Quantification of Liver Fat Content: Comparison of Triple-Echo Chemical Shift Gradient-Echo Imaging and in Vivo Proton MR Spectroscopy

To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained fr...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 250; no. 1; pp. 95 - 102
Main Authors Guiu, Boris, Petit, Jean-Michel, Loffroy, Romaric, Ben Salem, Douraied, Aho, Serge, Masson, David, Hillon, Patrick, Krause, Denis, Cercueil, Jean-Pierre
Format Journal Article
LanguageEnglish
Published Oak Brook, IL Radiological Society of North America 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated. Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement. A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies.
AbstractList To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard.PURPOSETo validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard.This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated.MATERIALS AND METHODSThis prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated.Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement.RESULTSMean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement.A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies.CONCLUSIONA breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies.
PURPOSE: To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. MATERIALS AND METHODS: This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated. RESULTS: Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement. CONCLUSION: A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies.
To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as the reference standard. This prospective study was approved by the appropriate ethics committee, and written informed consent was obtained from all patients. In 37 patients with type 2 diabetes (31 men, six women; mean age, 56 years), 3.0-T single-voxel point-resolved (1)H MR spectroscopy of the liver (Couinaud segment VII) was performed to calculate the liver fat fraction from the water (4.7 ppm) and methylene (1.3 ppm) peaks, corrected for T1 and T2 decay. Liver fat fraction was also computed from triple-echo (consecutive in-phase, opposed-phase, and in-phase echo times) breath-hold spoiled gradient-echo sequence (flip angle, 20 degrees), by estimating T2* and relative signal intensity loss between in- and opposed-phase values, corrected for T2* decay. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin concordance coefficient were calculated. Mean fat fractions calculated from the triple-echo sequence and (1)H MR spectroscopy were 10% (range, 0.7%-35.6%) and 9.7% (range, 0.2%-34.1%), respectively. Mean T2* time was 14.7 msec (range, 5.4-25.4 msec). Pearson correlation coefficient was 0.989 (P < .0001) and Lin concordance coefficient was 0.988 (P < .0001). With the Bland-Altman method, all data points were within the limits of agreement. A breath-hold triple-echo gradient-echo sequence with a low flip angle and correction for T2* decay is accurate for quantifying fat in segment VII of the liver. Given its excellent correlation and concordance with (1)H MR spectroscopy, this triple-echo sequence could replace (1)H MR spectroscopy in longitudinal studies.
Author Loffroy, Romaric
Krause, Denis
Aho, Serge
Masson, David
Cercueil, Jean-Pierre
Hillon, Patrick
Petit, Jean-Michel
Guiu, Boris
Ben Salem, Douraied
Author_xml – sequence: 1
  givenname: Boris
  surname: Guiu
  fullname: Guiu, Boris
– sequence: 2
  givenname: Jean-Michel
  surname: Petit
  fullname: Petit, Jean-Michel
– sequence: 3
  givenname: Romaric
  surname: Loffroy
  fullname: Loffroy, Romaric
– sequence: 4
  givenname: Douraied
  surname: Ben Salem
  fullname: Ben Salem, Douraied
– sequence: 5
  givenname: Serge
  surname: Aho
  fullname: Aho, Serge
– sequence: 6
  givenname: David
  surname: Masson
  fullname: Masson, David
– sequence: 7
  givenname: Patrick
  surname: Hillon
  fullname: Hillon, Patrick
– sequence: 8
  givenname: Denis
  surname: Krause
  fullname: Krause, Denis
– sequence: 9
  givenname: Jean-Pierre
  surname: Cercueil
  fullname: Cercueil, Jean-Pierre
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21534166$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19092092$$D View this record in MEDLINE/PubMed
https://hal.univ-brest.fr/hal-00927444$$DView record in HAL
BookMark eNp9kc1q3DAUhUVJaSZJH6Cbok0LXTjVny27uzDkD6a0TdJujay5yqjYkiNpBvICee5o4kkCXRQEEtJ3DlfnHKA95x0g9IGSY0pF_TWopfX9MRMNJzVhVL5BM1oyWVBOyz00I4Tzoha02UcHMf4lhIqylu_QPm1Iw_KaoYdfa-WSNVarZL3D3uCF3UDAZyrhuXcJXPqWD8Oogo0TcBPs2ENxqlcez1cwZG2Pr1fWJHy-HSlLpsfLQd1ad4uVW2Lr8B-78fhn8CnbfL_C1yPoFHzUfrw_Qm-N6iO83-2H6PfZ6c38olj8OL-cnywKLViTCiF1J3T-OmFVbWpJaccrwylorpjSDVGslLLrFDWaC1gCiJIbQ4DUAEZqfoi-TL4r1bdjsIMK961Xtr04WbTbO5JTkUKIDc3s54kdg79bQ0ztYKOGvlcO_Dq2VSUF43WVwY87cN0NsHzxfU45A592gIo5KxOU0za-cIyWXNBqa0QnTudYYgDzakXabePt1Hj72njWyH802qanLlNQtv-P8hHEaLGG
CODEN RADLAX
CitedBy_id crossref_primary_10_1016_S0221_0363_09_73268_8
crossref_primary_10_1038_nrgastro_2013_175
crossref_primary_10_1002_jmri_25179
crossref_primary_10_1007_s11657_019_0639_5
crossref_primary_10_1111_j_1751_2980_2009_00402_x
crossref_primary_10_1177_15353702211006049
crossref_primary_10_1258_AR_2011_100412
crossref_primary_10_1016_j_acra_2013_05_004
crossref_primary_10_1152_ajpendo_00266_2017
crossref_primary_10_1016_j_jhep_2010_01_008
crossref_primary_10_1002_jmri_22583
crossref_primary_10_1007_s00330_012_2745_2
crossref_primary_10_1002_mrm_28981
crossref_primary_10_1148_radiol_10100659
crossref_primary_10_1007_s40261_019_00785_6
crossref_primary_10_1097_MEG_0b013e32833775fb
crossref_primary_10_1007_s10334_011_0264_9
crossref_primary_10_1002_oby_23865
crossref_primary_10_1016_j_diabet_2013_01_007
crossref_primary_10_1111_dme_12805
crossref_primary_10_1111_hepr_13408
crossref_primary_10_1007_s00330_010_1941_1
crossref_primary_10_1016_j_acra_2011_07_009
crossref_primary_10_1016_j_clinimag_2018_02_002
crossref_primary_10_1016_j_metabol_2013_08_003
crossref_primary_10_1259_bjr_20180701
crossref_primary_10_1194_jlr_D016691
crossref_primary_10_1002_jmri_22580
crossref_primary_10_1016_j_ultrasmedbio_2021_06_002
crossref_primary_10_1111_dme_13565
crossref_primary_10_2214_AJR_11_6729
crossref_primary_10_1007_s00330_020_06757_1
crossref_primary_10_1002_mrm_28052
crossref_primary_10_1038_s41598_020_59601_3
crossref_primary_10_3390_cancers13112700
crossref_primary_10_1016_j_jdiacomp_2024_108870
crossref_primary_10_1016_j_atherosclerosis_2018_09_008
crossref_primary_10_1016_j_jhep_2016_06_005
crossref_primary_10_1148_rg_296095520
crossref_primary_10_1080_09674845_2019_1571555
crossref_primary_10_3748_wjg_v22_i39_8812
crossref_primary_10_1016_j_jhep_2009_05_023
crossref_primary_10_1016_j_mric_2010_08_013
crossref_primary_10_1136_postgradmedj_2013_201620rep
crossref_primary_10_2967_jnumed_111_087957
crossref_primary_10_3389_fendo_2020_00654
crossref_primary_10_1002_jmri_23738
crossref_primary_10_1016_j_jhep_2009_09_006
crossref_primary_10_1016_j_ejrad_2011_01_067
crossref_primary_10_1093_ajcn_nqaa332
crossref_primary_10_1097_RLI_0b013e31824baff3
crossref_primary_10_1161_ATVBAHA_112_255190
crossref_primary_10_1111_j_1467_789X_2010_00824_x
crossref_primary_10_1007_s00330_011_2326_9
crossref_primary_10_1002_hep4_1661
crossref_primary_10_1016_j_mri_2012_04_023
crossref_primary_10_1111_j_1872_034X_2009_00620_x
crossref_primary_10_1016_S1155_1976_12_46610_4
crossref_primary_10_1097_RCT_0b013e3181cefb89
crossref_primary_10_1016_j_mric_2014_04_010
crossref_primary_10_1172_jci_insight_84671
crossref_primary_10_1016_j_ejrad_2019_07_025
crossref_primary_10_1007_s10334_017_0616_1
crossref_primary_10_1017_S0029665110001916
crossref_primary_10_1007_s10334_011_0278_3
crossref_primary_10_1155_2019_3439468
crossref_primary_10_2337_dc16_0499
crossref_primary_10_1002_mrm_24951
crossref_primary_10_1097_MD_0000000000024358
crossref_primary_10_1016_j_jrras_2023_100609
crossref_primary_10_1259_bjr_20150829
crossref_primary_10_1259_bjr_20140232
crossref_primary_10_1109_TMI_2022_3180302
crossref_primary_10_1002_jmri_24568
crossref_primary_10_1016_j_mri_2014_04_010
crossref_primary_10_1148_ryct_2021200575
crossref_primary_10_1016_j_jhep_2010_04_018
crossref_primary_10_1155_2015_758164
crossref_primary_10_1007_s00330_010_1905_5
crossref_primary_10_1097_MEG_0000000000000876
crossref_primary_10_1016_j_compbiomed_2016_02_013
crossref_primary_10_1148_radiol_13122883
crossref_primary_10_13104_jksmrm_2011_15_1_57
crossref_primary_10_1016_j_gcb_2009_05_011
crossref_primary_10_1042_CS20170261
crossref_primary_10_1371_journal_pone_0153595
crossref_primary_10_1002_jmri_22701
crossref_primary_10_1148_radiol_12120896
crossref_primary_10_1007_s00592_015_0766_4
crossref_primary_10_1016_j_atherosclerosis_2012_08_016
crossref_primary_10_1016_j_mri_2013_12_005
crossref_primary_10_1002_mrm_23016
crossref_primary_10_2214_AJR_09_3011
crossref_primary_10_3748_wjg_v21_i15_4688
crossref_primary_10_3350_cmh_2017_0042
crossref_primary_10_1136_jclinpath_2013_201620
crossref_primary_10_1111_jdi_13383
crossref_primary_10_1371_journal_pone_0114436
crossref_primary_10_3390_cancers12020313
crossref_primary_10_1002_jmri_23741
crossref_primary_10_3350_cmh_2022_0357
crossref_primary_10_1093_ajcn_nqaa125
crossref_primary_10_1148_radiol_14130863
crossref_primary_10_1016_j_ejrad_2013_07_012
crossref_primary_10_1371_journal_pone_0111283
crossref_primary_10_1038_ajg_2014_1
crossref_primary_10_1148_radiol_10091790
crossref_primary_10_3945_ajcn_114_094730
crossref_primary_10_1007_s00261_014_0175_0
crossref_primary_10_1016_S0973_6883_12_60103_0
crossref_primary_10_1186_s12933_023_02049_2
crossref_primary_10_3390_diagnostics12030755
crossref_primary_10_1152_ajpendo_00162_2018
crossref_primary_10_3390_nu15030558
crossref_primary_10_1148_radiol_12112478
crossref_primary_10_1371_journal_pone_0116842
crossref_primary_10_1002_jmri_25083
crossref_primary_10_1148_radiol_2015142254
crossref_primary_10_4174_astr_2015_89_1_37
crossref_primary_10_1016_j_acra_2014_01_007
crossref_primary_10_1002_mrm_25054
crossref_primary_10_1258_ar_2011_100360
crossref_primary_10_1007_s00330_013_2826_x
crossref_primary_10_1111_apt_17866
crossref_primary_10_1002_jmri_24989
crossref_primary_10_1038_s41598_023_39361_6
crossref_primary_10_1111_j_1477_2574_2011_00380_x
crossref_primary_10_1177_0284185117745908
crossref_primary_10_1186_s12916_014_0137_y
crossref_primary_10_1007_s00330_009_1330_9
crossref_primary_10_1016_j_knosys_2014_11_021
crossref_primary_10_52668_kjar_2022_00143
crossref_primary_10_1007_s00330_012_2468_4
crossref_primary_10_2217_iim_11_13
crossref_primary_10_1186_s12916_024_03779_0
crossref_primary_10_1002_mrm_30117
crossref_primary_10_1007_s00330_014_3554_6
crossref_primary_10_1016_j_clnu_2011_12_007
crossref_primary_10_1097_MCO_0b013e32832eb587
crossref_primary_10_1148_radiol_14131890
crossref_primary_10_1016_j_ejrad_2015_05_001
crossref_primary_10_1111_jgh_12451
crossref_primary_10_1002_jmri_22390
crossref_primary_10_1007_s11695_016_2473_9
crossref_primary_10_5392_JKCA_2014_14_11_558
Cites_doi 10.1109/IEMBS.2007.4353610
10.1053/j.gastro.2007.04.068
10.1002/hep.510250345
10.1148/radiol.2402050314
10.1002/hep.21327
10.1007/s00330-007-0801-0
10.1002/lt.20354
10.1002/hep.510300407
10.1542/peds.2006-1212
10.2337/diabetes.51.3.797
10.1016/S0168-8278(97)80288-7
10.1371/journal.pone.0000569
10.1016/j.humpath.2003.10.029
10.1056/NEJMra011775
10.1016/j.mito.2005.10.004
10.1148/radiol.2372040539
10.1148/radiol.2303021331
10.1148/radiol.2462071131
10.1152/ajpendo.1999.276.5.E977
10.1136/gut.2003.036566
10.1053/j.gastro.2008.01.075
10.1016/j.jhep.2006.06.021
10.1002/mrm.21561
10.1148/radiol.2422052024
10.2307/2532051
10.1055/s-2001-12926
10.1002/mrm.20825
10.1620/tjem.206.23
10.2463/mrms.2.47
10.1002/mrm.20586
10.1148/radiol.2393042218
10.1053/j.gastro.2005.03.084
10.1053/jhep.2003.50193
10.1002/jmri.1880050311
10.1016/S0140-6736(86)90837-8
10.1002/lt.20340
10.2337/dc06-2032
10.1053/gast.2002.34168
10.1097/QAI.0b013e3181568cc2
10.1016/0730-725X(94)92543-7
10.1002/hep.22220
10.1038/oby.2002.118
10.1007/BF02668096
10.2337/dc07-0349
10.1002/hep.21768
10.1148/radiol.2373041639
10.1210/jc.87.7.3023
10.1002/hep.21248
10.1152/ajpendo.00590.2006
10.1148/radiol.2442061177
10.2337/dc08-s244
10.1152/ajpendo.00064.2004
ContentType Journal Article
Copyright 2009 INIST-CNRS
(c) RSNA, 2009.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 INIST-CNRS
– notice: (c) RSNA, 2009.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1148/radiol.2493080217
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 102
ExternalDocumentID oai_HAL_hal_00927444v1
19092092
21534166
10_1148_radiol_2493080217
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
IQODW
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
1XC
ID FETCH-LOGICAL-c429t-47cb4c1480268f8711b36f31ec3a2ac90a2577bba1fc34edee453ff0e08eef7c3
ISSN 0033-8419
1527-1315
IngestDate Fri May 09 12:22:51 EDT 2025
Fri Jul 11 03:08:03 EDT 2025
Wed Feb 19 01:55:47 EST 2025
Mon Jul 21 09:14:48 EDT 2025
Thu Apr 24 22:53:56 EDT 2025
Tue Jul 01 00:35:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords In vivo
Nuclear medicine
Liver
Fat
Proton
Radiology
NMR spectrometry
Comparative study
Quantitative analysis
Language English
License CC BY 4.0
(c) RSNA, 2009.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-47cb4c1480268f8711b36f31ec3a2ac90a2577bba1fc34edee453ff0e08eef7c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-3107-5967
0000-0003-1277-3054
0000-0001-5532-2208
0000-0001-7590-8644
0000-0003-1692-0699
PMID 19092092
PQID 66742386
PQPubID 23479
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_00927444v1
proquest_miscellaneous_66742386
pubmed_primary_19092092
pascalfrancis_primary_21534166
crossref_primary_10_1148_radiol_2493080217
crossref_citationtrail_10_1148_radiol_2493080217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-00
2009
2009-Jan
20090101
2009-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-00
PublicationDecade 2000
PublicationPlace Oak Brook, IL
PublicationPlace_xml – name: Oak Brook, IL
– name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2009
Publisher Radiological Society of North America
Publisher_xml – name: Radiological Society of North America
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R53
R12
R11
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R53
  doi: 10.1109/IEMBS.2007.4353610
– ident: R3
  doi: 10.1053/j.gastro.2007.04.068
– ident: R49
  doi: 10.1002/hep.510250345
– ident: R35
  doi: 10.1148/radiol.2402050314
– ident: R5
  doi: 10.1002/hep.21327
– ident: R46
  doi: 10.1007/s00330-007-0801-0
– ident: R9
  doi: 10.1002/lt.20354
– ident: R48
  doi: 10.1002/hep.510300407
– ident: R4
  doi: 10.1542/peds.2006-1212
– ident: R20
  doi: 10.2337/diabetes.51.3.797
– ident: R13
  doi: 10.1016/S0168-8278(97)80288-7
– ident: R29
  doi: 10.1371/journal.pone.0000569
– ident: R52
  doi: 10.1016/j.humpath.2003.10.029
– ident: R1
  doi: 10.1056/NEJMra011775
– ident: R11
  doi: 10.1016/j.mito.2005.10.004
– ident: R16
  doi: 10.1148/radiol.2372040539
– ident: R42
  doi: 10.1148/radiol.2303021331
– ident: R50
  doi: 10.1148/radiol.2462071131
– ident: R22
  doi: 10.1152/ajpendo.1999.276.5.E977
– ident: R12
  doi: 10.1136/gut.2003.036566
– ident: R44
  doi: 10.1053/j.gastro.2008.01.075
– ident: R33
  doi: 10.1016/j.jhep.2006.06.021
– ident: R39
  doi: 10.1002/mrm.21561
– ident: R17
  doi: 10.1148/radiol.2422052024
– ident: R38
  doi: 10.2307/2532051
– ident: R6
  doi: 10.1055/s-2001-12926
– ident: R30
  doi: 10.1002/mrm.20825
– ident: R27
  doi: 10.1620/tjem.206.23
– ident: R28
  doi: 10.2463/mrms.2.47
– ident: R40
  doi: 10.1002/mrm.20586
– ident: R8
  doi: 10.1148/radiol.2393042218
– ident: R51
  doi: 10.1053/j.gastro.2005.03.084
– ident: R31
  doi: 10.1053/jhep.2003.50193
– ident: R19
  doi: 10.1002/jmri.1880050311
– ident: R37
  doi: 10.1016/S0140-6736(86)90837-8
– ident: R10
  doi: 10.1002/lt.20340
– ident: R32
  doi: 10.2337/dc06-2032
– ident: R7
  doi: 10.1053/gast.2002.34168
– ident: R26
  doi: 10.1097/QAI.0b013e3181568cc2
– ident: R24
  doi: 10.1016/0730-725X(94)92543-7
– ident: R41
  doi: 10.1002/hep.22220
– ident: R25
  doi: 10.1038/oby.2002.118
– ident: R36
  doi: 10.1007/BF02668096
– ident: R47
  doi: 10.2337/dc07-0349
– ident: R2
  doi: 10.1002/hep.21768
– ident: R15
  doi: 10.1148/radiol.2373041639
– ident: R21
  doi: 10.1210/jc.87.7.3023
– ident: R43
  doi: 10.1002/hep.21248
– ident: R18
  doi: 10.1152/ajpendo.00590.2006
– ident: R14
  doi: 10.1148/radiol.2442061177
– ident: R45
  doi: 10.2337/dc08-s244
– ident: R23
  doi: 10.1152/ajpendo.00064.2004
– ident: R34
SSID ssj0014587
Score 2.3577015
Snippet To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR) spectroscopy as...
PURPOSE: To validate a triple-echo gradient-echo sequence for measuring the fat content of the liver, by using hydrogen 1((1)H) magnetic resonance (MR)...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 95
SubjectTerms Aged
Aged, 80 and over
Biological and medical sciences
Diabetes Mellitus, Type 2
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - pathology
Echo-Planar Imaging
Echo-Planar Imaging - methods
Fatty Liver
Fatty Liver - diagnosis
Fatty Liver - pathology
Female
Humans
Image Enhancement
Image Enhancement - methods
Image Processing, Computer-Assisted
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Life Sciences
Liver
Liver - pathology
Magnetic Resonance Imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy
Magnetic Resonance Spectroscopy - methods
Male
Mathematical Computing
Medical sciences
Middle Aged
Prospective Studies
Sensitivity and Specificity
Software
Title Quantification of Liver Fat Content: Comparison of Triple-Echo Chemical Shift Gradient-Echo Imaging and in Vivo Proton MR Spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/19092092
https://www.proquest.com/docview/66742386
https://hal.univ-brest.fr/hal-00927444
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELa6ISEkhHinvAwL8YkoI4ndNOFbNdq1sG7QtdP4FMWOrVViSZWl-8AP4C_x9zjHTprAeJWqqkpdx809Ot-dn7tD6CXzhS8kSWyHhT44KL3YDlkibQUmkngMFKTKRp4e-uMFfXfaO-10vjVYS-uC7fIvV-aV_I9U4RrIVWXJ_oNk60nhAnwG-cI7SBje_0rGH9ex5vrUdt-BollYI_D6y7JTOvC31-w1aM1zFVu3h6D3rLpcwPHZUhbWfl4SwAr95eRcdzDS9Zmsk-WlYmxkqg7HdFY2ri9UKcxs1ToZnsEUrVD9_mKyKFGU5cvagP8wnE_mml0Tp7bmo9bcoKPRaHb0SfO-z2HhvI4ZDA-t48HBcGpM_zxemtysKm6x0YvVOvTfM9xUFR5pHlQ1dTYhdkCNYjU629PValvg1BpYt-w0e7lbZnNfsU1QlfqQlwvZBQeUqIxjnUPaLsn9w1ZZExjBUILt3_e30DUP_BPVOuPt5H19fEV7gS7WapZujtPhtq9_umnLINo6U3Tcm6v4Ah6O1K1Vfu37lDbQ_Da6ZZwXPNBIvIM6Ir2Lrk8NPeMe-toGJM4kLgGJAZDYAPIN3sBRDWjAEVdwxCUccQuO2MARAxzxMsUKjljDEU9nuAnH-2gxGs73xrZp9GFzMIcKm_Y5oxyejuP5gQQX3mXEl8QVnMRezEMnho2lz1jsSk6oSISgPSKlI5xACNnn5AHaTrNUPELYYyENvZhQhwXUSXyWuAnvyURI6iWBS7vIqZ52xE0VfNWM5XOkM_SDSAso2gioi17VP1npEjC_G_wCRFiPU8Xbx4ODSF1T5c36lNJLt4t2WhKuh1ew6qLnlcgjUPfqDC9ORba-iHxfUSsCGPFQI2GzpBDmh9fjP03-BN3QR6IqjvgUbRf5WjwDy7pgOyWKvwNfu9Fx
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Liver+Fat+Content%3A+Comparison+of+Triple-Echo+Chemical+Shift+Gradient-Echo+Imaging+and+in+Vivo+Proton+MR+Spectroscopy&rft.jtitle=Radiology&rft.au=GUIU%2C+Boris&rft.au=PETIT%2C+Jean-Michel&rft.au=LOFFROY%2C+Romaric&rft.au=BEN+SALEM%2C+Douraied&rft.date=2009&rft.pub=Radiological+Society+of+North+America&rft.issn=0033-8419&rft.volume=250&rft.issue=1&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1148%2Fradiol.2493080217&rft.externalDBID=n%2Fa&rft.externalDocID=21534166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon