Systematic and quantitative analysis of two decades of anodic wastewater treatment in bioelectrochemical reactors

•A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and 18%.•Key variables like pH or conductivity are rarely reported (< 50% of the cases).•Scale-up has now started: 4.5% of the observations had an...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 214; p. 118142
Main Authors de Fouchécour, Florence, Larzillière, Valentin, Bouchez, Théodore, Moscoviz, Roman
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2022
IWA Publishing/Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and 18%.•Key variables like pH or conductivity are rarely reported (< 50% of the cases).•Scale-up has now started: 4.5% of the observations had an anodic volume over 10 L. Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement. [Display omitted]
AbstractList Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement.
Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement.Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement.
•A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and 18%.•Key variables like pH or conductivity are rarely reported (< 50% of the cases).•Scale-up has now started: 4.5% of the observations had an anodic volume over 10 L. Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement. [Display omitted]
ArticleNumber 118142
Author de Fouchécour, Florence
Larzillière, Valentin
Moscoviz, Roman
Bouchez, Théodore
Author_xml – sequence: 1
  givenname: Florence
  surname: de Fouchécour
  fullname: de Fouchécour, Florence
  email: florence.defouchecour@gmail.fr
  organization: Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
– sequence: 2
  givenname: Valentin
  surname: Larzillière
  fullname: Larzillière, Valentin
  organization: Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
– sequence: 3
  givenname: Théodore
  surname: Bouchez
  fullname: Bouchez, Théodore
  organization: Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
– sequence: 4
  givenname: Roman
  surname: Moscoviz
  fullname: Moscoviz, Roman
  organization: SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 78230, Le Pecq, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35217490$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-04125824$$DView record in HAL
BookMark eNqNkU1vEzEQhi1URNPCP0Boj3DYYHu9H-aAVFX9QIrUQ-FszdqzqqNdu7GdRPn3ON3SQw_AyZrx84xG856RE-cdEvKR0SWjrPm6Xu4hBYxLTjlfMtYxwd-QBetaWXIhuhOyoFRUJatqcUrOYlxTmslKviOnVc1ZKyRdkM39ISacIFldgDPFZgsu2ZTrHeYGjIdoY-GHIu19YVCDwacSnDdZ2UO28x4YirwLpAldKqwreutxRJ2C1w84WQ1jkb918iG-J28HGCN-eH7Pya_rq5-Xt-Xq7ubH5cWq1ILLVIqhQTm0XIqhp1T2TPdNSynjlQFjQJqOU91oXbWSgza9pj2TfcPo0DXAe1Gdky_z3AcY1WOwE4SD8mDV7cVKHXtUMF53XOxYZj_P7GPwmy3GpCYbNY4jOPTbqHhTNV1N61b8D1p1ddvUNKOfntFtP6F5WeLP9TMgZkAHH2PA4QVhVB1DVms1h6yOIas55Kx9e6Xpp8S8SwHs-C_5-yxjvv3OYlBRW3QajQ05MGW8_fuA37V5xec
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169186
crossref_primary_10_1016_j_cej_2023_144001
crossref_primary_10_1016_j_biortech_2022_128371
crossref_primary_10_1016_j_watres_2023_119620
crossref_primary_10_1016_j_bioelechem_2023_108577
crossref_primary_10_1093_ismeco_ycae143
crossref_primary_10_1016_j_molliq_2023_121704
crossref_primary_10_1016_j_cej_2022_139530
crossref_primary_10_1016_j_desal_2022_115708
crossref_primary_10_1007_s13762_024_05696_4
crossref_primary_10_1016_j_jwpe_2024_106882
crossref_primary_10_1016_j_jhazmat_2023_132178
crossref_primary_10_1016_j_memsci_2025_123887
crossref_primary_10_1016_j_fuel_2022_125632
crossref_primary_10_1016_j_chemosphere_2023_139950
crossref_primary_10_3390_membranes12121203
crossref_primary_10_1007_s00449_024_03079_0
Cites_doi 10.2166/wst.2018.295
10.1093/femsre/fuv044
10.1007/s42398-019-00056-2
10.1016/j.ijhydene.2011.05.162
10.1016/j.watres.2015.05.058
10.1002/elan.200603628
10.1186/s40623-017-0739-7
10.1186/s13068-019-1477-9
10.1016/j.watres.2016.09.008
10.1016/j.biortech.2016.09.034
10.1016/j.ijhydene.2012.11.103
10.1016/j.jpowsour.2017.03.132
10.1016/j.biortech.2011.07.087
10.1007/s00253-008-1360-2
10.1177/0739456X17723971
10.3389/fenrg.2019.00106
10.1016/j.cej.2019.03.119
10.1007/s00253-011-3130-9
10.1016/j.apenergy.2016.09.043
10.1007/s11270-015-2567-3
10.1039/C4EE03359K
10.1016/j.bioflm.2021.100052
10.1016/j.jece.2015.10.026
10.1007/s11356-014-3158-3
10.1021/es0499344
10.1016/j.watres.2016.04.043
10.1016/j.biortech.2017.04.056
10.1111/j.1751-7915.2011.00302.x
10.1016/j.copbio.2019.08.014
10.1007/s10098-018-1536-0
10.1016/j.ijhydene.2018.10.153
10.1186/s13068-019-1368-0
10.1021/es2014264
10.1002/celc.201600079
10.1016/J.ENG.2016.04.017
10.1126/science.1217412
10.1145/2133360.2133363
10.1016/j.biortech.2013.09.025
10.1016/j.rser.2017.05.021
10.1016/j.electacta.2018.11.193
10.1016/j.jpowsour.2008.02.074
10.1016/j.biortech.2012.12.062
10.1007/s11356-019-04725-x
10.1016/j.biortech.2019.121943
10.1016/B978-0-12-387661-4.00004-5
10.1016/j.biortech.2016.04.047
10.1504/IJETM.2014.061797
10.1016/j.ijhydene.2018.07.056
10.1016/j.desal.2018.01.002
10.1016/j.watres.2007.08.013
10.1016/j.rser.2016.12.069
10.1021/es0605016
10.1016/j.biortech.2017.05.122
10.1080/08927014.2011.564615
10.1007/s11157-018-9478-x
10.1021/es8036302
10.2166/wst.2013.261
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Ltd.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Ltd.
– notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
DOI 10.1016/j.watres.2022.118142
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1879-2448
ExternalDocumentID oai_HAL_hal_04125824v1
35217490
10_1016_j_watres_2022_118142
S0043135422001051
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
AFKWA
AJOXV
AMFUW
NPM
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c429t-4f6e9f7294fb009b1cb6700123dadda9d820c6cc3792acdbc0b19b610f86a2b43
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri May 09 12:26:56 EDT 2025
Fri Jul 11 02:14:34 EDT 2025
Fri Jul 11 02:04:46 EDT 2025
Wed Feb 19 02:26:26 EST 2025
Tue Jul 01 01:21:11 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Sun Apr 06 06:54:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Anodic treatment
Performance
Microbial electrochemical systems
Meta-analysis
Scale-up
Microbial electrochemical systems, Meta-analysis, Anodic treatment, Scale-up, Performance
Language English
License Copyright © 2022. Published by Elsevier Ltd.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-4f6e9f7294fb009b1cb6700123dadda9d820c6cc3792acdbc0b19b610f86a2b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 35217490
PQID 2633857650
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04125824v1
proquest_miscellaneous_2636850574
proquest_miscellaneous_2633857650
pubmed_primary_35217490
crossref_primary_10_1016_j_watres_2022_118142
crossref_citationtrail_10_1016_j_watres_2022_118142
elsevier_sciencedirect_doi_10_1016_j_watres_2022_118142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2022
Publisher Elsevier Ltd
IWA Publishing/Elsevier
Publisher_xml – name: Elsevier Ltd
– name: IWA Publishing/Elsevier
References He, Angenent (bib0017) 2006; 18
Wang, He (bib0049) 2020; 19
Pandit, Patel, Ghangrekar, Das (bib0033) 2014; 17
Valladares Linares, Domínguez-Maldonado, Rodríguez-Leal, Patrón, Castillo-Hernández, Miranda, Diaz Romero, Moreno-Cervera, Camara-chale, Borroto, Alzate-Gaviria (bib0045) 2019; 11
Varjani, Joshi, Srivastava, Ngo, Guo (bib59) 2020; 27
Zeppilli, Villano, Aulenta, Lampis, Vallini, Majone (bib0053) 2015; 22
Feng, Wang, Logan, Lee (bib0010) 2008; 78
He, Du, Chen, Lu, Cheng, Chang, Wang (bib0015) 2017; 71
Schröder, Harnisch, Angenent (bib0039) 2015; 8
Tyler, Boyer, Minami, Zweng, Reagan (bib61) 2017; 69
McCarty, Bae, Kim (bib0030) 2011; 45
Tartakovsky, Mehta, Santoyo, Guiot (bib0043) 2011; 36
Desmond-Le Quéméner, Bridier, Tian, Madigou, Bureau, Qi, Bouchez (bib0007) 2019; 292
Liu, Ting, Zhou (bib0021) 2012; 6
Mateo, Mascia, Fernandez-Morales, Rodrigo, Di Lorenzo (bib0029) 2019; 297
Speers, Reguera (bib0041) 2021; 3
Gil-Carrera, Escapa, Mehta, Santoyo, Guiot, Morán, Tartakovsky (bib0012) 2013; 130
Roubaud, Lacroix, Da Silva, Etcheverry, Bergel, Basséguy, Erable (bib0038) 2019; 7
Tenca, Cusick, Schievano, Oberti, Logan (bib0044) 2013; 38
Prévoteau, Carvajal-Arroyo, Ganigué, Rabaey (bib0036) 2020; 62
Ebrahimi, Najafpour, Yousefi Kebria (bib0009) 2018; 432
Oliot, Galier, Roux de Balmann, Bergel (bib0032) 2016; 183
Nikhil, Yeruva, Venkata Mohan, Swamy (bib0031) 2016; 215
Chacón-Carrera, López-Ortiz, Collins-Martínez, Meléndez-Zaragoza, Salinas-Gutiérrez, Espinoza-Hicks, Ramos-Sánchez (bib0004) 2019; 44
Liu, Tursun, Hou, Odey, Li, Wang, Xie (bib0023) 2017; 241
He, Wallack, Kim, Zhang, Yang, Zhu, Feng, Logan (bib0016) 2016; 105
Ge, He (bib0011) 2016; 2
Logan, Rabaey (bib0025) 2012; 337
Gude (bib0013) 2018; 20
Liu, Logan (bib0022) 2004; 38
Rismani-Yazdi, Carver, Christy, Tuovinen (bib0037) 2008; 180
Wang, Han, Han, Li, Xu (bib0048) 2017; 238
Srikanth, Kumar, Singh, Singh, Das (bib0042) 2016; 221
Cusick, Bryan, Parker, Merrill, Mehanna, Kiely, Liu, Logan (bib0006) 2011; 89
Perazzoli, Bastos, Santana, Soares (bib0035) 2018; 78
Lovley, Ueki, Zhang, Malvankar, Shrestha, Flanagan, Aklujkar, Butler, Giloteaux, Rotaru, Holmes, Franks, Orellana, Risso, Nevin (bib0026) 2011
Zhang, Sun, Liu, Han, Dong, Li (bib0055) 2013; 68
Guo, Kim (bib0014) 2019; 12
Zeppilli, Simoni, Paiano, Majone (bib0052) 2019; 370
Virdis, Rabaey, Yuan, Rozendal, Keller (bib0047) 2009; 43
Wu, Li, Zhou, Liang, Zhang, Jiang, Huang (bib0050) 2016; 98
Toczyłowska-Mamińska (bib60) 2017; 78
Lu, Chen, Babanova, Phadke, Salvacion, Mirhosseini, Chan, Carpenter, Cortese, Bretschger (bib0027) 2017; 356
Sophia, Bhalambaal (bib0040) 2015; 3
Ahmed, Rozaik, Abdelhalim (bib0001) 2015; 226
Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib0024) 2006; 40
Erable, Etcheverry, Bergel (bib62) 2011; 27
Xiao, Watson (bib0051) 2019; 39
Koch, Harnisch (bib0019) 2016; 3
Li, Yu (bib0020) 2016; 2
Werkneh, Beyene, Osunkunle (bib58) 2019; 2
Dopson, Ni, Sleutels (bib0008) 2016; 40
Zhang, Angelidaki (bib0054) 2015; 81
Ketep, Fourest, Bergel (bib0018) 2013; 149
Slavov (bib57) 2017; 55
Maktabifard, Zaborowska, Makinia (bib0028) 2018; 17
Arends, Verstraete (bib0002) 2012; 5
Cresson, Escudié, Steyer, Delgenès, Bernet (bib0005) 2008; 42
Cecconet, Bolognesi, Daneshgar, Callegari, Capodaglio (bib0003) 2018; 43
Patil, Harnisch, Koch, Hübschmann, Fetzer, Carmona-Martínez, Müller, Schröder (bib0034) 2011; 102
Vilajeliu-Pons, Puig, Salcedo-Dávila, Balaguer, Colprim (bib0046) 2017; 3
Zhou, Mei, Liu, Xie, Xing (bib0056) 2019; 12
Ge (10.1016/j.watres.2022.118142_bib0011) 2016; 2
Perazzoli (10.1016/j.watres.2022.118142_bib0035) 2018; 78
Patil (10.1016/j.watres.2022.118142_bib0034) 2011; 102
Speers (10.1016/j.watres.2022.118142_bib0041) 2021; 3
Virdis (10.1016/j.watres.2022.118142_bib0047) 2009; 43
Arends (10.1016/j.watres.2022.118142_bib0002) 2012; 5
Liu (10.1016/j.watres.2022.118142_bib0022) 2004; 38
Liu (10.1016/j.watres.2022.118142_bib0023) 2017; 241
Lu (10.1016/j.watres.2022.118142_bib0027) 2017; 356
McCarty (10.1016/j.watres.2022.118142_bib0030) 2011; 45
Wang (10.1016/j.watres.2022.118142_bib0049) 2020; 19
Gude (10.1016/j.watres.2022.118142_bib0013) 2018; 20
Cresson (10.1016/j.watres.2022.118142_bib0005) 2008; 42
Valladares Linares (10.1016/j.watres.2022.118142_bib0045) 2019; 11
Ketep (10.1016/j.watres.2022.118142_bib0018) 2013; 149
Cusick (10.1016/j.watres.2022.118142_bib0006) 2011; 89
Toczyłowska-Mamińska (10.1016/j.watres.2022.118142_bib60) 2017; 78
Wu (10.1016/j.watres.2022.118142_bib0050) 2016; 98
Tartakovsky (10.1016/j.watres.2022.118142_bib0043) 2011; 36
Xiao (10.1016/j.watres.2022.118142_bib0051) 2019; 39
Ahmed (10.1016/j.watres.2022.118142_bib0001) 2015; 226
Nikhil (10.1016/j.watres.2022.118142_bib0031) 2016; 215
He (10.1016/j.watres.2022.118142_bib0017) 2006; 18
Mateo (10.1016/j.watres.2022.118142_bib0029) 2019; 297
Cecconet (10.1016/j.watres.2022.118142_bib0003) 2018; 43
Chacón-Carrera (10.1016/j.watres.2022.118142_bib0004) 2019; 44
Zhang (10.1016/j.watres.2022.118142_bib0055) 2013; 68
Tenca (10.1016/j.watres.2022.118142_bib0044) 2013; 38
Rismani-Yazdi (10.1016/j.watres.2022.118142_bib0037) 2008; 180
Slavov (10.1016/j.watres.2022.118142_bib57) 2017; 55
Zeppilli (10.1016/j.watres.2022.118142_bib0053) 2015; 22
Sophia (10.1016/j.watres.2022.118142_bib0040) 2015; 3
Varjani (10.1016/j.watres.2022.118142_bib59) 2020; 27
Vilajeliu-Pons (10.1016/j.watres.2022.118142_bib0046) 2017; 3
Erable (10.1016/j.watres.2022.118142_bib62) 2011; 27
Tyler (10.1016/j.watres.2022.118142_bib61) 2017; 69
Zhang (10.1016/j.watres.2022.118142_bib0054) 2015; 81
Wang (10.1016/j.watres.2022.118142_bib0048) 2017; 238
He (10.1016/j.watres.2022.118142_bib0016) 2016; 105
Prévoteau (10.1016/j.watres.2022.118142_bib0036) 2020; 62
Feng (10.1016/j.watres.2022.118142_bib0010) 2008; 78
Schröder (10.1016/j.watres.2022.118142_bib0039) 2015; 8
Dopson (10.1016/j.watres.2022.118142_bib0008) 2016; 40
Werkneh (10.1016/j.watres.2022.118142_bib58) 2019; 2
Li (10.1016/j.watres.2022.118142_bib0020) 2016; 2
Logan (10.1016/j.watres.2022.118142_bib0024) 2006; 40
Oliot (10.1016/j.watres.2022.118142_bib0032) 2016; 183
Liu (10.1016/j.watres.2022.118142_bib0021) 2012; 6
Guo (10.1016/j.watres.2022.118142_bib0014) 2019; 12
Desmond-Le Quéméner (10.1016/j.watres.2022.118142_bib0007) 2019; 292
Ebrahimi (10.1016/j.watres.2022.118142_bib0009) 2018; 432
Zeppilli (10.1016/j.watres.2022.118142_bib0052) 2019; 370
Gil-Carrera (10.1016/j.watres.2022.118142_bib0012) 2013; 130
Srikanth (10.1016/j.watres.2022.118142_bib0042) 2016; 221
Roubaud (10.1016/j.watres.2022.118142_bib0038) 2019; 7
He (10.1016/j.watres.2022.118142_bib0015) 2017; 71
Logan (10.1016/j.watres.2022.118142_bib0025) 2012; 337
Zhou (10.1016/j.watres.2022.118142_bib0056) 2019; 12
Lovley (10.1016/j.watres.2022.118142_bib0026) 2011
Koch (10.1016/j.watres.2022.118142_bib0019) 2016; 3
Maktabifard (10.1016/j.watres.2022.118142_bib0028) 2018; 17
Pandit (10.1016/j.watres.2022.118142_bib0033) 2014; 17
References_xml – volume: 221
  start-page: 70
  year: 2016
  end-page: 77
  ident: bib0042
  article-title: Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 873
  year: 2008
  end-page: 880
  ident: bib0010
  article-title: Brewery wastewater treatment using air-cathode microbial fuel cells
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 45
  start-page: 7100
  year: 2011
  end-page: 7106
  ident: bib0030
  article-title: Domestic wastewater treatment as a net energy producer–can this be achieved?
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 2009
  year: 2006
  end-page: 2015
  ident: bib0017
  article-title: Application of bacterial biocathodes in microbial fuel cells
  publication-title: Electroanalysis
– volume: 102
  start-page: 9683
  year: 2011
  end-page: 9690
  ident: bib0034
  article-title: Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition
  publication-title: Bioresour. Technol.
– volume: 17
  start-page: 252
  year: 2014
  end-page: 266
  ident: bib0033
  article-title: Wastewater as anolyte for bioelectricity generation in graphite granule anode single chambered microbial fuel cell: effect of current collector
  publication-title: Int. J. Environ. Technol. Manage.
– volume: 43
  start-page: 5144
  year: 2009
  end-page: 5149
  ident: bib0047
  article-title: Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal
  publication-title: Environ. Sci. Technol.
– volume: 183
  start-page: 1682
  year: 2016
  end-page: 1704
  ident: bib0032
  article-title: Ion transport in microbial fuel cells: key roles, theory and critical review
  publication-title: Appl. Energy
– volume: 3
  start-page: 947
  year: 2017
  end-page: 959
  ident: bib0046
  article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials
  publication-title: Environ. Sci.
– volume: 12
  year: 2019
  ident: bib0056
  article-title: Magnet anode enhances extracellular electron transfer and enrichment of exoelectrogenic bacteria in bioelectrochemical systems
  publication-title: Biotechnol. Biofuels
– volume: 5
  start-page: 333
  year: 2012
  end-page: 346
  ident: bib0002
  article-title: 100 years of microbial electricity production: three concepts for the future
  publication-title: Microb. Biotechnol.
– volume: 89
  start-page: 2053
  year: 2011
  end-page: 2063
  ident: bib0006
  article-title: Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 241
  start-page: 439
  year: 2017
  end-page: 447
  ident: bib0023
  article-title: Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 164
  year: 2016
  end-page: 181
  ident: bib0008
  article-title: Possibilities for extremophilic microorganisms in microbial electrochemical systems
  publication-title: FEMS Microbiol. Rev.
– volume: 62
  start-page: 48
  year: 2020
  end-page: 57
  ident: bib0036
  article-title: Microbial electrosynthesis from CO2: forever a promise?
  publication-title: Curr. Opin. Biotechnol., Energy Biotechnol. ● Environ. Biotechnol.
– volume: 69
  start-page: 156
  year: 2017
  ident: bib61
  article-title: Electrical conductivity of the global ocean
  publication-title: Earth, Planets and Space
– volume: 39
  start-page: 93
  year: 2019
  end-page: 112
  ident: bib0051
  article-title: Guidance on conducting a systematic literature review
  publication-title: J. Plann. Educ. Res.
– volume: 44
  start-page: 12339
  year: 2019
  end-page: 12345
  ident: bib0004
  article-title: Assessment of two ionic exchange membranes in a bioelectrochemical system for wastewater treatment and hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  year: 2012
  ident: bib0021
  article-title: Isolation-based anomaly detection
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 180
  start-page: 683
  year: 2008
  end-page: 694
  ident: bib0037
  article-title: Cathodic limitations in microbial fuel cells: an overview
  publication-title: J. Power Sources
– volume: 43
  start-page: 16719
  year: 2018
  end-page: 16727
  ident: bib0003
  article-title: Improved process understanding and optimization by multivariate statistical analysis of Microbial Fuel Cells operation
  publication-title: Int. J. Hydrogen Energy
– volume: 68
  start-page: 494
  year: 2013
  end-page: 498
  ident: bib0055
  article-title: Electricity production from molasses wastewater in two-chamber microbial fuel cell
  publication-title: Water Sci. Technol.
– volume: 78
  start-page: 301
  year: 2018
  end-page: 309
  ident: bib0035
  article-title: Biological fuel cells produce bioelectricity with in-situ brackish water purification
  publication-title: Water Sci. Technol.
– volume: 292
  year: 2019
  ident: bib0007
  article-title: Biorefinery for heterogeneous organic waste using microbial electrochemical technology
  publication-title: Bioresour. Technol.
– volume: 12
  year: 2019
  ident: bib0014
  article-title: Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater
  publication-title: Biotechnol. Biofuels
– volume: 215
  start-page: 247
  year: 2016
  end-page: 253
  ident: bib0031
  article-title: Assessing potential cathodes for resource recovery through wastewater treatment and salinity removal using non-buffered microbial electrochemical systems
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 1282
  year: 2016
  end-page: 1295
  ident: bib0019
  article-title: Is there a specific ecological niche for electroactive microorganisms?
  publication-title: ChemElectroChem
– volume: 27
  start-page: 27172
  year: 2020
  end-page: 27180
  ident: bib59
  article-title: Treatment of wastewater from petroleum industry: current practices and perspectives
  publication-title: Environ. Sci. Pollut. Res.
– volume: 3
  year: 2021
  ident: bib0041
  article-title: Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems
  publication-title: Biofilm
– volume: 130
  start-page: 584
  year: 2013
  end-page: 591
  ident: bib0012
  article-title: Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production
  publication-title: Bioresour. Technol.
– volume: 238
  start-page: 333
  year: 2017
  end-page: 342
  ident: bib0048
  article-title: Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: a pilot scale study
  publication-title: Bioresour. Technol.
– volume: 7
  year: 2019
  ident: bib0038
  article-title: Benchmarking of industrial synthetic graphite grades, carbon felt, and carbon cloth as cost-efficient bioanode materials for domestic wastewater fed microbial electrolysis cells
  publication-title: Front. Energy Res.
– volume: 22
  start-page: 7349
  year: 2015
  end-page: 7360
  ident: bib0053
  article-title: Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell
  publication-title: Environ. Sci. Pollut. Res.
– volume: 42
  start-page: 792
  year: 2008
  end-page: 800
  ident: bib0005
  article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors
  publication-title: Water Res.
– volume: 432
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0009
  article-title: Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions
  publication-title: Desalination
– volume: 17
  start-page: 655
  year: 2018
  end-page: 689
  ident: bib0028
  article-title: Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 8
  start-page: 513
  year: 2015
  end-page: 519
  ident: bib0039
  article-title: Microbial electrochemistry and technology: terminology and classification
  publication-title: Energy Environ. Sci.
– volume: 356
  start-page: 274
  year: 2017
  end-page: 287
  ident: bib0027
  article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater
  publication-title: J. Power Sources
– volume: 98
  start-page: 396
  year: 2016
  end-page: 403
  ident: bib0050
  article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment
  publication-title: Water Res.
– volume: 337
  start-page: 686
  year: 2012
  end-page: 690
  ident: bib0025
  article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
  publication-title: Science
– volume: 3
  start-page: 2768
  year: 2015
  end-page: 2776
  ident: bib0040
  article-title: Utilization of coconut shell carbon in the anode compartment of microbial desalination cell (MDC) for enhanced desalination and bio-electricity production
  publication-title: J. Environ. Chem. Eng.
– volume: 11
  start-page: 217
  year: 2019
  ident: bib0045
  article-title: Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation
  publication-title: Water (Basel)
– volume: 19
  start-page: 14
  year: 2020
  end-page: 19
  ident: bib0049
  article-title: Demystifying terms for understanding bioelectrochemical systems towards sustainable wastewater treatment
  publication-title: Curr. Opin. Electrochem., Fundam. Theor. Electrochem. ● Bioelectrochem.
– volume: 2
  start-page: 438
  year: 2016
  end-page: 446
  ident: bib0020
  article-title: Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment
  publication-title: Engineering
– volume: 2
  start-page: 199
  year: 2019
  end-page: 209
  ident: bib58
  article-title: Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery: a review
  publication-title: Environmental Sustainability
– volume: 81
  start-page: 188
  year: 2015
  end-page: 195
  ident: bib0054
  article-title: Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali
  publication-title: Water Res.
– volume: 36
  start-page: 10557
  year: 2011
  end-page: 10564
  ident: bib0043
  article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2011
  end-page: 100
  ident: bib0026
  article-title: Geobacter: the microbe electric's physiology, ecology, and practical applications
  publication-title: Advances in Microbial Physiology, Advances in Microbial Physiology
– volume: 38
  start-page: 4040
  year: 2004
  end-page: 4046
  ident: bib0022
  article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 5181
  year: 2006
  end-page: 5192
  ident: bib0024
  article-title: Microbial fuel cells:  methodology and technology
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 1859
  year: 2013
  end-page: 1865
  ident: bib0044
  article-title: Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 319
  year: 2011
  end-page: 326
  ident: bib62
  article-title: From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater
  publication-title: Biofouling
– volume: 71
  start-page: 388
  year: 2017
  end-page: 403
  ident: bib0015
  article-title: Advances in microbial fuel cells for wastewater treatment
  publication-title: Renewable Sustainable Energy Rev.
– volume: 55
  start-page: 14
  year: 2017
  end-page: 28
  ident: bib57
  article-title: General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review
  publication-title: Food Technol. Biotechnol.
– volume: 2
  start-page: 274
  year: 2016
  end-page: 281
  ident: bib0011
  article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost
  publication-title: Environ. Sci.
– volume: 297
  start-page: 297
  year: 2019
  end-page: 306
  ident: bib0029
  article-title: Assessing the impact of design factors on the performance of two miniature microbial fuel cells
  publication-title: Electrochim. Acta
– volume: 149
  start-page: 117
  year: 2013
  end-page: 125
  ident: bib0018
  article-title: Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 764
  year: 2017
  end-page: 772
  ident: bib60
  article-title: Limits and perspectives of pulp and paper industry wastewater treatment – A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 226
  year: 2015
  ident: bib0001
  article-title: Effect of configurations, bacterial adhesion, and anode surface area on performance of microbial fuel cells used for treatment of synthetic wastewater
  publication-title: Water Air Soil Pollut.
– volume: 20
  start-page: 911
  year: 2018
  end-page: 924
  ident: bib0013
  article-title: Integrating bioelectrochemical systems for sustainable wastewater treatment
  publication-title: Clean Techn. Environ. Policy
– volume: 370
  start-page: 466
  year: 2019
  end-page: 476
  ident: bib0052
  article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading
  publication-title: Chem. Eng. J.
– volume: 105
  start-page: 351
  year: 2016
  end-page: 360
  ident: bib0016
  article-title: The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant
  publication-title: Water Res.
– volume: 78
  start-page: 301
  year: 2018
  ident: 10.1016/j.watres.2022.118142_bib0035
  article-title: Biological fuel cells produce bioelectricity with in-situ brackish water purification
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2018.295
– volume: 40
  start-page: 164
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0008
  article-title: Possibilities for extremophilic microorganisms in microbial electrochemical systems
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuv044
– volume: 2
  start-page: 199
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib58
  article-title: Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery: a review
  publication-title: Environmental Sustainability
  doi: 10.1007/s42398-019-00056-2
– volume: 36
  start-page: 10557
  year: 2011
  ident: 10.1016/j.watres.2022.118142_bib0043
  article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.162
– volume: 81
  start-page: 188
  year: 2015
  ident: 10.1016/j.watres.2022.118142_bib0054
  article-title: Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.058
– volume: 2
  start-page: 274
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0011
  article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost
  publication-title: Environ. Sci.
– volume: 18
  start-page: 2009
  year: 2006
  ident: 10.1016/j.watres.2022.118142_bib0017
  article-title: Application of bacterial biocathodes in microbial fuel cells
  publication-title: Electroanalysis
  doi: 10.1002/elan.200603628
– volume: 19
  start-page: 14
  year: 2020
  ident: 10.1016/j.watres.2022.118142_bib0049
  article-title: Demystifying terms for understanding bioelectrochemical systems towards sustainable wastewater treatment
  publication-title: Curr. Opin. Electrochem., Fundam. Theor. Electrochem. ● Bioelectrochem.
– volume: 69
  start-page: 156
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib61
  article-title: Electrical conductivity of the global ocean
  publication-title: Earth, Planets and Space
  doi: 10.1186/s40623-017-0739-7
– volume: 12
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0056
  article-title: Magnet anode enhances extracellular electron transfer and enrichment of exoelectrogenic bacteria in bioelectrochemical systems
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1477-9
– volume: 55
  start-page: 14
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib57
  article-title: General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review
  publication-title: Food Technol. Biotechnol.
– volume: 105
  start-page: 351
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0016
  article-title: The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.008
– volume: 221
  start-page: 70
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0042
  article-title: Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.034
– volume: 38
  start-page: 1859
  year: 2013
  ident: 10.1016/j.watres.2022.118142_bib0044
  article-title: Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.11.103
– volume: 356
  start-page: 274
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib0027
  article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.132
– volume: 102
  start-page: 9683
  year: 2011
  ident: 10.1016/j.watres.2022.118142_bib0034
  article-title: Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.07.087
– volume: 78
  start-page: 873
  year: 2008
  ident: 10.1016/j.watres.2022.118142_bib0010
  article-title: Brewery wastewater treatment using air-cathode microbial fuel cells
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1360-2
– volume: 39
  start-page: 93
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0051
  article-title: Guidance on conducting a systematic literature review
  publication-title: J. Plann. Educ. Res.
  doi: 10.1177/0739456X17723971
– volume: 7
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0038
  article-title: Benchmarking of industrial synthetic graphite grades, carbon felt, and carbon cloth as cost-efficient bioanode materials for domestic wastewater fed microbial electrolysis cells
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2019.00106
– volume: 370
  start-page: 466
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0052
  article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.119
– volume: 89
  start-page: 2053
  year: 2011
  ident: 10.1016/j.watres.2022.118142_bib0006
  article-title: Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3130-9
– volume: 183
  start-page: 1682
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0032
  article-title: Ion transport in microbial fuel cells: key roles, theory and critical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.043
– volume: 226
  year: 2015
  ident: 10.1016/j.watres.2022.118142_bib0001
  article-title: Effect of configurations, bacterial adhesion, and anode surface area on performance of microbial fuel cells used for treatment of synthetic wastewater
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-015-2567-3
– volume: 8
  start-page: 513
  year: 2015
  ident: 10.1016/j.watres.2022.118142_bib0039
  article-title: Microbial electrochemistry and technology: terminology and classification
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03359K
– volume: 3
  year: 2021
  ident: 10.1016/j.watres.2022.118142_bib0041
  article-title: Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems
  publication-title: Biofilm
  doi: 10.1016/j.bioflm.2021.100052
– volume: 3
  start-page: 2768
  year: 2015
  ident: 10.1016/j.watres.2022.118142_bib0040
  article-title: Utilization of coconut shell carbon in the anode compartment of microbial desalination cell (MDC) for enhanced desalination and bio-electricity production
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2015.10.026
– volume: 22
  start-page: 7349
  year: 2015
  ident: 10.1016/j.watres.2022.118142_bib0053
  article-title: Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3158-3
– volume: 38
  start-page: 4040
  year: 2004
  ident: 10.1016/j.watres.2022.118142_bib0022
  article-title: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0499344
– volume: 98
  start-page: 396
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0050
  article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.043
– volume: 238
  start-page: 333
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib0048
  article-title: Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: a pilot scale study
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.056
– volume: 11
  start-page: 217
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0045
  article-title: Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation
  publication-title: Water (Basel)
– volume: 5
  start-page: 333
  year: 2012
  ident: 10.1016/j.watres.2022.118142_bib0002
  article-title: 100 years of microbial electricity production: three concepts for the future
  publication-title: Microb. Biotechnol.
  doi: 10.1111/j.1751-7915.2011.00302.x
– volume: 62
  start-page: 48
  year: 2020
  ident: 10.1016/j.watres.2022.118142_bib0036
  article-title: Microbial electrosynthesis from CO2: forever a promise?
  publication-title: Curr. Opin. Biotechnol., Energy Biotechnol. ● Environ. Biotechnol.
  doi: 10.1016/j.copbio.2019.08.014
– volume: 20
  start-page: 911
  year: 2018
  ident: 10.1016/j.watres.2022.118142_bib0013
  article-title: Integrating bioelectrochemical systems for sustainable wastewater treatment
  publication-title: Clean Techn. Environ. Policy
  doi: 10.1007/s10098-018-1536-0
– volume: 44
  start-page: 12339
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0004
  article-title: Assessment of two ionic exchange membranes in a bioelectrochemical system for wastewater treatment and hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.153
– volume: 12
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0014
  article-title: Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1368-0
– volume: 45
  start-page: 7100
  year: 2011
  ident: 10.1016/j.watres.2022.118142_bib0030
  article-title: Domestic wastewater treatment as a net energy producer–can this be achieved?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2014264
– volume: 3
  start-page: 1282
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0019
  article-title: Is there a specific ecological niche for electroactive microorganisms?
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600079
– volume: 2
  start-page: 438
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0020
  article-title: Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment
  publication-title: Engineering
  doi: 10.1016/J.ENG.2016.04.017
– volume: 337
  start-page: 686
  year: 2012
  ident: 10.1016/j.watres.2022.118142_bib0025
  article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
  publication-title: Science
  doi: 10.1126/science.1217412
– volume: 6
  year: 2012
  ident: 10.1016/j.watres.2022.118142_bib0021
  article-title: Isolation-based anomaly detection
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2133360.2133363
– volume: 149
  start-page: 117
  year: 2013
  ident: 10.1016/j.watres.2022.118142_bib0018
  article-title: Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.09.025
– volume: 78
  start-page: 764
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib60
  article-title: Limits and perspectives of pulp and paper industry wastewater treatment – A review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.05.021
– volume: 297
  start-page: 297
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0029
  article-title: Assessing the impact of design factors on the performance of two miniature microbial fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.193
– volume: 180
  start-page: 683
  year: 2008
  ident: 10.1016/j.watres.2022.118142_bib0037
  article-title: Cathodic limitations in microbial fuel cells: an overview
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.02.074
– volume: 130
  start-page: 584
  year: 2013
  ident: 10.1016/j.watres.2022.118142_bib0012
  article-title: Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.062
– volume: 3
  start-page: 947
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib0046
  article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials
  publication-title: Environ. Sci.
– volume: 27
  start-page: 27172
  year: 2020
  ident: 10.1016/j.watres.2022.118142_bib59
  article-title: Treatment of wastewater from petroleum industry: current practices and perspectives
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04725-x
– volume: 292
  year: 2019
  ident: 10.1016/j.watres.2022.118142_bib0007
  article-title: Biorefinery for heterogeneous organic waste using microbial electrochemical technology
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121943
– start-page: 1
  year: 2011
  ident: 10.1016/j.watres.2022.118142_bib0026
  article-title: Geobacter: the microbe electric's physiology, ecology, and practical applications
  doi: 10.1016/B978-0-12-387661-4.00004-5
– volume: 215
  start-page: 247
  year: 2016
  ident: 10.1016/j.watres.2022.118142_bib0031
  article-title: Assessing potential cathodes for resource recovery through wastewater treatment and salinity removal using non-buffered microbial electrochemical systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.047
– volume: 17
  start-page: 252
  year: 2014
  ident: 10.1016/j.watres.2022.118142_bib0033
  article-title: Wastewater as anolyte for bioelectricity generation in graphite granule anode single chambered microbial fuel cell: effect of current collector
  publication-title: Int. J. Environ. Technol. Manage.
  doi: 10.1504/IJETM.2014.061797
– volume: 43
  start-page: 16719
  year: 2018
  ident: 10.1016/j.watres.2022.118142_bib0003
  article-title: Improved process understanding and optimization by multivariate statistical analysis of Microbial Fuel Cells operation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.056
– volume: 432
  start-page: 1
  year: 2018
  ident: 10.1016/j.watres.2022.118142_bib0009
  article-title: Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.01.002
– volume: 42
  start-page: 792
  year: 2008
  ident: 10.1016/j.watres.2022.118142_bib0005
  article-title: Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.08.013
– volume: 71
  start-page: 388
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib0015
  article-title: Advances in microbial fuel cells for wastewater treatment
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2016.12.069
– volume: 40
  start-page: 5181
  year: 2006
  ident: 10.1016/j.watres.2022.118142_bib0024
  article-title: Microbial fuel cells:  methodology and technology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0605016
– volume: 241
  start-page: 439
  year: 2017
  ident: 10.1016/j.watres.2022.118142_bib0023
  article-title: Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.122
– volume: 27
  start-page: 319
  year: 2011
  ident: 10.1016/j.watres.2022.118142_bib62
  article-title: From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater
  publication-title: Biofouling
  doi: 10.1080/08927014.2011.564615
– volume: 17
  start-page: 655
  year: 2018
  ident: 10.1016/j.watres.2022.118142_bib0028
  article-title: Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-018-9478-x
– volume: 43
  start-page: 5144
  year: 2009
  ident: 10.1016/j.watres.2022.118142_bib0047
  article-title: Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8036302
– volume: 68
  start-page: 494
  year: 2013
  ident: 10.1016/j.watres.2022.118142_bib0055
  article-title: Electricity production from molasses wastewater in two-chamber microbial fuel cell
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.261
SSID ssj0002239
Score 2.5020535
SecondaryResourceType review_article
Snippet •A quantitative review of wastewater treatment in BES is performed on 1073 articles.•Median COD removal and coulombic efficiency were respectively 72 and...
Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118142
SubjectTerms activated sludge
Anodic treatment
chemical oxygen demand
electric power
electrolysis
energy efficiency
Environmental Sciences
Meta-analysis
Microbial electrochemical systems
quantitative analysis
Scale-up
systematic review
wastewater
wastewater treatment
water
Title Systematic and quantitative analysis of two decades of anodic wastewater treatment in bioelectrochemical reactors
URI https://dx.doi.org/10.1016/j.watres.2022.118142
https://www.ncbi.nlm.nih.gov/pubmed/35217490
https://www.proquest.com/docview/2633857650
https://www.proquest.com/docview/2636850574
https://hal.inrae.fr/hal-04125824
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RuLQH1EIfW1rkol4Du45jx8cVAm0L5VKQuFl-RV1UJdDusrf-dmacR-FAkXq0Y-fhGc8jnm8G4HMoXeGRczLltEYHJerMKVlkQWnJ3UTHkOBi387k7EJ8vSwu1-Cwx8JQWGUn-1uZnqR113PQrebB9XxOGF9UfnkhOE9lHhOCXSji8v0_f8M8UP3p_pSZRvfwuRTjtbIEyEAvkfN9QmAK_ph6evaD4iQfM0KTMjp-CZudFcmm7Yu-grVYb8GLe7kFt-Hm-5Cjmdk6sJulrROgDMUbdrSpSFhTscWqYSFSmHxq2roJOGVlf9NvNVx1NsSis3nN3LzpKuf4LtUAw8upZs9ruDg-Oj-cZV19hcyjFlpkopJRV2hdiwo3n3YT7wi0g7osoNSzOqB14KX3udLc-uD8GInn0N6qSmm5E_kbWK-bOr4DpjlXUbkwlk6hgcWdizGXExmqIL0q7QjyflmN75KPUw2Mn6aPMrsyLTEMEcO0xBhBNsy6bpNvPDFe9RQzD5jIoH54YuYeEnh4COXcnk1PDfVRQrKi5OJ2MoJPPf0NbkI6WbF1bJZ4J4mePnpuxfifY2RJ7qAYwduWeYbnoRWMnqEev__vD9iB59RqQzE_wPri1zJ-RHNp4XbTftiFjemXk9nZHSKjFVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2UJXSx_YBLuo1ZddJ7Pi4QkUBlr0UJG6WXxGLUALtbvfvdyZxovZAkXqM7cnDY88jnvkG4IsvbO5w5STSKoUOSlCJlSJPvFSC26kKvk0XO1-I8jI7vcqvtuCoz4WhsMoo-zuZ3krr2HIYZ_PwbrmkHF9Ufmmecd6WeUQXaJvQqfIRbM9OzsrFIJBRA6r-oJkI-gy6NsxrYygnAx1Fzr9SEmbGH9JQT64pVPIhO7TVR8cv4UU0JNmse9cd2Ar1K3j-B7zgLtx_H2Camak9u1-bus0pQwmHDR0aCWsqtto0zAeKlG8vTd14JNmYn_RnDSeeDeHobFkzu2xi8RwX0QYYdrdle17D5fG3i6MyiSUWEoeKaJVklQiqQgM7q3D_KTt1lvJ2UJ15FHxGeTQQnHAulYob562bIP8smlxVIQy3WfoGRnVTh3fAFOcySOsnwkq0sbi1IaRiKnzlhZOFGUPaT6t2EX-cymDc6j7Q7EZ3zNDEDN0xYwzJQHXX4W88Ml72HNN_rSONKuIRygNk8PAQgt0uZ3NNbYRJlhc8-zUdw-ee_xr3IR2umDo0a7yTQGcfnbd88s8xoiCPMBvD227xDM9DQxidQzV5_98fsA9Py4vzuZ6fLM4-wDPq6SIzP8Jo9WMdPqH1tLJ7cXf8BpFTGA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+and+quantitative+analysis+of+two+decades+of+anodic+wastewater+treatment+in+bioelectrochemical+reactors&rft.jtitle=Water+research+%28Oxford%29&rft.au=de+Fouch%C3%A9cour%2C+Florence&rft.au=Larzilli%C3%A8re%2C+Valentin&rft.au=Bouchez%2C+Th%C3%A9odore&rft.au=Moscoviz%2C+Roman&rft.date=2022-05-01&rft.pub=IWA+Publishing%2FElsevier&rft.issn=0043-1354&rft.volume=214&rft_id=info:doi/10.1016%2Fj.watres.2022.118142&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04125824v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon