Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force

A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the forc...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 8; p. 1948
Main Authors Chang, Chia-Ou, Chang-Chien, Wen-Tien, Song, Jia-Po, Zhou, Chuang, Huang, Bo-Shiun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.04.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19081948

Cover

Loading…
Abstract A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton’s principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient.
AbstractList A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton's principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient.A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton's principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient.
A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton’s principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient.
Author Zhou, Chuang
Huang, Bo-Shiun
Chang, Chia-Ou
Song, Jia-Po
Chang-Chien, Wen-Tien
AuthorAffiliation 2 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan; d98543013@ntu.edu.tw
1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China; songarpore@gmail.com (J.-P.S.); zhouchuangzw@163.com (C.Z.)
3 Department of Information Technology and Management, Fooyin University, Tai-Liao, Kaohsiung 831, Taiwan; sc102@fy.edu.tw
AuthorAffiliation_xml – name: 3 Department of Information Technology and Management, Fooyin University, Tai-Liao, Kaohsiung 831, Taiwan; sc102@fy.edu.tw
– name: 1 College of Mechanical Engineering, Guangxi University, Nanning 530004, China; songarpore@gmail.com (J.-P.S.); zhouchuangzw@163.com (C.Z.)
– name: 2 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan; d98543013@ntu.edu.tw
Author_xml – sequence: 1
  givenname: Chia-Ou
  surname: Chang
  fullname: Chang, Chia-Ou
– sequence: 2
  givenname: Wen-Tien
  surname: Chang-Chien
  fullname: Chang-Chien, Wen-Tien
– sequence: 3
  givenname: Jia-Po
  surname: Song
  fullname: Song, Jia-Po
– sequence: 4
  givenname: Chuang
  surname: Zhou
  fullname: Zhou, Chuang
– sequence: 5
  givenname: Bo-Shiun
  surname: Huang
  fullname: Huang, Bo-Shiun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31027253$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEURkeoiD5gwR9AltjAYsCv8WODFBVSioIAtawtj-dO4jCxiz1TKSz55TikRC0rW_bR8Xd972l1FGKAqnpO8BvGNH6bicaKaK4eVSeEU14rSvHRvf1xdZrzGmPKGFNPqmNGMJW0YSfV71mwwzb7jGKPxhWgeYKfEwS3RVcr34_oFlKeMprH5ABdJNt5COMOtuj9NtiNd2g2_4y-TTaNv9D1FHxY7ugf6Gpq1-BGNEa0gBBs6upPJXdGX-NYHN4Oe-vT6nFvhwzP7taz6vv8w_X5x3rx5eLyfLaoHad6rLnUmirFoMHAORa0VVwAcOiE5BzarueWi44z0lLXCi05kZT2WgogLZOanVWXe28X7drcJL-xaWui9ebvQUxLU2rwbgBTZIQRahveq_IWV1qojttGM9kI1XbF9W7vupnaDXSu1JPs8ED68Cb4lVnGWyMawiWXRfDqTpBi-e88mo3PDobBBohTNpQSQTUlDS3oy__QdZxSaduOoloIqaQo1Iv7iQ5R_rW6AK_3gEsx5wT9ASHY7MbIHMaI_QGmn7e2
Cites_doi 10.1063/1.1335546
10.1088/0953-8984/24/8/084005
10.1038/nchem.1008
10.3762/bjnano.5.59
10.1098/rspa.2002.1115
10.1088/0960-1317/26/6/065006
10.1016/S0169-4332(98)00552-2
10.1016/j.snb.2011.11.032
10.1016/S0039-6028(00)00384-8
10.1063/1.2194490
10.1016/j.mee.2008.01.100
10.1016/0001-8686(80)80006-6
10.1088/0957-4484/18/25/255503
10.3762/bjnano.6.177
10.3390/s18020336
10.1063/1.4891882
10.1088/0957-4484/26/5/055501
10.1038/nnano.2017.45
10.3390/s151128764
10.3390/s18010100
10.1103/PhysRevB.56.16010
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s19081948
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bdf1312a54f844048968d4a5937568bd
PMC6514747
31027253
10_3390_s19081948
Genre Journal Article
GeographicLocations United Kingdom--UK
United States--US
Taiwan
GeographicLocations_xml – name: United Kingdom--UK
– name: Taiwan
– name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c429t-47992883e50e44062b846ee4ed6744ebdf4a46d431b2cb69741722f976e1b3793
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:53 EDT 2025
Thu Aug 21 14:01:42 EDT 2025
Fri Jul 11 06:58:12 EDT 2025
Fri Jul 25 22:46:12 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Tue Jul 01 00:41:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords atomic force microscopy
Hamilton’s principle
frequency shift
quartz tuning fork
force gradient
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-47992883e50e44062b846ee4ed6744ebdf4a46d431b2cb69741722f976e1b3793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2229667876?pq-origsite=%requestingapplication%
PMID 31027253
PQID 2229667876
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bdf1312a54f844048968d4a5937568bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6514747
proquest_miscellaneous_2216292152
proquest_journals_2229667876
pubmed_primary_31027253
crossref_primary_10_3390_s19081948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190425
PublicationDateYYYYMMDD 2019-04-25
PublicationDate_xml – month: 4
  year: 2019
  text: 20190425
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Oria (ref_16) 2015; 26
Sokolov (ref_1) 2000; 457
Ooe (ref_11) 2014; 105
Ando (ref_6) 2017; 12
ref_10
Falter (ref_18) 2014; 5
(ref_17) 2009; 20
Pawlak (ref_3) 2012; 40
Huang (ref_23) 2016; 26
Gross (ref_4) 2011; 3
Melcher (ref_19) 2015; 6
Hough (ref_25) 1980; 14
Simon (ref_15) 2007; 18
Lee (ref_22) 2003; 459
Giessibl (ref_13) 1997; 56
ref_24
ref_21
Schwarz (ref_12) 1999; 140
ref_20
Rust (ref_2) 2006; 77
Legrand (ref_5) 2012; 161
Giessibl (ref_14) 2001; 78
Bayat (ref_7) 2008; 85
ref_26
ref_9
Wu (ref_8) 2015; 15
References_xml – volume: 78
  start-page: 123
  year: 2001
  ident: ref_14
  article-title: A direct method to calculate tip–sample forces from frequency shifts in frequency modulation atomic force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1335546
– volume: 40
  start-page: 084005
  year: 2012
  ident: ref_3
  article-title: High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy
  publication-title: J. Phys. Condems. Matter
  doi: 10.1088/0953-8984/24/8/084005
– volume: 3
  start-page: 273
  year: 2011
  ident: ref_4
  article-title: Recent advances in submolecular resolution with scanning probe microscopy
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1008
– volume: 5
  start-page: 507
  year: 2014
  ident: ref_18
  article-title: Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: Direct mechanical measurements and simulations
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.59
– ident: ref_24
– ident: ref_26
– volume: 459
  start-page: 1925
  year: 2003
  ident: ref_22
  article-title: Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potential
  publication-title: Proc. R. Soc. Lond。 A
  doi: 10.1098/rspa.2002.1115
– volume: 26
  start-page: 065006
  year: 2016
  ident: ref_23
  article-title: Analysis of the natural frequency of a quartz double-end tuning fork with a new deformation model
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/26/6/065006
– volume: 140
  start-page: 344
  year: 1999
  ident: ref_12
  article-title: Calculation of the frequency shift in dynamics force microscopy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(98)00552-2
– volume: 161
  start-page: 775
  year: 2012
  ident: ref_5
  article-title: Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.11.032
– volume: 457
  start-page: 267
  year: 2000
  ident: ref_1
  article-title: Model dependence of AFM simulation in non-contact mode
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(00)00384-8
– ident: ref_21
– volume: 20
  start-page: 2155
  year: 2009
  ident: ref_17
  article-title: Dynamics of quartz tuning fork force sensors used in scanning probe microscopy
  publication-title: Nanotechnology
– volume: 77
  start-page: 043710
  year: 2006
  ident: ref_2
  article-title: Signal electronics for an atomic force microscope equipped with a double quartz tuning fork sensor
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2194490
– volume: 85
  start-page: 1018
  year: 2008
  ident: ref_7
  article-title: Dynamic behavior of the tuning fork AFM probe
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.01.100
– volume: 14
  start-page: 3
  year: 1980
  ident: ref_25
  article-title: The Calculation of Hamaker Constant from Lifshitz Theory with Application to Wetting Phenomena
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(80)80006-6
– volume: 18
  start-page: 255503
  year: 2007
  ident: ref_15
  article-title: Recipes for cantilever parameter determination in dynamic force spectroscopy: Spring constant and amplitude
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/25/255503
– volume: 6
  start-page: 1733
  year: 2015
  ident: ref_19
  article-title: A simple method for the determination of qPlus sensor spring constants
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.177
– ident: ref_10
  doi: 10.3390/s18020336
– volume: 105
  start-page: 043107
  year: 2014
  ident: ref_11
  article-title: Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4891882
– volume: 26
  start-page: 055501
  year: 2015
  ident: ref_16
  article-title: Determination of the static spring constant of electrically-driven quartz tuning forks with two freely oscillating prongs
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/5/055501
– volume: 12
  start-page: 295
  year: 2017
  ident: ref_6
  article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.45
– volume: 15
  start-page: 28764
  year: 2015
  ident: ref_8
  article-title: A unique self-sing, Self-actuating AFM Probe at higher eigenmodes
  publication-title: Sensors
  doi: 10.3390/s151128764
– ident: ref_20
– ident: ref_9
  doi: 10.3390/s18010100
– volume: 56
  start-page: 16010
  year: 1997
  ident: ref_13
  article-title: Forces and frequency shifts in atomic-resolution dynamic-force microscopy
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.56.16010
SSID ssj0023338
Score 2.2505414
Snippet A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1948
SubjectTerms atomic force microscopy
force gradient
frequency shift
Hamilton’s principle
Microscopes
Microscopy
Nanotechnology
quartz tuning fork
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnNoD6hc0LaBp1WsEdmwne6RAiqqCkAoSt8iObYEqbdBu9tAe-8s742RXuwipl15jy5l4xp439uQNwGdNhmuCjbk78kWugtR5ZYTNg_SxdaUVKvDfyBeX5vxGfbvVt2ulvjgnbKAHHibu0PkoCiGtVrFiLrtqYiqvrCa3qk3lPO--5POWwdQYahUUeQ08QgUF9Ydzcnvk-rjIz5r3SST9TyHLxwmSax6nfgnbI1TE40HEV_AsTF_DizUCwTfwZ8kpgl1EgnJYz4bU6F_44-4-9shJF4s51t2sDfh1lvK7eu5s8XSoRY_H9QWm1M7feL3gUxLu_RNpR-EjGuw7_E6bMefWJl5_vOp6zjAiydKob-GmPrs-Oc_Hqgp5S76n56O0CZcYDvoo0IQa6QiChKCCN6UizfiorDKegIWTrTMUbxDGkZFgSxCuoOW8A1tTet87QOFVFXQotCmFosCPsIWjcQtTtlFbKTL4tJzt5mEgz2go6GCVNCuVZPCF9bDqwHzX6QFZQTNaQfMvK8hgb6nFZlyE84ZLlRtyxqXJ4OOqmZYP34nYaegW3EcYOeHivhnsDkpfSULIV5ZSFxmUG-awIepmy_T-LlF0G8KhFKi9_x_f9gGeE0pLV1hS78FWP1uEfUJCvTtIRv8Xy2MGHQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDLbGuMABjd9lAxnEtbCkSdp3QNMGlAnxEBJ70m5V0qbbBHqFvj6JceQvx05fqxVNXBsrteo4_py4nwFealq4xts6dvtVEisvdZwZYWMvq7p0qRXK89_I88_meKE-nurTLRh6bG4-4Ora1I77SS3a769-_bw8IId_wxknpeyvVxTUKLCp7AbcpICUsn_O1XiZIBNKw3pSoan4JBQFxv7rYOa_1ZJXwk--A3c2uBEPe0PfhS2_vAe3r7AJ3oc_A8EINjUSrsO87eukL_Hr-UXdIVdgrFeYN23p8UMbir06Frb4rm9Mj4f5HEOd5288WfORCUt_Q9pe-LwGuwY_0c7MhbaB5B-_NB2XG5FmYdYHsMjfn7w9jjctFuKSAlHH52oz7jfs9b5XFNulIzzivfKVSRWZqaqVVaYilOFk6QwlHwR4ZE0YxguXkG8_hO0lve8xoKhU5rVPtEmFoiyQgIajeROTlrW2UkTwYvjaxY-eSaOgDIRNUowmieCI7TAKMPl1eNC0Z8XGlwrSSiRCWq3qjOkNs5nJKmU1IS1tMldFsDdYsRgWVMF9yw1F5tRE8HwcJl_iCxK79M2aZYSRM-70G8Gj3uijJgSDZSp1EkE6WQ4TVacjy4vzwNdtCJRS1vbk_2rtwi0CY-GmSuo92O7atX9KgKdzz8Jy_gvKFQAK
  priority: 102
  providerName: Scholars Portal
Title Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force
URI https://www.ncbi.nlm.nih.gov/pubmed/31027253
https://www.proquest.com/docview/2229667876
https://www.proquest.com/docview/2216292152
https://pubmed.ncbi.nlm.nih.gov/PMC6514747
https://doaj.org/article/bdf1312a54f844048968d4a5937568bd
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQH1NJXWli5FdcI7NhO9lTxCgixCBWQ9hbZsVMQ0oZms4f22F_OjJNddquqlxwSyxll7JlvxpNvAHYVLlztTRXbfZfE0gsVZ5qb2AtXlTY1XHr6G3l0qc9u5flYjfuE27Qvq5zbxGCoXV1SjnyP-k5rtKyp_vb4M6auUXS62rfQeAEbRF1GJV3p-DngSjD-6tiEEgzt96bo_NABUqufJR8UqPr_hS__LpNc8jv5a9jsASM76DT8Btb8ZAteLdEIvoU_c2YRVlcMAR3Lm65A-he7vruvWkalF7Mpy-um9Oy0CVVeLQ027LjrSM8O8hELBZ6_2c2MciU0-oGhXaFEDWtrdoEmmSpsA7s_u6pbqjNCycKs7-A2P7k5Oov73gpxiR6opYTakBoNe7XvJTp1YRGIeC-906lE_bhKGqkdwgsrSqsx6kCkIyoEL57bBDf1e1if4Ps-AuNOZl75ROmUSwz_EGFYnDfRaVkpI3gEX-dfu3jsKDQKDD1IJcVCJREckh4WA4j1Otyomx9Fv4kKlIonXBglq4x4DbOhzpw0CiGW0pl1EWzPtVj0W3FaPC-cCL4sHuMmopMRM_H1jMZwLYbU4jeCD53SF5Ig_hWpUEkE6cpyWBF19cnk_i4QdWtEoxiuffq_WJ_hJaKwcEQl1Dast83M7yDSae0gLGe8ZvnpADYOTy6vvg9C1gCvI5k9AZJcAvU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcKt4YCiwIjlaz6921c0CoUExKkwqJVMrNrO01jSrs4jhC4dgf1N_IzDpOE4S49ZpdOSPP4_tmdzwD8Fqh4WprCj_t5YEvrVB-pLnxrciLLA0Nl5a-Rh4d68GJ_DxRky247L6FobLKLia6QJ1XGZ2R79HcaY2RNdTvzn_6NDWKble7ERqtWRzZxS9M2WZvDw9Qv2-EiD-OPwz85VQBP8PY29BRUp9G7FrVsxLhTKQIwdZKm-tQomR5IY3UOQJrKrJUI99GjBcFwrblaRBS8yUM-TdwvUceFU6uErwA8722e1EQ9Ht7MwRbBFwaLbSGeW40wL_47N9lmWs4F9-BnSVBZfutRd2FLVveg9trbQvvw0XXyYRVBUMCyeK6LchesK-n06JhVOoxn7G4qjPLPtWuqqyhzYYdLErzY5qx_XjEXEHpbzae09kM7T5jGMfoYIg1FRsiBFBFr5smwL5UDdU1oWTuqQ_g5Fre-kPYLvH_HgPjuYyssoHSIZeYbiKjSfG5gQ6zQhnBPXjVve3kvG3ZkWCqQypJVirx4D3pYbWBumy7H6r6e7J02gSl4gEXRskioj6KUV9HuTQKKZ3SUZp7sNtpMVm6_iy5MlQPXq6W0WnpJsaUtprTHq5Fn0YKe_CoVfpKErQrEQoVeBBumMOGqJsr5fTUNQbXyH4xPXzyf7FewM3BeDRMhofHR0_hFjJAdz0m1C5sN_XcPkOW1aTPnWkz-HbdvvQHg_Q5pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJwQLzrUmBBcLSSfTsHhArBtPShSrRSbmZtr2mEsFvHEQpHfha_jpm1nSYIcevVXtkjz-P7Znc8Q8grBYarnS3CdJiLUDquwkgzGzqeF1lqLJMO_0Y-OtZ7Z_LTRE02yO_-Xxgsq-xjog_UeZXhHvkA505riKxGD4quLOJkHL-9uAxxghSetPbjNFoTOXCLH5C-zd7sj0HXrzmPP5y-3wu7CQNhBnG4wW2lEY7bdWroJEAbTwGOnZMu10aClHkhrdQ5gGzKs1QD9wa85wVAuGOpMNiICcL_DSMUQx8zk6tkT0Du13YyEmI0HMwAeAF8cczQCv75MQH_4rZ_l2iuYF58l9zpyCrdba3rHtlw5X1ye6WF4QPyq-9qQquCApmkcd0WZy_o5_Np0VAs-5jPaFzVmaMfa19h1uBiS8eL0n6fZnQ3PqK-uPQnPZ3jPg2u_kYhpuEmEW0qeghwgNW9frIAPakarHECyfxTH5Kza_nqj8hmCe_bIpTlMnLKCaUNk5B6ArtJ4blCm6xQlrOAvOy_dnLRtu9IIO1BlSRLlQTkHephuQA7bvsLVf016Rw4AamYYNwqWUTYUzEa6SiXVgG9UzpK84Ds9FpMujAwS66MNiAvlrfBgfFUxpaumuMapvkIxwsH5HGr9KUkwL254UoExKyZw5qo63fK6blvEq6BCUOquP1_sZ6Tm-BFyeH-8cETcgvIoD8p42qHbDb13D0FwtWkz7xlU_Llul3pDxGHPd0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Frequency+Shift+versus+Force+Gradient+of+a+Dynamic+AFM+Quartz+Tuning+Fork+Subject+to+Lennard-Jones+Potential+Force&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chia-Ou%2C+Chang&rft.au=Chang-Chien%2C+Wen-Tien&rft.au=Jia-Po%2C+Song&rft.au=Zhou%2C+Chuang&rft.date=2019-04-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=8&rft_id=info:doi/10.3390%2Fs19081948&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon