Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force
A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the forc...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 8; p. 1948 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.04.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s19081948 |
Cover
Loading…
Abstract | A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton’s principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient. |
---|---|
AbstractList | A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton's principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient.A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton's principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient. A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton’s principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient. |
Author | Zhou, Chuang Huang, Bo-Shiun Chang, Chia-Ou Song, Jia-Po Chang-Chien, Wen-Tien |
AuthorAffiliation | 2 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan; d98543013@ntu.edu.tw 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China; songarpore@gmail.com (J.-P.S.); zhouchuangzw@163.com (C.Z.) 3 Department of Information Technology and Management, Fooyin University, Tai-Liao, Kaohsiung 831, Taiwan; sc102@fy.edu.tw |
AuthorAffiliation_xml | – name: 3 Department of Information Technology and Management, Fooyin University, Tai-Liao, Kaohsiung 831, Taiwan; sc102@fy.edu.tw – name: 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China; songarpore@gmail.com (J.-P.S.); zhouchuangzw@163.com (C.Z.) – name: 2 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan; d98543013@ntu.edu.tw |
Author_xml | – sequence: 1 givenname: Chia-Ou surname: Chang fullname: Chang, Chia-Ou – sequence: 2 givenname: Wen-Tien surname: Chang-Chien fullname: Chang-Chien, Wen-Tien – sequence: 3 givenname: Jia-Po surname: Song fullname: Song, Jia-Po – sequence: 4 givenname: Chuang surname: Zhou fullname: Zhou, Chuang – sequence: 5 givenname: Bo-Shiun surname: Huang fullname: Huang, Bo-Shiun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31027253$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEURkeoiD5gwR9AltjAYsCv8WODFBVSioIAtawtj-dO4jCxiz1TKSz55TikRC0rW_bR8Xd972l1FGKAqnpO8BvGNH6bicaKaK4eVSeEU14rSvHRvf1xdZrzGmPKGFNPqmNGMJW0YSfV71mwwzb7jGKPxhWgeYKfEwS3RVcr34_oFlKeMprH5ABdJNt5COMOtuj9NtiNd2g2_4y-TTaNv9D1FHxY7ugf6Gpq1-BGNEa0gBBs6upPJXdGX-NYHN4Oe-vT6nFvhwzP7taz6vv8w_X5x3rx5eLyfLaoHad6rLnUmirFoMHAORa0VVwAcOiE5BzarueWi44z0lLXCi05kZT2WgogLZOanVWXe28X7drcJL-xaWui9ebvQUxLU2rwbgBTZIQRahveq_IWV1qojttGM9kI1XbF9W7vupnaDXSu1JPs8ED68Cb4lVnGWyMawiWXRfDqTpBi-e88mo3PDobBBohTNpQSQTUlDS3oy__QdZxSaduOoloIqaQo1Iv7iQ5R_rW6AK_3gEsx5wT9ASHY7MbIHMaI_QGmn7e2 |
Cites_doi | 10.1063/1.1335546 10.1088/0953-8984/24/8/084005 10.1038/nchem.1008 10.3762/bjnano.5.59 10.1098/rspa.2002.1115 10.1088/0960-1317/26/6/065006 10.1016/S0169-4332(98)00552-2 10.1016/j.snb.2011.11.032 10.1016/S0039-6028(00)00384-8 10.1063/1.2194490 10.1016/j.mee.2008.01.100 10.1016/0001-8686(80)80006-6 10.1088/0957-4484/18/25/255503 10.3762/bjnano.6.177 10.3390/s18020336 10.1063/1.4891882 10.1088/0957-4484/26/5/055501 10.1038/nnano.2017.45 10.3390/s151128764 10.3390/s18010100 10.1103/PhysRevB.56.16010 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s19081948 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_bdf1312a54f844048968d4a5937568bd PMC6514747 31027253 10_3390_s19081948 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK United States--US Taiwan |
GeographicLocations_xml | – name: United Kingdom--UK – name: Taiwan – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c429t-47992883e50e44062b846ee4ed6744ebdf4a46d431b2cb69741722f976e1b3793 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:53 EDT 2025 Thu Aug 21 14:01:42 EDT 2025 Fri Jul 11 06:58:12 EDT 2025 Fri Jul 25 22:46:12 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Tue Jul 01 00:41:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | atomic force microscopy Hamilton’s principle frequency shift quartz tuning fork force gradient |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-47992883e50e44062b846ee4ed6744ebdf4a46d431b2cb69741722f976e1b3793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2229667876?pq-origsite=%requestingapplication% |
PMID | 31027253 |
PQID | 2229667876 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdf1312a54f844048968d4a5937568bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_6514747 proquest_miscellaneous_2216292152 proquest_journals_2229667876 pubmed_primary_31027253 crossref_primary_10_3390_s19081948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190425 |
PublicationDateYYYYMMDD | 2019-04-25 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190425 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Oria (ref_16) 2015; 26 Sokolov (ref_1) 2000; 457 Ooe (ref_11) 2014; 105 Ando (ref_6) 2017; 12 ref_10 Falter (ref_18) 2014; 5 (ref_17) 2009; 20 Pawlak (ref_3) 2012; 40 Huang (ref_23) 2016; 26 Gross (ref_4) 2011; 3 Melcher (ref_19) 2015; 6 Hough (ref_25) 1980; 14 Simon (ref_15) 2007; 18 Lee (ref_22) 2003; 459 Giessibl (ref_13) 1997; 56 ref_24 ref_21 Schwarz (ref_12) 1999; 140 ref_20 Rust (ref_2) 2006; 77 Legrand (ref_5) 2012; 161 Giessibl (ref_14) 2001; 78 Bayat (ref_7) 2008; 85 ref_26 ref_9 Wu (ref_8) 2015; 15 |
References_xml | – volume: 78 start-page: 123 year: 2001 ident: ref_14 article-title: A direct method to calculate tip–sample forces from frequency shifts in frequency modulation atomic force microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.1335546 – volume: 40 start-page: 084005 year: 2012 ident: ref_3 article-title: High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy publication-title: J. Phys. Condems. Matter doi: 10.1088/0953-8984/24/8/084005 – volume: 3 start-page: 273 year: 2011 ident: ref_4 article-title: Recent advances in submolecular resolution with scanning probe microscopy publication-title: Nat. Chem. doi: 10.1038/nchem.1008 – volume: 5 start-page: 507 year: 2014 ident: ref_18 article-title: Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: Direct mechanical measurements and simulations publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.59 – ident: ref_24 – ident: ref_26 – volume: 459 start-page: 1925 year: 2003 ident: ref_22 article-title: Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potential publication-title: Proc. R. Soc. Lond。 A doi: 10.1098/rspa.2002.1115 – volume: 26 start-page: 065006 year: 2016 ident: ref_23 article-title: Analysis of the natural frequency of a quartz double-end tuning fork with a new deformation model publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/26/6/065006 – volume: 140 start-page: 344 year: 1999 ident: ref_12 article-title: Calculation of the frequency shift in dynamics force microscopy publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(98)00552-2 – volume: 161 start-page: 775 year: 2012 ident: ref_5 article-title: Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.11.032 – volume: 457 start-page: 267 year: 2000 ident: ref_1 article-title: Model dependence of AFM simulation in non-contact mode publication-title: Surf. Sci. doi: 10.1016/S0039-6028(00)00384-8 – ident: ref_21 – volume: 20 start-page: 2155 year: 2009 ident: ref_17 article-title: Dynamics of quartz tuning fork force sensors used in scanning probe microscopy publication-title: Nanotechnology – volume: 77 start-page: 043710 year: 2006 ident: ref_2 article-title: Signal electronics for an atomic force microscope equipped with a double quartz tuning fork sensor publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2194490 – volume: 85 start-page: 1018 year: 2008 ident: ref_7 article-title: Dynamic behavior of the tuning fork AFM probe publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.01.100 – volume: 14 start-page: 3 year: 1980 ident: ref_25 article-title: The Calculation of Hamaker Constant from Lifshitz Theory with Application to Wetting Phenomena publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(80)80006-6 – volume: 18 start-page: 255503 year: 2007 ident: ref_15 article-title: Recipes for cantilever parameter determination in dynamic force spectroscopy: Spring constant and amplitude publication-title: Nanotechnology doi: 10.1088/0957-4484/18/25/255503 – volume: 6 start-page: 1733 year: 2015 ident: ref_19 article-title: A simple method for the determination of qPlus sensor spring constants publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.6.177 – ident: ref_10 doi: 10.3390/s18020336 – volume: 105 start-page: 043107 year: 2014 ident: ref_11 article-title: Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4891882 – volume: 26 start-page: 055501 year: 2015 ident: ref_16 article-title: Determination of the static spring constant of electrically-driven quartz tuning forks with two freely oscillating prongs publication-title: Nanotechnology doi: 10.1088/0957-4484/26/5/055501 – volume: 12 start-page: 295 year: 2017 ident: ref_6 article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.45 – volume: 15 start-page: 28764 year: 2015 ident: ref_8 article-title: A unique self-sing, Self-actuating AFM Probe at higher eigenmodes publication-title: Sensors doi: 10.3390/s151128764 – ident: ref_20 – ident: ref_9 doi: 10.3390/s18010100 – volume: 56 start-page: 16010 year: 1997 ident: ref_13 article-title: Forces and frequency shifts in atomic-resolution dynamic-force microscopy publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.56.16010 |
SSID | ssj0023338 |
Score | 2.2505414 |
Snippet | A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1948 |
SubjectTerms | atomic force microscopy force gradient frequency shift Hamilton’s principle Microscopes Microscopy Nanotechnology quartz tuning fork Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnNoD6hc0LaBp1WsEdmwne6RAiqqCkAoSt8iObYEqbdBu9tAe-8s742RXuwipl15jy5l4xp439uQNwGdNhmuCjbk78kWugtR5ZYTNg_SxdaUVKvDfyBeX5vxGfbvVt2ulvjgnbKAHHibu0PkoCiGtVrFiLrtqYiqvrCa3qk3lPO--5POWwdQYahUUeQ08QgUF9Ydzcnvk-rjIz5r3SST9TyHLxwmSax6nfgnbI1TE40HEV_AsTF_DizUCwTfwZ8kpgl1EgnJYz4bU6F_44-4-9shJF4s51t2sDfh1lvK7eu5s8XSoRY_H9QWm1M7feL3gUxLu_RNpR-EjGuw7_E6bMefWJl5_vOp6zjAiydKob-GmPrs-Oc_Hqgp5S76n56O0CZcYDvoo0IQa6QiChKCCN6UizfiorDKegIWTrTMUbxDGkZFgSxCuoOW8A1tTet87QOFVFXQotCmFosCPsIWjcQtTtlFbKTL4tJzt5mEgz2go6GCVNCuVZPCF9bDqwHzX6QFZQTNaQfMvK8hgb6nFZlyE84ZLlRtyxqXJ4OOqmZYP34nYaegW3EcYOeHivhnsDkpfSULIV5ZSFxmUG-awIepmy_T-LlF0G8KhFKi9_x_f9gGeE0pLV1hS78FWP1uEfUJCvTtIRv8Xy2MGHQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDLbGuMABjd9lAxnEtbCkSdp3QNMGlAnxEBJ70m5V0qbbBHqFvj6JceQvx05fqxVNXBsrteo4_py4nwFealq4xts6dvtVEisvdZwZYWMvq7p0qRXK89_I88_meKE-nurTLRh6bG4-4Ora1I77SS3a769-_bw8IId_wxknpeyvVxTUKLCp7AbcpICUsn_O1XiZIBNKw3pSoan4JBQFxv7rYOa_1ZJXwk--A3c2uBEPe0PfhS2_vAe3r7AJ3oc_A8EINjUSrsO87eukL_Hr-UXdIVdgrFeYN23p8UMbir06Frb4rm9Mj4f5HEOd5288WfORCUt_Q9pe-LwGuwY_0c7MhbaB5B-_NB2XG5FmYdYHsMjfn7w9jjctFuKSAlHH52oz7jfs9b5XFNulIzzivfKVSRWZqaqVVaYilOFk6QwlHwR4ZE0YxguXkG8_hO0lve8xoKhU5rVPtEmFoiyQgIajeROTlrW2UkTwYvjaxY-eSaOgDIRNUowmieCI7TAKMPl1eNC0Z8XGlwrSSiRCWq3qjOkNs5nJKmU1IS1tMldFsDdYsRgWVMF9yw1F5tRE8HwcJl_iCxK79M2aZYSRM-70G8Gj3uijJgSDZSp1EkE6WQ4TVacjy4vzwNdtCJRS1vbk_2rtwi0CY-GmSuo92O7atX9KgKdzz8Jy_gvKFQAK priority: 102 providerName: Scholars Portal |
Title | Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31027253 https://www.proquest.com/docview/2229667876 https://www.proquest.com/docview/2216292152 https://pubmed.ncbi.nlm.nih.gov/PMC6514747 https://doaj.org/article/bdf1312a54f844048968d4a5937568bd |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQH1NJXWli5FdcI7NhO9lTxCgixCBWQ9hbZsVMQ0oZms4f22F_OjJNddquqlxwSyxll7JlvxpNvAHYVLlztTRXbfZfE0gsVZ5qb2AtXlTY1XHr6G3l0qc9u5flYjfuE27Qvq5zbxGCoXV1SjnyP-k5rtKyp_vb4M6auUXS62rfQeAEbRF1GJV3p-DngSjD-6tiEEgzt96bo_NABUqufJR8UqPr_hS__LpNc8jv5a9jsASM76DT8Btb8ZAteLdEIvoU_c2YRVlcMAR3Lm65A-he7vruvWkalF7Mpy-um9Oy0CVVeLQ027LjrSM8O8hELBZ6_2c2MciU0-oGhXaFEDWtrdoEmmSpsA7s_u6pbqjNCycKs7-A2P7k5Oov73gpxiR6opYTakBoNe7XvJTp1YRGIeC-906lE_bhKGqkdwgsrSqsx6kCkIyoEL57bBDf1e1if4Ps-AuNOZl75ROmUSwz_EGFYnDfRaVkpI3gEX-dfu3jsKDQKDD1IJcVCJREckh4WA4j1Otyomx9Fv4kKlIonXBglq4x4DbOhzpw0CiGW0pl1EWzPtVj0W3FaPC-cCL4sHuMmopMRM_H1jMZwLYbU4jeCD53SF5Ig_hWpUEkE6cpyWBF19cnk_i4QdWtEoxiuffq_WJ_hJaKwcEQl1Dast83M7yDSae0gLGe8ZvnpADYOTy6vvg9C1gCvI5k9AZJcAvU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcKt4YCiwIjlaz6921c0CoUExKkwqJVMrNrO01jSrs4jhC4dgf1N_IzDpOE4S49ZpdOSPP4_tmdzwD8Fqh4WprCj_t5YEvrVB-pLnxrciLLA0Nl5a-Rh4d68GJ_DxRky247L6FobLKLia6QJ1XGZ2R79HcaY2RNdTvzn_6NDWKble7ERqtWRzZxS9M2WZvDw9Qv2-EiD-OPwz85VQBP8PY29BRUp9G7FrVsxLhTKQIwdZKm-tQomR5IY3UOQJrKrJUI99GjBcFwrblaRBS8yUM-TdwvUceFU6uErwA8722e1EQ9Ht7MwRbBFwaLbSGeW40wL_47N9lmWs4F9-BnSVBZfutRd2FLVveg9trbQvvw0XXyYRVBUMCyeK6LchesK-n06JhVOoxn7G4qjPLPtWuqqyhzYYdLErzY5qx_XjEXEHpbzae09kM7T5jGMfoYIg1FRsiBFBFr5smwL5UDdU1oWTuqQ_g5Fre-kPYLvH_HgPjuYyssoHSIZeYbiKjSfG5gQ6zQhnBPXjVve3kvG3ZkWCqQypJVirx4D3pYbWBumy7H6r6e7J02gSl4gEXRskioj6KUV9HuTQKKZ3SUZp7sNtpMVm6_iy5MlQPXq6W0WnpJsaUtprTHq5Fn0YKe_CoVfpKErQrEQoVeBBumMOGqJsr5fTUNQbXyH4xPXzyf7FewM3BeDRMhofHR0_hFjJAdz0m1C5sN_XcPkOW1aTPnWkz-HbdvvQHg_Q5pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJwQLzrUmBBcLSSfTsHhArBtPShSrRSbmZtr2mEsFvHEQpHfha_jpm1nSYIcevVXtkjz-P7Znc8Q8grBYarnS3CdJiLUDquwkgzGzqeF1lqLJMO_0Y-OtZ7Z_LTRE02yO_-Xxgsq-xjog_UeZXhHvkA505riKxGD4quLOJkHL-9uAxxghSetPbjNFoTOXCLH5C-zd7sj0HXrzmPP5y-3wu7CQNhBnG4wW2lEY7bdWroJEAbTwGOnZMu10aClHkhrdQ5gGzKs1QD9wa85wVAuGOpMNiICcL_DSMUQx8zk6tkT0Du13YyEmI0HMwAeAF8cczQCv75MQH_4rZ_l2iuYF58l9zpyCrdba3rHtlw5X1ye6WF4QPyq-9qQquCApmkcd0WZy_o5_Np0VAs-5jPaFzVmaMfa19h1uBiS8eL0n6fZnQ3PqK-uPQnPZ3jPg2u_kYhpuEmEW0qeghwgNW9frIAPakarHECyfxTH5Kza_nqj8hmCe_bIpTlMnLKCaUNk5B6ArtJ4blCm6xQlrOAvOy_dnLRtu9IIO1BlSRLlQTkHephuQA7bvsLVf016Rw4AamYYNwqWUTYUzEa6SiXVgG9UzpK84Ds9FpMujAwS66MNiAvlrfBgfFUxpaumuMapvkIxwsH5HGr9KUkwL254UoExKyZw5qo63fK6blvEq6BCUOquP1_sZ6Tm-BFyeH-8cETcgvIoD8p42qHbDb13D0FwtWkz7xlU_Llul3pDxGHPd0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Frequency+Shift+versus+Force+Gradient+of+a+Dynamic+AFM+Quartz+Tuning+Fork+Subject+to+Lennard-Jones+Potential+Force&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chia-Ou%2C+Chang&rft.au=Chang-Chien%2C+Wen-Tien&rft.au=Jia-Po%2C+Song&rft.au=Zhou%2C+Chuang&rft.date=2019-04-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=8&rft_id=info:doi/10.3390%2Fs19081948&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |