Systematic and quantitative analysis of two decades of anodic wastewater treatment in bioelectrochemical reactors
•A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and 18%.•Key variables like pH or conductivity are rarely reported (< 50% of the cases).•Scale-up has now started: 4.5% of the observations had an...
Saved in:
Published in | Water research (Oxford) Vol. 214; p. 118142 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2022
IWA Publishing/Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and 18%.•Key variables like pH or conductivity are rarely reported (< 50% of the cases).•Scale-up has now started: 4.5% of the observations had an anodic volume over 10 L.
Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement.
[Display omitted] |
---|---|
AbstractList | Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement. Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement.Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement. •A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and 18%.•Key variables like pH or conductivity are rarely reported (< 50% of the cases).•Scale-up has now started: 4.5% of the observations had an anodic volume over 10 L. Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement. [Display omitted] |
ArticleNumber | 118142 |
Author | de Fouchécour, Florence Larzillière, Valentin Moscoviz, Roman Bouchez, Théodore |
Author_xml | – sequence: 1 givenname: Florence surname: de Fouchécour fullname: de Fouchécour, Florence email: florence.defouchecour@gmail.fr organization: Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France – sequence: 2 givenname: Valentin surname: Larzillière fullname: Larzillière, Valentin organization: Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France – sequence: 3 givenname: Théodore surname: Bouchez fullname: Bouchez, Théodore organization: Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France – sequence: 4 givenname: Roman surname: Moscoviz fullname: Moscoviz, Roman organization: SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 78230, Le Pecq, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35217490$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-04125824$$DView record in HAL |
BookMark | eNqNkU1vEzEQhi1URNPCP0Boj3DYYHu9H-aAVFX9QIrUQ-FszdqzqqNdu7GdRPn3ON3SQw_AyZrx84xG856RE-cdEvKR0SWjrPm6Xu4hBYxLTjlfMtYxwd-QBetaWXIhuhOyoFRUJatqcUrOYlxTmslKviOnVc1ZKyRdkM39ISacIFldgDPFZgsu2ZTrHeYGjIdoY-GHIu19YVCDwacSnDdZ2UO28x4YirwLpAldKqwreutxRJ2C1w84WQ1jkb918iG-J28HGCN-eH7Pya_rq5-Xt-Xq7ubH5cWq1ILLVIqhQTm0XIqhp1T2TPdNSynjlQFjQJqOU91oXbWSgza9pj2TfcPo0DXAe1Gdky_z3AcY1WOwE4SD8mDV7cVKHXtUMF53XOxYZj_P7GPwmy3GpCYbNY4jOPTbqHhTNV1N61b8D1p1ddvUNKOfntFtP6F5WeLP9TMgZkAHH2PA4QVhVB1DVms1h6yOIas55Kx9e6Xpp8S8SwHs-C_5-yxjvv3OYlBRW3QajQ05MGW8_fuA37V5xec |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169186 crossref_primary_10_1016_j_cej_2023_144001 crossref_primary_10_1016_j_biortech_2022_128371 crossref_primary_10_1016_j_watres_2023_119620 crossref_primary_10_1016_j_bioelechem_2023_108577 crossref_primary_10_1093_ismeco_ycae143 crossref_primary_10_1016_j_molliq_2023_121704 crossref_primary_10_1016_j_cej_2022_139530 crossref_primary_10_1016_j_desal_2022_115708 crossref_primary_10_1007_s13762_024_05696_4 crossref_primary_10_1016_j_jwpe_2024_106882 crossref_primary_10_1016_j_jhazmat_2023_132178 crossref_primary_10_1016_j_memsci_2025_123887 crossref_primary_10_1016_j_fuel_2022_125632 crossref_primary_10_1016_j_chemosphere_2023_139950 crossref_primary_10_3390_membranes12121203 crossref_primary_10_1007_s00449_024_03079_0 |
Cites_doi | 10.2166/wst.2018.295 10.1093/femsre/fuv044 10.1007/s42398-019-00056-2 10.1016/j.ijhydene.2011.05.162 10.1016/j.watres.2015.05.058 10.1002/elan.200603628 10.1186/s40623-017-0739-7 10.1186/s13068-019-1477-9 10.1016/j.watres.2016.09.008 10.1016/j.biortech.2016.09.034 10.1016/j.ijhydene.2012.11.103 10.1016/j.jpowsour.2017.03.132 10.1016/j.biortech.2011.07.087 10.1007/s00253-008-1360-2 10.1177/0739456X17723971 10.3389/fenrg.2019.00106 10.1016/j.cej.2019.03.119 10.1007/s00253-011-3130-9 10.1016/j.apenergy.2016.09.043 10.1007/s11270-015-2567-3 10.1039/C4EE03359K 10.1016/j.bioflm.2021.100052 10.1016/j.jece.2015.10.026 10.1007/s11356-014-3158-3 10.1021/es0499344 10.1016/j.watres.2016.04.043 10.1016/j.biortech.2017.04.056 10.1111/j.1751-7915.2011.00302.x 10.1016/j.copbio.2019.08.014 10.1007/s10098-018-1536-0 10.1016/j.ijhydene.2018.10.153 10.1186/s13068-019-1368-0 10.1021/es2014264 10.1002/celc.201600079 10.1016/J.ENG.2016.04.017 10.1126/science.1217412 10.1145/2133360.2133363 10.1016/j.biortech.2013.09.025 10.1016/j.rser.2017.05.021 10.1016/j.electacta.2018.11.193 10.1016/j.jpowsour.2008.02.074 10.1016/j.biortech.2012.12.062 10.1007/s11356-019-04725-x 10.1016/j.biortech.2019.121943 10.1016/B978-0-12-387661-4.00004-5 10.1016/j.biortech.2016.04.047 10.1504/IJETM.2014.061797 10.1016/j.ijhydene.2018.07.056 10.1016/j.desal.2018.01.002 10.1016/j.watres.2007.08.013 10.1016/j.rser.2016.12.069 10.1021/es0605016 10.1016/j.biortech.2017.05.122 10.1080/08927014.2011.564615 10.1007/s11157-018-9478-x 10.1021/es8036302 10.2166/wst.2013.261 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.watres.2022.118142 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1879-2448 |
ExternalDocumentID | oai_HAL_hal_04125824v1 35217490 10_1016_j_watres_2022_118142 S0043135422001051 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSH SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- RIG SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ AFKWA AJOXV AMFUW NPM 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c429t-4f6e9f7294fb009b1cb6700123dadda9d820c6cc3792acdbc0b19b610f86a2b43 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri May 09 12:26:56 EDT 2025 Fri Jul 11 02:14:34 EDT 2025 Fri Jul 11 02:04:46 EDT 2025 Wed Feb 19 02:26:26 EST 2025 Tue Jul 01 01:21:11 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Sun Apr 06 06:54:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anodic treatment Performance Microbial electrochemical systems Meta-analysis Scale-up Microbial electrochemical systems, Meta-analysis, Anodic treatment, Scale-up, Performance |
Language | English |
License | Copyright © 2022. Published by Elsevier Ltd. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-4f6e9f7294fb009b1cb6700123dadda9d820c6cc3792acdbc0b19b610f86a2b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 35217490 |
PQID | 2633857650 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_04125824v1 proquest_miscellaneous_2636850574 proquest_miscellaneous_2633857650 pubmed_primary_35217490 crossref_primary_10_1016_j_watres_2022_118142 crossref_citationtrail_10_1016_j_watres_2022_118142 elsevier_sciencedirect_doi_10_1016_j_watres_2022_118142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2022 |
Publisher | Elsevier Ltd IWA Publishing/Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: IWA Publishing/Elsevier |
References | He, Angenent (bib0017) 2006; 18 Wang, He (bib0049) 2020; 19 Pandit, Patel, Ghangrekar, Das (bib0033) 2014; 17 Valladares Linares, Domínguez-Maldonado, Rodríguez-Leal, Patrón, Castillo-Hernández, Miranda, Diaz Romero, Moreno-Cervera, Camara-chale, Borroto, Alzate-Gaviria (bib0045) 2019; 11 Varjani, Joshi, Srivastava, Ngo, Guo (bib59) 2020; 27 Zeppilli, Villano, Aulenta, Lampis, Vallini, Majone (bib0053) 2015; 22 Feng, Wang, Logan, Lee (bib0010) 2008; 78 He, Du, Chen, Lu, Cheng, Chang, Wang (bib0015) 2017; 71 Schröder, Harnisch, Angenent (bib0039) 2015; 8 Tyler, Boyer, Minami, Zweng, Reagan (bib61) 2017; 69 McCarty, Bae, Kim (bib0030) 2011; 45 Tartakovsky, Mehta, Santoyo, Guiot (bib0043) 2011; 36 Desmond-Le Quéméner, Bridier, Tian, Madigou, Bureau, Qi, Bouchez (bib0007) 2019; 292 Liu, Ting, Zhou (bib0021) 2012; 6 Mateo, Mascia, Fernandez-Morales, Rodrigo, Di Lorenzo (bib0029) 2019; 297 Speers, Reguera (bib0041) 2021; 3 Gil-Carrera, Escapa, Mehta, Santoyo, Guiot, Morán, Tartakovsky (bib0012) 2013; 130 Roubaud, Lacroix, Da Silva, Etcheverry, Bergel, Basséguy, Erable (bib0038) 2019; 7 Tenca, Cusick, Schievano, Oberti, Logan (bib0044) 2013; 38 Prévoteau, Carvajal-Arroyo, Ganigué, Rabaey (bib0036) 2020; 62 Ebrahimi, Najafpour, Yousefi Kebria (bib0009) 2018; 432 Oliot, Galier, Roux de Balmann, Bergel (bib0032) 2016; 183 Nikhil, Yeruva, Venkata Mohan, Swamy (bib0031) 2016; 215 Chacón-Carrera, López-Ortiz, Collins-Martínez, Meléndez-Zaragoza, Salinas-Gutiérrez, Espinoza-Hicks, Ramos-Sánchez (bib0004) 2019; 44 Liu, Tursun, Hou, Odey, Li, Wang, Xie (bib0023) 2017; 241 He, Wallack, Kim, Zhang, Yang, Zhu, Feng, Logan (bib0016) 2016; 105 Ge, He (bib0011) 2016; 2 Logan, Rabaey (bib0025) 2012; 337 Gude (bib0013) 2018; 20 Liu, Logan (bib0022) 2004; 38 Rismani-Yazdi, Carver, Christy, Tuovinen (bib0037) 2008; 180 Wang, Han, Han, Li, Xu (bib0048) 2017; 238 Srikanth, Kumar, Singh, Singh, Das (bib0042) 2016; 221 Cusick, Bryan, Parker, Merrill, Mehanna, Kiely, Liu, Logan (bib0006) 2011; 89 Perazzoli, Bastos, Santana, Soares (bib0035) 2018; 78 Lovley, Ueki, Zhang, Malvankar, Shrestha, Flanagan, Aklujkar, Butler, Giloteaux, Rotaru, Holmes, Franks, Orellana, Risso, Nevin (bib0026) 2011 Zhang, Sun, Liu, Han, Dong, Li (bib0055) 2013; 68 Guo, Kim (bib0014) 2019; 12 Zeppilli, Simoni, Paiano, Majone (bib0052) 2019; 370 Virdis, Rabaey, Yuan, Rozendal, Keller (bib0047) 2009; 43 Wu, Li, Zhou, Liang, Zhang, Jiang, Huang (bib0050) 2016; 98 Toczyłowska-Mamińska (bib60) 2017; 78 Lu, Chen, Babanova, Phadke, Salvacion, Mirhosseini, Chan, Carpenter, Cortese, Bretschger (bib0027) 2017; 356 Sophia, Bhalambaal (bib0040) 2015; 3 Ahmed, Rozaik, Abdelhalim (bib0001) 2015; 226 Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib0024) 2006; 40 Erable, Etcheverry, Bergel (bib62) 2011; 27 Xiao, Watson (bib0051) 2019; 39 Koch, Harnisch (bib0019) 2016; 3 Li, Yu (bib0020) 2016; 2 Werkneh, Beyene, Osunkunle (bib58) 2019; 2 Dopson, Ni, Sleutels (bib0008) 2016; 40 Zhang, Angelidaki (bib0054) 2015; 81 Ketep, Fourest, Bergel (bib0018) 2013; 149 Slavov (bib57) 2017; 55 Maktabifard, Zaborowska, Makinia (bib0028) 2018; 17 Arends, Verstraete (bib0002) 2012; 5 Cresson, Escudié, Steyer, Delgenès, Bernet (bib0005) 2008; 42 Cecconet, Bolognesi, Daneshgar, Callegari, Capodaglio (bib0003) 2018; 43 Patil, Harnisch, Koch, Hübschmann, Fetzer, Carmona-Martínez, Müller, Schröder (bib0034) 2011; 102 Vilajeliu-Pons, Puig, Salcedo-Dávila, Balaguer, Colprim (bib0046) 2017; 3 Zhou, Mei, Liu, Xie, Xing (bib0056) 2019; 12 Ge (10.1016/j.watres.2022.118142_bib0011) 2016; 2 Perazzoli (10.1016/j.watres.2022.118142_bib0035) 2018; 78 Patil (10.1016/j.watres.2022.118142_bib0034) 2011; 102 Speers (10.1016/j.watres.2022.118142_bib0041) 2021; 3 Virdis (10.1016/j.watres.2022.118142_bib0047) 2009; 43 Arends (10.1016/j.watres.2022.118142_bib0002) 2012; 5 Liu (10.1016/j.watres.2022.118142_bib0022) 2004; 38 Liu (10.1016/j.watres.2022.118142_bib0023) 2017; 241 Lu (10.1016/j.watres.2022.118142_bib0027) 2017; 356 McCarty (10.1016/j.watres.2022.118142_bib0030) 2011; 45 Wang (10.1016/j.watres.2022.118142_bib0049) 2020; 19 Gude (10.1016/j.watres.2022.118142_bib0013) 2018; 20 Cresson (10.1016/j.watres.2022.118142_bib0005) 2008; 42 Valladares Linares (10.1016/j.watres.2022.118142_bib0045) 2019; 11 Ketep (10.1016/j.watres.2022.118142_bib0018) 2013; 149 Cusick (10.1016/j.watres.2022.118142_bib0006) 2011; 89 Toczyłowska-Mamińska (10.1016/j.watres.2022.118142_bib60) 2017; 78 Wu (10.1016/j.watres.2022.118142_bib0050) 2016; 98 Tartakovsky (10.1016/j.watres.2022.118142_bib0043) 2011; 36 Xiao (10.1016/j.watres.2022.118142_bib0051) 2019; 39 Ahmed (10.1016/j.watres.2022.118142_bib0001) 2015; 226 Nikhil (10.1016/j.watres.2022.118142_bib0031) 2016; 215 He (10.1016/j.watres.2022.118142_bib0017) 2006; 18 Mateo (10.1016/j.watres.2022.118142_bib0029) 2019; 297 Cecconet (10.1016/j.watres.2022.118142_bib0003) 2018; 43 Chacón-Carrera (10.1016/j.watres.2022.118142_bib0004) 2019; 44 Zhang (10.1016/j.watres.2022.118142_bib0055) 2013; 68 Tenca (10.1016/j.watres.2022.118142_bib0044) 2013; 38 Rismani-Yazdi (10.1016/j.watres.2022.118142_bib0037) 2008; 180 Slavov (10.1016/j.watres.2022.118142_bib57) 2017; 55 Zeppilli (10.1016/j.watres.2022.118142_bib0053) 2015; 22 Sophia (10.1016/j.watres.2022.118142_bib0040) 2015; 3 Varjani (10.1016/j.watres.2022.118142_bib59) 2020; 27 Vilajeliu-Pons (10.1016/j.watres.2022.118142_bib0046) 2017; 3 Erable (10.1016/j.watres.2022.118142_bib62) 2011; 27 Tyler (10.1016/j.watres.2022.118142_bib61) 2017; 69 Zhang (10.1016/j.watres.2022.118142_bib0054) 2015; 81 Wang (10.1016/j.watres.2022.118142_bib0048) 2017; 238 He (10.1016/j.watres.2022.118142_bib0016) 2016; 105 Prévoteau (10.1016/j.watres.2022.118142_bib0036) 2020; 62 Feng (10.1016/j.watres.2022.118142_bib0010) 2008; 78 Schröder (10.1016/j.watres.2022.118142_bib0039) 2015; 8 Dopson (10.1016/j.watres.2022.118142_bib0008) 2016; 40 Werkneh (10.1016/j.watres.2022.118142_bib58) 2019; 2 Li (10.1016/j.watres.2022.118142_bib0020) 2016; 2 Logan (10.1016/j.watres.2022.118142_bib0024) 2006; 40 Oliot (10.1016/j.watres.2022.118142_bib0032) 2016; 183 Liu (10.1016/j.watres.2022.118142_bib0021) 2012; 6 Guo (10.1016/j.watres.2022.118142_bib0014) 2019; 12 Desmond-Le Quéméner (10.1016/j.watres.2022.118142_bib0007) 2019; 292 Ebrahimi (10.1016/j.watres.2022.118142_bib0009) 2018; 432 Zeppilli (10.1016/j.watres.2022.118142_bib0052) 2019; 370 Gil-Carrera (10.1016/j.watres.2022.118142_bib0012) 2013; 130 Srikanth (10.1016/j.watres.2022.118142_bib0042) 2016; 221 Roubaud (10.1016/j.watres.2022.118142_bib0038) 2019; 7 He (10.1016/j.watres.2022.118142_bib0015) 2017; 71 Logan (10.1016/j.watres.2022.118142_bib0025) 2012; 337 Zhou (10.1016/j.watres.2022.118142_bib0056) 2019; 12 Lovley (10.1016/j.watres.2022.118142_bib0026) 2011 Koch (10.1016/j.watres.2022.118142_bib0019) 2016; 3 Maktabifard (10.1016/j.watres.2022.118142_bib0028) 2018; 17 Pandit (10.1016/j.watres.2022.118142_bib0033) 2014; 17 |
References_xml | – volume: 221 start-page: 70 year: 2016 end-page: 77 ident: bib0042 article-title: Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation publication-title: Bioresour. Technol. – volume: 78 start-page: 873 year: 2008 end-page: 880 ident: bib0010 article-title: Brewery wastewater treatment using air-cathode microbial fuel cells publication-title: Appl. Microbiol. Biotechnol. – volume: 45 start-page: 7100 year: 2011 end-page: 7106 ident: bib0030 article-title: Domestic wastewater treatment as a net energy producer–can this be achieved? publication-title: Environ. Sci. Technol. – volume: 18 start-page: 2009 year: 2006 end-page: 2015 ident: bib0017 article-title: Application of bacterial biocathodes in microbial fuel cells publication-title: Electroanalysis – volume: 102 start-page: 9683 year: 2011 end-page: 9690 ident: bib0034 article-title: Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition publication-title: Bioresour. Technol. – volume: 17 start-page: 252 year: 2014 end-page: 266 ident: bib0033 article-title: Wastewater as anolyte for bioelectricity generation in graphite granule anode single chambered microbial fuel cell: effect of current collector publication-title: Int. J. Environ. Technol. Manage. – volume: 43 start-page: 5144 year: 2009 end-page: 5149 ident: bib0047 article-title: Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal publication-title: Environ. Sci. Technol. – volume: 183 start-page: 1682 year: 2016 end-page: 1704 ident: bib0032 article-title: Ion transport in microbial fuel cells: key roles, theory and critical review publication-title: Appl. Energy – volume: 3 start-page: 947 year: 2017 end-page: 959 ident: bib0046 article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials publication-title: Environ. Sci. – volume: 12 year: 2019 ident: bib0056 article-title: Magnet anode enhances extracellular electron transfer and enrichment of exoelectrogenic bacteria in bioelectrochemical systems publication-title: Biotechnol. Biofuels – volume: 5 start-page: 333 year: 2012 end-page: 346 ident: bib0002 article-title: 100 years of microbial electricity production: three concepts for the future publication-title: Microb. Biotechnol. – volume: 89 start-page: 2053 year: 2011 end-page: 2063 ident: bib0006 article-title: Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater publication-title: Appl. Microbiol. Biotechnol. – volume: 241 start-page: 439 year: 2017 end-page: 447 ident: bib0023 article-title: Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage publication-title: Bioresour. Technol. – volume: 40 start-page: 164 year: 2016 end-page: 181 ident: bib0008 article-title: Possibilities for extremophilic microorganisms in microbial electrochemical systems publication-title: FEMS Microbiol. Rev. – volume: 62 start-page: 48 year: 2020 end-page: 57 ident: bib0036 article-title: Microbial electrosynthesis from CO2: forever a promise? publication-title: Curr. Opin. Biotechnol., Energy Biotechnol. ● Environ. Biotechnol. – volume: 69 start-page: 156 year: 2017 ident: bib61 article-title: Electrical conductivity of the global ocean publication-title: Earth, Planets and Space – volume: 39 start-page: 93 year: 2019 end-page: 112 ident: bib0051 article-title: Guidance on conducting a systematic literature review publication-title: J. Plann. Educ. Res. – volume: 44 start-page: 12339 year: 2019 end-page: 12345 ident: bib0004 article-title: Assessment of two ionic exchange membranes in a bioelectrochemical system for wastewater treatment and hydrogen production publication-title: Int. J. Hydrogen Energy – volume: 6 year: 2012 ident: bib0021 article-title: Isolation-based anomaly detection publication-title: ACM Trans. Knowl. Discov. Data – volume: 180 start-page: 683 year: 2008 end-page: 694 ident: bib0037 article-title: Cathodic limitations in microbial fuel cells: an overview publication-title: J. Power Sources – volume: 43 start-page: 16719 year: 2018 end-page: 16727 ident: bib0003 article-title: Improved process understanding and optimization by multivariate statistical analysis of Microbial Fuel Cells operation publication-title: Int. J. Hydrogen Energy – volume: 68 start-page: 494 year: 2013 end-page: 498 ident: bib0055 article-title: Electricity production from molasses wastewater in two-chamber microbial fuel cell publication-title: Water Sci. Technol. – volume: 78 start-page: 301 year: 2018 end-page: 309 ident: bib0035 article-title: Biological fuel cells produce bioelectricity with in-situ brackish water purification publication-title: Water Sci. Technol. – volume: 292 year: 2019 ident: bib0007 article-title: Biorefinery for heterogeneous organic waste using microbial electrochemical technology publication-title: Bioresour. Technol. – volume: 12 year: 2019 ident: bib0014 article-title: Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater publication-title: Biotechnol. Biofuels – volume: 215 start-page: 247 year: 2016 end-page: 253 ident: bib0031 article-title: Assessing potential cathodes for resource recovery through wastewater treatment and salinity removal using non-buffered microbial electrochemical systems publication-title: Bioresour. Technol. – volume: 3 start-page: 1282 year: 2016 end-page: 1295 ident: bib0019 article-title: Is there a specific ecological niche for electroactive microorganisms? publication-title: ChemElectroChem – volume: 27 start-page: 27172 year: 2020 end-page: 27180 ident: bib59 article-title: Treatment of wastewater from petroleum industry: current practices and perspectives publication-title: Environ. Sci. Pollut. Res. – volume: 3 year: 2021 ident: bib0041 article-title: Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems publication-title: Biofilm – volume: 130 start-page: 584 year: 2013 end-page: 591 ident: bib0012 article-title: Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production publication-title: Bioresour. Technol. – volume: 238 start-page: 333 year: 2017 end-page: 342 ident: bib0048 article-title: Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: a pilot scale study publication-title: Bioresour. Technol. – volume: 7 year: 2019 ident: bib0038 article-title: Benchmarking of industrial synthetic graphite grades, carbon felt, and carbon cloth as cost-efficient bioanode materials for domestic wastewater fed microbial electrolysis cells publication-title: Front. Energy Res. – volume: 22 start-page: 7349 year: 2015 end-page: 7360 ident: bib0053 article-title: Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell publication-title: Environ. Sci. Pollut. Res. – volume: 42 start-page: 792 year: 2008 end-page: 800 ident: bib0005 article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors publication-title: Water Res. – volume: 432 start-page: 1 year: 2018 end-page: 9 ident: bib0009 article-title: Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions publication-title: Desalination – volume: 17 start-page: 655 year: 2018 end-page: 689 ident: bib0028 article-title: Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production publication-title: Rev. Environ. Sci. Biotechnol. – volume: 8 start-page: 513 year: 2015 end-page: 519 ident: bib0039 article-title: Microbial electrochemistry and technology: terminology and classification publication-title: Energy Environ. Sci. – volume: 356 start-page: 274 year: 2017 end-page: 287 ident: bib0027 article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater publication-title: J. Power Sources – volume: 98 start-page: 396 year: 2016 end-page: 403 ident: bib0050 article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment publication-title: Water Res. – volume: 337 start-page: 686 year: 2012 end-page: 690 ident: bib0025 article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies publication-title: Science – volume: 3 start-page: 2768 year: 2015 end-page: 2776 ident: bib0040 article-title: Utilization of coconut shell carbon in the anode compartment of microbial desalination cell (MDC) for enhanced desalination and bio-electricity production publication-title: J. Environ. Chem. Eng. – volume: 11 start-page: 217 year: 2019 ident: bib0045 article-title: Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation publication-title: Water (Basel) – volume: 19 start-page: 14 year: 2020 end-page: 19 ident: bib0049 article-title: Demystifying terms for understanding bioelectrochemical systems towards sustainable wastewater treatment publication-title: Curr. Opin. Electrochem., Fundam. Theor. Electrochem. ● Bioelectrochem. – volume: 2 start-page: 438 year: 2016 end-page: 446 ident: bib0020 article-title: Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment publication-title: Engineering – volume: 2 start-page: 199 year: 2019 end-page: 209 ident: bib58 article-title: Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery: a review publication-title: Environmental Sustainability – volume: 81 start-page: 188 year: 2015 end-page: 195 ident: bib0054 article-title: Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali publication-title: Water Res. – volume: 36 start-page: 10557 year: 2011 end-page: 10564 ident: bib0043 article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2011 end-page: 100 ident: bib0026 article-title: Geobacter: the microbe electric's physiology, ecology, and practical applications publication-title: Advances in Microbial Physiology, Advances in Microbial Physiology – volume: 38 start-page: 4040 year: 2004 end-page: 4046 ident: bib0022 article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane publication-title: Environ. Sci. Technol. – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: bib0024 article-title: Microbial fuel cells: methodology and technology publication-title: Environ. Sci. Technol. – volume: 38 start-page: 1859 year: 2013 end-page: 1865 ident: bib0044 article-title: Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 319 year: 2011 end-page: 326 ident: bib62 article-title: From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater publication-title: Biofouling – volume: 71 start-page: 388 year: 2017 end-page: 403 ident: bib0015 article-title: Advances in microbial fuel cells for wastewater treatment publication-title: Renewable Sustainable Energy Rev. – volume: 55 start-page: 14 year: 2017 end-page: 28 ident: bib57 article-title: General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review publication-title: Food Technol. Biotechnol. – volume: 2 start-page: 274 year: 2016 end-page: 281 ident: bib0011 article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost publication-title: Environ. Sci. – volume: 297 start-page: 297 year: 2019 end-page: 306 ident: bib0029 article-title: Assessing the impact of design factors on the performance of two miniature microbial fuel cells publication-title: Electrochim. Acta – volume: 149 start-page: 117 year: 2013 end-page: 125 ident: bib0018 article-title: Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions publication-title: Bioresour. Technol. – volume: 78 start-page: 764 year: 2017 end-page: 772 ident: bib60 article-title: Limits and perspectives of pulp and paper industry wastewater treatment – A review publication-title: Renewable and Sustainable Energy Reviews – volume: 226 year: 2015 ident: bib0001 article-title: Effect of configurations, bacterial adhesion, and anode surface area on performance of microbial fuel cells used for treatment of synthetic wastewater publication-title: Water Air Soil Pollut. – volume: 20 start-page: 911 year: 2018 end-page: 924 ident: bib0013 article-title: Integrating bioelectrochemical systems for sustainable wastewater treatment publication-title: Clean Techn. Environ. Policy – volume: 370 start-page: 466 year: 2019 end-page: 476 ident: bib0052 article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading publication-title: Chem. Eng. J. – volume: 105 start-page: 351 year: 2016 end-page: 360 ident: bib0016 article-title: The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant publication-title: Water Res. – volume: 78 start-page: 301 year: 2018 ident: 10.1016/j.watres.2022.118142_bib0035 article-title: Biological fuel cells produce bioelectricity with in-situ brackish water purification publication-title: Water Sci. Technol. doi: 10.2166/wst.2018.295 – volume: 40 start-page: 164 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0008 article-title: Possibilities for extremophilic microorganisms in microbial electrochemical systems publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuv044 – volume: 2 start-page: 199 year: 2019 ident: 10.1016/j.watres.2022.118142_bib58 article-title: Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery: a review publication-title: Environmental Sustainability doi: 10.1007/s42398-019-00056-2 – volume: 36 start-page: 10557 year: 2011 ident: 10.1016/j.watres.2022.118142_bib0043 article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.162 – volume: 81 start-page: 188 year: 2015 ident: 10.1016/j.watres.2022.118142_bib0054 article-title: Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali publication-title: Water Res. doi: 10.1016/j.watres.2015.05.058 – volume: 2 start-page: 274 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0011 article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost publication-title: Environ. Sci. – volume: 18 start-page: 2009 year: 2006 ident: 10.1016/j.watres.2022.118142_bib0017 article-title: Application of bacterial biocathodes in microbial fuel cells publication-title: Electroanalysis doi: 10.1002/elan.200603628 – volume: 19 start-page: 14 year: 2020 ident: 10.1016/j.watres.2022.118142_bib0049 article-title: Demystifying terms for understanding bioelectrochemical systems towards sustainable wastewater treatment publication-title: Curr. Opin. Electrochem., Fundam. Theor. Electrochem. ● Bioelectrochem. – volume: 69 start-page: 156 year: 2017 ident: 10.1016/j.watres.2022.118142_bib61 article-title: Electrical conductivity of the global ocean publication-title: Earth, Planets and Space doi: 10.1186/s40623-017-0739-7 – volume: 12 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0056 article-title: Magnet anode enhances extracellular electron transfer and enrichment of exoelectrogenic bacteria in bioelectrochemical systems publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1477-9 – volume: 55 start-page: 14 year: 2017 ident: 10.1016/j.watres.2022.118142_bib57 article-title: General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review publication-title: Food Technol. Biotechnol. – volume: 105 start-page: 351 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0016 article-title: The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant publication-title: Water Res. doi: 10.1016/j.watres.2016.09.008 – volume: 221 start-page: 70 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0042 article-title: Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.034 – volume: 38 start-page: 1859 year: 2013 ident: 10.1016/j.watres.2022.118142_bib0044 article-title: Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.11.103 – volume: 356 start-page: 274 year: 2017 ident: 10.1016/j.watres.2022.118142_bib0027 article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.132 – volume: 102 start-page: 9683 year: 2011 ident: 10.1016/j.watres.2022.118142_bib0034 article-title: Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.087 – volume: 78 start-page: 873 year: 2008 ident: 10.1016/j.watres.2022.118142_bib0010 article-title: Brewery wastewater treatment using air-cathode microbial fuel cells publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1360-2 – volume: 39 start-page: 93 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0051 article-title: Guidance on conducting a systematic literature review publication-title: J. Plann. Educ. Res. doi: 10.1177/0739456X17723971 – volume: 7 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0038 article-title: Benchmarking of industrial synthetic graphite grades, carbon felt, and carbon cloth as cost-efficient bioanode materials for domestic wastewater fed microbial electrolysis cells publication-title: Front. Energy Res. doi: 10.3389/fenrg.2019.00106 – volume: 370 start-page: 466 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0052 article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.119 – volume: 89 start-page: 2053 year: 2011 ident: 10.1016/j.watres.2022.118142_bib0006 article-title: Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3130-9 – volume: 183 start-page: 1682 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0032 article-title: Ion transport in microbial fuel cells: key roles, theory and critical review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.09.043 – volume: 226 year: 2015 ident: 10.1016/j.watres.2022.118142_bib0001 article-title: Effect of configurations, bacterial adhesion, and anode surface area on performance of microbial fuel cells used for treatment of synthetic wastewater publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-015-2567-3 – volume: 8 start-page: 513 year: 2015 ident: 10.1016/j.watres.2022.118142_bib0039 article-title: Microbial electrochemistry and technology: terminology and classification publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03359K – volume: 3 year: 2021 ident: 10.1016/j.watres.2022.118142_bib0041 article-title: Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems publication-title: Biofilm doi: 10.1016/j.bioflm.2021.100052 – volume: 3 start-page: 2768 year: 2015 ident: 10.1016/j.watres.2022.118142_bib0040 article-title: Utilization of coconut shell carbon in the anode compartment of microbial desalination cell (MDC) for enhanced desalination and bio-electricity production publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2015.10.026 – volume: 22 start-page: 7349 year: 2015 ident: 10.1016/j.watres.2022.118142_bib0053 article-title: Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3158-3 – volume: 38 start-page: 4040 year: 2004 ident: 10.1016/j.watres.2022.118142_bib0022 article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane publication-title: Environ. Sci. Technol. doi: 10.1021/es0499344 – volume: 98 start-page: 396 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0050 article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment publication-title: Water Res. doi: 10.1016/j.watres.2016.04.043 – volume: 238 start-page: 333 year: 2017 ident: 10.1016/j.watres.2022.118142_bib0048 article-title: Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: a pilot scale study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.056 – volume: 11 start-page: 217 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0045 article-title: Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation publication-title: Water (Basel) – volume: 5 start-page: 333 year: 2012 ident: 10.1016/j.watres.2022.118142_bib0002 article-title: 100 years of microbial electricity production: three concepts for the future publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2011.00302.x – volume: 62 start-page: 48 year: 2020 ident: 10.1016/j.watres.2022.118142_bib0036 article-title: Microbial electrosynthesis from CO2: forever a promise? publication-title: Curr. Opin. Biotechnol., Energy Biotechnol. ● Environ. Biotechnol. doi: 10.1016/j.copbio.2019.08.014 – volume: 20 start-page: 911 year: 2018 ident: 10.1016/j.watres.2022.118142_bib0013 article-title: Integrating bioelectrochemical systems for sustainable wastewater treatment publication-title: Clean Techn. Environ. Policy doi: 10.1007/s10098-018-1536-0 – volume: 44 start-page: 12339 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0004 article-title: Assessment of two ionic exchange membranes in a bioelectrochemical system for wastewater treatment and hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.153 – volume: 12 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0014 article-title: Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1368-0 – volume: 45 start-page: 7100 year: 2011 ident: 10.1016/j.watres.2022.118142_bib0030 article-title: Domestic wastewater treatment as a net energy producer–can this be achieved? publication-title: Environ. Sci. Technol. doi: 10.1021/es2014264 – volume: 3 start-page: 1282 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0019 article-title: Is there a specific ecological niche for electroactive microorganisms? publication-title: ChemElectroChem doi: 10.1002/celc.201600079 – volume: 2 start-page: 438 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0020 article-title: Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment publication-title: Engineering doi: 10.1016/J.ENG.2016.04.017 – volume: 337 start-page: 686 year: 2012 ident: 10.1016/j.watres.2022.118142_bib0025 article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies publication-title: Science doi: 10.1126/science.1217412 – volume: 6 year: 2012 ident: 10.1016/j.watres.2022.118142_bib0021 article-title: Isolation-based anomaly detection publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2133360.2133363 – volume: 149 start-page: 117 year: 2013 ident: 10.1016/j.watres.2022.118142_bib0018 article-title: Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.09.025 – volume: 78 start-page: 764 year: 2017 ident: 10.1016/j.watres.2022.118142_bib60 article-title: Limits and perspectives of pulp and paper industry wastewater treatment – A review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.05.021 – volume: 297 start-page: 297 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0029 article-title: Assessing the impact of design factors on the performance of two miniature microbial fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.193 – volume: 180 start-page: 683 year: 2008 ident: 10.1016/j.watres.2022.118142_bib0037 article-title: Cathodic limitations in microbial fuel cells: an overview publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.02.074 – volume: 130 start-page: 584 year: 2013 ident: 10.1016/j.watres.2022.118142_bib0012 article-title: Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.062 – volume: 3 start-page: 947 year: 2017 ident: 10.1016/j.watres.2022.118142_bib0046 article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials publication-title: Environ. Sci. – volume: 27 start-page: 27172 year: 2020 ident: 10.1016/j.watres.2022.118142_bib59 article-title: Treatment of wastewater from petroleum industry: current practices and perspectives publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04725-x – volume: 292 year: 2019 ident: 10.1016/j.watres.2022.118142_bib0007 article-title: Biorefinery for heterogeneous organic waste using microbial electrochemical technology publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121943 – start-page: 1 year: 2011 ident: 10.1016/j.watres.2022.118142_bib0026 article-title: Geobacter: the microbe electric's physiology, ecology, and practical applications doi: 10.1016/B978-0-12-387661-4.00004-5 – volume: 215 start-page: 247 year: 2016 ident: 10.1016/j.watres.2022.118142_bib0031 article-title: Assessing potential cathodes for resource recovery through wastewater treatment and salinity removal using non-buffered microbial electrochemical systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.047 – volume: 17 start-page: 252 year: 2014 ident: 10.1016/j.watres.2022.118142_bib0033 article-title: Wastewater as anolyte for bioelectricity generation in graphite granule anode single chambered microbial fuel cell: effect of current collector publication-title: Int. J. Environ. Technol. Manage. doi: 10.1504/IJETM.2014.061797 – volume: 43 start-page: 16719 year: 2018 ident: 10.1016/j.watres.2022.118142_bib0003 article-title: Improved process understanding and optimization by multivariate statistical analysis of Microbial Fuel Cells operation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.056 – volume: 432 start-page: 1 year: 2018 ident: 10.1016/j.watres.2022.118142_bib0009 article-title: Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions publication-title: Desalination doi: 10.1016/j.desal.2018.01.002 – volume: 42 start-page: 792 year: 2008 ident: 10.1016/j.watres.2022.118142_bib0005 article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors publication-title: Water Res. doi: 10.1016/j.watres.2007.08.013 – volume: 71 start-page: 388 year: 2017 ident: 10.1016/j.watres.2022.118142_bib0015 article-title: Advances in microbial fuel cells for wastewater treatment publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2016.12.069 – volume: 40 start-page: 5181 year: 2006 ident: 10.1016/j.watres.2022.118142_bib0024 article-title: Microbial fuel cells: methodology and technology publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 241 start-page: 439 year: 2017 ident: 10.1016/j.watres.2022.118142_bib0023 article-title: Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.122 – volume: 27 start-page: 319 year: 2011 ident: 10.1016/j.watres.2022.118142_bib62 article-title: From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater publication-title: Biofouling doi: 10.1080/08927014.2011.564615 – volume: 17 start-page: 655 year: 2018 ident: 10.1016/j.watres.2022.118142_bib0028 article-title: Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-018-9478-x – volume: 43 start-page: 5144 year: 2009 ident: 10.1016/j.watres.2022.118142_bib0047 article-title: Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal publication-title: Environ. Sci. Technol. doi: 10.1021/es8036302 – volume: 68 start-page: 494 year: 2013 ident: 10.1016/j.watres.2022.118142_bib0055 article-title: Electricity production from molasses wastewater in two-chamber microbial fuel cell publication-title: Water Sci. Technol. doi: 10.2166/wst.2013.261 |
SSID | ssj0002239 |
Score | 2.5020535 |
SecondaryResourceType | review_article |
Snippet | •A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and... Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118142 |
SubjectTerms | activated sludge Anodic treatment chemical oxygen demand electric power electrolysis energy efficiency Environmental Sciences Meta-analysis Microbial electrochemical systems quantitative analysis Scale-up systematic review wastewater wastewater treatment water |
Title | Systematic and quantitative analysis of two decades of anodic wastewater treatment in bioelectrochemical reactors |
URI | https://dx.doi.org/10.1016/j.watres.2022.118142 https://www.ncbi.nlm.nih.gov/pubmed/35217490 https://www.proquest.com/docview/2633857650 https://www.proquest.com/docview/2636850574 https://hal.inrae.fr/hal-04125824 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RuLQH1EIfW1rkol4Du45jx8cVAm0L5VKQuFl-RV1UJdDusrf-dmacR-FAkXq0Y-fhGc8jnm8G4HMoXeGRczLltEYHJerMKVlkQWnJ3UTHkOBi387k7EJ8vSwu1-Cwx8JQWGUn-1uZnqR113PQrebB9XxOGF9UfnkhOE9lHhOCXSji8v0_f8M8UP3p_pSZRvfwuRTjtbIEyEAvkfN9QmAK_ph6evaD4iQfM0KTMjp-CZudFcmm7Yu-grVYb8GLe7kFt-Hm-5Cjmdk6sJulrROgDMUbdrSpSFhTscWqYSFSmHxq2roJOGVlf9NvNVx1NsSis3nN3LzpKuf4LtUAw8upZs9ruDg-Oj-cZV19hcyjFlpkopJRV2hdiwo3n3YT7wi0g7osoNSzOqB14KX3udLc-uD8GInn0N6qSmm5E_kbWK-bOr4DpjlXUbkwlk6hgcWdizGXExmqIL0q7QjyflmN75KPUw2Mn6aPMrsyLTEMEcO0xBhBNsy6bpNvPDFe9RQzD5jIoH54YuYeEnh4COXcnk1PDfVRQrKi5OJ2MoJPPf0NbkI6WbF1bJZ4J4mePnpuxfifY2RJ7qAYwduWeYbnoRWMnqEev__vD9iB59RqQzE_wPri1zJ-RHNp4XbTftiFjemXk9nZHSKjFVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2UJXSx_YBLuo1ZddJ7Pi4QkUBlr0UJG6WXxGLUALtbvfvdyZxovZAkXqM7cnDY88jnvkG4IsvbO5w5STSKoUOSlCJlSJPvFSC26kKvk0XO1-I8jI7vcqvtuCoz4WhsMoo-zuZ3krr2HIYZ_PwbrmkHF9Ufmmecd6WeUQXaJvQqfIRbM9OzsrFIJBRA6r-oJkI-gy6NsxrYygnAx1Fzr9SEmbGH9JQT64pVPIhO7TVR8cv4UU0JNmse9cd2Ar1K3j-B7zgLtx_H2Camak9u1-bus0pQwmHDR0aCWsqtto0zAeKlG8vTd14JNmYn_RnDSeeDeHobFkzu2xi8RwX0QYYdrdle17D5fG3i6MyiSUWEoeKaJVklQiqQgM7q3D_KTt1lvJ2UJ15FHxGeTQQnHAulYob562bIP8smlxVIQy3WfoGRnVTh3fAFOcySOsnwkq0sbi1IaRiKnzlhZOFGUPaT6t2EX-cymDc6j7Q7EZ3zNDEDN0xYwzJQHXX4W88Ml72HNN_rSONKuIRygNk8PAQgt0uZ3NNbYRJlhc8-zUdw-ee_xr3IR2umDo0a7yTQGcfnbd88s8xoiCPMBvD227xDM9DQxidQzV5_98fsA9Py4vzuZ6fLM4-wDPq6SIzP8Jo9WMdPqH1tLJ7cXf8BpFTGA0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+and+quantitative+analysis+of+two+decades+of+anodic+wastewater+treatment+in+bioelectrochemical+reactors&rft.jtitle=Water+research+%28Oxford%29&rft.au=de+Fouch%C3%A9cour%2C+Florence&rft.au=Larzilli%C3%A8re%2C+Valentin&rft.au=Bouchez%2C+Th%C3%A9odore&rft.au=Moscoviz%2C+Roman&rft.date=2022-05-01&rft.pub=IWA+Publishing%2FElsevier&rft.issn=0043-1354&rft.volume=214&rft_id=info:doi/10.1016%2Fj.watres.2022.118142&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04125824v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |