Melanopsin enhances image persistence
Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address tw...
Saved in:
Published in | Current biology Vol. 33; no. 23; pp. 5048 - 5056.e4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
04.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation.
•Melanopsin enhances image persistence for low spatiotemporal frequency patterns•The image persistence originates from melanopsin rather than ipRGC spectral opponency•Melanopsin provides no substantial color percept
Woelders et al. demonstrate that melanopsin enhances image persistence, especially for low spatiotemporal details. Their color-matching experiments, using high melanopsin contrast metamers at frequencies both within and surpassing melanopsin’s temporal sensitivity range, reveal that melanopsin does not provide a substantial color percept. |
---|---|
AbstractList | Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation.Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation. Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation. •Melanopsin enhances image persistence for low spatiotemporal frequency patterns•The image persistence originates from melanopsin rather than ipRGC spectral opponency•Melanopsin provides no substantial color percept Woelders et al. demonstrate that melanopsin enhances image persistence, especially for low spatiotemporal details. Their color-matching experiments, using high melanopsin contrast metamers at frequencies both within and surpassing melanopsin’s temporal sensitivity range, reveal that melanopsin does not provide a substantial color percept. Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation. Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation. |
Author | Woelders, Tom Allen, Annette E. Lucas, Robert J. |
Author_xml | – sequence: 1 givenname: Tom orcidid: 0000-0003-4922-4286 surname: Woelders fullname: Woelders, Tom email: tom.woelders@manchester.ac.uk organization: Division of Neuroscience and Centre for Biological Timing, School of Biology, Faculty of Biology Medicine and Health, University of Manchester, Upper Brook Street, M13 9PT Manchester, UK – sequence: 2 givenname: Annette E. surname: Allen fullname: Allen, Annette E. organization: Division of Neuroscience and Centre for Biological Timing, School of Biology, Faculty of Biology Medicine and Health, University of Manchester, Upper Brook Street, M13 9PT Manchester, UK – sequence: 3 givenname: Robert J. surname: Lucas fullname: Lucas, Robert J. email: robert.lucas@manchester.ac.uk organization: Division of Neuroscience and Centre for Biological Timing, School of Biology, Faculty of Biology Medicine and Health, University of Manchester, Upper Brook Street, M13 9PT Manchester, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37967553$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQhoMo7of-AC-yF8FLaz7bBk-y-AUrXvQc0mSqWbptTVrBf2_K7l48rKdhhvcZZp4ZOm7aBhC6IDglmGQ369QMZUoxZbFPMZNHaEqKXCaYc3GMplhmOJEFpRM0C2GNMaGFzE7RhOUyy4VgU3T1ArVu2i64ZgHNp24MhIXb6A9YdOCDCz3E0Rk6qXQd4HxX5-j94f5t-ZSsXh-fl3erxHAq-0RIIRlIKI0VthKm4oxoLq2xJXDLCh17qFhhMwuG5BkTBHiZWclxVVIDbI6ut3s7334NEHq1ccFAHU-EdgiKYY6ZoFiyf6PxU5yLgmMeo5e76FBuwKrOxwf9j9pbiIF8GzC-DcFDpYzrde_apvfa1YpgNfpWaxV9q9H3OIq-I0n-kPvlh5jbLQPR5LcDr4Jxo2XrPJhe2dYdoH8BBNSW2A |
CitedBy_id | crossref_primary_10_1016_j_visres_2024_108378 crossref_primary_10_1038_s41598_024_51982_z crossref_primary_10_1152_physiol_00017_2023 crossref_primary_10_1016_j_cub_2023_12_052 |
Cites_doi | 10.1038/s41598-018-22197-w 10.1113/jphysiol.1985.sp015591 10.1016/j.cub.2017.04.046 10.1016/j.neuroimage.2016.09.061 10.1038/s42003-023-04598-4 10.1016/j.tins.2011.07.001 10.1152/jn.00368.2015 10.1016/j.visres.2008.05.001 10.1364/JOSA.73.000742 10.1038/s41467-019-10113-3 10.1364/JOSA.48.000777 10.1038/170036a0 10.3389/fneur.2019.00529 10.1073/pnas.1711522114 10.1038/s41598-019-44035-3 10.1126/science.1076848 10.1371/journal.pbio.1000558 10.1364/JOSAA.457223 10.1364/JOSAA.35.000B19 10.1364/JOSAA.382349 10.1038/nature03387 10.1126/science.1077293 10.1113/jphysiol.1968.sp008574 10.1038/88443 10.1093/sleep/zsy100 10.1126/science.1086179 10.1073/pnas.1400942111 10.1016/j.isci.2022.104529 10.1016/j.visres.2019.04.009 10.1126/science.1067262 10.1126/science.aaz0898 10.1016/j.cub.2012.04.039 10.1038/nature01761 10.1523/JNEUROSCI.1423-12.2012 10.1113/jphysiol.2010.199877 10.1016/S0042-6989(00)00021-3 10.1016/j.visres.2006.12.015 10.1177/0748730418784041 10.1364/JOSAA.14.001187 10.1016/0042-6989(82)90104-3 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.cub.2023.10.039 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 5056.e4 |
ExternalDocumentID | 37967553 10_1016_j_cub_2023_10_039 S0960982223014409 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 210684/Z/18/Z |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 4.4 457 4G. 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AFTJW AGHSJ AGKMS AGUBO AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SCP SDG SES SEW SSZ TR2 ZA5 29F 2WC 53G 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- RIG UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c429t-59593e9ebcd5df5cf431a49dcdbe4d38a431ef38d6dec176351e4b6d940fb2ce3 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Fri Jul 11 01:27:50 EDT 2025 Fri Jul 11 16:46:29 EDT 2025 Mon Jul 21 06:07:36 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jul 01 01:57:27 EDT 2025 Sat Feb 17 16:08:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | melanopsin Troxler fading color cones trichromatic image persistence ipRGC |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-59593e9ebcd5df5cf431a49dcdbe4d38a431ef38d6dec176351e4b6d940fb2ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4922-4286 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982223014409 |
PMID | 37967553 |
PQID | 2890758404 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3040352093 proquest_miscellaneous_2890758404 pubmed_primary_37967553 crossref_citationtrail_10_1016_j_cub_2023_10_039 crossref_primary_10_1016_j_cub_2023_10_039 elsevier_sciencedirect_doi_10_1016_j_cub_2023_10_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-04 |
PublicationDateYYYYMMDD | 2023-12-04 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Barrionuevo, Paz Filgueira, Cao (bib24) 2022; 39 Zele, Adhikari, Feigl, Cao (bib15) 2018; 35 Kelly (bib42) 1983; 73 Aguilar, Stiles (bib41) 1954; 1 Lucas, Hattar, Takao, Berson, Foster, Yau (bib3) 2003; 299 Allen, Hazelhoff, Martial, Cajochen, Lucas (bib11) 2018; 41 Zele, Feigl, Adhikari, Maynard, Cao (bib16) 2018; 8 Uprety, Adhikari, Feigl, Zele (bib39) 2022; 25 Tsujimura, Ukai, Ohama, Nuruki, Yunokuchi (bib10) 2010; 277 Procyk, Eleftheriou, Storchi, Allen, Milosavljevic, Brown, Lucas (bib35) 2015; 114 Schöllhorn, Stefani, Lucas, Spitschan, Slawik, Cajochen (bib13) 2023; 6 Panda, Sato, Castrucci, Rollag, DeGrip, Hogenesch, Provencio, Kay (bib6) 2002; 298 (bib45) 2012 Brown, Gias, Hatori, Keding, Semo, Coffey, Gigg, Piggins, Panda, Lucas (bib7) 2010; 8 Mure, Vinberg, Hanneken, Panda (bib37) 2019; 366 Allen, Martial, Lucas (bib26) 2019; 10 Berson, Dunn, Takao (bib2) 2002; 295 Stockman, Sharpe (bib46) 2000; 40 Zele, Adhikari, Cao, Feigl (bib14) 2019; 160 Spitschan, Bock, Ryan, Frazzetta, Brainard, Aguirre (bib25) 2017; 114 Zele, Adhikari, Cao, Feigl (bib9) 2019; 10 (bib44) 2006 Spitschan, Jain, Brainard, Aguirre (bib27) 2014; 111 Schmidt, Chen, Hattar (bib36) 2011; 34 De Lange Dzn (bib33) 1958; 48 Mullen (bib43) 1985; 359 Dacey, Liao, Peterson, Robinson, Smith, Pokorny, Yau, Gamlin (bib1) 2005; 433 Wong (bib21) 2012; 32 Ditchburn, Ginsborg (bib34) 1952; 170 Estévez, Spekreijse (bib8) 1982; 22 Raphael, MacLeod (bib40) 2015; 15 Yamakawa, Tsujimura, Okajima (bib17) 2019; 9 Brown, Wynne, Piggins, Lucas (bib23) 2011; 589 Brown, Allen, Al-Enezi, Wynne, Schlangen, Hommes, Lucas (bib22) 2013; 8 Lucas, Douglas, Foster (bib29) 2001; 4 Cao, Pokorny, Smith, Zele (bib38) 2008; 48 Gamlin, McDougal, Pokorny, Smith, Yau, Dacey (bib30) 2007; 47 DeLawyer, Tsujimura, Shinomori (bib19) 2020; 37 Allen, Storchi, Martial, Bedford, Lucas (bib20) 2017; 27 Panda, Provencio, Tu, Pires, Rollag, Castrucci, Pletcher, Sato, Wiltshire, Andahazy (bib4) 2003; 301 Brown, Tsujimura, Allen, Wynne, Bedford, Vickery, Vugler, Lucas (bib18) 2012; 22 Campbell, Robson (bib32) 1968; 197 Souman, Borra, de Goijer, Schlangen, Vlaskamp, Lucassen (bib12) 2018; 33 Hammond, Wooten, Snodderly (bib28) 1997; 14 Hattar, Lucas, Mrosovsky, Thompson, Douglas, Hankins, Lem, Biel, Hofmann, Foster (bib5) 2003; 424 Hung, Milea, Rukmini, Najjar, Tan, Viénot, Dubail, Tow, Aung, Gooley (bib31) 2017; 146 Panda (10.1016/j.cub.2023.10.039_bib4) 2003; 301 Schöllhorn (10.1016/j.cub.2023.10.039_bib13) 2023; 6 Mure (10.1016/j.cub.2023.10.039_bib37) 2019; 366 Aguilar (10.1016/j.cub.2023.10.039_bib41) 1954; 1 Campbell (10.1016/j.cub.2023.10.039_bib32) 1968; 197 Zele (10.1016/j.cub.2023.10.039_bib16) 2018; 8 Spitschan (10.1016/j.cub.2023.10.039_bib27) 2014; 111 Brown (10.1016/j.cub.2023.10.039_bib7) 2010; 8 Barrionuevo (10.1016/j.cub.2023.10.039_bib24) 2022; 39 Uprety (10.1016/j.cub.2023.10.039_bib39) 2022; 25 Souman (10.1016/j.cub.2023.10.039_bib12) 2018; 33 Panda (10.1016/j.cub.2023.10.039_bib6) 2002; 298 Allen (10.1016/j.cub.2023.10.039_bib20) 2017; 27 Brown (10.1016/j.cub.2023.10.039_bib23) 2011; 589 Estévez (10.1016/j.cub.2023.10.039_bib8) 1982; 22 Brown (10.1016/j.cub.2023.10.039_bib18) 2012; 22 Berson (10.1016/j.cub.2023.10.039_bib2) 2002; 295 Lucas (10.1016/j.cub.2023.10.039_bib3) 2003; 299 Zele (10.1016/j.cub.2023.10.039_bib15) 2018; 35 Procyk (10.1016/j.cub.2023.10.039_bib35) 2015; 114 Tsujimura (10.1016/j.cub.2023.10.039_bib10) 2010; 277 Zele (10.1016/j.cub.2023.10.039_bib14) 2019; 160 Wong (10.1016/j.cub.2023.10.039_bib21) 2012; 32 Gamlin (10.1016/j.cub.2023.10.039_bib30) 2007; 47 Raphael (10.1016/j.cub.2023.10.039_bib40) 2015; 15 Schmidt (10.1016/j.cub.2023.10.039_bib36) 2011; 34 Dacey (10.1016/j.cub.2023.10.039_bib1) 2005; 433 Zele (10.1016/j.cub.2023.10.039_bib9) 2019; 10 Spitschan (10.1016/j.cub.2023.10.039_bib25) 2017; 114 Stockman (10.1016/j.cub.2023.10.039_bib46) 2000; 40 Allen (10.1016/j.cub.2023.10.039_bib26) 2019; 10 Ditchburn (10.1016/j.cub.2023.10.039_bib34) 1952; 170 Yamakawa (10.1016/j.cub.2023.10.039_bib17) 2019; 9 Mullen (10.1016/j.cub.2023.10.039_bib43) 1985; 359 Lucas (10.1016/j.cub.2023.10.039_bib29) 2001; 4 De Lange Dzn (10.1016/j.cub.2023.10.039_bib33) 1958; 48 Kelly (10.1016/j.cub.2023.10.039_bib42) 1983; 73 (10.1016/j.cub.2023.10.039_bib44) 2006 Brown (10.1016/j.cub.2023.10.039_bib22) 2013; 8 Hung (10.1016/j.cub.2023.10.039_bib31) 2017; 146 Cao (10.1016/j.cub.2023.10.039_bib38) 2008; 48 Allen (10.1016/j.cub.2023.10.039_bib11) 2018; 41 Hattar (10.1016/j.cub.2023.10.039_bib5) 2003; 424 (10.1016/j.cub.2023.10.039_bib45) 2012 DeLawyer (10.1016/j.cub.2023.10.039_bib19) 2020; 37 Hammond (10.1016/j.cub.2023.10.039_bib28) 1997; 14 |
References_xml | – year: 2012 ident: bib45 article-title: A computerized approach to transmission and absorption characteristics of the human eye – volume: 32 start-page: 11478 year: 2012 end-page: 11485 ident: bib21 article-title: A retinal ganglion cell that can signal irradiance continuously for 10 hours publication-title: J. Neurosci. – volume: 39 start-page: 1104 year: 2022 end-page: 1110 ident: bib24 article-title: Is melanopsin activation affecting large field color-matching functions? publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. – volume: 22 start-page: 1134 year: 2012 end-page: 1141 ident: bib18 article-title: Melanopsin-based brightness discrimination in mice and humans publication-title: Curr. Biol. – volume: 1 start-page: 59 year: 1954 end-page: 65 ident: bib41 article-title: Saturation of the rod mechanism of the retina at high levels of stimulation. Optica acta publication-title: Int. J. Opt. – volume: 146 start-page: 763 year: 2017 end-page: 769 ident: bib31 article-title: Cerebral neural correlates of differential melanopic photic stimulation in humans publication-title: Neuroimage – volume: 34 start-page: 572 year: 2011 end-page: 580 ident: bib36 article-title: Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions publication-title: Trends Neurosci. – volume: 8 year: 2010 ident: bib7 article-title: Melanopsin contributions to irradiance coding in the thalamo-cortical visual system publication-title: PLoS Biol. – volume: 9 start-page: 7568 year: 2019 ident: bib17 article-title: A quantitative analysis of the contribution of melanopsin to brightness perception publication-title: Sci. Rep. – volume: 433 start-page: 749 year: 2005 end-page: 754 ident: bib1 article-title: Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN publication-title: Nature – volume: 424 start-page: 76 year: 2003 end-page: 81 ident: bib5 article-title: Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice publication-title: Nature – volume: 35 start-page: B19 year: 2018 end-page: B25 ident: bib15 article-title: Cone and melanopsin contributions to human brightness estimation publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. – volume: 111 start-page: 15568 year: 2014 end-page: 15572 ident: bib27 article-title: Opponent melanopsin and S-cone signals in the human pupillary light response publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 12 year: 2015 ident: bib40 article-title: Mesopic luminance assessed with minimally distinct border perception publication-title: J. Vis. – volume: 22 start-page: 681 year: 1982 end-page: 691 ident: bib8 article-title: The “silent substitution” method in visual research publication-title: Vision Res. – volume: 33 start-page: 420 year: 2018 end-page: 431 ident: bib12 article-title: Spectral tuning of white light allows for strong reduction in melatonin suppression without changing illumination level or color temperature publication-title: J. Biol. Rhythms – volume: 359 start-page: 381 year: 1985 end-page: 400 ident: bib43 article-title: The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings publication-title: J. Physiol. – volume: 4 start-page: 621 year: 2001 end-page: 626 ident: bib29 article-title: Characterization of an ocular photopigment capable of driving pupillary constriction in mice publication-title: Nat. Neurosci. – volume: 48 start-page: 777 year: 1958 end-page: 784 ident: bib33 article-title: Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light publication-title: J. Opt. Soc. Am. – year: 2006 ident: bib44 article-title: Fundamental chromaticity diagram with physiological axes – part 1 – volume: 8 start-page: 3842 year: 2018 ident: bib16 article-title: Melanopsin photoreception contributes to human visual detection, temporal and colour processing publication-title: Sci. Rep. – volume: 298 start-page: 2213 year: 2002 end-page: 2216 ident: bib6 article-title: Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting publication-title: Science – volume: 14 start-page: 1187 year: 1997 end-page: 1196 ident: bib28 article-title: Individual variations in the spatial profile of human macular pigment publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. – volume: 48 start-page: 2586 year: 2008 end-page: 2592 ident: bib38 article-title: Rod contributions to color perception: linear with rod contrast publication-title: Vision Res. – volume: 25 start-page: 104529 year: 2022 ident: bib39 article-title: Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision publication-title: iScience – volume: 40 start-page: 1711 year: 2000 end-page: 1737 ident: bib46 article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype publication-title: Vision Res. – volume: 8 year: 2013 ident: bib22 article-title: The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions publication-title: PLoS One – volume: 366 start-page: 1251 year: 2019 end-page: 1255 ident: bib37 article-title: Functional diversity of human intrinsically photosensitive retinal ganglion cells publication-title: Science – volume: 114 start-page: 12291 year: 2017 end-page: 12296 ident: bib25 article-title: The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 529 year: 2019 ident: bib9 article-title: Melanopsin and cone photoreceptor inputs to the afferent pupil light response publication-title: Front. Neurol. – volume: 73 start-page: 742 year: 1983 end-page: 750 ident: bib42 article-title: Spatiotemporal variation of chromatic and achromatic contrast thresholds publication-title: J. Opt. Soc. Am. – volume: 295 start-page: 1070 year: 2002 end-page: 1073 ident: bib2 article-title: Phototransduction by retinal ganglion cells that set the circadian clock publication-title: Science – volume: 197 start-page: 551 year: 1968 end-page: 566 ident: bib32 article-title: Application of Fourier analysis to the visibility of gratings publication-title: J. Physiol. – volume: 301 start-page: 525 year: 2003 end-page: 527 ident: bib4 article-title: Melanopsin is required for non-image-forming photic responses in blind mice publication-title: Science – volume: 589 start-page: 1173 year: 2011 end-page: 1194 ident: bib23 article-title: Multiple hypothalamic cell populations encoding distinct visual information publication-title: J. Physiol. – volume: 47 start-page: 946 year: 2007 end-page: 954 ident: bib30 article-title: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells publication-title: Vision Res. – volume: 27 start-page: 1623 year: 2017 end-page: 1632.e4 ident: bib20 article-title: Melanopsin contributions to the representation of images in the early visual system publication-title: Curr. Biol. – volume: 41 year: 2018 ident: bib11 article-title: Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance publication-title: Sleep – volume: 299 start-page: 245 year: 2003 end-page: 247 ident: bib3 article-title: Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice publication-title: Science – volume: 6 start-page: 228 year: 2023 ident: bib13 article-title: Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness publication-title: Commun. Biol. – volume: 37 start-page: A81 year: 2020 end-page: A88 ident: bib19 article-title: Relative contributions of melanopsin to brightness discrimination when hue and luminance also vary publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. – volume: 114 start-page: 1321 year: 2015 end-page: 1330 ident: bib35 article-title: Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones publication-title: J. Neurophysiol. – volume: 10 start-page: 2274 year: 2019 ident: bib26 article-title: Form vision from melanopsin in humans publication-title: Nat. Commun. – volume: 277 start-page: 2485 year: 2010 end-page: 2492 ident: bib10 article-title: Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses publication-title: Proc. Biol. Sci. – volume: 160 start-page: 72 year: 2019 end-page: 81 ident: bib14 article-title: Melanopsin driven enhancement of cone-mediated visual processing publication-title: Vision Res. – volume: 170 start-page: 36 year: 1952 end-page: 37 ident: bib34 article-title: Vision with a stabilized retinal image publication-title: Nature – volume: 8 start-page: 3842 year: 2018 ident: 10.1016/j.cub.2023.10.039_bib16 article-title: Melanopsin photoreception contributes to human visual detection, temporal and colour processing publication-title: Sci. Rep. doi: 10.1038/s41598-018-22197-w – volume: 359 start-page: 381 year: 1985 ident: 10.1016/j.cub.2023.10.039_bib43 article-title: The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings publication-title: J. Physiol. doi: 10.1113/jphysiol.1985.sp015591 – volume: 27 start-page: 1623 year: 2017 ident: 10.1016/j.cub.2023.10.039_bib20 article-title: Melanopsin contributions to the representation of images in the early visual system publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.04.046 – volume: 146 start-page: 763 year: 2017 ident: 10.1016/j.cub.2023.10.039_bib31 article-title: Cerebral neural correlates of differential melanopic photic stimulation in humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.061 – volume: 6 start-page: 228 year: 2023 ident: 10.1016/j.cub.2023.10.039_bib13 article-title: Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness publication-title: Commun. Biol. doi: 10.1038/s42003-023-04598-4 – volume: 34 start-page: 572 year: 2011 ident: 10.1016/j.cub.2023.10.039_bib36 article-title: Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.07.001 – volume: 114 start-page: 1321 year: 2015 ident: 10.1016/j.cub.2023.10.039_bib35 article-title: Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones publication-title: J. Neurophysiol. doi: 10.1152/jn.00368.2015 – volume: 48 start-page: 2586 year: 2008 ident: 10.1016/j.cub.2023.10.039_bib38 article-title: Rod contributions to color perception: linear with rod contrast publication-title: Vision Res. doi: 10.1016/j.visres.2008.05.001 – volume: 73 start-page: 742 year: 1983 ident: 10.1016/j.cub.2023.10.039_bib42 article-title: Spatiotemporal variation of chromatic and achromatic contrast thresholds publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.73.000742 – volume: 10 start-page: 2274 year: 2019 ident: 10.1016/j.cub.2023.10.039_bib26 article-title: Form vision from melanopsin in humans publication-title: Nat. Commun. doi: 10.1038/s41467-019-10113-3 – volume: 48 start-page: 777 year: 1958 ident: 10.1016/j.cub.2023.10.039_bib33 article-title: Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.48.000777 – volume: 170 start-page: 36 year: 1952 ident: 10.1016/j.cub.2023.10.039_bib34 article-title: Vision with a stabilized retinal image publication-title: Nature doi: 10.1038/170036a0 – volume: 10 start-page: 529 year: 2019 ident: 10.1016/j.cub.2023.10.039_bib9 article-title: Melanopsin and cone photoreceptor inputs to the afferent pupil light response publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00529 – year: 2012 ident: 10.1016/j.cub.2023.10.039_bib45 – volume: 277 start-page: 2485 year: 2010 ident: 10.1016/j.cub.2023.10.039_bib10 article-title: Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses publication-title: Proc. Biol. Sci. – volume: 114 start-page: 12291 year: 2017 ident: 10.1016/j.cub.2023.10.039_bib25 article-title: The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1711522114 – volume: 9 start-page: 7568 year: 2019 ident: 10.1016/j.cub.2023.10.039_bib17 article-title: A quantitative analysis of the contribution of melanopsin to brightness perception publication-title: Sci. Rep. doi: 10.1038/s41598-019-44035-3 – volume: 298 start-page: 2213 year: 2002 ident: 10.1016/j.cub.2023.10.039_bib6 article-title: Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting publication-title: Science doi: 10.1126/science.1076848 – volume: 8 year: 2010 ident: 10.1016/j.cub.2023.10.039_bib7 article-title: Melanopsin contributions to irradiance coding in the thalamo-cortical visual system publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000558 – volume: 39 start-page: 1104 year: 2022 ident: 10.1016/j.cub.2023.10.039_bib24 article-title: Is melanopsin activation affecting large field color-matching functions? publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.457223 – volume: 15 start-page: 12 year: 2015 ident: 10.1016/j.cub.2023.10.039_bib40 article-title: Mesopic luminance assessed with minimally distinct border perception publication-title: J. Vis. – volume: 35 start-page: B19 year: 2018 ident: 10.1016/j.cub.2023.10.039_bib15 article-title: Cone and melanopsin contributions to human brightness estimation publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.35.000B19 – volume: 37 start-page: A81 year: 2020 ident: 10.1016/j.cub.2023.10.039_bib19 article-title: Relative contributions of melanopsin to brightness discrimination when hue and luminance also vary publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.382349 – volume: 433 start-page: 749 year: 2005 ident: 10.1016/j.cub.2023.10.039_bib1 article-title: Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN publication-title: Nature doi: 10.1038/nature03387 – volume: 8 year: 2013 ident: 10.1016/j.cub.2023.10.039_bib22 article-title: The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions publication-title: PLoS One – volume: 1 start-page: 59 year: 1954 ident: 10.1016/j.cub.2023.10.039_bib41 article-title: Saturation of the rod mechanism of the retina at high levels of stimulation. Optica acta publication-title: Int. J. Opt. – volume: 299 start-page: 245 year: 2003 ident: 10.1016/j.cub.2023.10.039_bib3 article-title: Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice publication-title: Science doi: 10.1126/science.1077293 – volume: 197 start-page: 551 year: 1968 ident: 10.1016/j.cub.2023.10.039_bib32 article-title: Application of Fourier analysis to the visibility of gratings publication-title: J. Physiol. doi: 10.1113/jphysiol.1968.sp008574 – volume: 4 start-page: 621 year: 2001 ident: 10.1016/j.cub.2023.10.039_bib29 article-title: Characterization of an ocular photopigment capable of driving pupillary constriction in mice publication-title: Nat. Neurosci. doi: 10.1038/88443 – volume: 41 year: 2018 ident: 10.1016/j.cub.2023.10.039_bib11 article-title: Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance publication-title: Sleep doi: 10.1093/sleep/zsy100 – volume: 301 start-page: 525 year: 2003 ident: 10.1016/j.cub.2023.10.039_bib4 article-title: Melanopsin is required for non-image-forming photic responses in blind mice publication-title: Science doi: 10.1126/science.1086179 – volume: 111 start-page: 15568 year: 2014 ident: 10.1016/j.cub.2023.10.039_bib27 article-title: Opponent melanopsin and S-cone signals in the human pupillary light response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1400942111 – volume: 25 start-page: 104529 year: 2022 ident: 10.1016/j.cub.2023.10.039_bib39 article-title: Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision publication-title: iScience doi: 10.1016/j.isci.2022.104529 – volume: 160 start-page: 72 year: 2019 ident: 10.1016/j.cub.2023.10.039_bib14 article-title: Melanopsin driven enhancement of cone-mediated visual processing publication-title: Vision Res. doi: 10.1016/j.visres.2019.04.009 – volume: 295 start-page: 1070 year: 2002 ident: 10.1016/j.cub.2023.10.039_bib2 article-title: Phototransduction by retinal ganglion cells that set the circadian clock publication-title: Science doi: 10.1126/science.1067262 – volume: 366 start-page: 1251 year: 2019 ident: 10.1016/j.cub.2023.10.039_bib37 article-title: Functional diversity of human intrinsically photosensitive retinal ganglion cells publication-title: Science doi: 10.1126/science.aaz0898 – volume: 22 start-page: 1134 year: 2012 ident: 10.1016/j.cub.2023.10.039_bib18 article-title: Melanopsin-based brightness discrimination in mice and humans publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.04.039 – volume: 424 start-page: 76 year: 2003 ident: 10.1016/j.cub.2023.10.039_bib5 article-title: Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice publication-title: Nature doi: 10.1038/nature01761 – volume: 32 start-page: 11478 year: 2012 ident: 10.1016/j.cub.2023.10.039_bib21 article-title: A retinal ganglion cell that can signal irradiance continuously for 10 hours publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1423-12.2012 – volume: 589 start-page: 1173 year: 2011 ident: 10.1016/j.cub.2023.10.039_bib23 article-title: Multiple hypothalamic cell populations encoding distinct visual information publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.199877 – year: 2006 ident: 10.1016/j.cub.2023.10.039_bib44 – volume: 40 start-page: 1711 year: 2000 ident: 10.1016/j.cub.2023.10.039_bib46 article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype publication-title: Vision Res. doi: 10.1016/S0042-6989(00)00021-3 – volume: 47 start-page: 946 year: 2007 ident: 10.1016/j.cub.2023.10.039_bib30 article-title: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells publication-title: Vision Res. doi: 10.1016/j.visres.2006.12.015 – volume: 33 start-page: 420 year: 2018 ident: 10.1016/j.cub.2023.10.039_bib12 article-title: Spectral tuning of white light allows for strong reduction in melatonin suppression without changing illumination level or color temperature publication-title: J. Biol. Rhythms doi: 10.1177/0748730418784041 – volume: 14 start-page: 1187 year: 1997 ident: 10.1016/j.cub.2023.10.039_bib28 article-title: Individual variations in the spatial profile of human macular pigment publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.14.001187 – volume: 22 start-page: 681 year: 1982 ident: 10.1016/j.cub.2023.10.039_bib8 article-title: The “silent substitution” method in visual research publication-title: Vision Res. doi: 10.1016/0042-6989(82)90104-3 |
SSID | ssj0012896 |
Score | 2.4587877 |
Snippet | Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5048 |
SubjectTerms | Animals color color vision cones electrophysiology Humans image persistence ipRGC Mammals melanopsin Photic Stimulation Retina - physiology Retinal Cone Photoreceptor Cells - physiology Rod Opsins - physiology trichromatic Troxler fading Vision, Ocular visual perception |
Title | Melanopsin enhances image persistence |
URI | https://dx.doi.org/10.1016/j.cub.2023.10.039 https://www.ncbi.nlm.nih.gov/pubmed/37967553 https://www.proquest.com/docview/2890758404 https://www.proquest.com/docview/3040352093 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbyIb-ujrKAXYdvuJvs61mIplnpQi70tm2QWK3W72Pbgv3cmu1sQbA8eEyYQvgnzyLwYu5EB6iEeuLbjpK4tlK9siZrB1iB0iOa-Th2qHR4--f2ReBx74xrrVrUwlFZZyv5CphtpXe60SjRb-WTSejHN0ox-I6_AFPFxEZoivvH9KpKADoWJVyKxTdRVZNPkeKmlbNL88CYleNG88L910zrb0-ig3j7bK41Hq1Pc74DVIDtkO8U4ye8jdjuEaZLNcnT_LcjeiZ9za_KJEsPK6VtsbuzjYzbqPbx2-3Y5BsFWqCwWtke9gyECqbSnU0-lqPMTRFFpiYDyMME1pDzUvgblUIM5B4T0dSTaqXQV8BO2lc0yOGMWAAeHB5qcCtGWAiVdwH1wBXe5ryCqs3YFQKzKHuE0qmIaV8lgHzFiFhNmtIWY1dnd6kheNMjYRCwqVONfXI5RgG86dl1xIMbXTyGNJIPZch5TmBQ9HtEW62k4yilO2T68zk4L9q1uyoMIPSaPn__vYhdsl1YmvUVcsq3F1xKu0EhZyAbb7gye3wYN8xp_AP7S40U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QjNGL8S0-a6IXkwLtbls4KpGAAhch4bZhd6cRg4UIHPz3zmxbEhPh4LHtbLL5ZvPNTGd2hrE7FaEd4pHvel7su0KH2lVoGVwDwtTQ3TexR3eHu72wNRAvw2BYYI38LgyVVWbcn3K6ZevsTSVDszIbjytvtlmatW8UFdAlvi30BiKa39AePq1SCRhR2IQlSrsknqc2bZGXXqoyDRAvU4UXDQz_2zitcz6tEWrus73Me3Qe0w0esAIkh2w7nSf5fcTuuzAZJdMZxv8OJO-k0Lkz_kTKcGb0X2xuHeRjNmg-9xstN5uD4Gq0Fgs3oObBUAelTWDiQMdo9EcIozYKEeW1ET5DzGsmNKA96jDngVChqYtqrHwN_IQVk2kCZ8wB4ODxyFBUIapKINVFPARfcJ-HGuolVs0BkDprEk6zKiYyrwb7kIiZJMzoFWJWYg-rJbO0Q8YmYZGjKn-pWSKDb1p2m2tA4vGnnMYogelyLilPiiGPqIr1MhyJilO5Dy-x01R9q53yqI4hU8DP_7exG7bT6nc7stPuvV6wXfpia13EJSsuvpZwhR7LQl3bE_kDTJ_kwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melanopsin+enhances+image+persistence&rft.jtitle=Current+biology&rft.au=Woelders%2C+Tom&rft.au=Allen%2C+Annette+E.&rft.au=Lucas%2C+Robert+J.&rft.date=2023-12-04&rft.issn=0960-9822&rft.volume=33&rft.issue=23&rft.spage=5048&rft.epage=5056.e4&rft_id=info:doi/10.1016%2Fj.cub.2023.10.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cub_2023_10_039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |