbagen.2020.129725_bb0070 article-title: Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.10.011 – volume: 11 start-page: 113 year: 2008 ident: 10.1016/j.bbagen.2020.129725_bb0220 article-title: New insights into transcriptional regulation by H-NS publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2008.02.011 – volume: 8 start-page: 185 year: 2010 ident: 10.1016/j.bbagen.2020.129725_bb0015 article-title: Bacterial nucleoid-associated proteins, nucleoid structure and gene expression publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2261 – volume: 44 start-page: 1561 year: 2016 ident: 10.1016/j.bbagen.2020.129725_bb0175 article-title: Structure and function of bacterial H-NS protein publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160190 |
SSID | ssj0000595 |
Score | 2.3869178 |
Snippet | DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129725 |
SubjectTerms | Bacteriology Biochemistry Biochemistry, Molecular Biology Biophysics DNA DNA fragmentation DNA, Bacterial - chemistry DNA, Bacterial - metabolism Escherichia coli Escherichia coli - chemistry Escherichia coli - metabolism Escherichia coli Proteins - metabolism Fimbriae Proteins - metabolism Force spectroscopy genome Genomics H-NS Life Sciences Magnetic Phenomena Magnetic Tweezers magnetism Microbiology and Parasitology Molecular biology Molecular Networks Nucleic Acid Conformation Nucleoid-associated proteins Polyethylene Glycols - metabolism Single molecule Structural Biology |
Title | Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129725 https://www.ncbi.nlm.nih.gov/pubmed/32891648 https://www.proquest.com/docview/2440667538 https://www.proquest.com/docview/2551959061 https://hal.science/hal-03035306 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXBOW1PCqDuJrNw46T42ppCY-ukNpKvVnxI2URSlZlCyoHfgC_mhk7WYQEVOISKdY4iT0Tz2d55huA5yY1wglnuCgzvCSV5ZVKLS_yNitL64xrKBv5YFHUx-LNiTzZgvmYC0NhlcPaH9f0sFoPLdNhNqer5XJ6SId6CCdkllDhG0WMn0IosvIX33-FeSB8kPEkQXCSHtPnQoyXMfjTEgtqRjQLlaKC2X92T1c-UJzk30BocEb7t-DmgCLZLH7obdjy3Q5ci3UlL3bg-nws43YHfsz7fuUjvzcbojdY3zEEfiwEoIfEBta37OVixtqz5jQkvTFzEUQ64jvul44FQodlx2q-OGRN5-IDcBNPzo_RANfs_d4rkjPeUfeD5rSjFEl29NX7bwgz78Lx_t7RvOZDAQZu0U2tuXSVaUTRuCQvW4VrY4L7DyFaJavWF1K0nuiLXKlsllKjbSqEvxlVlpXOSZnfg-2u7_wDYMKKvM1dmhYlYhYnqtII5ZSz1rrKZskE8nHetR3YyalIxic9hqF91FFbmrSlo7YmwDe9VpGd4xJ5NapU_2ZlGh3IJT2foQVsXkKk3PXsnaY2NK0cp6b4kk7g6WggGrVMRy9N5_vzzxpBFEUTo3f5h4wMTD8IsCZwP1rX5n057otxY1s-_O8BPIIbdBcjcR7D9vrs3D9BPLU2u-GH2YWrs9dv68VPUBgcmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB61qVB5QVCucC6IVys-dn08RqHFpYmF1FTq28p7uAQhOyopqPwEfjUzu3YQElCJFz-sZ33sjGe-lWe-AXijIsUNNyrgeYyHsNBBkUU6SJMmznNtlKmpGnlRpeUZf38uzndgNtTCUFpl7_u9T3feuh-Z9Ks5Wa9Wk1P6qYdwQsQhNb7Jkl3YI3YqMYK96fFJWf1yyMI1XyH5gCYMFXQuzUsp_G6JCDUmpoUio57Zf45Qux8pVfJvONTFo6O7cKcHkmzqn_Ue7Nj2AG751pLXB7A_Gzq53Ycfs65bW0_xzfoEDta1DLEfcznorraBdQ17W01Zc1lfuLo3pq6dSEuUx93KMMfpsGpZGVSnrG6NvwDu4yn-MXrBDftw-I7klDU0fVFftFQlyZbfrP2OSPMBnB0dLmdl0PdgCDRGqk0gTKFqntYmTPImQ_cY4haE8yYTRWNTwRtLDEYmz3Qc0aCuC0TAMTWXFcYIkTyEUdu19jEwrnnSJCaK0hxhi-FFrnhmMqO1NoWOwzEkw7pL3ROUU5-Mz3LIRPskvbYkaUt6bY0h2M5ae4KOG-SzQaXyN0OTGENumPkaLWB7E-LlLqdzSWNoWgkuTfo1GsOrwUAkapn-vtSt7a6-SMRRlFCMAeYfMsKR_SDGGsMjb13b-yW4Nca9bf7kv1_gJeyXy8Vczo-rk6dwm874xJxnMNpcXtnnCK826kX_-fwEBoMfTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+effects+on+the+compaction+of+DNA+fragments+by+the+nucleoid+protein+H-NS+and+the+crowding+agent+PEG+probed+by+Magnetic+Tweezers&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Cristofalo%2C+M.&rft.au=Marrano%2C+C.A.&rft.au=Salerno%2C+D.&rft.au=Corti%2C+R.&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1864&rft.issue=12&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129725&rft.externalDocID=S0304416520302373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |