Positive Autoregulation of mrkHI by the Cyclic Di-GMP-Dependent MrkH Protein in the Biofilm Regulatory Circuit of Klebsiella pneumoniae

Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cy...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 197; no. 9; pp. 1659 - 1667
Main Authors Tan, Jason W. H, Wilksch, Jonathan J, Hocking, Dianna M, Wang, Nancy, Srikhanta, Yogitha N, Tauschek, Marija, Lithgow, Trevor, Robins-Browne, Roy M, Yang, Ji, Strugnell, Richard A
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
AbstractList Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation.
Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase alpha subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
UNLABELLEDKlebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation.IMPORTANCEBacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
ABSTRACT Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
Author Srikhanta, Yogitha N
Wilksch, Jonathan J
Hocking, Dianna M
Robins-Browne, Roy M
Wang, Nancy
Tauschek, Marija
Lithgow, Trevor
Strugnell, Richard A
Tan, Jason W. H
Yang, Ji
Author_xml – sequence: 1
  fullname: Tan, Jason W. H
– sequence: 2
  fullname: Wilksch, Jonathan J
– sequence: 3
  fullname: Hocking, Dianna M
– sequence: 4
  fullname: Wang, Nancy
– sequence: 5
  fullname: Srikhanta, Yogitha N
– sequence: 6
  fullname: Tauschek, Marija
– sequence: 7
  fullname: Lithgow, Trevor
– sequence: 8
  fullname: Robins-Browne, Roy M
– sequence: 9
  fullname: Yang, Ji
– sequence: 10
  fullname: Strugnell, Richard A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25733612$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URNuFE3ewxAUJpXhsJ5tckLpb6B9asQJ6thxnsnVJ7MVOKu0n4GvjsKUCTkiWLHl-ep73Zg7JnvMOCXkO7AiAl28vFkeMF5BnIB-RA2BVmeW5YHvkgDEOWQWV2CeHMd4yBlLm_AnZ5_lciAL4Afmx8tEO9g7p8Tj4gOux04P1jvqW9uHb2Tmtt3S4Qbrcms4aemKz06tVdoIbdA26gV4liK6CH9A6ms7ELqxvbdfTzzs5H7Z0aYMZ7TDJfuywjha7TtONw7H3zmp8Sh63uov47P6ekesP778uz7LLT6fny-PLzEheDZlsGsOlYGVZNKWpxZw3TdsWyYowUIoaZXpCZLqpS2EalE2dG0AoWkzuhRYz8m6nuxnrHhuTLATdqU2wvQ5b5bVVf1ecvVFrf6ekZKJIsc3I63uB4L-PGAfV22gmNw79GBUUpRAy9Sf_A50Dh3maUkJf_YPe-jG4lMREiSoHUbFEvdlRJvgYA7YPfQNT0y6oi4X6tQsKpu9f_Gn1gf09_AS83AGt9kqvg43q-gtnkKeoyhIkFz8BbT66yg
CODEN JOBAAY
CitedBy_id crossref_primary_10_1099_jmm_0_001148
crossref_primary_10_1172_JCI166710
crossref_primary_10_1016_j_compbiolchem_2022_107800
crossref_primary_10_1021_acsinfecdis_8b00255
crossref_primary_10_1016_j_micpath_2021_104743
crossref_primary_10_3389_fmicb_2018_02405
crossref_primary_10_1111_mmi_15254
crossref_primary_10_1007_s13238_016_0317_y
crossref_primary_10_1093_infdis_jiw378
crossref_primary_10_1016_j_tips_2021_12_006
crossref_primary_10_3389_fcimb_2024_1324895
crossref_primary_10_1371_journal_pone_0173285
crossref_primary_10_1159_000487515
crossref_primary_10_3389_fmicb_2023_1238482
crossref_primary_10_1080_08927014_2017_1304541
crossref_primary_10_1073_pnas_1607503113
crossref_primary_10_1111_mmi_13990
crossref_primary_10_1089_fpd_2020_2847
crossref_primary_10_1089_mdr_2017_0073
crossref_primary_10_1002_2211_5463_13389
Cites_doi 10.1371/journal.ppat.1002204
10.1128/JB.00304-10
10.1046/j.1365-2958.2000.01972.x
10.1038/ncpuro1231
10.1128/IAI.62.10.4186-4191.1994
10.1128/CMR.11.4.589
10.1128/MMBR.00043-12
10.1074/jbc.M113.503912
10.1099/mic.0.26434-0
10.1073/pnas.95.17.9761
10.1002/9780471729259.mc01b01s00
10.1128/JB.134.3.1141-1156.1978
10.1006/jmbi.2001.5390
10.1016/j.mib.2011.12.008
10.1093/nar/29.24.4909
10.1128/JCM.44.1.102-107.2006
10.1126/science.270.5241.1495
10.1128/IAI.00348-13
10.1002/j.1460-2075.1996.tb00809.x
10.1128/jb.177.23.6740-6744.1995
10.1128/JB.00286-11
10.1128/IAI.00494-08
10.1186/1471-2180-10-179
10.1016/0022-2836(86)90385-2
10.1128/IAI.66.6.2887-2894.1998
10.1099/jmm.0.47395-0
10.1101/gad.10.1.16
10.1038/nrg1087
10.1126/science.1076376
10.1101/gad.870001
10.1099/mic.0.053801-0
10.1016/S0923-2508(02)00004-9
10.1371/journal.pone.0079038
10.1016/0022-2836(76)90119-4
10.1128/IAI.67.4.1672-1676.1999
10.1038/nrmicro2109
10.1128/IAI.69.9.5805-5812.2001
10.1111/j.1365-2958.1990.tb00714.x
10.1093/bioinformatics/bti739
10.1006/bbrc.2001.6152
10.1006/jmbi.2000.4369
10.1128/IAI.65.4.1546-1549.1997
10.2217/fmb.12.74
10.1128/IAI.01396-12
10.1073/pnas.91.25.11816
10.1128/jb.170.2.1015-1017.1988
10.1111/j.1574-695X.2012.00965.x
10.1128/jb.179.19.6187-6191.1997
10.1099/mic.0.067793-0
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology May 2015
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology May 2015
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.02615-14
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
Bacteriology Abstracts (Microbiology B)

MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Autoregulation of the mrkHI Promoter by MrkH
EISSN 1098-5530
Editor Gourse, R. L.
Editor_xml – sequence: 1
  givenname: R. L.
  surname: Gourse
  fullname: Gourse, R. L.
EndPage 1667
ExternalDocumentID 3658060221
10_1128_JB_02615_14
25733612
US201500188142
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
ABPPZ
ABPTK
ABTAH
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AEQTP
AFDAS
AFFDN
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-S
P2P
PQQKQ
QZG
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UCJ
UHB
UKR
UPT
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
Y6R
YQT
YR2
YZZ
ZA5
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
AGVNZ
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c429t-4ddc2430886d8cb372ddff66123c183be4372ee0adb83cde4db5c1e16fe0013a3
IEDL.DBID RPM
ISSN 0021-9193
IngestDate Tue Sep 17 21:21:19 EDT 2024
Sat Oct 26 01:32:22 EDT 2024
Fri Oct 25 04:03:51 EDT 2024
Thu Oct 10 18:43:38 EDT 2024
Thu Sep 12 19:43:14 EDT 2024
Sat Sep 28 08:05:18 EDT 2024
Wed Dec 27 18:59:40 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-4ddc2430886d8cb372ddff66123c183be4372ee0adb83cde4db5c1e16fe0013a3
Notes http://dx.doi.org/10.1128/JB.02615-14
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
J.W.H.T. and J.J.W. are co-first authors and contributed equally to this article.
J.Y. and R.A.S. contributed equally to this article.
Citation Tan JWH, Wilksch JJ, Hocking DM, Wang N, Srikhanta YN, Tauschek M, Lithgow T, Robins-Browne RM, Yang J, Strugnell RA. 2015. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. J Bacteriol 197:1659–1667. doi:10.1128/JB.02615-14.
PMID 25733612
PQID 1673951390
PQPubID 40724
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403657
proquest_miscellaneous_1683348864
proquest_miscellaneous_1671217002
proquest_journals_1673951390
crossref_primary_10_1128_JB_02615_14
pubmed_primary_25733612
fao_agris_US201500188142
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 11866514 - J Mol Biol. 2002 Feb 22;316(3):501-16
20511505 - J Bacteriol. 2010 Aug;192(15):3944-50
9767057 - Clin Microbiol Rev. 1998 Oct;11(4):589-603
11238372 - Genes Dev. 2001 Mar 1;15(5):491-506
21571997 - J Bacteriol. 2011 Jul;193(14):3453-60
781293 - J Mol Biol. 1976 Jul 5;104(3):541-55
2828307 - J Bacteriol. 1988 Feb;170(2):1015-7
149110 - J Bacteriol. 1978 Jun;134(3):1141-56
12949165 - Microbiology. 2003 Sep;149(Pt 9):2397-405
22448614 - FEMS Immunol Med Microbiol. 2012 Jul;65(2):350-9
18852707 - Nat Clin Pract Urol. 2008 Nov;5(11):598-608
10085002 - Infect Immun. 1999 Apr;67(4):1672-6
16249258 - Bioinformatics. 2006 Jan 1;22(1):3-6
9596764 - Infect Immun. 1998 Jun;66(6):2887-94
8861963 - EMBO J. 1996 Aug 15;15(16):4358-67
23704787 - Microbiology. 2013 Jul;159(Pt 7):1402-15
22262101 - Microbiology. 2012 Apr;158(Pt 4):1045-56
11812819 - Nucleic Acids Res. 2001 Dec 15;29(24):4909-19
8557191 - Genes Dev. 1996 Jan 1;10(1):16-26
9324270 - J Bacteriol. 1997 Oct;179(19):6187-91
7592462 - J Bacteriol. 1995 Dec;177(23):6740-4
23753626 - Infect Immun. 2013 Aug;81(8):3009-17
11779182 - Biochem Biophys Res Commun. 2002 Jan 11;290(1):397-402
7491496 - Science. 1995 Dec 1;270(5241):1495-7
10972792 - Mol Microbiol. 2000 Aug;37(4):687-95
19287449 - Nat Rev Microbiol. 2009 Apr;7(4):263-73
22913357 - Future Microbiol. 2012 Aug;7(8):991-1002
23543034 - J Clin Diagn Res. 2013 Feb;7(2):219-23
23774594 - Infect Immun. 2013 Sep;81(9):3089-98
9119502 - Infect Immun. 1997 Apr;65(4):1546-9
18770545 - Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1
21901098 - PLoS Pathog. 2011 Aug;7(8):e1002204
12576153 - Res Microbiol. 2003 Jan-Feb;154(1):9-16
1980713 - Mol Microbiol. 1990 Aug;4(8):1353-61
7991541 - Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11816-20
12202833 - Science. 2002 Aug 30;297(5586):1562-6
9707549 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9761-6
7927674 - Infect Immun. 1994 Oct;62(10):4186-91
11500458 - Infect Immun. 2001 Sep;69(9):5805-12
23471616 - Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52
17965358 - J Med Microbiol. 2007 Nov;56(Pt 11):1549-57
3537305 - J Mol Biol. 1986 May 5;189(1):113-30
19119427 - Gene Regul Syst Bio. 2007;1:275-93
11237595 - J Mol Biol. 2001 Feb 16;306(2):213-25
12776212 - Nat Rev Genet. 2003 Jun;4(6):419-31
20573190 - BMC Microbiol. 2010;10:179
18559432 - Infect Immun. 2008 Sep;76(9):4055-65
16390956 - J Clin Microbiol. 2006 Jan;44(1):102-7
24244411 - PLoS One. 2013;8(11):e79038
22226607 - Curr Opin Microbiol. 2012 Apr;15(2):140-6
24019519 - J Biol Chem. 2013 Oct 25;288(43):31115-26
(key20180919081455_B33) 2005; 2005
(key20180919081455_B6) 2008; 5
(key20180919081455_B49) 2001; 15
(key20180919081455_B16) 2001; 69
(key20180919081455_B51) 2009; 7
(key20180919081455_B4) 2013; 81
(key20180919081455_B14) 2008; 76
(key20180919081455_B28) 2003; 4
(key20180919081455_B9) 2013; 8
(key20180919081455_B44) 2001; 306
(key20180919081455_B25) 2006; 22
(key20180919081455_B36) 2002; 297
(key20180919081455_B10) 2012; 158
(key20180919081455_B23) 2013; 77
(key20180919081455_B48) 1988; 170
(key20180919081455_B39) 2002; 316
(key20180919081455_B12) 2010; 10
(key20180919081455_B13) 1998; 66
(key20180919081455_B32) 1986; 189
(key20180919081455_B3) 2007; 56
(key20180919081455_B8) 2011; 7
(key20180919081455_B46) 1995; 177
(key20180919081455_B35) 2007; 1
(key20180919081455_B29) 1978; 134
(key20180919081455_B2) 2013; 7
(key20180919081455_B24) 2012; 15
(key20180919081455_B5) 2012; 65
(key20180919081455_B17) 2013; 159
(key20180919081455_B34) 2013; 81
(key20180919081455_B20) 1994; 62
(key20180919081455_B18) 2012; 7
(key20180919081455_B50) 1994; 91
(key20180919081455_B26) 2010; 192
(key20180919081455_B11) 2003; 154
(key20180919081455_B38) 2006
(key20180919081455_B22) 1990; 4
(key20180919081455_B7) 2011; 193
(key20180919081455_B1) 1998; 11
(key20180919081455_B27) 2006; 44
(key20180919081455_B31) 1976; 104
(key20180919081455_B21) 1999; 67
(key20180919081455_B43) 2000; 37
(key20180919081455_B40) 2001; 29
(key20180919081455_B41) 1998; 95
(key20180919081455_B15) 1997; 65
(key20180919081455_B42) 1996; 10
(key20180919081455_B30) 2002; 290
(key20180919081455_B37) 1995; 270
(key20180919081455_B47) 1997; 179
(key20180919081455_B19) 2003; 149
(key20180919081455_B45) 1996; 15
(key20180919081455_B52) 2013; 288
References_xml – volume: 7
  start-page: e1002204
  year: 2011
  ident: key20180919081455_B8
  article-title: MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002204
– volume: 1
  start-page: 275
  year: 2007
  ident: key20180919081455_B35
  article-title: Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters
  publication-title: Gene Regul Syst Biol
– volume: 192
  start-page: 3944
  year: 2010
  ident: key20180919081455_B26
  article-title: The role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae
  publication-title: J Bacteriol
  doi: 10.1128/JB.00304-10
– volume: 37
  start-page: 687
  year: 2000
  ident: key20180919081455_B43
  article-title: UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01972.x
– volume: 5
  start-page: 598
  year: 2008
  ident: key20180919081455_B6
  article-title: Bacterial biofilms in patients with indwelling urinary catheters
  publication-title: Nat Clin Pract Urol
  doi: 10.1038/ncpuro1231
– volume: 62
  start-page: 4186
  year: 1994
  ident: key20180919081455_B20
  article-title: The type 3 fimbrial adhesin gene (mrkD) of Klebsiella species is not conserved among all fimbriate strains
  publication-title: Infect Immun
  doi: 10.1128/IAI.62.10.4186-4191.1994
– volume: 11
  start-page: 589
  year: 1998
  ident: key20180919081455_B1
  article-title: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.11.4.589
– volume: 77
  start-page: 1
  year: 2013
  ident: key20180919081455_B23
  article-title: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00043-12
– volume: 288
  start-page: 31115
  year: 2013
  ident: key20180919081455_B52
  article-title: Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.503912
– volume: 149
  start-page: 2397
  year: 2003
  ident: key20180919081455_B19
  article-title: Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces
  publication-title: Microbiology
  doi: 10.1099/mic.0.26434-0
– volume: 95
  start-page: 9761
  year: 1998
  ident: key20180919081455_B41
  article-title: Identification of an UP element consensus sequence for bacterial promoters
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.17.9761
– volume: 2005
  year: 2005
  ident: key20180919081455_B33
  article-title: Growing and analyzing static biofilms
  publication-title: Curr Protoc Microbiol
  doi: 10.1002/9780471729259.mc01b01s00
– volume: 134
  start-page: 1141
  year: 1978
  ident: key20180919081455_B29
  article-title: Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid
  publication-title: J Bacteriol
  doi: 10.1128/JB.134.3.1141-1156.1978
– volume: 316
  start-page: 501
  year: 2002
  ident: key20180919081455_B39
  article-title: Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5390
– volume: 15
  start-page: 140
  year: 2012
  ident: key20180919081455_B24
  article-title: You've come a long way: c-di-GMP signaling
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2011.12.008
– volume: 29
  start-page: 4909
  year: 2001
  ident: key20180919081455_B40
  article-title: Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA polymerase alpha subunit and T7D promoter UP element
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.24.4909
– volume: 44
  start-page: 102
  year: 2006
  ident: key20180919081455_B27
  article-title: Seroepidemiology of Klebsiella pneumoniae in an Australian tertiary hospital and its implications for vaccine development
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.44.1.102-107.2006
– volume: 270
  start-page: 1495
  year: 1995
  ident: key20180919081455_B37
  article-title: Solution structure of the activator contact domain of the RNA polymerase alpha subunit
  publication-title: Science
  doi: 10.1126/science.270.5241.1495
– volume: 81
  start-page: 3009
  year: 2013
  ident: key20180919081455_B4
  article-title: Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections
  publication-title: Infect Immun
  doi: 10.1128/IAI.00348-13
– volume: 7
  start-page: 219
  year: 2013
  ident: key20180919081455_B2
  article-title: The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms
  publication-title: J Clin Diagn Res
– volume: 15
  start-page: 4358
  year: 1996
  ident: key20180919081455_B45
  article-title: Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00809.x
– volume: 177
  start-page: 6740
  year: 1995
  ident: key20180919081455_B46
  article-title: Mapping of the OxyR protein contact site in the C-terminal region of RNA polymerase alpha subunit
  publication-title: J Bacteriol
  doi: 10.1128/jb.177.23.6740-6744.1995
– volume: 193
  start-page: 3453
  year: 2011
  ident: key20180919081455_B7
  article-title: Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae
  publication-title: J Bacteriol
  doi: 10.1128/JB.00286-11
– volume: 76
  start-page: 4055
  year: 2008
  ident: key20180919081455_B14
  article-title: Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence
  publication-title: Infect Immun
  doi: 10.1128/IAI.00494-08
– volume: 10
  start-page: 179
  year: 2010
  ident: key20180919081455_B12
  article-title: Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-10-179
– volume: 189
  start-page: 113
  year: 1986
  ident: key20180919081455_B32
  article-title: Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(86)90385-2
– volume: 66
  start-page: 2887
  year: 1998
  ident: key20180919081455_B13
  article-title: Characterization of the type 3 fimbrial adhesins of Klebsiella strains
  publication-title: Infect Immun
  doi: 10.1128/IAI.66.6.2887-2894.1998
– volume: 56
  start-page: 1549
  year: 2007
  ident: key20180919081455_B3
  article-title: Species interactions in mixed-community crystalline biofilms on urinary catheters
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.47395-0
– volume: 10
  start-page: 16
  year: 1996
  ident: key20180919081455_B42
  article-title: DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture
  publication-title: Genes Dev
  doi: 10.1101/gad.10.1.16
– volume: 4
  start-page: 419
  year: 2003
  ident: key20180919081455_B28
  article-title: The art and design of genetic screens: Escherichia coli
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1087
– volume: 297
  start-page: 1562
  year: 2002
  ident: key20180919081455_B36
  article-title: Structural basis of transcription activation: the CAP-alpha CTD-DNA complex
  publication-title: Science
  doi: 10.1126/science.1076376
– volume: 15
  start-page: 491
  year: 2001
  ident: key20180919081455_B49
  article-title: Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove
  publication-title: Genes Dev
  doi: 10.1101/gad.870001
– volume: 158
  start-page: 1045
  year: 2012
  ident: key20180919081455_B10
  article-title: Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43
  publication-title: Microbiology
  doi: 10.1099/mic.0.053801-0
– volume: 154
  start-page: 9
  year: 2003
  ident: key20180919081455_B11
  article-title: Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces
  publication-title: Res Microbiol
  doi: 10.1016/S0923-2508(02)00004-9
– volume-title: Molecular paradigms of infectious disease
  year: 2006
  ident: key20180919081455_B38
– volume: 8
  start-page: e79038
  year: 2013
  ident: key20180919081455_B9
  article-title: Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079038
– volume: 104
  start-page: 541
  year: 1976
  ident: key20180919081455_B31
  article-title: Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(76)90119-4
– volume: 67
  start-page: 1672
  year: 1999
  ident: key20180919081455_B21
  article-title: Construction and characterization of mutations within the Klebsiella mrkD1P gene that affect binding to collagen type V
  publication-title: Infect Immun
  doi: 10.1128/IAI.67.4.1672-1676.1999
– volume: 7
  start-page: 263
  year: 2009
  ident: key20180919081455_B51
  article-title: Principles of c-di-GMP signalling in bacteria
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2109
– volume: 69
  start-page: 5805
  year: 2001
  ident: key20180919081455_B16
  article-title: Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation
  publication-title: Infect Immun
  doi: 10.1128/IAI.69.9.5805-5812.2001
– volume: 4
  start-page: 1353
  year: 1990
  ident: key20180919081455_B22
  article-title: Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1990.tb00714.x
– volume: 22
  start-page: 3
  year: 2006
  ident: key20180919081455_B25
  article-title: PilZ domain is part of the bacterial c-di-GMP binding protein
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti739
– volume: 290
  start-page: 397
  year: 2002
  ident: key20180919081455_B30
  article-title: Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2001.6152
– volume: 306
  start-page: 213
  year: 2001
  ident: key20180919081455_B44
  article-title: Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.4369
– volume: 65
  start-page: 1546
  year: 1997
  ident: key20180919081455_B15
  article-title: Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells
  publication-title: Infect Immun
  doi: 10.1128/IAI.65.4.1546-1549.1997
– volume: 7
  start-page: 991
  year: 2012
  ident: key20180919081455_B18
  article-title: Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation
  publication-title: Future Microbiol
  doi: 10.2217/fmb.12.74
– volume: 81
  start-page: 3089
  year: 2013
  ident: key20180919081455_B34
  article-title: Genetic analysis of the role of yfiR in the ability of Escherichia coli CFT073 to control cellular cyclic dimeric GMP levels and to persist in the urinary tract
  publication-title: Infect Immun
  doi: 10.1128/IAI.01396-12
– volume: 91
  start-page: 11816
  year: 1994
  ident: key20180919081455_B50
  article-title: Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.91.25.11816
– volume: 170
  start-page: 1015
  year: 1988
  ident: key20180919081455_B48
  article-title: Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid
  publication-title: J Bacteriol
  doi: 10.1128/jb.170.2.1015-1017.1988
– volume: 65
  start-page: 350
  year: 2012
  ident: key20180919081455_B5
  article-title: Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1111/j.1574-695X.2012.00965.x
– volume: 179
  start-page: 6187
  year: 1997
  ident: key20180919081455_B47
  article-title: Amino acid residues in the alpha-subunit C-terminal domain of Escherichia coli RNA polymerase involved in activation of transcription from the mtr promoter
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.19.6187-6191.1997
– volume: 159
  start-page: 1402
  year: 2013
  ident: key20180919081455_B17
  article-title: FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3
  publication-title: Microbiology
  doi: 10.1099/mic.0.067793-0
SSID ssj0014452
Score 2.3418171
Snippet Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial...
ABSTRACT Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote...
UNLABELLEDKlebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote...
Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial...
SourceID pubmedcentral
proquest
crossref
pubmed
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1659
SubjectTerms autoregulation
bacteria
Bacterial Adhesion
Bacteriology
Binding Sites
biofilm
Biofilms
Biofilms - growth & development
biosynthesis
Cyclic GMP - analogs & derivatives
Cyclic GMP - metabolism
Deoxyribonucleic acid
DNA
DNA Mutational Analysis
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - metabolism
Electrophoretic Mobility Shift Assay
fimbriae
Fimbriae, Bacterial - physiology
gel electrophoresis
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Gram-negative bacteria
Homeostasis
Klebsiella pneumoniae
Klebsiella pneumoniae - genetics
Klebsiella pneumoniae - metabolism
Klebsiella pneumoniae - physiology
microbial colonization
Nosocomial infections
Operon
pathogens
promoter regions
Promoter Regions, Genetic
Protein Binding
Proteins
quantitative polymerase chain reaction
Real-Time Polymerase Chain Reaction
sequence analysis
Sequence Analysis, DNA
tissues
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
transcriptional activation
Title Positive Autoregulation of mrkHI by the Cyclic Di-GMP-Dependent MrkH Protein in the Biofilm Regulatory Circuit of Klebsiella pneumoniae
URI https://www.ncbi.nlm.nih.gov/pubmed/25733612
https://www.proquest.com/docview/1673951390
https://search.proquest.com/docview/1671217002
https://search.proquest.com/docview/1683348864
https://pubmed.ncbi.nlm.nih.gov/PMC4403657
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdNYbCXse9664oGfXUiyfJHHtt0bZqSEbYF-mZsSW5FEzukziB_wf7t3cl2WMrYwyBvOguh-9Bd7u53hJwyJRQsMD-OYubLkGf-MDag7lnMIp0nTCjM6E6_RuO5nNyGtwck7HphXNG-ym2_XCz7pb13tZWrpRp0dWKD2XQkJdhdiOR7pAcC2oXobepAyrCFCOegycOgbcoDOzyYnPcx5Ah9juN4hIMC5GLvReoVWfU3Z_NpzeQfj9DlS_Ki9R7pWXPKV-TAlK_Js2ae5PYN-TVzJVg_DT1DaIJmzDxcPK0Kulw_jK9pvqXg8dHRVi2sohfWv5rO_It2EG5Np0BEZwjdYEsKP6SF3Qu7WNJvzXbVektHdq02tsZtbxYmf7RYQkVXpdmAUNvMvCXzyy8_RmO_nbTgK3iPal9qrYQMwOJEOlF5EAutiyJCaBYFOp8bzO4ZwzLgXqC0kToPFTc8Kgz6kFnwjhyWVWmOCA1YYaQoEvD8AqmYzJnkzGAzkNFDybVHTrvbTlcNoEbqAhGRpJPz1PEH4hGPHAEn0uwOTF06_y7wjxnGk4RL4ZHjjj1pq3CPKY8w4wjuLPPI590yqArmP7LSVBtHwwXiEYp_0STYm5xEcIL3Dcd3x-wExiPxnizsCBCqe38FJNhBdrcS--G_v_xInuMdNKWWx-SwXm_MJ3CH6vwEAoHrmxOnBL8BgsUIwQ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQvaHxtgQFG2mta23E--rh1G123TBWs0t6ixHY2izapuhSpfwH_Nnf5qChCPCD1zRfL8n34rnf3O0KOmRIKFpgbBiFzpc9TdxAaUPc0ZIHOIiYUZnTjm2A0leM7_26H-F0vTF20rzLbK2bzXmEf6trKxVz1uzqx_iQeSgl2FyL5XfIE9JXJLkhvkwdS-i1IOAddHnhtWx5Y4v74tIdBh-9yHMgjajBALrbepN08Lf_mbv5ZNfnbM3SxT160_iM9ac75kuyY4hV52kyUXL8mPyd1EdYPQ08QnKAZNA9XT8uczpffR5c0W1Pw-ehwrWZW0TPrfokn7lk7CreiMRDRCYI32ILCD2lh99zO5vRrs125XNOhXaqVrXDbq5nJHi0WUdFFYVYg1jY1b8j04vx2OHLbWQuughepcqXWSkgPbE6gI5V5odA6zwMEZ1Gg9ZnB_J4xLAX-eUobqTNfccOD3KAXmXpvyV5RFuaQUI_lRoo8At_Pk4rJjEnODLYDGT2QXDvkuLvtZNFAaiR1KCKiZHya1PyBiMQhh8CJJL0HY5dMvwn8a4bxKOJSOOSoY0_SqtxjwgPMOYJDyxzyebMMyoIZkLQw5aqm4QIRCcW_aCLsTo4COMFBw_HNMTuBcUi4JQsbAgTr3l4BGa5Bu1uZffffX34iz0a38XVyfXlz9Z48x_toCi-PyF61XJkP4BxV2cdaFX4BWZYLHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYEIgXxOcWGGCkvaa1Heejj1tL6To6RUClvUWJ7YBFm1RdOql_wf5t7vJRrQjxgJQ3ny3L9-G73Pl3hJwyJRQMMDcMQuZKn6fuIDSg7mnIAp1FTCjM6M6ugslcTq_963utvuqifZXZXrFY9gr7s66tXC1Vv6sT68ezoZRgdyGSX-m8f0Aegs6yoAvU2wSClH4LFM5Bnwde-zQPrHF_et7DwMN3OTblETUgIBd799JBnpZ_czn_rJy8dxWNn5GnrQ9Jz5q9PicPTPGCPGq6Sm5fkru4LsS6NfQMAQqaZvNw_LTM6XL9a3JBsy0Fv48Ot2phFR1Z9_MsdkdtO9yKzoCIxgjgYAsKH9LC6rldLOnXZrlyvaVDu1YbW-GylwuT3VgspKKrwmxAtG1qXpH5-NP34cRt-y24Cm6lypVaKyE9sDuBjlTmhULrPA8QoEWB5mcGc3zGsBR46CltpM58xQ0PcoOeZOq9JodFWZhjQj2WGynyCPw_TyomMyY5M_gkyOiB5Nohp91pJ6sGViOpwxERJdPzpOYPRCUOOQZOJOkPMHjJ_JvA3zOMRxGXwiEnHXuSVu1uEh5g3hGcWuaQj7thUBjMgqSFKTc1DReISij-RRPhC-UogB0cNRzfbbMTGIeEe7KwI0DA7v0RkOMauLuV2zf_PfMDeRyPxsmXi6vLt-QJHkdTe3lCDqv1xrwD_6jK3tea8Bs3Bgwx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+Autoregulation+of+mrkHI+by+the+Cyclic+Di-GMP-Dependent+MrkH+Protein+in+the+Biofilm+Regulatory+Circuit+of+Klebsiella+pneumoniae&rft.jtitle=Journal+of+bacteriology&rft.au=Tan%2C+Jason+W.+H&rft.au=Wilksch%2C+Jonathan+J&rft.au=Hocking%2C+Dianna+M&rft.au=Wang%2C+Nancy&rft.date=2015-05-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=197&rft.issue=9&rft.spage=1659&rft.epage=1667&rft_id=info:doi/10.1128%2FJB.02615-14&rft.externalDocID=US201500188142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon