Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting
[Display omitted] •Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline nanoflower was achieved.•The application of the modified electrode for microbial fuel cells was demonstrated A facile strategy for fabrication...
Saved in:
Published in | Electrochimica acta Vol. 255; pp. 41 - 47 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
20.11.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline nanoflower was achieved.•The application of the modified electrode for microbial fuel cells was demonstrated
A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial energy harvesting was also demonstrated. By simply tuning the concentration of aniline monomer, uniformly distributed PANI nanoflowers assembled from PANI nanoflakes anchored on the surface of carbon cloth electrode were fabricated with in-situ polymerization. Electrochemical and spectral analyses indicated that the synthesized PANI nanoflower was in conductive emeraldine salt form. Electrochemical impedance spectroscopy (EIS) analysis revealed PANI nanoflower modification reduced the charge transfer resistance of carbon cloth electrode, indicating the PANI nanoflower had excellent electrochemical activity. Furthermore, the PANI nanoflower modified electrode was used as the anode of microbial fuel cells (MFC), which delivered 2.6 and 6.5 times higher voltage and power output than these of pristine carbon cloth electrode, respectively. This work provided a controllable synthesis strategy for PANI nanostructure and demonstrated its promise in microbial energy harvesting. |
---|---|
AbstractList | A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial energy harvesting was also demonstrated. By simply tuning the concentration of aniline monomer, uniformly distributed PANI nanoflowers assembled from PANI nanoflakes anchored on the surface of carbon cloth electrode were fabricated with in-situ polymerization. Electrochemical and spectral analyses indicated that the synthesized PANI nanoflower was in conductive emeraldine salt form. Electrochemical impedance spectroscopy (EIS) analysis revealed PANI nanoflower modification reduced the charge transfer resistance of carbon cloth electrode, indicating the PANI nanoflower had excellent electrochemical activity. Furthermore, the PANI nanoflower modified electrode was used as the anode of microbial fuel cells (MFC), which delivered 2.6 and 6.5 times higher voltage and power output than these of pristine carbon cloth electrode, respectively. This work provided a controllable synthesis strategy for PANI nanostructure and demonstrated its promise in microbial energy harvesting. [Display omitted] •Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline nanoflower was achieved.•The application of the modified electrode for microbial fuel cells was demonstrated A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial energy harvesting was also demonstrated. By simply tuning the concentration of aniline monomer, uniformly distributed PANI nanoflowers assembled from PANI nanoflakes anchored on the surface of carbon cloth electrode were fabricated with in-situ polymerization. Electrochemical and spectral analyses indicated that the synthesized PANI nanoflower was in conductive emeraldine salt form. Electrochemical impedance spectroscopy (EIS) analysis revealed PANI nanoflower modification reduced the charge transfer resistance of carbon cloth electrode, indicating the PANI nanoflower had excellent electrochemical activity. Furthermore, the PANI nanoflower modified electrode was used as the anode of microbial fuel cells (MFC), which delivered 2.6 and 6.5 times higher voltage and power output than these of pristine carbon cloth electrode, respectively. This work provided a controllable synthesis strategy for PANI nanostructure and demonstrated its promise in microbial energy harvesting. |
Author | Shi, Yu-Tong Liu, Xiang Cheng, Qian-Wen Zhao, Xiaohua Yu, Yang-Yang Fang, Zhen Yong, Yang-Chun Wang, Yan-Zhai |
Author_xml | – sequence: 1 givenname: Xiang surname: Liu fullname: Liu, Xiang organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Xiaohua surname: Zhao fullname: Zhao, Xiaohua organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Yang-Yang surname: Yu fullname: Yu, Yang-Yang organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 4 givenname: Yan-Zhai surname: Wang fullname: Wang, Yan-Zhai organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Yu-Tong surname: Shi fullname: Shi, Yu-Tong organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Qian-Wen surname: Cheng fullname: Cheng, Qian-Wen organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 7 givenname: Zhen surname: Fang fullname: Fang, Zhen organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 8 givenname: Yang-Chun surname: Yong fullname: Yong, Yang-Chun email: ycyong@ujs.edu.cn organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China |
BookMark | eNqNkE1v1DAQhq2qSN2W_gYscU6wHSeODxyqihakSlzgbDn2uJ2Vawcnu2gv_Pa6XeiBC0gjzeX9mHnOyWnKCQh5x1nLGR8-bFuI4FZbpxWMq5bplvfdCdnwUXVNN_b6lGwY410jh3E4I-fLsmWMqUGxDfl1Yx1GoMFOBZ1dMSeaA3U5-Z1bcQ90zvFgE0ZMQJNNOcT8Ewp9zB4Dgqcv7SV7oDZ5iutC7TzHP1khVym6kie0kUKCcn-gD7bsYVkx3b8lb4KNC1z-3hfk-82nb9efm7uvt1-ur-4aJ4Vem15IHyQMvAtKSgu2D6CCd1oqO40TgBj6oKWelAiScRbGTngmQv16dN3kugvy_pg7l_xjV7vNNu9KqpWG65ExrYUUVaWOqnrvshQIZi74aMvBcGaeYZuteYVtnmEbpk2FXZ0f_3I6XF8IrMVi_A__1dEPFcIeoZjFISQHHkvVG5_xnxlPBNemww |
CitedBy_id | crossref_primary_10_1016_j_electacta_2021_137918 crossref_primary_10_1002_smll_202300182 crossref_primary_10_1016_j_apsusc_2022_155386 crossref_primary_10_3390_pr9122194 crossref_primary_10_1016_j_chemosphere_2021_131732 crossref_primary_10_1016_j_bej_2020_107779 crossref_primary_10_1016_j_jpowsour_2018_12_041 crossref_primary_10_1080_25740881_2021_1942491 crossref_primary_10_1016_j_jece_2022_107664 crossref_primary_10_1016_j_electacta_2018_09_143 crossref_primary_10_1016_j_chemosphere_2023_138413 crossref_primary_10_1016_j_electacta_2019_135279 crossref_primary_10_1016_j_synthmet_2019_01_016 crossref_primary_10_1002_jctb_6218 crossref_primary_10_1016_j_apsusc_2019_04_267 crossref_primary_10_1039_C9SE00659A crossref_primary_10_2139_ssrn_4120351 crossref_primary_10_1016_j_fuel_2022_125056 crossref_primary_10_2139_ssrn_4196388 crossref_primary_10_3390_en13246596 crossref_primary_10_1016_j_jpowsour_2022_231890 crossref_primary_10_1080_15435075_2019_1671412 crossref_primary_10_1016_j_talanta_2024_127037 crossref_primary_10_1007_s12010_020_03346_2 crossref_primary_10_1016_j_chemosphere_2021_132589 crossref_primary_10_1039_D3SE00975K crossref_primary_10_1007_s10008_022_05255_2 crossref_primary_10_1002_fuce_201800120 crossref_primary_10_1007_s10311_019_00958_x crossref_primary_10_1016_j_jcis_2022_09_130 crossref_primary_10_1016_j_apsusc_2023_158436 crossref_primary_10_1016_j_biortech_2019_121499 crossref_primary_10_1039_C9TA00332K crossref_primary_10_1016_j_fuel_2021_121016 crossref_primary_10_3390_ma16062479 crossref_primary_10_1002_aoc_4623 crossref_primary_10_1016_j_jwpe_2021_102348 crossref_primary_10_1016_j_energy_2021_120103 crossref_primary_10_1002_cplu_202100292 crossref_primary_10_1016_j_electacta_2019_135136 crossref_primary_10_1016_j_jpowsour_2020_228789 crossref_primary_10_1016_j_chemosphere_2020_125985 crossref_primary_10_1016_j_polymer_2019_121848 crossref_primary_10_1007_s11157_020_09545_x crossref_primary_10_1007_s10853_019_04141_z crossref_primary_10_1016_j_cej_2017_12_055 crossref_primary_10_1016_j_bioelechem_2019_05_008 crossref_primary_10_1016_j_chemosphere_2021_132963 crossref_primary_10_1021_acs_chemrev_1c00487 crossref_primary_10_1002_er_7407 crossref_primary_10_1016_j_mseb_2023_116735 |
Cites_doi | 10.1021/ja0371754 10.1021/acsami.6b11682 10.1016/j.procbio.2010.04.009 10.2166/wst.2005.0495 10.1016/j.jpowsour.2017.01.125 10.1016/j.jpowsour.2013.05.117 10.1016/j.electacta.2017.02.117 10.1016/j.jpowsour.2016.04.004 10.1021/es0499344 10.1016/j.ijhydene.2016.05.048 10.1016/j.biortech.2017.02.124 10.1021/acsami.6b14331 10.1021/nn1006539 10.1016/j.elecom.2012.03.002 10.1016/j.jiec.2016.01.031 10.1007/s11356-017-8641-1 10.1021/ma020199v 10.1016/j.bios.2016.08.037 10.1002/anie.201400463 10.1021/nn302984x 10.1021/ma702601q 10.1016/S1452-3981(23)13188-9 10.1016/j.biortech.2015.05.105 10.1016/j.jpowsour.2016.06.063 10.1016/j.jpowsour.2012.09.091 10.1021/es0605016 10.1016/j.electacta.2017.05.108 10.1016/j.jiec.2016.11.035 10.1016/j.electacta.2013.10.133 10.1021/ja106106d 10.1016/j.bios.2017.07.008 10.1016/j.bios.2012.09.054 10.1016/j.bios.2011.04.018 10.1016/j.energy.2016.01.039 10.1016/j.electacta.2017.03.008 10.1002/jrs.1841 10.1016/j.jhazmat.2016.10.047 10.1016/j.jpowsour.2011.01.012 10.1016/j.electacta.2015.12.119 10.1002/jrs.2007 10.1016/j.electacta.2014.11.130 10.1002/adma.200600831 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Nov 20, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Nov 20, 2017 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2017.09.153 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 47 |
ExternalDocumentID | 10_1016_j_electacta_2017_09_153 S001346861732025X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c429t-524df4e613f744aea5fe7fdc947ab8bee265f949b72f4010f832d02f0018c3bc3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 08:21:30 EDT 2025 Tue Jul 01 03:01:34 EDT 2025 Thu Apr 24 22:48:36 EDT 2025 Fri Feb 23 02:18:00 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial fuel cells Nanoflower Bioenergy Polyaniline Shewanella |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-524df4e613f744aea5fe7fdc947ab8bee265f949b72f4010f832d02f0018c3bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1016/j.electacta.2017.09.153 |
PQID | 1980099242 |
PQPubID | 2045485 |
PageCount | 7 |
ParticipantIDs | proquest_journals_1980099242 crossref_primary_10_1016_j_electacta_2017_09_153 crossref_citationtrail_10_1016_j_electacta_2017_09_153 elsevier_sciencedirect_doi_10_1016_j_electacta_2017_09_153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-20 |
PublicationDateYYYYMMDD | 2017-11-20 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mashkour, Rahimnejad, Mashkour (bib0080) 2016; 325 Luo, Zhong, Zou, Xiong, Yang (bib0100) 2016; 319 Ciri-Marjanovic, Trchova, Stejskal (bib0190) 2008; 39 Yong, Zhong (bib0010) 2010; 45 Yong, Gu, Wu, Yan, Zhou, Wu, Wei, Jia, Zheng, Yong (bib0025) 2017; 324 Yong, Yu, Yang, Li, Jiang, Wang, Wang, Song (bib0165) 2012; 19 Hidalgo, Tommasi, Bocchini, Chiolerio, Chiodoni, Mazzarino, Ruggeri (bib0210) 2016; 99 Huang, Li, Ren, Wang (bib0065) 2016; 41 Chen, Shen, Jiang, Mu, Ma, Han, Sun, Li, Wang (bib0075) 2017; 244 Zhang, Wei, Wan (bib0150) 2002; 35 Soegiarto, Comotti, Ward (bib0145) 2010; 132 Wang, Li, Zeng, Cui, Xiang, Li (bib0185) 2013; 41 Hou, Liu, Zhang (bib0070) 2013; 224 Mu, Ma, Peng, Li, Sun, Lei (bib0120) 2013; 242 Wang, Wu, Yu, Sun, Jia, Yong (bib0160) 2017; 232 Zhang, Xie, Yang, Liang, Zhu, Liu (bib0215) 2017; 233 Hui, Sun, Niu, Luo (bib0105) 2017; 9 Xu, Wang, Zu, Han, Wei (bib0205) 2010; 4 Ding, Wan, Wei (bib0090) 2007; 19 Yang, Yu, Wang, Zhang, Wang, Fang, Lv, Zhong, Yong (bib0050) 2017; 98 Trchova, Moravkova, Blaha, Stejskal (bib0200) 2014; 122 Veerasubramani, Krishnamoorthy, Radhakrishnan, Kim, Kim (bib0180) 2016; 36 Wu, Wu, Jiang, Shen, Faheem, Sun, Li, Han, Wang, Liu (bib0035) 2017; 24 Zhou, Chi, Luo, He, Jin (bib0055) 2011; 196 Cao, Wei, Wang, Shen (bib0060) 2017; 231 An, Fu, Su, Wang, Peng, Wu, Chen, Bi, Gao, Zhang (bib0125) 2017; 345 Yong, Yu, Zhang, Song (bib0030) 2014; 53 Yin, Tang, Wang, Gao, Tang (bib0040) 2012; 6 Logan (bib0020) 2005; 52 Zhang, Xie, Yang, Liang, Zhu, Liu (bib0135) 2017; 233 Rajasekharan, Stalin, Viswanathan, Manisankar (bib0155) 2013; 8 Li, Zhang, Ding, Ren, Cui (bib0085) 2011; 26 Hui, Jiang, Xie, Chen, Shen, Sun, Han, Li, Wang (bib0140) 2016; 190 Liao, Sun, Sun, Si, Yong (bib0130) 2015; 192 Stejskal, Sapurina, Trchova, Konyushenko (bib0170) 2008; 41 Liu, Logan (bib0005) 2004; 38 Lim, Choi (bib0110) 2017; 47 Logan, Hamelers, Rozendal, Schrorder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib0015) 2006; 40 Sun, Yu, Xie, Zhang, Yang, Zhai, Yang, Liu, Yong (bib0045) 2017; 87 Huang, Kaner (bib0095) 2004; 126 Wu, Pan, Li, Zhao, Jing, Chen (bib0115) 2015; 152 do Nascimento, Temperini (bib0195) 2008; 39 Kwon, Hong, Ryu, Yim (bib0175) 2017; 9 Luo (10.1016/j.electacta.2017.09.153_bib0100) 2016; 319 Lim (10.1016/j.electacta.2017.09.153_bib0110) 2017; 47 Xu (10.1016/j.electacta.2017.09.153_bib0205) 2010; 4 Zhou (10.1016/j.electacta.2017.09.153_bib0055) 2011; 196 Zhang (10.1016/j.electacta.2017.09.153_bib0215) 2017; 233 Li (10.1016/j.electacta.2017.09.153_bib0085) 2011; 26 Liu (10.1016/j.electacta.2017.09.153_bib0005) 2004; 38 Zhang (10.1016/j.electacta.2017.09.153_bib0135) 2017; 233 Hui (10.1016/j.electacta.2017.09.153_bib0140) 2016; 190 Cao (10.1016/j.electacta.2017.09.153_bib0060) 2017; 231 Mu (10.1016/j.electacta.2017.09.153_bib0120) 2013; 242 Soegiarto (10.1016/j.electacta.2017.09.153_bib0145) 2010; 132 Wu (10.1016/j.electacta.2017.09.153_bib0035) 2017; 24 Kwon (10.1016/j.electacta.2017.09.153_bib0175) 2017; 9 Sun (10.1016/j.electacta.2017.09.153_bib0045) 2017; 87 Ding (10.1016/j.electacta.2017.09.153_bib0090) 2007; 19 Hui (10.1016/j.electacta.2017.09.153_bib0105) 2017; 9 Hidalgo (10.1016/j.electacta.2017.09.153_bib0210) 2016; 99 do Nascimento (10.1016/j.electacta.2017.09.153_bib0195) 2008; 39 Chen (10.1016/j.electacta.2017.09.153_bib0075) 2017; 244 An (10.1016/j.electacta.2017.09.153_bib0125) 2017; 345 Liao (10.1016/j.electacta.2017.09.153_bib0130) 2015; 192 Stejskal (10.1016/j.electacta.2017.09.153_bib0170) 2008; 41 Logan (10.1016/j.electacta.2017.09.153_bib0020) 2005; 52 Yang (10.1016/j.electacta.2017.09.153_bib0050) 2017; 98 Trchova (10.1016/j.electacta.2017.09.153_bib0200) 2014; 122 Yong (10.1016/j.electacta.2017.09.153_bib0030) 2014; 53 Veerasubramani (10.1016/j.electacta.2017.09.153_bib0180) 2016; 36 Wang (10.1016/j.electacta.2017.09.153_bib0185) 2013; 41 Huang (10.1016/j.electacta.2017.09.153_bib0095) 2004; 126 Yong (10.1016/j.electacta.2017.09.153_bib0010) 2010; 45 Mashkour (10.1016/j.electacta.2017.09.153_bib0080) 2016; 325 Zhang (10.1016/j.electacta.2017.09.153_bib0150) 2002; 35 Yong (10.1016/j.electacta.2017.09.153_bib0165) 2012; 19 Huang (10.1016/j.electacta.2017.09.153_bib0065) 2016; 41 Ciri-Marjanovic (10.1016/j.electacta.2017.09.153_bib0190) 2008; 39 Yin (10.1016/j.electacta.2017.09.153_bib0040) 2012; 6 Hou (10.1016/j.electacta.2017.09.153_bib0070) 2013; 224 Yong (10.1016/j.electacta.2017.09.153_bib0025) 2017; 324 Logan (10.1016/j.electacta.2017.09.153_bib0015) 2006; 40 Rajasekharan (10.1016/j.electacta.2017.09.153_bib0155) 2013; 8 Wang (10.1016/j.electacta.2017.09.153_bib0160) 2017; 232 Wu (10.1016/j.electacta.2017.09.153_bib0115) 2015; 152 |
References_xml | – volume: 325 start-page: 322 year: 2016 end-page: 328 ident: bib0080 article-title: Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell publication-title: J. Power Sources – volume: 41 start-page: 3530 year: 2008 end-page: 3536 ident: bib0170 article-title: Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres publication-title: Macromolecules – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: bib0015 article-title: Microbial fuel cells: Methodology and technology publication-title: Environ. Sci. Technol. – volume: 126 start-page: 851 year: 2004 end-page: 855 ident: bib0095 article-title: A general chemical route to polyaniline nanofibers publication-title: J. Am. Chem. Soc. – volume: 98 start-page: 338 year: 2017 end-page: 344 ident: bib0050 article-title: Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin publication-title: Biosens. Bioelectron. – volume: 233 start-page: 291 year: 2017 end-page: 295 ident: bib0215 article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell publication-title: Bioresource Technol. – volume: 345 start-page: 227 year: 2017 end-page: 236 ident: bib0125 article-title: Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes publication-title: J. Power Sources – volume: 324 start-page: 178 year: 2017 end-page: 183 ident: bib0025 article-title: Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation publication-title: J. Hazard. Mater. – volume: 19 start-page: 465 year: 2007 end-page: 469 ident: bib0090 article-title: Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential publication-title: Adv. Mater. – volume: 244 start-page: 119 year: 2017 end-page: 128 ident: bib0075 article-title: Fabrication of polypyrrole/beta-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system publication-title: Electrochim. Acta – volume: 224 start-page: 139 year: 2013 end-page: 144 ident: bib0070 article-title: A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes publication-title: J. Power Sources – volume: 99 start-page: 193 year: 2016 end-page: 201 ident: bib0210 article-title: Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells publication-title: Energy – volume: 8 start-page: 11327 year: 2013 end-page: 11336 ident: bib0155 article-title: Electrochemical Evaluation of Anticorrosive Performance of Organic Acid Doped Polyaniline Based Coatings publication-title: Int. J. Electrochem. Sci. – volume: 4 start-page: 5019 year: 2010 end-page: 5026 ident: bib0205 article-title: Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage publication-title: ACS Nano – volume: 152 start-page: 126 year: 2015 end-page: 134 ident: bib0115 article-title: Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode publication-title: Electrochim. Acta – volume: 319 start-page: 73 year: 2016 end-page: 81 ident: bib0100 article-title: Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes publication-title: J. Power Sources – volume: 36 start-page: 163 year: 2016 end-page: 168 ident: bib0180 article-title: In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications publication-title: J. Ind. Eng. Chem. – volume: 52 start-page: 31 year: 2005 end-page: 37 ident: bib0020 article-title: Simultaneous wastewater treatment and biological electricity generation publication-title: Water Sci. Technol. – volume: 41 start-page: 11369 year: 2016 end-page: 11379 ident: bib0065 article-title: In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 4040 year: 2004 end-page: 4046 ident: bib0005 article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane publication-title: Environ. Sci. Technol. – volume: 122 start-page: 28 year: 2014 end-page: 38 ident: bib0200 article-title: Raman spectroscopy of polyaniline and oligoaniline thin films publication-title: Electrochim. Acta – volume: 53 start-page: 4480 year: 2014 end-page: 4483 ident: bib0030 article-title: Highly Active Bidirectional Electron Transfer by a Self-Assembled Electroactive Reduced- Graphene-Oxide-Hybridized Biofilm publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2914 year: 2017 end-page: 2923 ident: bib0105 article-title: PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing publication-title: ACS Appl. Mater. Interfaces – volume: 132 start-page: 14603 year: 2010 end-page: 14616 ident: bib0145 article-title: Controlled Orientation of Polyconjugated Guest Molecules in Tunable Host Cavities publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 10570 year: 2017 end-page: 10583 ident: bib0035 article-title: The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater publication-title: Environ. Sci. Pollut. Res. – volume: 87 start-page: 195 year: 2017 end-page: 202 ident: bib0045 article-title: In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems publication-title: Biosens. Bioelectron. – volume: 196 start-page: 4427 year: 2011 end-page: 4435 ident: bib0055 article-title: An overview of electrode materials in microbial fuel cells publication-title: J. Power Sources – volume: 45 start-page: 1937 year: 2010 end-page: 1943 ident: bib0010 article-title: Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation publication-title: Process Biochem. – volume: 231 start-page: 609 year: 2017 end-page: 616 ident: bib0060 article-title: In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells publication-title: Electrochim. Acta – volume: 41 start-page: 582 year: 2013 end-page: 588 ident: bib0185 article-title: Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells publication-title: Biosens. Bioelectron. – volume: 19 start-page: 13 year: 2012 end-page: 16 ident: bib0165 article-title: Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells publication-title: Electrochem. Commun. – volume: 39 start-page: 1375 year: 2008 end-page: 1387 ident: bib0190 article-title: The chemical oxidative polymerization of aniline in water: Raman spectroscopy publication-title: J. Raman Spectrosc. – volume: 192 start-page: 831 year: 2015 end-page: 834 ident: bib0130 article-title: Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells publication-title: Bioresource Technol. – volume: 35 start-page: 5937 year: 2002 end-page: 5942 ident: bib0150 article-title: Nanostructures of polyaniline doped with inorganic acids publication-title: Macromolecules – volume: 233 start-page: 291 year: 2017 end-page: 295 ident: bib0135 article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell publication-title: Bioresource Technol. – volume: 6 start-page: 8288 year: 2012 end-page: 8297 ident: bib0040 article-title: Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction publication-title: ACS Nano – volume: 47 start-page: 51 year: 2017 end-page: 55 ident: bib0110 article-title: Synthesis of self-assembled rectangular-shaped polyaniline nanotubes and their physical characteristics publication-title: J. Ind. Eng. Chem. – volume: 190 start-page: 16 year: 2016 end-page: 24 ident: bib0140 article-title: Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system publication-title: Electrochim. Acta – volume: 39 start-page: 772 year: 2008 end-page: 778 ident: bib0195 article-title: Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation publication-title: J. Raman Spectrosc. – volume: 232 start-page: 439 year: 2017 end-page: 444 ident: bib0160 article-title: Facile in-situ fabrication of grapheneiriboflavin electrode for microbial fuel cells publication-title: Electrochim. Acta – volume: 242 start-page: 797 year: 2013 end-page: 802 ident: bib0120 article-title: Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors publication-title: J. Power Sources – volume: 9 start-page: 7412 year: 2017 end-page: 7423 ident: bib0175 article-title: Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO2 Nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 4169 year: 2011 end-page: 4176 ident: bib0085 article-title: Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis publication-title: Biosens. Bioelectron. – volume: 126 start-page: 851 year: 2004 ident: 10.1016/j.electacta.2017.09.153_bib0095 article-title: A general chemical route to polyaniline nanofibers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0371754 – volume: 9 start-page: 2914 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0105 article-title: PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11682 – volume: 45 start-page: 1937 year: 2010 ident: 10.1016/j.electacta.2017.09.153_bib0010 article-title: Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation publication-title: Process Biochem. doi: 10.1016/j.procbio.2010.04.009 – volume: 52 start-page: 31 year: 2005 ident: 10.1016/j.electacta.2017.09.153_bib0020 article-title: Simultaneous wastewater treatment and biological electricity generation publication-title: Water Sci. Technol. doi: 10.2166/wst.2005.0495 – volume: 345 start-page: 227 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0125 article-title: Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.125 – volume: 242 start-page: 797 year: 2013 ident: 10.1016/j.electacta.2017.09.153_bib0120 article-title: Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.117 – volume: 231 start-page: 609 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0060 article-title: In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.02.117 – volume: 319 start-page: 73 year: 2016 ident: 10.1016/j.electacta.2017.09.153_bib0100 article-title: Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.004 – volume: 38 start-page: 4040 year: 2004 ident: 10.1016/j.electacta.2017.09.153_bib0005 article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane publication-title: Environ. Sci. Technol. doi: 10.1021/es0499344 – volume: 41 start-page: 11369 year: 2016 ident: 10.1016/j.electacta.2017.09.153_bib0065 article-title: In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.048 – volume: 233 start-page: 291 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0135 article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.02.124 – volume: 9 start-page: 7412 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0175 article-title: Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO2 Nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14331 – volume: 4 start-page: 5019 year: 2010 ident: 10.1016/j.electacta.2017.09.153_bib0205 article-title: Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage publication-title: ACS Nano doi: 10.1021/nn1006539 – volume: 233 start-page: 291 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0215 article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.02.124 – volume: 19 start-page: 13 year: 2012 ident: 10.1016/j.electacta.2017.09.153_bib0165 article-title: Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.03.002 – volume: 36 start-page: 163 year: 2016 ident: 10.1016/j.electacta.2017.09.153_bib0180 article-title: In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.01.031 – volume: 24 start-page: 10570 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0035 article-title: The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8641-1 – volume: 35 start-page: 5937 year: 2002 ident: 10.1016/j.electacta.2017.09.153_bib0150 article-title: Nanostructures of polyaniline doped with inorganic acids publication-title: Macromolecules doi: 10.1021/ma020199v – volume: 87 start-page: 195 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0045 article-title: In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.08.037 – volume: 53 start-page: 4480 year: 2014 ident: 10.1016/j.electacta.2017.09.153_bib0030 article-title: Highly Active Bidirectional Electron Transfer by a Self-Assembled Electroactive Reduced- Graphene-Oxide-Hybridized Biofilm publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400463 – volume: 6 start-page: 8288 year: 2012 ident: 10.1016/j.electacta.2017.09.153_bib0040 article-title: Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction publication-title: ACS Nano doi: 10.1021/nn302984x – volume: 41 start-page: 3530 year: 2008 ident: 10.1016/j.electacta.2017.09.153_bib0170 article-title: Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres publication-title: Macromolecules doi: 10.1021/ma702601q – volume: 8 start-page: 11327 year: 2013 ident: 10.1016/j.electacta.2017.09.153_bib0155 article-title: Electrochemical Evaluation of Anticorrosive Performance of Organic Acid Doped Polyaniline Based Coatings publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)13188-9 – volume: 192 start-page: 831 year: 2015 ident: 10.1016/j.electacta.2017.09.153_bib0130 article-title: Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2015.05.105 – volume: 325 start-page: 322 year: 2016 ident: 10.1016/j.electacta.2017.09.153_bib0080 article-title: Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.063 – volume: 224 start-page: 139 year: 2013 ident: 10.1016/j.electacta.2017.09.153_bib0070 article-title: A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.091 – volume: 40 start-page: 5181 year: 2006 ident: 10.1016/j.electacta.2017.09.153_bib0015 article-title: Microbial fuel cells: Methodology and technology publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 244 start-page: 119 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0075 article-title: Fabrication of polypyrrole/beta-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.108 – volume: 47 start-page: 51 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0110 article-title: Synthesis of self-assembled rectangular-shaped polyaniline nanotubes and their physical characteristics publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.11.035 – volume: 122 start-page: 28 year: 2014 ident: 10.1016/j.electacta.2017.09.153_bib0200 article-title: Raman spectroscopy of polyaniline and oligoaniline thin films publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.10.133 – volume: 132 start-page: 14603 year: 2010 ident: 10.1016/j.electacta.2017.09.153_bib0145 article-title: Controlled Orientation of Polyconjugated Guest Molecules in Tunable Host Cavities publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106106d – volume: 98 start-page: 338 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0050 article-title: Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.07.008 – volume: 41 start-page: 582 year: 2013 ident: 10.1016/j.electacta.2017.09.153_bib0185 article-title: Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.09.054 – volume: 26 start-page: 4169 year: 2011 ident: 10.1016/j.electacta.2017.09.153_bib0085 article-title: Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.04.018 – volume: 99 start-page: 193 year: 2016 ident: 10.1016/j.electacta.2017.09.153_bib0210 article-title: Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells publication-title: Energy doi: 10.1016/j.energy.2016.01.039 – volume: 232 start-page: 439 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0160 article-title: Facile in-situ fabrication of grapheneiriboflavin electrode for microbial fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.008 – volume: 39 start-page: 772 year: 2008 ident: 10.1016/j.electacta.2017.09.153_bib0195 article-title: Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1841 – volume: 324 start-page: 178 year: 2017 ident: 10.1016/j.electacta.2017.09.153_bib0025 article-title: Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.10.047 – volume: 196 start-page: 4427 year: 2011 ident: 10.1016/j.electacta.2017.09.153_bib0055 article-title: An overview of electrode materials in microbial fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.01.012 – volume: 190 start-page: 16 year: 2016 ident: 10.1016/j.electacta.2017.09.153_bib0140 article-title: Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.119 – volume: 39 start-page: 1375 year: 2008 ident: 10.1016/j.electacta.2017.09.153_bib0190 article-title: The chemical oxidative polymerization of aniline in water: Raman spectroscopy publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2007 – volume: 152 start-page: 126 year: 2015 ident: 10.1016/j.electacta.2017.09.153_bib0115 article-title: Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.130 – volume: 19 start-page: 465 year: 2007 ident: 10.1016/j.electacta.2017.09.153_bib0090 article-title: Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential publication-title: Adv. Mater. doi: 10.1002/adma.200600831 |
SSID | ssj0007670 |
Score | 2.45359 |
Snippet | [Display omitted]
•Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline... A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Aniline Biochemical fuel cells Bioenergy Carbon Charge transfer Chemical synthesis Cloth Conductivity Electrochemical impedance spectroscopy Electrodes Energy harvesting Fuel cells Heat conductivity Microbial fuel cells Microorganisms Nanoflower Polyaniline Polyanilines Polymerization Shewanella |
Title | Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting |
URI | https://dx.doi.org/10.1016/j.electacta.2017.09.153 https://www.proquest.com/docview/1980099242 |
Volume | 255 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPUAPqKWtyqPIh14XvIkfCTe06moLKieQ9mbZsadNtSSrZTlw4bczk3V4SYgDUi6J4sjy2DOfnZnvY-xnAQJUpFQcUGEgC5GjHxRuYALxYg5B6-4w58-5nlzK06marrFRXwtDaZXJ9698euet05OjNJpH87qmGt9hLnWBIZg0wNWUKtiloVl-ePeY5mG0Eb2KAb39LMerk5pxeFGOlyHC06HKX4tQL3x1F4DGn9hWQo78ZNW5z2wtNttsY9QLtm2zj0-4Bb-wu7GrcMVzcH6RzuV4Cxy3v8Twij6Oz9vZrWtqwpm8cU0LM1JM41dtqAGBKU8KOSFy1wReL6_5k7_dHMEuv6o7GifsVexKCPk_t-hoO5q_X9nl-NfFaDJIYguDCkPSEjekMoCMGN3BSOmiUxANhKqUxvnCx5hpBaUsvckA92QC0BUEkQGp-lW5r_JvbL1pm_idcciDBF2CqlQptXTeqxC0z2JAdJPnsMN0P8C2SkzkJIgxs33K2X_7YBlLlrGitGiZHSYeGs5XZBxvNznuLWifzSuLIePtxvu9zW1a2td2WBYEqxHa7L7n23tsk-6orDET-2x9ubiJPxDfLP1BN4EP2IeT32eT83tMfP53 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2Vcig9ICggCgV84LrUm9hOwq1adbVA21Mr7c2yYw8EbZPVdnvg0m9nJuuUFgn1gJRTEkeWx555dmbeA_hYokQdORUHdRipUubkB6UbFYF5McdoTH-Yc3pmZhfq61zPt2Ay1MJwWmXy_Ruf3nvrdOcwjebhsmm4xnecK1NSCGYNcD1_BI8VLV-WMfh08yfPozCFHGQM-PV7SV691oyji5O8CmY8Hev8XyHqL2fdR6DpM3iaoKM42vTuOWzFdg92JoNi2x7s3iEXfAE3U1fTkhfo_CodzIkOBe1_meKVnJxYdotfrm0YaIrWtR0uWDJNXHahQUKmIknkhChcG0SzvhJ3fncLQrvisul5nKhXsa8hFD_cquftaL-_hIvp8flkNkpqC6OaYtKadqQqoIoU3rFQykWnMRYY6koVzpc-xsxorFTliwxpUyaRfEGQGbKsX537On8F223XxtcgMA8KTYW61pUyynmvQzA-i4HgTZ7jPphhgG2dqMhZEWNhh5yzn_bWMpYtY2VlyTL7IG8bLjdsHA83-TxY0N6bWJZixsONDwab27S2r-y4KhlXE7Z58z_f_gA7s_PTE3vy5ezbW3jCT7jGMZMHsL1eXcd3BHbW_n0_mX8DDOwAFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+fabrication+of+conductive+polyaniline+nanoflower+modified+electrode+and+its+application+for+microbial+energy+harvesting&rft.jtitle=Electrochimica+acta&rft.au=Liu%2C+Xiang&rft.au=Zhao%2C+Xiaohua&rft.au=Yu%2C+Yang-Yang&rft.au=Wang%2C+Yan-Zhai&rft.date=2017-11-20&rft.issn=0013-4686&rft.volume=255&rft.spage=41&rft.epage=47&rft_id=info:doi/10.1016%2Fj.electacta.2017.09.153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_09_153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |