Positive Autoregulation of mrkHI by the Cyclic Di-GMP-Dependent MrkH Protein in the Biofilm Regulatory Circuit of Klebsiella pneumoniae
Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cy...
Saved in:
Published in | Journal of bacteriology Vol. 197; no. 9; pp. 1659 - 1667 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. |
---|---|
AbstractList | Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase alpha subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. UNLABELLEDKlebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation.IMPORTANCEBacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. ABSTRACT Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence (“MrkH box”; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the −35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae , controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections. |
Author | Srikhanta, Yogitha N Wilksch, Jonathan J Hocking, Dianna M Robins-Browne, Roy M Wang, Nancy Tauschek, Marija Lithgow, Trevor Strugnell, Richard A Tan, Jason W. H Yang, Ji |
Author_xml | – sequence: 1 fullname: Tan, Jason W. H – sequence: 2 fullname: Wilksch, Jonathan J – sequence: 3 fullname: Hocking, Dianna M – sequence: 4 fullname: Wang, Nancy – sequence: 5 fullname: Srikhanta, Yogitha N – sequence: 6 fullname: Tauschek, Marija – sequence: 7 fullname: Lithgow, Trevor – sequence: 8 fullname: Robins-Browne, Roy M – sequence: 9 fullname: Yang, Ji – sequence: 10 fullname: Strugnell, Richard A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25733612$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URNuFE3ewxAUJpXhsJ5tckLpb6B9asQJ6thxnsnVJ7MVOKu0n4GvjsKUCTkiWLHl-ep73Zg7JnvMOCXkO7AiAl28vFkeMF5BnIB-RA2BVmeW5YHvkgDEOWQWV2CeHMd4yBlLm_AnZ5_lciAL4Afmx8tEO9g7p8Tj4gOux04P1jvqW9uHb2Tmtt3S4Qbrcms4aemKz06tVdoIbdA26gV4liK6CH9A6ms7ELqxvbdfTzzs5H7Z0aYMZ7TDJfuywjha7TtONw7H3zmp8Sh63uov47P6ekesP778uz7LLT6fny-PLzEheDZlsGsOlYGVZNKWpxZw3TdsWyYowUIoaZXpCZLqpS2EalE2dG0AoWkzuhRYz8m6nuxnrHhuTLATdqU2wvQ5b5bVVf1ecvVFrf6ekZKJIsc3I63uB4L-PGAfV22gmNw79GBUUpRAy9Sf_A50Dh3maUkJf_YPe-jG4lMREiSoHUbFEvdlRJvgYA7YPfQNT0y6oi4X6tQsKpu9f_Gn1gf09_AS83AGt9kqvg43q-gtnkKeoyhIkFz8BbT66yg |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1099_jmm_0_001148 crossref_primary_10_1172_JCI166710 crossref_primary_10_1016_j_compbiolchem_2022_107800 crossref_primary_10_1021_acsinfecdis_8b00255 crossref_primary_10_1016_j_micpath_2021_104743 crossref_primary_10_3389_fmicb_2018_02405 crossref_primary_10_1111_mmi_15254 crossref_primary_10_1007_s13238_016_0317_y crossref_primary_10_1093_infdis_jiw378 crossref_primary_10_1016_j_tips_2021_12_006 crossref_primary_10_3389_fcimb_2024_1324895 crossref_primary_10_1371_journal_pone_0173285 crossref_primary_10_1159_000487515 crossref_primary_10_3389_fmicb_2023_1238482 crossref_primary_10_1080_08927014_2017_1304541 crossref_primary_10_1073_pnas_1607503113 crossref_primary_10_1111_mmi_13990 crossref_primary_10_1089_fpd_2020_2847 crossref_primary_10_1089_mdr_2017_0073 crossref_primary_10_1002_2211_5463_13389 |
Cites_doi | 10.1371/journal.ppat.1002204 10.1128/JB.00304-10 10.1046/j.1365-2958.2000.01972.x 10.1038/ncpuro1231 10.1128/IAI.62.10.4186-4191.1994 10.1128/CMR.11.4.589 10.1128/MMBR.00043-12 10.1074/jbc.M113.503912 10.1099/mic.0.26434-0 10.1073/pnas.95.17.9761 10.1002/9780471729259.mc01b01s00 10.1128/JB.134.3.1141-1156.1978 10.1006/jmbi.2001.5390 10.1016/j.mib.2011.12.008 10.1093/nar/29.24.4909 10.1128/JCM.44.1.102-107.2006 10.1126/science.270.5241.1495 10.1128/IAI.00348-13 10.1002/j.1460-2075.1996.tb00809.x 10.1128/jb.177.23.6740-6744.1995 10.1128/JB.00286-11 10.1128/IAI.00494-08 10.1186/1471-2180-10-179 10.1016/0022-2836(86)90385-2 10.1128/IAI.66.6.2887-2894.1998 10.1099/jmm.0.47395-0 10.1101/gad.10.1.16 10.1038/nrg1087 10.1126/science.1076376 10.1101/gad.870001 10.1099/mic.0.053801-0 10.1016/S0923-2508(02)00004-9 10.1371/journal.pone.0079038 10.1016/0022-2836(76)90119-4 10.1128/IAI.67.4.1672-1676.1999 10.1038/nrmicro2109 10.1128/IAI.69.9.5805-5812.2001 10.1111/j.1365-2958.1990.tb00714.x 10.1093/bioinformatics/bti739 10.1006/bbrc.2001.6152 10.1006/jmbi.2000.4369 10.1128/IAI.65.4.1546-1549.1997 10.2217/fmb.12.74 10.1128/IAI.01396-12 10.1073/pnas.91.25.11816 10.1128/jb.170.2.1015-1017.1988 10.1111/j.1574-695X.2012.00965.x 10.1128/jb.179.19.6187-6191.1997 10.1099/mic.0.067793-0 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology May 2015 Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology May 2015 – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.02615-14 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts Bacteriology Abstracts (Microbiology B) MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Autoregulation of the mrkHI Promoter by MrkH |
EISSN | 1098-5530 |
Editor | Gourse, R. L. |
Editor_xml | – sequence: 1 givenname: R. L. surname: Gourse fullname: Gourse, R. L. |
EndPage | 1667 |
ExternalDocumentID | 3658060221 10_1128_JB_02615_14 25733612 US201500188142 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W ABPPZ ABPTK ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AEQTP AFDAS AFFDN AFFNX AFMIJ AFRAH AGCDD AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FBQ FRP GX1 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-S P2P PQQKQ QZG RHF RHI RNS RPM RSF RXW TAE TR2 UCJ UHB UKR UPT VH1 VQA W8F WH7 WHG WOQ X7M XFK Y6R YQT YR2 YZZ ZA5 ZCA ZCG ZGI ZXP ZY4 ~02 ~KM AGVNZ CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c429t-4ddc2430886d8cb372ddff66123c183be4372ee0adb83cde4db5c1e16fe0013a3 |
IEDL.DBID | RPM |
ISSN | 0021-9193 |
IngestDate | Tue Sep 17 21:21:19 EDT 2024 Sat Oct 26 01:32:22 EDT 2024 Fri Oct 25 04:03:51 EDT 2024 Thu Oct 10 18:43:38 EDT 2024 Thu Sep 12 19:43:14 EDT 2024 Sat Sep 28 08:05:18 EDT 2024 Wed Dec 27 18:59:40 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-4ddc2430886d8cb372ddff66123c183be4372ee0adb83cde4db5c1e16fe0013a3 |
Notes | http://dx.doi.org/10.1128/JB.02615-14 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 J.W.H.T. and J.J.W. are co-first authors and contributed equally to this article. J.Y. and R.A.S. contributed equally to this article. Citation Tan JWH, Wilksch JJ, Hocking DM, Wang N, Srikhanta YN, Tauschek M, Lithgow T, Robins-Browne RM, Yang J, Strugnell RA. 2015. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. J Bacteriol 197:1659–1667. doi:10.1128/JB.02615-14. |
PMID | 25733612 |
PQID | 1673951390 |
PQPubID | 40724 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403657 proquest_miscellaneous_1683348864 proquest_miscellaneous_1671217002 proquest_journals_1673951390 crossref_primary_10_1128_JB_02615_14 pubmed_primary_25733612 fao_agris_US201500188142 |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 11866514 - J Mol Biol. 2002 Feb 22;316(3):501-16 20511505 - J Bacteriol. 2010 Aug;192(15):3944-50 9767057 - Clin Microbiol Rev. 1998 Oct;11(4):589-603 11238372 - Genes Dev. 2001 Mar 1;15(5):491-506 21571997 - J Bacteriol. 2011 Jul;193(14):3453-60 781293 - J Mol Biol. 1976 Jul 5;104(3):541-55 2828307 - J Bacteriol. 1988 Feb;170(2):1015-7 149110 - J Bacteriol. 1978 Jun;134(3):1141-56 12949165 - Microbiology. 2003 Sep;149(Pt 9):2397-405 22448614 - FEMS Immunol Med Microbiol. 2012 Jul;65(2):350-9 18852707 - Nat Clin Pract Urol. 2008 Nov;5(11):598-608 10085002 - Infect Immun. 1999 Apr;67(4):1672-6 16249258 - Bioinformatics. 2006 Jan 1;22(1):3-6 9596764 - Infect Immun. 1998 Jun;66(6):2887-94 8861963 - EMBO J. 1996 Aug 15;15(16):4358-67 23704787 - Microbiology. 2013 Jul;159(Pt 7):1402-15 22262101 - Microbiology. 2012 Apr;158(Pt 4):1045-56 11812819 - Nucleic Acids Res. 2001 Dec 15;29(24):4909-19 8557191 - Genes Dev. 1996 Jan 1;10(1):16-26 9324270 - J Bacteriol. 1997 Oct;179(19):6187-91 7592462 - J Bacteriol. 1995 Dec;177(23):6740-4 23753626 - Infect Immun. 2013 Aug;81(8):3009-17 11779182 - Biochem Biophys Res Commun. 2002 Jan 11;290(1):397-402 7491496 - Science. 1995 Dec 1;270(5241):1495-7 10972792 - Mol Microbiol. 2000 Aug;37(4):687-95 19287449 - Nat Rev Microbiol. 2009 Apr;7(4):263-73 22913357 - Future Microbiol. 2012 Aug;7(8):991-1002 23543034 - J Clin Diagn Res. 2013 Feb;7(2):219-23 23774594 - Infect Immun. 2013 Sep;81(9):3089-98 9119502 - Infect Immun. 1997 Apr;65(4):1546-9 18770545 - Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1 21901098 - PLoS Pathog. 2011 Aug;7(8):e1002204 12576153 - Res Microbiol. 2003 Jan-Feb;154(1):9-16 1980713 - Mol Microbiol. 1990 Aug;4(8):1353-61 7991541 - Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11816-20 12202833 - Science. 2002 Aug 30;297(5586):1562-6 9707549 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9761-6 7927674 - Infect Immun. 1994 Oct;62(10):4186-91 11500458 - Infect Immun. 2001 Sep;69(9):5805-12 23471616 - Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52 17965358 - J Med Microbiol. 2007 Nov;56(Pt 11):1549-57 3537305 - J Mol Biol. 1986 May 5;189(1):113-30 19119427 - Gene Regul Syst Bio. 2007;1:275-93 11237595 - J Mol Biol. 2001 Feb 16;306(2):213-25 12776212 - Nat Rev Genet. 2003 Jun;4(6):419-31 20573190 - BMC Microbiol. 2010;10:179 18559432 - Infect Immun. 2008 Sep;76(9):4055-65 16390956 - J Clin Microbiol. 2006 Jan;44(1):102-7 24244411 - PLoS One. 2013;8(11):e79038 22226607 - Curr Opin Microbiol. 2012 Apr;15(2):140-6 24019519 - J Biol Chem. 2013 Oct 25;288(43):31115-26 (key20180919081455_B33) 2005; 2005 (key20180919081455_B6) 2008; 5 (key20180919081455_B49) 2001; 15 (key20180919081455_B16) 2001; 69 (key20180919081455_B51) 2009; 7 (key20180919081455_B4) 2013; 81 (key20180919081455_B14) 2008; 76 (key20180919081455_B28) 2003; 4 (key20180919081455_B9) 2013; 8 (key20180919081455_B44) 2001; 306 (key20180919081455_B25) 2006; 22 (key20180919081455_B36) 2002; 297 (key20180919081455_B10) 2012; 158 (key20180919081455_B23) 2013; 77 (key20180919081455_B48) 1988; 170 (key20180919081455_B39) 2002; 316 (key20180919081455_B12) 2010; 10 (key20180919081455_B13) 1998; 66 (key20180919081455_B32) 1986; 189 (key20180919081455_B3) 2007; 56 (key20180919081455_B8) 2011; 7 (key20180919081455_B46) 1995; 177 (key20180919081455_B35) 2007; 1 (key20180919081455_B29) 1978; 134 (key20180919081455_B2) 2013; 7 (key20180919081455_B24) 2012; 15 (key20180919081455_B5) 2012; 65 (key20180919081455_B17) 2013; 159 (key20180919081455_B34) 2013; 81 (key20180919081455_B20) 1994; 62 (key20180919081455_B18) 2012; 7 (key20180919081455_B50) 1994; 91 (key20180919081455_B26) 2010; 192 (key20180919081455_B11) 2003; 154 (key20180919081455_B38) 2006 (key20180919081455_B22) 1990; 4 (key20180919081455_B7) 2011; 193 (key20180919081455_B1) 1998; 11 (key20180919081455_B27) 2006; 44 (key20180919081455_B31) 1976; 104 (key20180919081455_B21) 1999; 67 (key20180919081455_B43) 2000; 37 (key20180919081455_B40) 2001; 29 (key20180919081455_B41) 1998; 95 (key20180919081455_B15) 1997; 65 (key20180919081455_B42) 1996; 10 (key20180919081455_B30) 2002; 290 (key20180919081455_B37) 1995; 270 (key20180919081455_B47) 1997; 179 (key20180919081455_B19) 2003; 149 (key20180919081455_B45) 1996; 15 (key20180919081455_B52) 2013; 288 |
References_xml | – volume: 7 start-page: e1002204 year: 2011 ident: key20180919081455_B8 article-title: MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002204 – volume: 1 start-page: 275 year: 2007 ident: key20180919081455_B35 article-title: Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters publication-title: Gene Regul Syst Biol – volume: 192 start-page: 3944 year: 2010 ident: key20180919081455_B26 article-title: The role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae publication-title: J Bacteriol doi: 10.1128/JB.00304-10 – volume: 37 start-page: 687 year: 2000 ident: key20180919081455_B43 article-title: UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.01972.x – volume: 5 start-page: 598 year: 2008 ident: key20180919081455_B6 article-title: Bacterial biofilms in patients with indwelling urinary catheters publication-title: Nat Clin Pract Urol doi: 10.1038/ncpuro1231 – volume: 62 start-page: 4186 year: 1994 ident: key20180919081455_B20 article-title: The type 3 fimbrial adhesin gene (mrkD) of Klebsiella species is not conserved among all fimbriate strains publication-title: Infect Immun doi: 10.1128/IAI.62.10.4186-4191.1994 – volume: 11 start-page: 589 year: 1998 ident: key20180919081455_B1 article-title: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors publication-title: Clin Microbiol Rev doi: 10.1128/CMR.11.4.589 – volume: 77 start-page: 1 year: 2013 ident: key20180919081455_B23 article-title: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00043-12 – volume: 288 start-page: 31115 year: 2013 ident: key20180919081455_B52 article-title: Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein publication-title: J Biol Chem doi: 10.1074/jbc.M113.503912 – volume: 149 start-page: 2397 year: 2003 ident: key20180919081455_B19 article-title: Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces publication-title: Microbiology doi: 10.1099/mic.0.26434-0 – volume: 95 start-page: 9761 year: 1998 ident: key20180919081455_B41 article-title: Identification of an UP element consensus sequence for bacterial promoters publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.17.9761 – volume: 2005 year: 2005 ident: key20180919081455_B33 article-title: Growing and analyzing static biofilms publication-title: Curr Protoc Microbiol doi: 10.1002/9780471729259.mc01b01s00 – volume: 134 start-page: 1141 year: 1978 ident: key20180919081455_B29 article-title: Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid publication-title: J Bacteriol doi: 10.1128/JB.134.3.1141-1156.1978 – volume: 316 start-page: 501 year: 2002 ident: key20180919081455_B39 article-title: Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters publication-title: J Mol Biol doi: 10.1006/jmbi.2001.5390 – volume: 15 start-page: 140 year: 2012 ident: key20180919081455_B24 article-title: You've come a long way: c-di-GMP signaling publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2011.12.008 – volume: 29 start-page: 4909 year: 2001 ident: key20180919081455_B40 article-title: Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA polymerase alpha subunit and T7D promoter UP element publication-title: Nucleic Acids Res doi: 10.1093/nar/29.24.4909 – volume: 44 start-page: 102 year: 2006 ident: key20180919081455_B27 article-title: Seroepidemiology of Klebsiella pneumoniae in an Australian tertiary hospital and its implications for vaccine development publication-title: J Clin Microbiol doi: 10.1128/JCM.44.1.102-107.2006 – volume: 270 start-page: 1495 year: 1995 ident: key20180919081455_B37 article-title: Solution structure of the activator contact domain of the RNA polymerase alpha subunit publication-title: Science doi: 10.1126/science.270.5241.1495 – volume: 81 start-page: 3009 year: 2013 ident: key20180919081455_B4 article-title: Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections publication-title: Infect Immun doi: 10.1128/IAI.00348-13 – volume: 7 start-page: 219 year: 2013 ident: key20180919081455_B2 article-title: The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms publication-title: J Clin Diagn Res – volume: 15 start-page: 4358 year: 1996 ident: key20180919081455_B45 article-title: Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00809.x – volume: 177 start-page: 6740 year: 1995 ident: key20180919081455_B46 article-title: Mapping of the OxyR protein contact site in the C-terminal region of RNA polymerase alpha subunit publication-title: J Bacteriol doi: 10.1128/jb.177.23.6740-6744.1995 – volume: 193 start-page: 3453 year: 2011 ident: key20180919081455_B7 article-title: Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae publication-title: J Bacteriol doi: 10.1128/JB.00286-11 – volume: 76 start-page: 4055 year: 2008 ident: key20180919081455_B14 article-title: Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence publication-title: Infect Immun doi: 10.1128/IAI.00494-08 – volume: 10 start-page: 179 year: 2010 ident: key20180919081455_B12 article-title: Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation publication-title: BMC Microbiol doi: 10.1186/1471-2180-10-179 – volume: 189 start-page: 113 year: 1986 ident: key20180919081455_B32 article-title: Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes publication-title: J Mol Biol doi: 10.1016/0022-2836(86)90385-2 – volume: 66 start-page: 2887 year: 1998 ident: key20180919081455_B13 article-title: Characterization of the type 3 fimbrial adhesins of Klebsiella strains publication-title: Infect Immun doi: 10.1128/IAI.66.6.2887-2894.1998 – volume: 56 start-page: 1549 year: 2007 ident: key20180919081455_B3 article-title: Species interactions in mixed-community crystalline biofilms on urinary catheters publication-title: J Med Microbiol doi: 10.1099/jmm.0.47395-0 – volume: 10 start-page: 16 year: 1996 ident: key20180919081455_B42 article-title: DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture publication-title: Genes Dev doi: 10.1101/gad.10.1.16 – volume: 4 start-page: 419 year: 2003 ident: key20180919081455_B28 article-title: The art and design of genetic screens: Escherichia coli publication-title: Nat Rev Genet doi: 10.1038/nrg1087 – volume: 297 start-page: 1562 year: 2002 ident: key20180919081455_B36 article-title: Structural basis of transcription activation: the CAP-alpha CTD-DNA complex publication-title: Science doi: 10.1126/science.1076376 – volume: 15 start-page: 491 year: 2001 ident: key20180919081455_B49 article-title: Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove publication-title: Genes Dev doi: 10.1101/gad.870001 – volume: 158 start-page: 1045 year: 2012 ident: key20180919081455_B10 article-title: Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43 publication-title: Microbiology doi: 10.1099/mic.0.053801-0 – volume: 154 start-page: 9 year: 2003 ident: key20180919081455_B11 article-title: Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces publication-title: Res Microbiol doi: 10.1016/S0923-2508(02)00004-9 – volume-title: Molecular paradigms of infectious disease year: 2006 ident: key20180919081455_B38 – volume: 8 start-page: e79038 year: 2013 ident: key20180919081455_B9 article-title: Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein publication-title: PLoS One doi: 10.1371/journal.pone.0079038 – volume: 104 start-page: 541 year: 1976 ident: key20180919081455_B31 article-title: Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu publication-title: J Mol Biol doi: 10.1016/0022-2836(76)90119-4 – volume: 67 start-page: 1672 year: 1999 ident: key20180919081455_B21 article-title: Construction and characterization of mutations within the Klebsiella mrkD1P gene that affect binding to collagen type V publication-title: Infect Immun doi: 10.1128/IAI.67.4.1672-1676.1999 – volume: 7 start-page: 263 year: 2009 ident: key20180919081455_B51 article-title: Principles of c-di-GMP signalling in bacteria publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2109 – volume: 69 start-page: 5805 year: 2001 ident: key20180919081455_B16 article-title: Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation publication-title: Infect Immun doi: 10.1128/IAI.69.9.5805-5812.2001 – volume: 4 start-page: 1353 year: 1990 ident: key20180919081455_B22 article-title: Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1990.tb00714.x – volume: 22 start-page: 3 year: 2006 ident: key20180919081455_B25 article-title: PilZ domain is part of the bacterial c-di-GMP binding protein publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti739 – volume: 290 start-page: 397 year: 2002 ident: key20180919081455_B30 article-title: Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2001.6152 – volume: 306 start-page: 213 year: 2001 ident: key20180919081455_B44 article-title: Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface publication-title: J Mol Biol doi: 10.1006/jmbi.2000.4369 – volume: 65 start-page: 1546 year: 1997 ident: key20180919081455_B15 article-title: Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells publication-title: Infect Immun doi: 10.1128/IAI.65.4.1546-1549.1997 – volume: 7 start-page: 991 year: 2012 ident: key20180919081455_B18 article-title: Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation publication-title: Future Microbiol doi: 10.2217/fmb.12.74 – volume: 81 start-page: 3089 year: 2013 ident: key20180919081455_B34 article-title: Genetic analysis of the role of yfiR in the ability of Escherichia coli CFT073 to control cellular cyclic dimeric GMP levels and to persist in the urinary tract publication-title: Infect Immun doi: 10.1128/IAI.01396-12 – volume: 91 start-page: 11816 year: 1994 ident: key20180919081455_B50 article-title: Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.91.25.11816 – volume: 170 start-page: 1015 year: 1988 ident: key20180919081455_B48 article-title: Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid publication-title: J Bacteriol doi: 10.1128/jb.170.2.1015-1017.1988 – volume: 65 start-page: 350 year: 2012 ident: key20180919081455_B5 article-title: Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae publication-title: FEMS Immunol Med Microbiol doi: 10.1111/j.1574-695X.2012.00965.x – volume: 179 start-page: 6187 year: 1997 ident: key20180919081455_B47 article-title: Amino acid residues in the alpha-subunit C-terminal domain of Escherichia coli RNA polymerase involved in activation of transcription from the mtr promoter publication-title: J Bacteriol doi: 10.1128/jb.179.19.6187-6191.1997 – volume: 159 start-page: 1402 year: 2013 ident: key20180919081455_B17 article-title: FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3 publication-title: Microbiology doi: 10.1099/mic.0.067793-0 |
SSID | ssj0014452 |
Score | 2.3418171 |
Snippet | Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial... ABSTRACT Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote... UNLABELLEDKlebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote... Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial... |
SourceID | pubmedcentral proquest crossref pubmed fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1659 |
SubjectTerms | autoregulation bacteria Bacterial Adhesion Bacteriology Binding Sites biofilm Biofilms Biofilms - growth & development biosynthesis Cyclic GMP - analogs & derivatives Cyclic GMP - metabolism Deoxyribonucleic acid DNA DNA Mutational Analysis DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA-directed RNA polymerase DNA-Directed RNA Polymerases - metabolism Electrophoretic Mobility Shift Assay fimbriae Fimbriae, Bacterial - physiology gel electrophoresis Gene expression Gene Expression Profiling Gene Expression Regulation, Bacterial Gram-negative bacteria Homeostasis Klebsiella pneumoniae Klebsiella pneumoniae - genetics Klebsiella pneumoniae - metabolism Klebsiella pneumoniae - physiology microbial colonization Nosocomial infections Operon pathogens promoter regions Promoter Regions, Genetic Protein Binding Proteins quantitative polymerase chain reaction Real-Time Polymerase Chain Reaction sequence analysis Sequence Analysis, DNA tissues transcription factors Transcription Factors - genetics Transcription Factors - metabolism transcriptional activation |
Title | Positive Autoregulation of mrkHI by the Cyclic Di-GMP-Dependent MrkH Protein in the Biofilm Regulatory Circuit of Klebsiella pneumoniae |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25733612 https://www.proquest.com/docview/1673951390 https://search.proquest.com/docview/1671217002 https://search.proquest.com/docview/1683348864 https://pubmed.ncbi.nlm.nih.gov/PMC4403657 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdNYbCXse9664oGfXUiyfJHHtt0bZqSEbYF-mZsSW5FEzukziB_wf7t3cl2WMrYwyBvOguh-9Bd7u53hJwyJRQsMD-OYubLkGf-MDag7lnMIp0nTCjM6E6_RuO5nNyGtwck7HphXNG-ym2_XCz7pb13tZWrpRp0dWKD2XQkJdhdiOR7pAcC2oXobepAyrCFCOegycOgbcoDOzyYnPcx5Ah9juN4hIMC5GLvReoVWfU3Z_NpzeQfj9DlS_Ki9R7pWXPKV-TAlK_Js2ae5PYN-TVzJVg_DT1DaIJmzDxcPK0Kulw_jK9pvqXg8dHRVi2sohfWv5rO_It2EG5Np0BEZwjdYEsKP6SF3Qu7WNJvzXbVektHdq02tsZtbxYmf7RYQkVXpdmAUNvMvCXzyy8_RmO_nbTgK3iPal9qrYQMwOJEOlF5EAutiyJCaBYFOp8bzO4ZwzLgXqC0kToPFTc8Kgz6kFnwjhyWVWmOCA1YYaQoEvD8AqmYzJnkzGAzkNFDybVHTrvbTlcNoEbqAhGRpJPz1PEH4hGPHAEn0uwOTF06_y7wjxnGk4RL4ZHjjj1pq3CPKY8w4wjuLPPI590yqArmP7LSVBtHwwXiEYp_0STYm5xEcIL3Dcd3x-wExiPxnizsCBCqe38FJNhBdrcS--G_v_xInuMdNKWWx-SwXm_MJ3CH6vwEAoHrmxOnBL8BgsUIwQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQvaHxtgQFG2mta23E--rh1G123TBWs0t6ixHY2izapuhSpfwH_Nnf5qChCPCD1zRfL8n34rnf3O0KOmRIKFpgbBiFzpc9TdxAaUPc0ZIHOIiYUZnTjm2A0leM7_26H-F0vTF20rzLbK2bzXmEf6trKxVz1uzqx_iQeSgl2FyL5XfIE9JXJLkhvkwdS-i1IOAddHnhtWx5Y4v74tIdBh-9yHMgjajBALrbepN08Lf_mbv5ZNfnbM3SxT160_iM9ac75kuyY4hV52kyUXL8mPyd1EdYPQ08QnKAZNA9XT8uczpffR5c0W1Pw-ehwrWZW0TPrfokn7lk7CreiMRDRCYI32ILCD2lh99zO5vRrs125XNOhXaqVrXDbq5nJHi0WUdFFYVYg1jY1b8j04vx2OHLbWQuughepcqXWSkgPbE6gI5V5odA6zwMEZ1Gg9ZnB_J4xLAX-eUobqTNfccOD3KAXmXpvyV5RFuaQUI_lRoo8At_Pk4rJjEnODLYDGT2QXDvkuLvtZNFAaiR1KCKiZHya1PyBiMQhh8CJJL0HY5dMvwn8a4bxKOJSOOSoY0_SqtxjwgPMOYJDyxzyebMMyoIZkLQw5aqm4QIRCcW_aCLsTo4COMFBw_HNMTuBcUi4JQsbAgTr3l4BGa5Bu1uZffffX34iz0a38XVyfXlz9Z48x_toCi-PyF61XJkP4BxV2cdaFX4BWZYLHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYEIgXxOcWGGCkvaa1Heejj1tL6To6RUClvUWJ7YBFm1RdOql_wf5t7vJRrQjxgJQ3ny3L9-G73Pl3hJwyJRQMMDcMQuZKn6fuIDSg7mnIAp1FTCjM6M6ugslcTq_963utvuqifZXZXrFY9gr7s66tXC1Vv6sT68ezoZRgdyGSX-m8f0Aegs6yoAvU2wSClH4LFM5Bnwde-zQPrHF_et7DwMN3OTblETUgIBd799JBnpZ_czn_rJy8dxWNn5GnrQ9Jz5q9PicPTPGCPGq6Sm5fkru4LsS6NfQMAQqaZvNw_LTM6XL9a3JBsy0Fv48Ot2phFR1Z9_MsdkdtO9yKzoCIxgjgYAsKH9LC6rldLOnXZrlyvaVDu1YbW-GylwuT3VgspKKrwmxAtG1qXpH5-NP34cRt-y24Cm6lypVaKyE9sDuBjlTmhULrPA8QoEWB5mcGc3zGsBR46CltpM58xQ0PcoOeZOq9JodFWZhjQj2WGynyCPw_TyomMyY5M_gkyOiB5Nohp91pJ6sGViOpwxERJdPzpOYPRCUOOQZOJOkPMHjJ_JvA3zOMRxGXwiEnHXuSVu1uEh5g3hGcWuaQj7thUBjMgqSFKTc1DReISij-RRPhC-UogB0cNRzfbbMTGIeEe7KwI0DA7v0RkOMauLuV2zf_PfMDeRyPxsmXi6vLt-QJHkdTe3lCDqv1xrwD_6jK3tea8Bs3Bgwx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+Autoregulation+of+mrkHI+by+the+Cyclic+Di-GMP-Dependent+MrkH+Protein+in+the+Biofilm+Regulatory+Circuit+of+Klebsiella+pneumoniae&rft.jtitle=Journal+of+bacteriology&rft.au=Tan%2C+Jason+W.+H&rft.au=Wilksch%2C+Jonathan+J&rft.au=Hocking%2C+Dianna+M&rft.au=Wang%2C+Nancy&rft.date=2015-05-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=197&rft.issue=9&rft.spage=1659&rft.epage=1667&rft_id=info:doi/10.1128%2FJB.02615-14&rft.externalDocID=US201500188142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |