Quantification of Liver Fat Content: Comparison of Triple-Echo Chemical Shift Gradient-Echo Imaging and in Vivo Proton MR Spectroscopy
To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained fr...
Saved in:
Published in | Radiology Vol. 250; no. 1; pp. 95 - 102 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oak Brook, IL
Radiological Society of North America
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard.
This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated.
Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement.
A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies. |
---|---|
AbstractList | To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard.PURPOSETo validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard.This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated.MATERIALS AND METHODSThis prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated.Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement.RESULTSMean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement.A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies.CONCLUSIONA breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies. PURPOSE: To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. MATERIALS AND METHODS: This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated. RESULTS: Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement. CONCLUSION: A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies. To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated. Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement. A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies. |
Author | Loffroy, Romaric Krause, Denis Aho, Serge Masson, David Cercueil, Jean-Pierre Hillon, Patrick Petit, Jean-Michel Guiu, Boris Ben Salem, Douraied |
Author_xml | – sequence: 1 givenname: Boris surname: Guiu fullname: Guiu, Boris – sequence: 2 givenname: Jean-Michel surname: Petit fullname: Petit, Jean-Michel – sequence: 3 givenname: Romaric surname: Loffroy fullname: Loffroy, Romaric – sequence: 4 givenname: Douraied surname: Ben Salem fullname: Ben Salem, Douraied – sequence: 5 givenname: Serge surname: Aho fullname: Aho, Serge – sequence: 6 givenname: David surname: Masson fullname: Masson, David – sequence: 7 givenname: Patrick surname: Hillon fullname: Hillon, Patrick – sequence: 8 givenname: Denis surname: Krause fullname: Krause, Denis – sequence: 9 givenname: Jean-Pierre surname: Cercueil fullname: Cercueil, Jean-Pierre |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21534166$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19092092$$D View this record in MEDLINE/PubMed https://hal.univ-brest.fr/hal-00927444$$DView record in HAL |
BookMark | eNp9kc1q3DAUhUVJaSZJH6Cbok0LXTjVny27uzDkD6a0TdJujay5yqjYkiNpBvICee5o4kkCXRQEEtJ3DlfnHKA95x0g9IGSY0pF_TWopfX9MRMNJzVhVL5BM1oyWVBOyz00I4Tzoha02UcHMf4lhIqylu_QPm1Iw_KaoYdfa-WSNVarZL3D3uCF3UDAZyrhuXcJXPqWD8Oogo0TcBPs2ENxqlcez1cwZG2Pr1fWJHy-HSlLpsfLQd1ad4uVW2Lr8B-78fhn8CnbfL_C1yPoFHzUfrw_Qm-N6iO83-2H6PfZ6c38olj8OL-cnywKLViTCiF1J3T-OmFVbWpJaccrwylorpjSDVGslLLrFDWaC1gCiJIbQ4DUAEZqfoi-TL4r1bdjsIMK961Xtr04WbTbO5JTkUKIDc3s54kdg79bQ0ztYKOGvlcO_Dq2VSUF43WVwY87cN0NsHzxfU45A592gIo5KxOU0za-cIyWXNBqa0QnTudYYgDzakXabePt1Hj72njWyH802qanLlNQtv-P8hHEaLGG |
CODEN | RADLAX |
CitedBy_id | crossref_primary_10_1016_S0221_0363_09_73268_8 crossref_primary_10_1038_nrgastro_2013_175 crossref_primary_10_1002_jmri_25179 crossref_primary_10_1007_s11657_019_0639_5 crossref_primary_10_1111_j_1751_2980_2009_00402_x crossref_primary_10_1177_15353702211006049 crossref_primary_10_1258_AR_2011_100412 crossref_primary_10_1016_j_acra_2013_05_004 crossref_primary_10_1152_ajpendo_00266_2017 crossref_primary_10_1016_j_jhep_2010_01_008 crossref_primary_10_1002_jmri_22583 crossref_primary_10_1007_s00330_012_2745_2 crossref_primary_10_1002_mrm_28981 crossref_primary_10_1148_radiol_10100659 crossref_primary_10_1007_s40261_019_00785_6 crossref_primary_10_1097_MEG_0b013e32833775fb crossref_primary_10_1007_s10334_011_0264_9 crossref_primary_10_1002_oby_23865 crossref_primary_10_1016_j_diabet_2013_01_007 crossref_primary_10_1111_dme_12805 crossref_primary_10_1111_hepr_13408 crossref_primary_10_1007_s00330_010_1941_1 crossref_primary_10_1016_j_acra_2011_07_009 crossref_primary_10_1016_j_clinimag_2018_02_002 crossref_primary_10_1016_j_metabol_2013_08_003 crossref_primary_10_1259_bjr_20180701 crossref_primary_10_1194_jlr_D016691 crossref_primary_10_1002_jmri_22580 crossref_primary_10_1016_j_ultrasmedbio_2021_06_002 crossref_primary_10_1111_dme_13565 crossref_primary_10_2214_AJR_11_6729 crossref_primary_10_1007_s00330_020_06757_1 crossref_primary_10_1002_mrm_28052 crossref_primary_10_1038_s41598_020_59601_3 crossref_primary_10_3390_cancers13112700 crossref_primary_10_1016_j_jdiacomp_2024_108870 crossref_primary_10_1016_j_atherosclerosis_2018_09_008 crossref_primary_10_1016_j_jhep_2016_06_005 crossref_primary_10_1148_rg_296095520 crossref_primary_10_1080_09674845_2019_1571555 crossref_primary_10_3748_wjg_v22_i39_8812 crossref_primary_10_1016_j_jhep_2009_05_023 crossref_primary_10_1016_j_mric_2010_08_013 crossref_primary_10_1136_postgradmedj_2013_201620rep crossref_primary_10_2967_jnumed_111_087957 crossref_primary_10_3389_fendo_2020_00654 crossref_primary_10_1002_jmri_23738 crossref_primary_10_1016_j_jhep_2009_09_006 crossref_primary_10_1016_j_ejrad_2011_01_067 crossref_primary_10_1093_ajcn_nqaa332 crossref_primary_10_1097_RLI_0b013e31824baff3 crossref_primary_10_1161_ATVBAHA_112_255190 crossref_primary_10_1111_j_1467_789X_2010_00824_x crossref_primary_10_1007_s00330_011_2326_9 crossref_primary_10_1002_hep4_1661 crossref_primary_10_1016_j_mri_2012_04_023 crossref_primary_10_1111_j_1872_034X_2009_00620_x crossref_primary_10_1016_S1155_1976_12_46610_4 crossref_primary_10_1097_RCT_0b013e3181cefb89 crossref_primary_10_1016_j_mric_2014_04_010 crossref_primary_10_1172_jci_insight_84671 crossref_primary_10_1016_j_ejrad_2019_07_025 crossref_primary_10_1007_s10334_017_0616_1 crossref_primary_10_1017_S0029665110001916 crossref_primary_10_1007_s10334_011_0278_3 crossref_primary_10_1155_2019_3439468 crossref_primary_10_2337_dc16_0499 crossref_primary_10_1002_mrm_24951 crossref_primary_10_1097_MD_0000000000024358 crossref_primary_10_1016_j_jrras_2023_100609 crossref_primary_10_1259_bjr_20150829 crossref_primary_10_1259_bjr_20140232 crossref_primary_10_1109_TMI_2022_3180302 crossref_primary_10_1002_jmri_24568 crossref_primary_10_1016_j_mri_2014_04_010 crossref_primary_10_1148_ryct_2021200575 crossref_primary_10_1016_j_jhep_2010_04_018 crossref_primary_10_1155_2015_758164 crossref_primary_10_1007_s00330_010_1905_5 crossref_primary_10_1097_MEG_0000000000000876 crossref_primary_10_1016_j_compbiomed_2016_02_013 crossref_primary_10_1148_radiol_13122883 crossref_primary_10_13104_jksmrm_2011_15_1_57 crossref_primary_10_1016_j_gcb_2009_05_011 crossref_primary_10_1042_CS20170261 crossref_primary_10_1371_journal_pone_0153595 crossref_primary_10_1002_jmri_22701 crossref_primary_10_1148_radiol_12120896 crossref_primary_10_1007_s00592_015_0766_4 crossref_primary_10_1016_j_atherosclerosis_2012_08_016 crossref_primary_10_1016_j_mri_2013_12_005 crossref_primary_10_1002_mrm_23016 crossref_primary_10_2214_AJR_09_3011 crossref_primary_10_3748_wjg_v21_i15_4688 crossref_primary_10_3350_cmh_2017_0042 crossref_primary_10_1136_jclinpath_2013_201620 crossref_primary_10_1111_jdi_13383 crossref_primary_10_1371_journal_pone_0114436 crossref_primary_10_3390_cancers12020313 crossref_primary_10_1002_jmri_23741 crossref_primary_10_3350_cmh_2022_0357 crossref_primary_10_1093_ajcn_nqaa125 crossref_primary_10_1148_radiol_14130863 crossref_primary_10_1016_j_ejrad_2013_07_012 crossref_primary_10_1371_journal_pone_0111283 crossref_primary_10_1038_ajg_2014_1 crossref_primary_10_1148_radiol_10091790 crossref_primary_10_3945_ajcn_114_094730 crossref_primary_10_1007_s00261_014_0175_0 crossref_primary_10_1016_S0973_6883_12_60103_0 crossref_primary_10_1186_s12933_023_02049_2 crossref_primary_10_3390_diagnostics12030755 crossref_primary_10_1152_ajpendo_00162_2018 crossref_primary_10_3390_nu15030558 crossref_primary_10_1148_radiol_12112478 crossref_primary_10_1371_journal_pone_0116842 crossref_primary_10_1002_jmri_25083 crossref_primary_10_1148_radiol_2015142254 crossref_primary_10_4174_astr_2015_89_1_37 crossref_primary_10_1016_j_acra_2014_01_007 crossref_primary_10_1002_mrm_25054 crossref_primary_10_1258_ar_2011_100360 crossref_primary_10_1007_s00330_013_2826_x crossref_primary_10_1111_apt_17866 crossref_primary_10_1002_jmri_24989 crossref_primary_10_1038_s41598_023_39361_6 crossref_primary_10_1111_j_1477_2574_2011_00380_x crossref_primary_10_1177_0284185117745908 crossref_primary_10_1186_s12916_014_0137_y crossref_primary_10_1007_s00330_009_1330_9 crossref_primary_10_1016_j_knosys_2014_11_021 crossref_primary_10_52668_kjar_2022_00143 crossref_primary_10_1007_s00330_012_2468_4 crossref_primary_10_2217_iim_11_13 crossref_primary_10_1186_s12916_024_03779_0 crossref_primary_10_1002_mrm_30117 crossref_primary_10_1007_s00330_014_3554_6 crossref_primary_10_1016_j_clnu_2011_12_007 crossref_primary_10_1097_MCO_0b013e32832eb587 crossref_primary_10_1148_radiol_14131890 crossref_primary_10_1016_j_ejrad_2015_05_001 crossref_primary_10_1111_jgh_12451 crossref_primary_10_1002_jmri_22390 crossref_primary_10_1007_s11695_016_2473_9 crossref_primary_10_5392_JKCA_2014_14_11_558 |
Cites_doi | 10.1109/IEMBS.2007.4353610 10.1053/j.gastro.2007.04.068 10.1002/hep.510250345 10.1148/radiol.2402050314 10.1002/hep.21327 10.1007/s00330-007-0801-0 10.1002/lt.20354 10.1002/hep.510300407 10.1542/peds.2006-1212 10.2337/diabetes.51.3.797 10.1016/S0168-8278(97)80288-7 10.1371/journal.pone.0000569 10.1016/j.humpath.2003.10.029 10.1056/NEJMra011775 10.1016/j.mito.2005.10.004 10.1148/radiol.2372040539 10.1148/radiol.2303021331 10.1148/radiol.2462071131 10.1152/ajpendo.1999.276.5.E977 10.1136/gut.2003.036566 10.1053/j.gastro.2008.01.075 10.1016/j.jhep.2006.06.021 10.1002/mrm.21561 10.1148/radiol.2422052024 10.2307/2532051 10.1055/s-2001-12926 10.1002/mrm.20825 10.1620/tjem.206.23 10.2463/mrms.2.47 10.1002/mrm.20586 10.1148/radiol.2393042218 10.1053/j.gastro.2005.03.084 10.1053/jhep.2003.50193 10.1002/jmri.1880050311 10.1016/S0140-6736(86)90837-8 10.1002/lt.20340 10.2337/dc06-2032 10.1053/gast.2002.34168 10.1097/QAI.0b013e3181568cc2 10.1016/0730-725X(94)92543-7 10.1002/hep.22220 10.1038/oby.2002.118 10.1007/BF02668096 10.2337/dc07-0349 10.1002/hep.21768 10.1148/radiol.2373041639 10.1210/jc.87.7.3023 10.1002/hep.21248 10.1152/ajpendo.00590.2006 10.1148/radiol.2442061177 10.2337/dc08-s244 10.1152/ajpendo.00064.2004 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS (c) RSNA, 2009. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: (c) RSNA, 2009. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 1XC |
DOI | 10.1148/radiol.2493080217 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-1315 |
EndPage | 102 |
ExternalDocumentID | oai_HAL_hal_00927444v1 19092092 21534166 10_1148_radiol_2493080217 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP IQODW ACRZS CGR CUY CVF ECM EIF NPM VXZ ZKG 7X8 1XC |
ID | FETCH-LOGICAL-c429t-47cb4c1480268f8711b36f31ec3a2ac90a2577bba1fc34edee453ff0e08eef7c3 |
ISSN | 0033-8419 1527-1315 |
IngestDate | Fri May 09 12:22:51 EDT 2025 Fri Jul 11 03:08:03 EDT 2025 Wed Feb 19 01:55:47 EST 2025 Mon Jul 21 09:14:48 EDT 2025 Thu Apr 24 22:53:56 EDT 2025 Tue Jul 01 00:35:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | In vivo Nuclear medicine Liver Fat Proton Radiology NMR spectrometry Comparative study Quantitative analysis |
Language | English |
License | CC BY 4.0 (c) RSNA, 2009. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-47cb4c1480268f8711b36f31ec3a2ac90a2577bba1fc34edee453ff0e08eef7c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-3107-5967 0000-0003-1277-3054 0000-0001-5532-2208 0000-0001-7590-8644 0000-0003-1692-0699 |
PMID | 19092092 |
PQID | 66742386 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_00927444v1 proquest_miscellaneous_66742386 pubmed_primary_19092092 pascalfrancis_primary_21534166 crossref_primary_10_1148_radiol_2493080217 crossref_citationtrail_10_1148_radiol_2493080217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-00 2009 2009-Jan 20090101 2009-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-00 |
PublicationDecade | 2000 |
PublicationPlace | Oak Brook, IL |
PublicationPlace_xml | – name: Oak Brook, IL – name: United States |
PublicationTitle | Radiology |
PublicationTitleAlternate | Radiology |
PublicationYear | 2009 |
Publisher | Radiological Society of North America |
Publisher_xml | – name: Radiological Society of North America |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R53 R12 R11 R14 R13 R16 R15 R18 R17 R19 |
References_xml | – ident: R53 doi: 10.1109/IEMBS.2007.4353610 – ident: R3 doi: 10.1053/j.gastro.2007.04.068 – ident: R49 doi: 10.1002/hep.510250345 – ident: R35 doi: 10.1148/radiol.2402050314 – ident: R5 doi: 10.1002/hep.21327 – ident: R46 doi: 10.1007/s00330-007-0801-0 – ident: R9 doi: 10.1002/lt.20354 – ident: R48 doi: 10.1002/hep.510300407 – ident: R4 doi: 10.1542/peds.2006-1212 – ident: R20 doi: 10.2337/diabetes.51.3.797 – ident: R13 doi: 10.1016/S0168-8278(97)80288-7 – ident: R29 doi: 10.1371/journal.pone.0000569 – ident: R52 doi: 10.1016/j.humpath.2003.10.029 – ident: R1 doi: 10.1056/NEJMra011775 – ident: R11 doi: 10.1016/j.mito.2005.10.004 – ident: R16 doi: 10.1148/radiol.2372040539 – ident: R42 doi: 10.1148/radiol.2303021331 – ident: R50 doi: 10.1148/radiol.2462071131 – ident: R22 doi: 10.1152/ajpendo.1999.276.5.E977 – ident: R12 doi: 10.1136/gut.2003.036566 – ident: R44 doi: 10.1053/j.gastro.2008.01.075 – ident: R33 doi: 10.1016/j.jhep.2006.06.021 – ident: R39 doi: 10.1002/mrm.21561 – ident: R17 doi: 10.1148/radiol.2422052024 – ident: R38 doi: 10.2307/2532051 – ident: R6 doi: 10.1055/s-2001-12926 – ident: R30 doi: 10.1002/mrm.20825 – ident: R27 doi: 10.1620/tjem.206.23 – ident: R28 doi: 10.2463/mrms.2.47 – ident: R40 doi: 10.1002/mrm.20586 – ident: R8 doi: 10.1148/radiol.2393042218 – ident: R51 doi: 10.1053/j.gastro.2005.03.084 – ident: R31 doi: 10.1053/jhep.2003.50193 – ident: R19 doi: 10.1002/jmri.1880050311 – ident: R37 doi: 10.1016/S0140-6736(86)90837-8 – ident: R10 doi: 10.1002/lt.20340 – ident: R32 doi: 10.2337/dc06-2032 – ident: R7 doi: 10.1053/gast.2002.34168 – ident: R26 doi: 10.1097/QAI.0b013e3181568cc2 – ident: R24 doi: 10.1016/0730-725X(94)92543-7 – ident: R41 doi: 10.1002/hep.22220 – ident: R25 doi: 10.1038/oby.2002.118 – ident: R36 doi: 10.1007/BF02668096 – ident: R47 doi: 10.2337/dc07-0349 – ident: R2 doi: 10.1002/hep.21768 – ident: R15 doi: 10.1148/radiol.2373041639 – ident: R21 doi: 10.1210/jc.87.7.3023 – ident: R43 doi: 10.1002/hep.21248 – ident: R18 doi: 10.1152/ajpendo.00590.2006 – ident: R14 doi: 10.1148/radiol.2442061177 – ident: R45 doi: 10.2337/dc08-s244 – ident: R23 doi: 10.1152/ajpendo.00064.2004 – ident: R34 |
SSID | ssj0014587 |
Score | 2.3577015 |
Snippet | To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as... PURPOSE: To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR)... |
SourceID | hal proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 95 |
SubjectTerms | Aged Aged, 80 and over Biological and medical sciences Diabetes Mellitus, Type 2 Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - pathology Echo-Planar Imaging Echo-Planar Imaging - methods Fatty Liver Fatty Liver - diagnosis Fatty Liver - pathology Female Humans Image Enhancement Image Enhancement - methods Image Processing, Computer-Assisted Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Life Sciences Liver Liver - pathology Magnetic Resonance Imaging Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopy - methods Male Mathematical Computing Medical sciences Middle Aged Prospective Studies Sensitivity and Specificity Software |
Title | Quantification of Liver Fat Content: Comparison of Triple-Echo Chemical Shift Gradient-Echo Imaging and in Vivo Proton MR Spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19092092 https://www.proquest.com/docview/66742386 https://hal.univ-brest.fr/hal-00927444 |
Volume | 250 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELa6ISEkhHinvAwL8YkoI4ndNOFbNdq1sG7QtdP4FMWOrVViSZWl-8AP4C_x9zjHTprAeJWqqkpdx809Ot-dn7tD6CXzhS8kSWyHhT44KL3YDlkibQUmkngMFKTKRp4e-uMFfXfaO-10vjVYS-uC7fIvV-aV_I9U4RrIVWXJ_oNk60nhAnwG-cI7SBje_0rGH9ex5vrUdt-BollYI_D6y7JTOvC31-w1aM1zFVu3h6D3rLpcwPHZUhbWfl4SwAr95eRcdzDS9Zmsk-WlYmxkqg7HdFY2ri9UKcxs1ToZnsEUrVD9_mKyKFGU5cvagP8wnE_mml0Tp7bmo9bcoKPRaHb0SfO-z2HhvI4ZDA-t48HBcGpM_zxemtysKm6x0YvVOvTfM9xUFR5pHlQ1dTYhdkCNYjU629PValvg1BpYt-w0e7lbZnNfsU1QlfqQlwvZBQeUqIxjnUPaLsn9w1ZZExjBUILt3_e30DUP_BPVOuPt5H19fEV7gS7WapZujtPhtq9_umnLINo6U3Tcm6v4Ah6O1K1Vfu37lDbQ_Da6ZZwXPNBIvIM6Ir2Lrk8NPeMe-toGJM4kLgGJAZDYAPIN3sBRDWjAEVdwxCUccQuO2MARAxzxMsUKjljDEU9nuAnH-2gxGs73xrZp9GFzMIcKm_Y5oxyejuP5gQQX3mXEl8QVnMRezEMnho2lz1jsSk6oSISgPSKlI5xACNnn5AHaTrNUPELYYyENvZhQhwXUSXyWuAnvyURI6iWBS7vIqZ52xE0VfNWM5XOkM_SDSAso2gioi17VP1npEjC_G_wCRFiPU8Xbx4ODSF1T5c36lNJLt4t2WhKuh1ew6qLnlcgjUPfqDC9ORba-iHxfUSsCGPFQI2GzpBDmh9fjP03-BN3QR6IqjvgUbRf5WjwDy7pgOyWKvwNfu9Fx |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Liver+Fat+Content%3A+Comparison+of+Triple-Echo+Chemical+Shift+Gradient-Echo+Imaging+and+in+Vivo+Proton+MR+Spectroscopy&rft.jtitle=Radiology&rft.au=GUIU%2C+Boris&rft.au=PETIT%2C+Jean-Michel&rft.au=LOFFROY%2C+Romaric&rft.au=BEN+SALEM%2C+Douraied&rft.date=2009&rft.pub=Radiological+Society+of+North+America&rft.issn=0033-8419&rft.volume=250&rft.issue=1&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1148%2Fradiol.2493080217&rft.externalDBID=n%2Fa&rft.externalDocID=21534166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |