Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting

[Display omitted] •Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline nanoflower was achieved.•The application of the modified electrode for microbial fuel cells was demonstrated A facile strategy for fabrication...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 255; pp. 41 - 47
Main Authors Liu, Xiang, Zhao, Xiaohua, Yu, Yang-Yang, Wang, Yan-Zhai, Shi, Yu-Tong, Cheng, Qian-Wen, Fang, Zhen, Yong, Yang-Chun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.11.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline nanoflower was achieved.•The application of the modified electrode for microbial fuel cells was demonstrated A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial energy harvesting was also demonstrated. By simply tuning the concentration of aniline monomer, uniformly distributed PANI nanoflowers assembled from PANI nanoflakes anchored on the surface of carbon cloth electrode were fabricated with in-situ polymerization. Electrochemical and spectral analyses indicated that the synthesized PANI nanoflower was in conductive emeraldine salt form. Electrochemical impedance spectroscopy (EIS) analysis revealed PANI nanoflower modification reduced the charge transfer resistance of carbon cloth electrode, indicating the PANI nanoflower had excellent electrochemical activity. Furthermore, the PANI nanoflower modified electrode was used as the anode of microbial fuel cells (MFC), which delivered 2.6 and 6.5 times higher voltage and power output than these of pristine carbon cloth electrode, respectively. This work provided a controllable synthesis strategy for PANI nanostructure and demonstrated its promise in microbial energy harvesting.
AbstractList A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial energy harvesting was also demonstrated. By simply tuning the concentration of aniline monomer, uniformly distributed PANI nanoflowers assembled from PANI nanoflakes anchored on the surface of carbon cloth electrode were fabricated with in-situ polymerization. Electrochemical and spectral analyses indicated that the synthesized PANI nanoflower was in conductive emeraldine salt form. Electrochemical impedance spectroscopy (EIS) analysis revealed PANI nanoflower modification reduced the charge transfer resistance of carbon cloth electrode, indicating the PANI nanoflower had excellent electrochemical activity. Furthermore, the PANI nanoflower modified electrode was used as the anode of microbial fuel cells (MFC), which delivered 2.6 and 6.5 times higher voltage and power output than these of pristine carbon cloth electrode, respectively. This work provided a controllable synthesis strategy for PANI nanostructure and demonstrated its promise in microbial energy harvesting.
[Display omitted] •Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline nanoflower was achieved.•The application of the modified electrode for microbial fuel cells was demonstrated A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial energy harvesting was also demonstrated. By simply tuning the concentration of aniline monomer, uniformly distributed PANI nanoflowers assembled from PANI nanoflakes anchored on the surface of carbon cloth electrode were fabricated with in-situ polymerization. Electrochemical and spectral analyses indicated that the synthesized PANI nanoflower was in conductive emeraldine salt form. Electrochemical impedance spectroscopy (EIS) analysis revealed PANI nanoflower modification reduced the charge transfer resistance of carbon cloth electrode, indicating the PANI nanoflower had excellent electrochemical activity. Furthermore, the PANI nanoflower modified electrode was used as the anode of microbial fuel cells (MFC), which delivered 2.6 and 6.5 times higher voltage and power output than these of pristine carbon cloth electrode, respectively. This work provided a controllable synthesis strategy for PANI nanostructure and demonstrated its promise in microbial energy harvesting.
Author Shi, Yu-Tong
Liu, Xiang
Cheng, Qian-Wen
Zhao, Xiaohua
Yu, Yang-Yang
Fang, Zhen
Yong, Yang-Chun
Wang, Yan-Zhai
Author_xml – sequence: 1
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 2
  givenname: Xiaohua
  surname: Zhao
  fullname: Zhao, Xiaohua
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Yang-Yang
  surname: Yu
  fullname: Yu, Yang-Yang
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 4
  givenname: Yan-Zhai
  surname: Wang
  fullname: Wang, Yan-Zhai
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 5
  givenname: Yu-Tong
  surname: Shi
  fullname: Shi, Yu-Tong
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Qian-Wen
  surname: Cheng
  fullname: Cheng, Qian-Wen
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 7
  givenname: Zhen
  surname: Fang
  fullname: Fang, Zhen
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 8
  givenname: Yang-Chun
  surname: Yong
  fullname: Yong, Yang-Chun
  email: ycyong@ujs.edu.cn
  organization: Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
BookMark eNqNkE1v1DAQhq2qSN2W_gYscU6wHSeODxyqihakSlzgbDn2uJ2Vawcnu2gv_Pa6XeiBC0gjzeX9mHnOyWnKCQh5x1nLGR8-bFuI4FZbpxWMq5bplvfdCdnwUXVNN_b6lGwY410jh3E4I-fLsmWMqUGxDfl1Yx1GoMFOBZ1dMSeaA3U5-Z1bcQ90zvFgE0ZMQJNNOcT8Ewp9zB4Dgqcv7SV7oDZ5iutC7TzHP1khVym6kie0kUKCcn-gD7bsYVkx3b8lb4KNC1z-3hfk-82nb9efm7uvt1-ur-4aJ4Vem15IHyQMvAtKSgu2D6CCd1oqO40TgBj6oKWelAiScRbGTngmQv16dN3kugvy_pg7l_xjV7vNNu9KqpWG65ExrYUUVaWOqnrvshQIZi74aMvBcGaeYZuteYVtnmEbpk2FXZ0f_3I6XF8IrMVi_A__1dEPFcIeoZjFISQHHkvVG5_xnxlPBNemww
CitedBy_id crossref_primary_10_1016_j_electacta_2021_137918
crossref_primary_10_1002_smll_202300182
crossref_primary_10_1016_j_apsusc_2022_155386
crossref_primary_10_3390_pr9122194
crossref_primary_10_1016_j_chemosphere_2021_131732
crossref_primary_10_1016_j_bej_2020_107779
crossref_primary_10_1016_j_jpowsour_2018_12_041
crossref_primary_10_1080_25740881_2021_1942491
crossref_primary_10_1016_j_jece_2022_107664
crossref_primary_10_1016_j_electacta_2018_09_143
crossref_primary_10_1016_j_chemosphere_2023_138413
crossref_primary_10_1016_j_electacta_2019_135279
crossref_primary_10_1016_j_synthmet_2019_01_016
crossref_primary_10_1002_jctb_6218
crossref_primary_10_1016_j_apsusc_2019_04_267
crossref_primary_10_1039_C9SE00659A
crossref_primary_10_2139_ssrn_4120351
crossref_primary_10_1016_j_fuel_2022_125056
crossref_primary_10_2139_ssrn_4196388
crossref_primary_10_3390_en13246596
crossref_primary_10_1016_j_jpowsour_2022_231890
crossref_primary_10_1080_15435075_2019_1671412
crossref_primary_10_1016_j_talanta_2024_127037
crossref_primary_10_1007_s12010_020_03346_2
crossref_primary_10_1016_j_chemosphere_2021_132589
crossref_primary_10_1039_D3SE00975K
crossref_primary_10_1007_s10008_022_05255_2
crossref_primary_10_1002_fuce_201800120
crossref_primary_10_1007_s10311_019_00958_x
crossref_primary_10_1016_j_jcis_2022_09_130
crossref_primary_10_1016_j_apsusc_2023_158436
crossref_primary_10_1016_j_biortech_2019_121499
crossref_primary_10_1039_C9TA00332K
crossref_primary_10_1016_j_fuel_2021_121016
crossref_primary_10_3390_ma16062479
crossref_primary_10_1002_aoc_4623
crossref_primary_10_1016_j_jwpe_2021_102348
crossref_primary_10_1016_j_energy_2021_120103
crossref_primary_10_1002_cplu_202100292
crossref_primary_10_1016_j_electacta_2019_135136
crossref_primary_10_1016_j_jpowsour_2020_228789
crossref_primary_10_1016_j_chemosphere_2020_125985
crossref_primary_10_1016_j_polymer_2019_121848
crossref_primary_10_1007_s11157_020_09545_x
crossref_primary_10_1007_s10853_019_04141_z
crossref_primary_10_1016_j_cej_2017_12_055
crossref_primary_10_1016_j_bioelechem_2019_05_008
crossref_primary_10_1016_j_chemosphere_2021_132963
crossref_primary_10_1021_acs_chemrev_1c00487
crossref_primary_10_1002_er_7407
crossref_primary_10_1016_j_mseb_2023_116735
Cites_doi 10.1021/ja0371754
10.1021/acsami.6b11682
10.1016/j.procbio.2010.04.009
10.2166/wst.2005.0495
10.1016/j.jpowsour.2017.01.125
10.1016/j.jpowsour.2013.05.117
10.1016/j.electacta.2017.02.117
10.1016/j.jpowsour.2016.04.004
10.1021/es0499344
10.1016/j.ijhydene.2016.05.048
10.1016/j.biortech.2017.02.124
10.1021/acsami.6b14331
10.1021/nn1006539
10.1016/j.elecom.2012.03.002
10.1016/j.jiec.2016.01.031
10.1007/s11356-017-8641-1
10.1021/ma020199v
10.1016/j.bios.2016.08.037
10.1002/anie.201400463
10.1021/nn302984x
10.1021/ma702601q
10.1016/S1452-3981(23)13188-9
10.1016/j.biortech.2015.05.105
10.1016/j.jpowsour.2016.06.063
10.1016/j.jpowsour.2012.09.091
10.1021/es0605016
10.1016/j.electacta.2017.05.108
10.1016/j.jiec.2016.11.035
10.1016/j.electacta.2013.10.133
10.1021/ja106106d
10.1016/j.bios.2017.07.008
10.1016/j.bios.2012.09.054
10.1016/j.bios.2011.04.018
10.1016/j.energy.2016.01.039
10.1016/j.electacta.2017.03.008
10.1002/jrs.1841
10.1016/j.jhazmat.2016.10.047
10.1016/j.jpowsour.2011.01.012
10.1016/j.electacta.2015.12.119
10.1002/jrs.2007
10.1016/j.electacta.2014.11.130
10.1002/adma.200600831
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Nov 20, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 20, 2017
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2017.09.153
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 47
ExternalDocumentID 10_1016_j_electacta_2017_09_153
S001346861732025X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c429t-524df4e613f744aea5fe7fdc947ab8bee265f949b72f4010f832d02f0018c3bc3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 08:21:30 EDT 2025
Tue Jul 01 03:01:34 EDT 2025
Thu Apr 24 22:48:36 EDT 2025
Fri Feb 23 02:18:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microbial fuel cells
Nanoflower
Bioenergy
Polyaniline
Shewanella
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-524df4e613f744aea5fe7fdc947ab8bee265f949b72f4010f832d02f0018c3bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.electacta.2017.09.153
PQID 1980099242
PQPubID 2045485
PageCount 7
ParticipantIDs proquest_journals_1980099242
crossref_primary_10_1016_j_electacta_2017_09_153
crossref_citationtrail_10_1016_j_electacta_2017_09_153
elsevier_sciencedirect_doi_10_1016_j_electacta_2017_09_153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-20
PublicationDateYYYYMMDD 2017-11-20
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-20
  day: 20
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mashkour, Rahimnejad, Mashkour (bib0080) 2016; 325
Luo, Zhong, Zou, Xiong, Yang (bib0100) 2016; 319
Ciri-Marjanovic, Trchova, Stejskal (bib0190) 2008; 39
Yong, Zhong (bib0010) 2010; 45
Yong, Gu, Wu, Yan, Zhou, Wu, Wei, Jia, Zheng, Yong (bib0025) 2017; 324
Yong, Yu, Yang, Li, Jiang, Wang, Wang, Song (bib0165) 2012; 19
Hidalgo, Tommasi, Bocchini, Chiolerio, Chiodoni, Mazzarino, Ruggeri (bib0210) 2016; 99
Huang, Li, Ren, Wang (bib0065) 2016; 41
Chen, Shen, Jiang, Mu, Ma, Han, Sun, Li, Wang (bib0075) 2017; 244
Zhang, Wei, Wan (bib0150) 2002; 35
Soegiarto, Comotti, Ward (bib0145) 2010; 132
Wang, Li, Zeng, Cui, Xiang, Li (bib0185) 2013; 41
Hou, Liu, Zhang (bib0070) 2013; 224
Mu, Ma, Peng, Li, Sun, Lei (bib0120) 2013; 242
Wang, Wu, Yu, Sun, Jia, Yong (bib0160) 2017; 232
Zhang, Xie, Yang, Liang, Zhu, Liu (bib0215) 2017; 233
Hui, Sun, Niu, Luo (bib0105) 2017; 9
Xu, Wang, Zu, Han, Wei (bib0205) 2010; 4
Ding, Wan, Wei (bib0090) 2007; 19
Yang, Yu, Wang, Zhang, Wang, Fang, Lv, Zhong, Yong (bib0050) 2017; 98
Trchova, Moravkova, Blaha, Stejskal (bib0200) 2014; 122
Veerasubramani, Krishnamoorthy, Radhakrishnan, Kim, Kim (bib0180) 2016; 36
Wu, Wu, Jiang, Shen, Faheem, Sun, Li, Han, Wang, Liu (bib0035) 2017; 24
Zhou, Chi, Luo, He, Jin (bib0055) 2011; 196
Cao, Wei, Wang, Shen (bib0060) 2017; 231
An, Fu, Su, Wang, Peng, Wu, Chen, Bi, Gao, Zhang (bib0125) 2017; 345
Yong, Yu, Zhang, Song (bib0030) 2014; 53
Yin, Tang, Wang, Gao, Tang (bib0040) 2012; 6
Logan (bib0020) 2005; 52
Zhang, Xie, Yang, Liang, Zhu, Liu (bib0135) 2017; 233
Rajasekharan, Stalin, Viswanathan, Manisankar (bib0155) 2013; 8
Li, Zhang, Ding, Ren, Cui (bib0085) 2011; 26
Hui, Jiang, Xie, Chen, Shen, Sun, Han, Li, Wang (bib0140) 2016; 190
Liao, Sun, Sun, Si, Yong (bib0130) 2015; 192
Stejskal, Sapurina, Trchova, Konyushenko (bib0170) 2008; 41
Liu, Logan (bib0005) 2004; 38
Lim, Choi (bib0110) 2017; 47
Logan, Hamelers, Rozendal, Schrorder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib0015) 2006; 40
Sun, Yu, Xie, Zhang, Yang, Zhai, Yang, Liu, Yong (bib0045) 2017; 87
Huang, Kaner (bib0095) 2004; 126
Wu, Pan, Li, Zhao, Jing, Chen (bib0115) 2015; 152
do Nascimento, Temperini (bib0195) 2008; 39
Kwon, Hong, Ryu, Yim (bib0175) 2017; 9
Luo (10.1016/j.electacta.2017.09.153_bib0100) 2016; 319
Lim (10.1016/j.electacta.2017.09.153_bib0110) 2017; 47
Xu (10.1016/j.electacta.2017.09.153_bib0205) 2010; 4
Zhou (10.1016/j.electacta.2017.09.153_bib0055) 2011; 196
Zhang (10.1016/j.electacta.2017.09.153_bib0215) 2017; 233
Li (10.1016/j.electacta.2017.09.153_bib0085) 2011; 26
Liu (10.1016/j.electacta.2017.09.153_bib0005) 2004; 38
Zhang (10.1016/j.electacta.2017.09.153_bib0135) 2017; 233
Hui (10.1016/j.electacta.2017.09.153_bib0140) 2016; 190
Cao (10.1016/j.electacta.2017.09.153_bib0060) 2017; 231
Mu (10.1016/j.electacta.2017.09.153_bib0120) 2013; 242
Soegiarto (10.1016/j.electacta.2017.09.153_bib0145) 2010; 132
Wu (10.1016/j.electacta.2017.09.153_bib0035) 2017; 24
Kwon (10.1016/j.electacta.2017.09.153_bib0175) 2017; 9
Sun (10.1016/j.electacta.2017.09.153_bib0045) 2017; 87
Ding (10.1016/j.electacta.2017.09.153_bib0090) 2007; 19
Hui (10.1016/j.electacta.2017.09.153_bib0105) 2017; 9
Hidalgo (10.1016/j.electacta.2017.09.153_bib0210) 2016; 99
do Nascimento (10.1016/j.electacta.2017.09.153_bib0195) 2008; 39
Chen (10.1016/j.electacta.2017.09.153_bib0075) 2017; 244
An (10.1016/j.electacta.2017.09.153_bib0125) 2017; 345
Liao (10.1016/j.electacta.2017.09.153_bib0130) 2015; 192
Stejskal (10.1016/j.electacta.2017.09.153_bib0170) 2008; 41
Logan (10.1016/j.electacta.2017.09.153_bib0020) 2005; 52
Yang (10.1016/j.electacta.2017.09.153_bib0050) 2017; 98
Trchova (10.1016/j.electacta.2017.09.153_bib0200) 2014; 122
Yong (10.1016/j.electacta.2017.09.153_bib0030) 2014; 53
Veerasubramani (10.1016/j.electacta.2017.09.153_bib0180) 2016; 36
Wang (10.1016/j.electacta.2017.09.153_bib0185) 2013; 41
Huang (10.1016/j.electacta.2017.09.153_bib0095) 2004; 126
Yong (10.1016/j.electacta.2017.09.153_bib0010) 2010; 45
Mashkour (10.1016/j.electacta.2017.09.153_bib0080) 2016; 325
Zhang (10.1016/j.electacta.2017.09.153_bib0150) 2002; 35
Yong (10.1016/j.electacta.2017.09.153_bib0165) 2012; 19
Huang (10.1016/j.electacta.2017.09.153_bib0065) 2016; 41
Ciri-Marjanovic (10.1016/j.electacta.2017.09.153_bib0190) 2008; 39
Yin (10.1016/j.electacta.2017.09.153_bib0040) 2012; 6
Hou (10.1016/j.electacta.2017.09.153_bib0070) 2013; 224
Yong (10.1016/j.electacta.2017.09.153_bib0025) 2017; 324
Logan (10.1016/j.electacta.2017.09.153_bib0015) 2006; 40
Rajasekharan (10.1016/j.electacta.2017.09.153_bib0155) 2013; 8
Wang (10.1016/j.electacta.2017.09.153_bib0160) 2017; 232
Wu (10.1016/j.electacta.2017.09.153_bib0115) 2015; 152
References_xml – volume: 325
  start-page: 322
  year: 2016
  end-page: 328
  ident: bib0080
  article-title: Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell
  publication-title: J. Power Sources
– volume: 41
  start-page: 3530
  year: 2008
  end-page: 3536
  ident: bib0170
  article-title: Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres
  publication-title: Macromolecules
– volume: 40
  start-page: 5181
  year: 2006
  end-page: 5192
  ident: bib0015
  article-title: Microbial fuel cells: Methodology and technology
  publication-title: Environ. Sci. Technol.
– volume: 126
  start-page: 851
  year: 2004
  end-page: 855
  ident: bib0095
  article-title: A general chemical route to polyaniline nanofibers
  publication-title: J. Am. Chem. Soc.
– volume: 98
  start-page: 338
  year: 2017
  end-page: 344
  ident: bib0050
  article-title: Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin
  publication-title: Biosens. Bioelectron.
– volume: 233
  start-page: 291
  year: 2017
  end-page: 295
  ident: bib0215
  article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell
  publication-title: Bioresource Technol.
– volume: 345
  start-page: 227
  year: 2017
  end-page: 236
  ident: bib0125
  article-title: Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes
  publication-title: J. Power Sources
– volume: 324
  start-page: 178
  year: 2017
  end-page: 183
  ident: bib0025
  article-title: Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation
  publication-title: J. Hazard. Mater.
– volume: 19
  start-page: 465
  year: 2007
  end-page: 469
  ident: bib0090
  article-title: Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential
  publication-title: Adv. Mater.
– volume: 244
  start-page: 119
  year: 2017
  end-page: 128
  ident: bib0075
  article-title: Fabrication of polypyrrole/beta-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system
  publication-title: Electrochim. Acta
– volume: 224
  start-page: 139
  year: 2013
  end-page: 144
  ident: bib0070
  article-title: A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes
  publication-title: J. Power Sources
– volume: 99
  start-page: 193
  year: 2016
  end-page: 201
  ident: bib0210
  article-title: Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells
  publication-title: Energy
– volume: 8
  start-page: 11327
  year: 2013
  end-page: 11336
  ident: bib0155
  article-title: Electrochemical Evaluation of Anticorrosive Performance of Organic Acid Doped Polyaniline Based Coatings
  publication-title: Int. J. Electrochem. Sci.
– volume: 4
  start-page: 5019
  year: 2010
  end-page: 5026
  ident: bib0205
  article-title: Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage
  publication-title: ACS Nano
– volume: 152
  start-page: 126
  year: 2015
  end-page: 134
  ident: bib0115
  article-title: Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode
  publication-title: Electrochim. Acta
– volume: 319
  start-page: 73
  year: 2016
  end-page: 81
  ident: bib0100
  article-title: Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes
  publication-title: J. Power Sources
– volume: 36
  start-page: 163
  year: 2016
  end-page: 168
  ident: bib0180
  article-title: In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications
  publication-title: J. Ind. Eng. Chem.
– volume: 52
  start-page: 31
  year: 2005
  end-page: 37
  ident: bib0020
  article-title: Simultaneous wastewater treatment and biological electricity generation
  publication-title: Water Sci. Technol.
– volume: 41
  start-page: 11369
  year: 2016
  end-page: 11379
  ident: bib0065
  article-title: In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 4040
  year: 2004
  end-page: 4046
  ident: bib0005
  article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
  publication-title: Environ. Sci. Technol.
– volume: 122
  start-page: 28
  year: 2014
  end-page: 38
  ident: bib0200
  article-title: Raman spectroscopy of polyaniline and oligoaniline thin films
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 4480
  year: 2014
  end-page: 4483
  ident: bib0030
  article-title: Highly Active Bidirectional Electron Transfer by a Self-Assembled Electroactive Reduced- Graphene-Oxide-Hybridized Biofilm
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2914
  year: 2017
  end-page: 2923
  ident: bib0105
  article-title: PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 132
  start-page: 14603
  year: 2010
  end-page: 14616
  ident: bib0145
  article-title: Controlled Orientation of Polyconjugated Guest Molecules in Tunable Host Cavities
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 10570
  year: 2017
  end-page: 10583
  ident: bib0035
  article-title: The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater
  publication-title: Environ. Sci. Pollut. Res.
– volume: 87
  start-page: 195
  year: 2017
  end-page: 202
  ident: bib0045
  article-title: In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems
  publication-title: Biosens. Bioelectron.
– volume: 196
  start-page: 4427
  year: 2011
  end-page: 4435
  ident: bib0055
  article-title: An overview of electrode materials in microbial fuel cells
  publication-title: J. Power Sources
– volume: 45
  start-page: 1937
  year: 2010
  end-page: 1943
  ident: bib0010
  article-title: Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation
  publication-title: Process Biochem.
– volume: 231
  start-page: 609
  year: 2017
  end-page: 616
  ident: bib0060
  article-title: In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 582
  year: 2013
  end-page: 588
  ident: bib0185
  article-title: Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells
  publication-title: Biosens. Bioelectron.
– volume: 19
  start-page: 13
  year: 2012
  end-page: 16
  ident: bib0165
  article-title: Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells
  publication-title: Electrochem. Commun.
– volume: 39
  start-page: 1375
  year: 2008
  end-page: 1387
  ident: bib0190
  article-title: The chemical oxidative polymerization of aniline in water: Raman spectroscopy
  publication-title: J. Raman Spectrosc.
– volume: 192
  start-page: 831
  year: 2015
  end-page: 834
  ident: bib0130
  article-title: Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells
  publication-title: Bioresource Technol.
– volume: 35
  start-page: 5937
  year: 2002
  end-page: 5942
  ident: bib0150
  article-title: Nanostructures of polyaniline doped with inorganic acids
  publication-title: Macromolecules
– volume: 233
  start-page: 291
  year: 2017
  end-page: 295
  ident: bib0135
  article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell
  publication-title: Bioresource Technol.
– volume: 6
  start-page: 8288
  year: 2012
  end-page: 8297
  ident: bib0040
  article-title: Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction
  publication-title: ACS Nano
– volume: 47
  start-page: 51
  year: 2017
  end-page: 55
  ident: bib0110
  article-title: Synthesis of self-assembled rectangular-shaped polyaniline nanotubes and their physical characteristics
  publication-title: J. Ind. Eng. Chem.
– volume: 190
  start-page: 16
  year: 2016
  end-page: 24
  ident: bib0140
  article-title: Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system
  publication-title: Electrochim. Acta
– volume: 39
  start-page: 772
  year: 2008
  end-page: 778
  ident: bib0195
  article-title: Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation
  publication-title: J. Raman Spectrosc.
– volume: 232
  start-page: 439
  year: 2017
  end-page: 444
  ident: bib0160
  article-title: Facile in-situ fabrication of grapheneiriboflavin electrode for microbial fuel cells
  publication-title: Electrochim. Acta
– volume: 242
  start-page: 797
  year: 2013
  end-page: 802
  ident: bib0120
  article-title: Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors
  publication-title: J. Power Sources
– volume: 9
  start-page: 7412
  year: 2017
  end-page: 7423
  ident: bib0175
  article-title: Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO2 Nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 4169
  year: 2011
  end-page: 4176
  ident: bib0085
  article-title: Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis
  publication-title: Biosens. Bioelectron.
– volume: 126
  start-page: 851
  year: 2004
  ident: 10.1016/j.electacta.2017.09.153_bib0095
  article-title: A general chemical route to polyaniline nanofibers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0371754
– volume: 9
  start-page: 2914
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0105
  article-title: PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11682
– volume: 45
  start-page: 1937
  year: 2010
  ident: 10.1016/j.electacta.2017.09.153_bib0010
  article-title: Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2010.04.009
– volume: 52
  start-page: 31
  year: 2005
  ident: 10.1016/j.electacta.2017.09.153_bib0020
  article-title: Simultaneous wastewater treatment and biological electricity generation
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2005.0495
– volume: 345
  start-page: 227
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0125
  article-title: Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.125
– volume: 242
  start-page: 797
  year: 2013
  ident: 10.1016/j.electacta.2017.09.153_bib0120
  article-title: Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.117
– volume: 231
  start-page: 609
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0060
  article-title: In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.117
– volume: 319
  start-page: 73
  year: 2016
  ident: 10.1016/j.electacta.2017.09.153_bib0100
  article-title: Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.004
– volume: 38
  start-page: 4040
  year: 2004
  ident: 10.1016/j.electacta.2017.09.153_bib0005
  article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0499344
– volume: 41
  start-page: 11369
  year: 2016
  ident: 10.1016/j.electacta.2017.09.153_bib0065
  article-title: In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.048
– volume: 233
  start-page: 291
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0135
  article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.02.124
– volume: 9
  start-page: 7412
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0175
  article-title: Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO2 Nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14331
– volume: 4
  start-page: 5019
  year: 2010
  ident: 10.1016/j.electacta.2017.09.153_bib0205
  article-title: Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage
  publication-title: ACS Nano
  doi: 10.1021/nn1006539
– volume: 233
  start-page: 291
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0215
  article-title: Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.02.124
– volume: 19
  start-page: 13
  year: 2012
  ident: 10.1016/j.electacta.2017.09.153_bib0165
  article-title: Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.03.002
– volume: 36
  start-page: 163
  year: 2016
  ident: 10.1016/j.electacta.2017.09.153_bib0180
  article-title: In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.01.031
– volume: 24
  start-page: 10570
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0035
  article-title: The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8641-1
– volume: 35
  start-page: 5937
  year: 2002
  ident: 10.1016/j.electacta.2017.09.153_bib0150
  article-title: Nanostructures of polyaniline doped with inorganic acids
  publication-title: Macromolecules
  doi: 10.1021/ma020199v
– volume: 87
  start-page: 195
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0045
  article-title: In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.08.037
– volume: 53
  start-page: 4480
  year: 2014
  ident: 10.1016/j.electacta.2017.09.153_bib0030
  article-title: Highly Active Bidirectional Electron Transfer by a Self-Assembled Electroactive Reduced- Graphene-Oxide-Hybridized Biofilm
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400463
– volume: 6
  start-page: 8288
  year: 2012
  ident: 10.1016/j.electacta.2017.09.153_bib0040
  article-title: Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction
  publication-title: ACS Nano
  doi: 10.1021/nn302984x
– volume: 41
  start-page: 3530
  year: 2008
  ident: 10.1016/j.electacta.2017.09.153_bib0170
  article-title: Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres
  publication-title: Macromolecules
  doi: 10.1021/ma702601q
– volume: 8
  start-page: 11327
  year: 2013
  ident: 10.1016/j.electacta.2017.09.153_bib0155
  article-title: Electrochemical Evaluation of Anticorrosive Performance of Organic Acid Doped Polyaniline Based Coatings
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)13188-9
– volume: 192
  start-page: 831
  year: 2015
  ident: 10.1016/j.electacta.2017.09.153_bib0130
  article-title: Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2015.05.105
– volume: 325
  start-page: 322
  year: 2016
  ident: 10.1016/j.electacta.2017.09.153_bib0080
  article-title: Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.063
– volume: 224
  start-page: 139
  year: 2013
  ident: 10.1016/j.electacta.2017.09.153_bib0070
  article-title: A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.091
– volume: 40
  start-page: 5181
  year: 2006
  ident: 10.1016/j.electacta.2017.09.153_bib0015
  article-title: Microbial fuel cells: Methodology and technology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0605016
– volume: 244
  start-page: 119
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0075
  article-title: Fabrication of polypyrrole/beta-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.108
– volume: 47
  start-page: 51
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0110
  article-title: Synthesis of self-assembled rectangular-shaped polyaniline nanotubes and their physical characteristics
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.11.035
– volume: 122
  start-page: 28
  year: 2014
  ident: 10.1016/j.electacta.2017.09.153_bib0200
  article-title: Raman spectroscopy of polyaniline and oligoaniline thin films
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.10.133
– volume: 132
  start-page: 14603
  year: 2010
  ident: 10.1016/j.electacta.2017.09.153_bib0145
  article-title: Controlled Orientation of Polyconjugated Guest Molecules in Tunable Host Cavities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106106d
– volume: 98
  start-page: 338
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0050
  article-title: Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.07.008
– volume: 41
  start-page: 582
  year: 2013
  ident: 10.1016/j.electacta.2017.09.153_bib0185
  article-title: Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.09.054
– volume: 26
  start-page: 4169
  year: 2011
  ident: 10.1016/j.electacta.2017.09.153_bib0085
  article-title: Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.04.018
– volume: 99
  start-page: 193
  year: 2016
  ident: 10.1016/j.electacta.2017.09.153_bib0210
  article-title: Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.039
– volume: 232
  start-page: 439
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0160
  article-title: Facile in-situ fabrication of grapheneiriboflavin electrode for microbial fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.008
– volume: 39
  start-page: 772
  year: 2008
  ident: 10.1016/j.electacta.2017.09.153_bib0195
  article-title: Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1841
– volume: 324
  start-page: 178
  year: 2017
  ident: 10.1016/j.electacta.2017.09.153_bib0025
  article-title: Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.10.047
– volume: 196
  start-page: 4427
  year: 2011
  ident: 10.1016/j.electacta.2017.09.153_bib0055
  article-title: An overview of electrode materials in microbial fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.01.012
– volume: 190
  start-page: 16
  year: 2016
  ident: 10.1016/j.electacta.2017.09.153_bib0140
  article-title: Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.119
– volume: 39
  start-page: 1375
  year: 2008
  ident: 10.1016/j.electacta.2017.09.153_bib0190
  article-title: The chemical oxidative polymerization of aniline in water: Raman spectroscopy
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2007
– volume: 152
  start-page: 126
  year: 2015
  ident: 10.1016/j.electacta.2017.09.153_bib0115
  article-title: Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.130
– volume: 19
  start-page: 465
  year: 2007
  ident: 10.1016/j.electacta.2017.09.153_bib0090
  article-title: Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600831
SSID ssj0007670
Score 2.45359
Snippet [Display omitted] •Facile approach for synthesis of conductive polyaniline nanoflower was developed.•Modification of carbon cloth electrode with polyaniline...
A facile strategy for fabrication of conductive polyaniline (PANI) nanoflower modified carbon cloth electrode was developed and its application for microbial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Aniline
Biochemical fuel cells
Bioenergy
Carbon
Charge transfer
Chemical synthesis
Cloth
Conductivity
Electrochemical impedance spectroscopy
Electrodes
Energy harvesting
Fuel cells
Heat conductivity
Microbial fuel cells
Microorganisms
Nanoflower
Polyaniline
Polyanilines
Polymerization
Shewanella
Title Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting
URI https://dx.doi.org/10.1016/j.electacta.2017.09.153
https://www.proquest.com/docview/1980099242
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPUAPqKWtyqPIh14XvIkfCTe06moLKieQ9mbZsadNtSSrZTlw4bczk3V4SYgDUi6J4sjy2DOfnZnvY-xnAQJUpFQcUGEgC5GjHxRuYALxYg5B6-4w58-5nlzK06marrFRXwtDaZXJ9698euet05OjNJpH87qmGt9hLnWBIZg0wNWUKtiloVl-ePeY5mG0Eb2KAb39LMerk5pxeFGOlyHC06HKX4tQL3x1F4DGn9hWQo78ZNW5z2wtNttsY9QLtm2zj0-4Bb-wu7GrcMVzcH6RzuV4Cxy3v8Twij6Oz9vZrWtqwpm8cU0LM1JM41dtqAGBKU8KOSFy1wReL6_5k7_dHMEuv6o7GifsVexKCPk_t-hoO5q_X9nl-NfFaDJIYguDCkPSEjekMoCMGN3BSOmiUxANhKqUxvnCx5hpBaUsvckA92QC0BUEkQGp-lW5r_JvbL1pm_idcciDBF2CqlQptXTeqxC0z2JAdJPnsMN0P8C2SkzkJIgxs33K2X_7YBlLlrGitGiZHSYeGs5XZBxvNznuLWifzSuLIePtxvu9zW1a2td2WBYEqxHa7L7n23tsk-6orDET-2x9ubiJPxDfLP1BN4EP2IeT32eT83tMfP53
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2Vcig9ICggCgV84LrUm9hOwq1adbVA21Mr7c2yYw8EbZPVdnvg0m9nJuuUFgn1gJRTEkeWx555dmbeA_hYokQdORUHdRipUubkB6UbFYF5McdoTH-Yc3pmZhfq61zPt2Ay1MJwWmXy_Ruf3nvrdOcwjebhsmm4xnecK1NSCGYNcD1_BI8VLV-WMfh08yfPozCFHGQM-PV7SV691oyji5O8CmY8Hev8XyHqL2fdR6DpM3iaoKM42vTuOWzFdg92JoNi2x7s3iEXfAE3U1fTkhfo_CodzIkOBe1_meKVnJxYdotfrm0YaIrWtR0uWDJNXHahQUKmIknkhChcG0SzvhJ3fncLQrvisul5nKhXsa8hFD_cquftaL-_hIvp8flkNkpqC6OaYtKadqQqoIoU3rFQykWnMRYY6koVzpc-xsxorFTliwxpUyaRfEGQGbKsX537On8F223XxtcgMA8KTYW61pUyynmvQzA-i4HgTZ7jPphhgG2dqMhZEWNhh5yzn_bWMpYtY2VlyTL7IG8bLjdsHA83-TxY0N6bWJZixsONDwab27S2r-y4KhlXE7Z58z_f_gA7s_PTE3vy5ezbW3jCT7jGMZMHsL1eXcd3BHbW_n0_mX8DDOwAFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+fabrication+of+conductive+polyaniline+nanoflower+modified+electrode+and+its+application+for+microbial+energy+harvesting&rft.jtitle=Electrochimica+acta&rft.au=Liu%2C+Xiang&rft.au=Zhao%2C+Xiaohua&rft.au=Yu%2C+Yang-Yang&rft.au=Wang%2C+Yan-Zhai&rft.date=2017-11-20&rft.issn=0013-4686&rft.volume=255&rft.spage=41&rft.epage=47&rft_id=info:doi/10.1016%2Fj.electacta.2017.09.153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_09_153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon